JP2014109344A - Bearing gear - Google Patents

Bearing gear Download PDF

Info

Publication number
JP2014109344A
JP2014109344A JP2012264905A JP2012264905A JP2014109344A JP 2014109344 A JP2014109344 A JP 2014109344A JP 2012264905 A JP2012264905 A JP 2012264905A JP 2012264905 A JP2012264905 A JP 2012264905A JP 2014109344 A JP2014109344 A JP 2014109344A
Authority
JP
Japan
Prior art keywords
gear
ring
semicircular
pinion gear
gears
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012264905A
Other languages
Japanese (ja)
Inventor
Okimoto Tamada
興基 玉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012264905A priority Critical patent/JP2014109344A/en
Publication of JP2014109344A publication Critical patent/JP2014109344A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Retarders (AREA)

Abstract

PROBLEM TO BE SOLVED: To determine the size of a gear by setting a gear tooth shape to an involute curve at all the time and setting a gear-module while considering transmission torque or an impact coefficient, to determine a gear effective radius while considering a reduction ratio of the gear or a safety coefficient, and to reduce an outer shape of an effective diameter as further as possible although the outer shape becomes significantly large in the case where the transmission torque ot the impact coefficient is large.SOLUTION: In a gear device, conventional involute type gears are changed to a drive pinion gear 9 including a semicircular convex gear on a cross section in a rotating direction and a ring gear 8 with a semicircular concave gear on a cross section in a rotating direction. Further, performance improvement is achieved by adding a torsion angle to the shape of teeth. The gear is changed to a semicircular concave gear by a pinion gear 5 and a side gear 6 and a roller 3 is inserted thereto, thereby achieving larger transmission power in a structure having a number of contact areas in a differential mechanical portion. The semicircular concave and convex gears of the pinion gear and the ring gear are disposed successively while adding a tilt angle thereto. Thus, round torsion for winding around a rotary shaft is added further.

Description

本発明は四輪自動車の回転力を左右に伝達分配する装置(デフレンシャル)に使用する。特に四輪駆動自動車は左右のみならず、前後の回転数の差動に対しても、第3の差動機を必要とされている。これを半円凹凸型歯車に変更する事で差動機の容積を小さくする技術である。 The present invention is used in a device (differential) that transmits and distributes the rotational force of a four-wheeled vehicle to the left and right. In particular, a four-wheel drive vehicle requires a third differential for not only the left and right but also the differential of the front and rear rotational speeds. This is a technique for reducing the volume of the differential by changing it to a semicircular uneven gear.

現在、差動機(デフレンシャル)では はすば-インボリュート歯車を使用する、この歯型を半円凹凸形歯車へと変更する。
更に高馬力を伝達する為に半円凹凸形まがりば傘歯車を採用する。
At present, the differential type (differential) uses a helical-involute gear, and this tooth type is changed to a semicircular uneven gear.
Furthermore, in order to transmit high horsepower, a semi-circular uneven spiral bevel gear is adopted.

特開昭63−53036、特公昭47−14528、米国3748920、 JP 63-53036, JP-B 47-14528, US 3748920,

ギア歯形は必ずインボリュート曲線-形状をし、伝達トルクや、衝撃.係数を考慮して、ギア-モジュールを設定して、ギアの大きさを決める。ギアの減速比や安全係数を考慮しギア有効半径が決まる。伝達トルクや衝撃.係数が大きい場合
かなり大きくなる。これを出来るだけ、有効径の外形を小さくしたい。
The gear tooth profile must be an involute curve, and the gear size is determined by setting the gear module in consideration of the transmission torque and impact coefficient. The effective gear radius is determined in consideration of the gear reduction ratio and safety factor. When the transmission torque and impact coefficient are large, it becomes considerably large. I want to make the effective diameter as small as possible.

インボリュート歯車を使ったギア同士は、線接触で当たる為に面圧を小さくするのは無理である。ギアの摩擦耐力は (トルク力)/(接触面積)で決まる。摩擦耐力は歯車厚さ-幅部分で決まるので、歯車厚さを大きくせざるを得ない。 It is impossible to reduce the surface pressure between gears using involute gears because they are in line contact with each other. The friction resistance of the gear is determined by (torque force) / (contact area). Since the frictional strength is determined by the gear thickness-width portion, the gear thickness must be increased.

1)差動機を作るなら、ピ二オン、サイドギアを2組ずつ組合せた差動機部分が必要不可欠である、この2種のギア形状を見なおす。つまり折れやすい形を、半円凹形(富士山形)で根元を最大に構成し、出来るだけ小型化する。
2)円錐形のコロをピ二オン、サイドギアの隙間に挿入、配置する。
3)コロの外側に前リング、後リングを配置し外れ無い様に固定する。
4)リングギアの回転方向切断面が半円凹形歯車に、ドライブピ二オンギアを回転方向切断面が半円凸形歯車に変更する。
5)リングギア、ドライブピ二オンギアの半円凹凸形歯車を軸に対しネジレ角を持つ まがりば傘歯車に変更する。
1) If you want to make a differential, review the two types of gear shapes, where a differential that combines two pairs of pinions and side gears is essential. In other words, the easy-to-break shape is semicircular concave (Mt. Fuji) and the root is configured to the maximum, making it as small as possible.
2) Insert and place a conical roller in the pinion and side gear gap.
3) Place the front and rear rings on the outside of the roller and fix them so that they do not come off.
4) Change the ring gear rotational surface to a semicircular concave gear, and change the drive pinion gear to a semicircular convex gear.
5) Change the ring gear and drive pinion gear semi-circular uneven gear into a spiral bevel gear with a twist angle with respect to the shaft.

1)ピ二オン、サイドギアの2組ギア根元部分が折れやすい形が最も折れにくい形と成って耐久性が増した。
2)円錐形コロを隙間に挿入した事で応力の分散がなされ耐久性が増した。
3)前リング、後リングにより簡単な方法で組立てられた。
4))リングギア、ドライブピ二オンギアを半円凹凸形歯車にして最も壊れ無い形となり、更に耐久性が増した。
5)リングギア、ドライブピ二オンギアの半円凹凸形歯車に対しネジレ角を付る事で衝撃に対し強くなる。
1) Two pairs of pinions and side gears, where the root part of the gear is easy to break, has become the most difficult to break, increasing durability.
2) Inserting a conical roller into the gap distributed stress and increased durability.
3) Easy assembly with front and rear rings.
4)) The ring gear and the drive pinion gear are semi-circular uneven gears, so that they are the most unbreakable, further improving durability.
5) By attaching a twist angle to the semi-circular uneven gear of the ring gear and drive pinion gear, it becomes strong against impact.

半円凹形はとても単純な歯車で半円の切り込み、逆富士山形切り込みを切削るだけで良い。いずれもこの単純さが最大の魅力であり、摩擦による消耗にしても半円全部で耐える為に線接触のインボルユート歯車より、はるかに耐摩耗性がある。 The semicircular concave shape can be cut with a very simple gear, with a semicircle cut and a reverse Mt. Fuji cut. In all cases, this simplicity is the greatest attraction, and it is much more wear resistant than involute gears with line contact, because it can withstand the entire semicircle even if it is worn by friction.

入力軸15、に接続するドライブピ二オンギア9の回転方向切断面が半円凹形歯車で凹部分の歯車が十分な強度を持つ様に間隔を空ける事で伝達力が強くなる。インボリュート歯車は、もう限界に成っており、これ以上の伝達手段は、本発明のベアリングギア(半円凹凸形歯車、)しか存在しない。 The rotational force of the drive pinion gear 9 connected to the input shaft 15 is a semicircular concave gear, and the transmission force is increased by providing a gap so that the gear for the concave portion has sufficient strength. The involute gear is already at its limit, and the only transmission means is the bearing gear (semi-circular uneven gear) of the present invention.

≪第1請求項実施例≫(図1〜9を見て)
全体構造は 入力軸15→ドライブピ二オンギア9→リングギア8→ピ二オンギア5a,5b→サイドギア6a、6b→左右リアシャフト14a、14b →左右リアタイヤ
本発明の差動機部分の特徴は、より簡単な半円凹形歯車をピ二オンギア5サイドギア6に採用し半円凹形の部分にコロ3が凹形溝に噛み込む構造とする。
<< First Claim Embodiment >> (See FIGS. 1 to 9)
The overall structure is: input shaft 15 → drive pinion gear 9 → ring gear 8 → pinion gears 5a, 5b → side gears 6a, 6b → left and right rear shafts 14a, 14b → left and right rear tires. A semicircular concave gear is adopted for the pinion gear 5 side gear 6 so that the roller 3 is engaged with the concave groove in the semicircular concave portion.

その接触断面が図9と成る。更にリングギア8の内部にはピ二オンギア、コロ、サイドギアを垂直に噛み合せ、組込んだギアケース12が存在する。ピ二オンギア5はコロ3の前部を前リング1で固定する。コロ3の後部を後リング2で固定し、コロがサイドギア6の凹形溝に噛み込み図9の様な断面となる。 The contact cross section is shown in FIG. Further, inside the ring gear 8, there is a gear case 12 in which a pinion gear, a roller, and a side gear are vertically meshed. The pinion gear 5 fixes the front part of the roller 3 with the front ring 1. The rear part of the roller 3 is fixed by the rear ring 2, and the roller is engaged with the concave groove of the side gear 6 to form a cross section as shown in FIG.

コロ3は三角錐の形で前部にコロ軸4a,後全部にコロ軸4bの突出部を持つ、この部分は回転半径が小さく出来ており、その部分に前リング1と後リング2が入り込む形で組み合わせられる。前リング1と後リング2はボルトでピ二オンギア5に固定する。 Roller 3 has a triangular pyramid shape with a roller shaft 4a at the front and a roller shaft 4b at the back. This part has a small radius of rotation, and front ring 1 and rear ring 2 enter this part. Combined in shape. The front ring 1 and the rear ring 2 are fixed to the pinion gear 5 with bolts.

前リング1と後リング2はボルトで固定されている為回転する事は無い。しかしコロ3は回転可能な構造となっている、これはピ二オンギアとサイドギア6は激しい押し圧力を掛けられ、衝撃吸収材となっている。コロ3自身は回転しない。前リング1と後リング2は直円、環状になっている。 The front ring 1 and the rear ring 2 do not rotate because they are fixed with bolts. However, the roller 3 has a rotatable structure. This is because the pinion gear and the side gear 6 are subjected to intense pressing force and become shock absorbers. Roller 3 itself does not rotate. The front ring 1 and the rear ring 2 are round and circular.

相手のサイドギア6を押し接触回転する。サイドギア6は中心軸のスプライン溝部にリアシャフト14a、14bが貫通している。リアシャフト14a、14bはタイヤに接続している。ピ二オンギアとサイドギア6の回転数の配分で左右リアシャフト14a、14bへの回転差を生む。 Push the opponent's side gear 6 and rotate. In the side gear 6, rear shafts 14a and 14b penetrate through a spline groove portion of the central axis. The rear shafts 14a and 14b are connected to tires. The distribution of the rotational speeds of the pinion gear and the side gear 6 creates a rotational difference between the left and right rear shafts 14a and 14b.

ピ二オンギアとサイドギア6は激しい回転を繰り返し、押し圧、摩擦力も掛かるが、コロがクッションとなり、分解し無い様に前後リングが存在する。入力軸から、ギアケース12に回転が伝わりピ二オンギア5a,5b、の回転数の差がそのままサイドギア6a,6bの回転差となる。サイドギアはタイヤに直結となっている。 The pinion gear and the side gear 6 repeatedly rotate vigorously and are subject to pressing force and frictional force, but the rollers serve as cushions and there are front and rear rings so that they do not disassemble. The rotation is transmitted from the input shaft to the gear case 12, and the difference in rotation speed between the pinion gears 5a and 5b becomes the rotation difference between the side gears 6a and 6b. The side gear is directly connected to the tire.

≪設計仕様≫本発明を設計する時は、出来るだけ容積を小さくしたい為に、
Z(モジュール)を大きめにして、伝達トルクを大きくしたい。
なぜならZ(モジュール)が大きいと当然伝達馬力が大きいが、半円凹凸歯車
の噛み合い率を1以上で無ければ回転でき無い。
コロ3はかなりの硬度が必要である、通常のベアリングとリングの関係である。
≪Design specifications≫ When designing the present invention, in order to reduce the volume as much as possible,
I want to increase the transmission torque by increasing Z (module).
This is because, if Z (module) is large, the transmission horsepower is naturally large, but it cannot be rotated unless the meshing ratio of the semicircular uneven gear is 1 or more.
Roller 3 is a normal bearing-ring relationship that requires significant hardness.

≪第2請求項実施例≫(図10〜12、16C矢視図を見て)
本発明の特徴は、より簡単な半円凸形歯車をドライブピ二オンギア9に採用し
半円凸形の部分がリングギア8の凹形溝に噛み込む構造とする。
第1実施例ではピ二オンギア5、サイドギア6は半円凹形歯車である。
<< Example of Second Claim >> (See FIGS. 10 to 12, 16C as viewed)
A feature of the present invention is that a simpler semi-convex gear is employed in the drive pinion gear 9 so that the semi-circular convex portion is engaged with the concave groove of the ring gear 8.
In the first embodiment, the pinion gear 5 and the side gear 6 are semicircular concave gears.

(図16を見て)第2実施例ではドライブピ二オンギア9は半円凸形歯車で、リングギア8は半円凹形歯車である。ドライブピ二オンギア9の歯は半円凸形で、半円形部分がリングギア8の半円凹形部分に噛み込む構造である。
どちらも円形であり、接触面積は半円部全部であり、半円X歯厚み=接触面積
である。
In the second embodiment (see FIG. 16), the drive pinion gear 9 is a semicircular convex gear and the ring gear 8 is a semicircular concave gear. The teeth of the drive pinion gear 9 have a semicircular convex shape, and the semicircular portion engages with the semicircular concave portion of the ring gear 8.
Both are circular, the contact area is the entire semicircle, and the semicircle X tooth thickness = contact area.

≪第3請求項第3実施例≫(図13〜16を見て)D矢視図
第3実施例はドライブピ二オンギア18とリングギア17も半円凹凸形歯車はネジレ角(回転軸に対し傾斜とネジレ)が付いている(まがりば傘歯車)。
2個の歯車間は一定のネジレ角が付いて相対して噛み合い伝達する。各部分は軸に対し一定のネジレ角が付いて噛み合う。
まがりば傘歯車は多くの自動車のデフレンシャルに使用されている。図13のD矢視図(ネジレ角に直角に切る、図13では裏側になる)が図16の様になる。一定のネジレ角が何度かは色々ある為限定し無い(9°〜20°)。
<< Third embodiment of the third claim >> (see FIGS. 13 to 16) D view As shown in the third embodiment, the drive pinion gear 18 and the ring gear 17 are also semi-circular concave and convex gears. (Tilt and twist) (with bevel gear).
A constant twist angle is provided between the two gears so that they are engaged with each other and transmitted. Each part meshes with a certain twist angle with respect to the shaft.
Spiral bevel gears are used in many automobile differentials. FIG. 16 is a view as viewed in the direction of arrow D in FIG. Since there are various constant twist angles, there is no limitation (9 ° to 20 °).

≪第3請求項第4実施例≫(図15、E矢視図裏側にある)
単純に歯車面に直線の傾きのある直線半円凹凸形歯車も製作可能であり
(はすば傘半円形歯車)が作られる。これは歯の傾き(回転軸に対し傾斜)を直線にして製作した物で、単純な製作方法である。歯車間のネジレ角はより高馬力-高トルクを伝達するばかりで無く、衝撃に対し強くなっている。
<< Fourth Example of Third Claim >> (FIG. 15, on the back side of the arrow E)
A straight semicircular concavo-convex gear having a straight slope on the gear surface can also be manufactured (helical bevel semicircular gear). This is a product manufactured with a straight tooth inclination (inclination with respect to the rotation axis), and is a simple manufacturing method. The twist angle between the gears not only transmits higher horsepower-high torque, but also is more resistant to impact.

このネジレ半円凹凸形歯車の中心回転軸を並行にずらすやり方も実用化されるべきであるが(ハイポイドギア)も可能である。
図13,14はネジレ半円凸形歯車、及び半円凹形歯車である。歯車間のネジレ角は色々ある為、円周方向の誤差やバックラッシュが大きくても、小さくても充分通用する。これらの構造は量産部品とした時、確実に安価な物となる。更に耐久性も、耐衝撃値もかなり高くなり、出来るだけ小型化したい制作者にとって好都合な物となる。
A method of shifting the central rotation axis of the spiral semicircular concavo-convex gear in parallel should be put into practical use (hypoid gear).
FIGS. 13 and 14 show a spiral semicircular convex gear and a semicircular concave gear. Since there are various torsion angles between the gears, even if the circumferential error or backlash is large or small, it is sufficient. These structures are certainly inexpensive when used as mass-produced parts. In addition, the durability and impact resistance are considerably high, which makes it convenient for producers who want to make them as small as possible.

第1、2、3実施例においてドライブピ二オンギア7とリングギア8の凹凸形を逆にする事も可能である。ドライブピ二オンギア7を半円凹形歯車とし、リングギア8を半円凸形歯車と逆にしても同様に機能は変わらない。ドライブピ二オンギアは凹形歯と歯の間隔を離す事で高トルクを伝達できる。 In the first, second and third embodiments, the concave and convex shapes of the drive pinion gear 7 and the ring gear 8 can be reversed. Even if the drive pinion gear 7 is a semicircular concave gear and the ring gear 8 is reversed to the semicircular convex gear, the function is not changed in the same manner. The drive pinion gear can transmit high torque by separating the gap between the concave teeth.

特に四輪駆動自動車は、前輪、後輪との回転差を調節する差動機が必要となり、前後の差動に対しても、第3の差動機を必要とされている。どんな差動機もより小型化したい、それで安価、軽量の機械が可能となるが、そのメリットは計り知れない、バネ下重量が最少となる。差動機の小型化は四輪駆動自動車の何より必要十分条件である。 In particular, a four-wheel drive vehicle requires a differential that adjusts the rotational difference between the front wheels and the rear wheels, and a third differential is also required for the front and rear differentials. Any differential machine wants to be smaller, so cheap and lightweight machines are possible, but the benefits are immeasurable, unsprung weight is minimized. Miniaturization of the differential is a necessary and sufficient condition above all for four-wheel drive vehicles.

本発明の減速装置、 中心垂直断面図Reducer of the present invention, center vertical sectional view 図1の中心部拡大図Enlarged view of the center of FIG. 図2のA矢視図A view of arrow A in FIG. 図2のローラ、サイドギア概略図Schematic diagram of roller and side gear in Fig. 2 前リング、後リング正面、断面図Front ring, rear ring front, sectional view 前リング、後リング概略図Front and rear ring schematic ピ二オンギアの正面、中心断面図Front view of pinion gear, center section サイドギア正面図Side gear front view 図2.のB矢視図B arrow view of Figure 2 リングギア、ドライブピ二オンギア中心垂直断面図Ring gear, drive pinion gear center vertical section リングギア正面図Ring gear front view リングギア、ドライブピ二オンギア概略図Schematic diagram of ring gear and drive pinion gear 第3実施例のリングギア正面図Ring gear front view of the third embodiment 図13のリングギア、ドライブピ二オンギア概略図Schematic diagram of ring gear and drive pinion gear in FIG. 第3実施例のリングギア、ドライブピ二オンギア正面図Front view of ring gear and drive pinion gear of the third embodiment 図10のC矢視,図13のD矢視、図15のE矢視図View C in FIG. 10, view D in FIG. 13, view E in FIG.

1・・前リング 2・・後リング 3・・コロ
4a・・コロ軸 4b・・コロ軸 5a,b・・ピ二オンギア
6 a,b・・サイドギア 7a,b・・ピ二オンシャフト
8・・リングギア 9・・ドライブピ二オンギア
10・・ベアリング 11・・ベアリング
12・・ギアケース 13・・デフハウジング
14a・・リアシャフト 14b・・リアシャフト
15・・入力軸 16・・ボルト
第3実施例(まがりば傘歯車)
17・・リングギア 18・・ドライブピ二オンギア
19・・オイルシール 20・・カラー
第4実施例(はすば傘歯車)
21・・リングギア 22・・ドライブピ二オンギア
23・・













1 ・ ・ Front ring 2 ・ ・ Rear ring 3 ・ Colo
4a ... Roller shaft 4b ... Roller shaft 5a, b ... Pinion gear
6 a, b ... side gear 7a, b ... pinion shaft
8. Ring gear 9 Drive pinion gear
10. ・ Bearing 11. ・ Bearing
12. ・ Gear case 13 ・ ・ Differential housing
14a ・ ・ Rear shaft 14b ・ ・ Rear shaft
15. ・ Input shaft 16 ・ ・ Third embodiment of bolt (magbular bevel gear)
17 ・ ・ Ring gear 18 ・ ・ Drive pinion gear
19 ・ ・ Oil seal 20 ・ ・ Colour 4th embodiment (helical bevel gear)
21 ・ ・ Ring gear 22 ・ ・ Drive pinion gear
twenty three··













Claims (3)

四輪自動車の差動装置においてピ二オンギア5、サイドギア6の回転方向切断面が半円凹形ギアで全周に設け、両ギアの間にコロ3を少なくとも1個以上配置しコロの前部に前リング1、後部に後リング2を配置しピ二オンギア5と固着して回転する事を特徴とするベアリングギア In a four-wheeled vehicle differential, the rotation direction of the pinion gear 5 and the side gear 6 is a semi-circular concave gear provided on the entire circumference, and at least one roller 3 is disposed between the two gears, and the front part of the roller. A bearing gear characterized by having a front ring 1 on the rear and a rear ring 2 on the rear, which are fixed to the pinion gear 5 and rotated. 前記記載差動装置において、入力軸15に接続するドライブピ二オンギア9の回転方向切断面が半円凸形歯車で、それに接続するリングギア8の回転方向切断面が半円凹形歯車を全周に設けた事を特微とする前記請求項第1項記載のベアリングギア In the above-described differential device, the rotational direction cut surface of the drive pinion gear 9 connected to the input shaft 15 is a semicircular convex gear, and the rotational direction cut surface of the ring gear 8 connected thereto is a semicircular concave gear all around. The bearing gear according to claim 1, characterized in that it is provided on the bearing. 前記記載差動装置において、ドライブピ二オンギア9の回転方向切断面が半円凸形歯車で回転軸に対し一定ねじれ角度を持ち、それに接続するリングギア8の回転方向切断面が半円凹形歯車をドライブピ二オンギアに相等するねじれ角度を持った 半円凹形まがりば傘歯車を全周に設ける事を特微とする前記請求項第1項記載のベアリングギア


















In the above-described differential device, the rotational direction cut surface of the drive pinion gear 9 is a semicircular convex gear and has a constant twist angle with respect to the rotational axis, and the rotational direction cut surface of the ring gear 8 connected thereto is a semicircular concave gear. The bearing gear according to claim 1, wherein a semicircular concave spiral bevel gear having a twist angle equivalent to that of a drive pinion gear is provided on the entire circumference.


















JP2012264905A 2012-12-04 2012-12-04 Bearing gear Pending JP2014109344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012264905A JP2014109344A (en) 2012-12-04 2012-12-04 Bearing gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012264905A JP2014109344A (en) 2012-12-04 2012-12-04 Bearing gear

Publications (1)

Publication Number Publication Date
JP2014109344A true JP2014109344A (en) 2014-06-12

Family

ID=51030101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012264905A Pending JP2014109344A (en) 2012-12-04 2012-12-04 Bearing gear

Country Status (1)

Country Link
JP (1) JP2014109344A (en)

Similar Documents

Publication Publication Date Title
KR101574008B1 (en) Drive module having planetary transmission with nested ring gears
CN103775601A (en) Differential transmission device
CN104864036A (en) Improved swing disc reducer
JP4367503B2 (en) Planetary gear device for vehicle
WO2017050104A1 (en) Power-driven system and vehicle provided with same
CN203363060U (en) Differential mechanism provided with light bevel gear device
CN102979880B (en) There is the compact differential gear mechanism of intensive bevel pinion row
KR20070095796A (en) Double differential assembly for a motor vehicle driven by a plurality of axles
US20070213166A1 (en) Double Differential Assembly
US20050266954A1 (en) Limited slip differential device suitable for downsizing
JP6311730B2 (en) Gear mechanism
US20050054471A1 (en) Drive axle assembly and differential
WO2006031476A1 (en) Zero degree operating pressure angle gearing
CN107165987A (en) Front-wheel-drive cars speed changer
JP6407678B2 (en) Power transmission device
JP2014109344A (en) Bearing gear
CN103775600A (en) Differential gear
CN203023426U (en) Cylindrical gear power-shunting type limited slip differential
CN110848362B (en) Vehicle drive train component having a differential with an asymmetric differential gearing
JP2019074210A (en) Drive module
WO2018213032A1 (en) Compact planetary differential
CN204729556U (en) A kind of modified model balance speed reducer
JP2012163188A (en) Bearing gear
JP4924962B1 (en) Bearing gear
CN101994811A (en) High torque capacity three output differential