JP2014107320A - Semiconductor device manufacturing method - Google Patents

Semiconductor device manufacturing method Download PDF

Info

Publication number
JP2014107320A
JP2014107320A JP2012257210A JP2012257210A JP2014107320A JP 2014107320 A JP2014107320 A JP 2014107320A JP 2012257210 A JP2012257210 A JP 2012257210A JP 2012257210 A JP2012257210 A JP 2012257210A JP 2014107320 A JP2014107320 A JP 2014107320A
Authority
JP
Japan
Prior art keywords
temperature
semiconductor chip
displacement
wiring board
insulating resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012257210A
Other languages
Japanese (ja)
Inventor
Shoichi Niizeki
彰一 新関
Hiroyuki Nio
宏之 仁王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2012257210A priority Critical patent/JP2014107320A/en
Publication of JP2014107320A publication Critical patent/JP2014107320A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body

Landscapes

  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a general-purpose semiconductor device manufacturing method which can prevent the occurrence of voids even when a size of a semiconductor chip, a type and a size of a bump electrode, a wiring width, a pitch, a level difference and the like of a wiring board are different from each other.SOLUTION: In a semiconductor device manufacturing method of joining a surface of a semiconductor chip on a bump electrode side with a surface of a wiring board on an insulating resin sheet side, to which the insulating resin sheet is attached on a pad electrode side of the wiring board, and electrically connecting the bump electrodes and the pad electrodes by application of heat and pressure, when assuming that displacement of the semiconductor chip with respect to the wiring board when the bump electrodes contact the insulating resin sheet and application of pressure starts is 0, displacement when the displacement becomes constant is d and a temperature at which a time (represented as t) from the start of application of pressure until reaching displacement 0.8d becomes minimum is T(T<250°C), the application of heat and pressure is performed at a temperature (T) which satisfies t(T)≤t(T)≤3 t(T).

Description

本発明は、半導体チップを配線基板上にフリップチップ実装する半導体装置の製造方法に関し、特に、あらかじめ絶縁性樹脂シートを貼り付けた配線基板を用いる半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device in which a semiconductor chip is flip-chip mounted on a wiring substrate, and more particularly to a method for manufacturing a semiconductor device using a wiring substrate on which an insulating resin sheet has been pasted.

半導体チップを配線基板上にフリップチップ実装する場合、半導体チップと配線基板との線膨張率の差に起因する熱ストレスを緩和するため、半導体チップと配線基板の間隙にいわゆるアンダーフィルと呼ばれる絶縁性液状樹脂を充填する方法がとられてきた。しかし、微細接続化により半導体チップと配線基板の間隙が狭くなると、毛細管現象を利用した絶縁性液状樹脂の充填に長時間を要する問題が生じていた。また半田等を用いた接続時のフラックス残渣の洗浄除去が困難になる等の問題が生じていた。これに対し、あらかじめ配線基板に絶縁性液状樹脂を塗布または絶縁性樹脂シートを貼り付け、加熱および加圧により半導体チップのバンプ電極と配線基板のパッド電極を電気的に接続し、絶縁性樹脂の硬化を行う半導体装置の製造方法が行われている。特に絶縁性樹脂量の制御やフィレット量の制御による実装面積の極小化の点で、絶縁性樹脂シートを貼り付ける方法が主流となっている。   When flip-chip mounting a semiconductor chip on a wiring board, in order to alleviate thermal stress caused by the difference in linear expansion coefficient between the semiconductor chip and the wiring board, insulation called so-called underfill is provided in the gap between the semiconductor chip and the wiring board. A method of filling a liquid resin has been taken. However, when the gap between the semiconductor chip and the wiring substrate is narrowed by fine connection, there is a problem that it takes a long time to fill the insulating liquid resin using the capillary phenomenon. Further, there has been a problem that it becomes difficult to remove and remove the flux residue at the time of connection using solder or the like. On the other hand, an insulating liquid resin is applied to the wiring board in advance or an insulating resin sheet is pasted, and the bump electrode of the semiconductor chip and the pad electrode of the wiring board are electrically connected by heating and pressurization, and the insulating resin A manufacturing method of a semiconductor device for performing curing is performed. In particular, in order to minimize the mounting area by controlling the amount of insulating resin and the amount of fillet, a method of attaching an insulating resin sheet has become the mainstream.

この絶縁性樹脂シートを貼り付ける方法を、図1を用いて説明する。まず、一主面にパッド電極および配線が形成された配線基板を用意する(図1(a))。次に、図示しない加圧冶具、ローラー、ラミネータ等を用い絶縁性樹脂シートを配線基板に仮貼り付けする(図1(b))。次に、一主面にバンプ電極が形成された半導体チップを用意する(図1(c))。その後、バンプ電極とパッド電極を対向させ、図示しない保持冶具を用いて半導体チップを絶縁性樹脂シートが軟化する温度以上である第1の温度に加熱しながら加圧し、バンプ電極がパッド電極に到達後両者の電気的接続に必要な第2の温度まで昇温し、電気的接続と絶縁性樹脂シートの硬化を行う(図1(d))。   A method of attaching the insulating resin sheet will be described with reference to FIG. First, a wiring board having a pad electrode and wiring formed on one main surface is prepared (FIG. 1A). Next, an insulating resin sheet is temporarily attached to the wiring board using a pressure jig, a roller, a laminator, etc. (not shown) (FIG. 1B). Next, a semiconductor chip having a bump electrode formed on one main surface is prepared (FIG. 1C). Thereafter, the bump electrode and the pad electrode are made to face each other, and the semiconductor chip is pressed while being heated to a first temperature that is equal to or higher than the temperature at which the insulating resin sheet is softened using a holding jig (not shown), and the bump electrode reaches the pad electrode. Thereafter, the temperature is raised to a second temperature necessary for electrical connection between the two, and the electrical connection and the insulating resin sheet are cured (FIG. 1D).

一方、配線の微細化、狭ピッチ化により、絶縁性樹脂シートを貼り付け時に配線基板の段差部等にボイド(気泡)が取り残されるという問題があり、配線基板の保護膜の開口部形状を気泡の封じ込めが起こりにくい形状にする方法(特許文献1参照)や、突起部を有する保持冶具を用いて絶縁性樹脂シートを仮固定する方法が提案されている(特許文献2参照)。しかしながらこれらの方法は、半導体チップのサイズ、バンプ電極の種類やサイズ、配線基板の配線幅、ピッチ、段差等が異なるとボイドの発生を防止する効果が減少または得られなくなる場合があった。そのため、前記半導体チップのサイズ等が異なる場合には効果を確認するとともに、効果が得られない場合は新たに最適な配線基板の保護膜の開口部形状や最適な保持冶具の突起部形状を決定する必要があった。   On the other hand, there is a problem that voids (bubbles) are left in the stepped part of the wiring board when the insulating resin sheet is pasted due to the finer and narrower pitch of the wiring. There are proposed a method of making the shape difficult to contain (see Patent Document 1) and a method of temporarily fixing the insulating resin sheet using a holding jig having a protrusion (see Patent Document 2). However, in these methods, if the size of the semiconductor chip, the type and size of the bump electrode, the wiring width, pitch, and level difference of the wiring substrate are different, the effect of preventing the occurrence of voids may be reduced or cannot be obtained. Therefore, when the size of the semiconductor chip is different, the effect is confirmed, and when the effect is not obtained, a new optimal opening shape of the protective film of the wiring board and an optimal protrusion shape of the holding jig are determined. There was a need to do.

特開2008−311443号公報(第4〜5頁、第1図)Japanese Patent Laid-Open No. 2008-311443 (pages 4-5, FIG. 1) 特開2010−251652号公報(第6〜9頁、第8図)JP 2010-251652 (pages 6-9, FIG. 8)

本発明は、半導体チップのサイズ、バンプ電極の種類やサイズ、配線基板の配線幅、ピッチ、段差等が異なる場合であってもボイドの発生を防止できる汎用的な半導体装置の製造方法を提供することを目的とする。   The present invention provides a general-purpose semiconductor device manufacturing method capable of preventing the occurrence of voids even when the size of a semiconductor chip, the type and size of bump electrodes, the wiring width, pitch, and level difference of a wiring board are different. For the purpose.

本発明の製造方法は、バンプ電極を有する半導体チップのバンプ電極側の面と、パッド電極を有する配線基板のパッド電極側の面に絶縁性樹脂シートを貼り付けた絶縁性樹脂シート付配線基板の絶縁性樹脂シート側の面とを合わせて、加熱および加圧により前記バンプ電極と前記パッド電極とを電気的に接続する半導体装置の製造方法であって、前記バンプ電極が前記絶縁性樹脂シートに接触して前記加圧が開始されるときの前記配線基板に対する前記半導体チップの変位を0、前記変位が一定となったときの変位をd、加圧開始から変位0.8dに到達するまでの時間(t0.8dとする)が最小となる温度をT(T<250℃)として、t0.8d(T)≦t0.8d(T)≦3t0.8d(T)を満たす温度(T)で加熱加圧を行うことを特徴とする。 The manufacturing method of the present invention includes a wiring board with an insulating resin sheet in which an insulating resin sheet is bonded to a surface on a bump electrode side of a semiconductor chip having a bump electrode and a surface on the pad electrode side of a wiring board having a pad electrode. A method of manufacturing a semiconductor device in which the bump electrode and the pad electrode are electrically connected by heating and pressurizing together with the surface on the insulating resin sheet side, the bump electrode being attached to the insulating resin sheet The displacement of the semiconductor chip with respect to the wiring substrate when the pressurization is started upon contact is 0, the displacement when the displacement becomes constant is d, and from the start of pressurization until the displacement reaches 0.8d. T 0.8d (T c ) ≦ t 0.8d (T) ≦ 3t 0.8d (T c ) where T c (T c <250 ° C.) is the temperature at which the time (t 0.8d is minimum). ) Satisfying temperature (T) And performing heating and pressing.

本発明によれば、半導体チップのサイズ、バンプ電極の種類やサイズ、配線基板の配線幅、ピッチ、段差等が異なる場合であってもボイドの無い半導体装置が得られる。   According to the present invention, a semiconductor device free from voids can be obtained even when the size of the semiconductor chip, the type and size of the bump electrode, the wiring width of the wiring substrate, the pitch, the step, and the like are different.

従来の半導体装置の製造方法を説明する断面図Sectional drawing explaining the manufacturing method of the conventional semiconductor device 本発明の半導体装置の製造方法を説明する断面図Sectional drawing explaining the manufacturing method of the semiconductor device of this invention 本発明の半導体装置の製造方法の加圧温度の決定方法を説明する図(1)FIG. 1 is a diagram for explaining a method for determining a pressurization temperature in a method for manufacturing a semiconductor device according to the present invention 本発明の半導体装置の製造方法の加圧温度の決定方法を説明する図(2)FIG. 2 is a diagram for explaining a method for determining a pressurization temperature in the method for manufacturing a semiconductor device of the present invention 本発明の半導体装置の製造方法の加圧温度の決定方法を説明する図(3)FIG. 3 is a diagram for explaining a method for determining a pressurization temperature in the method for manufacturing a semiconductor device of the present invention

本発明者らは先に述べたボイドの発生防止について鋭意検討の結果、次のような結果を得た。すなわち、加圧開始初期の配線基板に対する半導体チップの変位変化が最も大きい温度を中心としてボイドの発生のほとんど無い(ボイドがチップ面積の1%以下)温度領域があることを見出した。より具体的には、配線基板に対する半導体チップの変位を0、前記変位が一定となったときの変位をdとしたとき、加圧開始から変位0.8dに到達するまでの時間が最小時間となる温度を中心として、前記最小時間の3倍の時間までで変位0.8dに到達する温度範囲であれば、ボイドの発生がほとんど無いことを見出した。   As a result of intensive studies on the prevention of voids described above, the present inventors have obtained the following results. That is, it has been found that there is a temperature region in which there is almost no void generation (void is 1% or less of the chip area) centering on the temperature at which the displacement change of the semiconductor chip relative to the wiring substrate at the beginning of pressurization is the largest. More specifically, when the displacement of the semiconductor chip relative to the wiring board is 0, and the displacement when the displacement becomes constant is d, the time from the start of pressurization to the displacement 0.8d is the minimum time. It has been found that there is almost no generation of voids in a temperature range in which the displacement reaches 0.8 d within a time three times the minimum time centering on the above temperature.

すなわち、本発明の半導体装置の製造方法は、バンプ電極を有する半導体チップのバンプ電極側の面と、パッド電極を有する配線基板のパッド電極側の面に絶縁性樹脂シートを貼り付けた絶縁性樹脂シート付配線基板の絶縁性樹脂シート側の面とを合わせて、加熱および加圧により前記バンプ電極と前記パッド電極とを電気的に接続する半導体装置の製造方法であって、前記バンプ電極が前記絶縁性樹脂シートに接触して前記加圧が開始されるときの前記配線基板に対する前記半導体チップの変位を0、前記変位が一定となったときの変位をd、加圧開始から変位0.8dに到達するまでの時間(t0.8dとする)が最小となる温度をT(T<250℃)として、t0.8d(T)≦t0.8d(T)≦3t0.8d(T)を満たす温度(T)で加熱加圧を行うことを特徴とする。 That is, the method for manufacturing a semiconductor device according to the present invention includes an insulating resin in which an insulating resin sheet is bonded to a surface on a bump electrode side of a semiconductor chip having a bump electrode and a surface on the pad electrode side of a wiring substrate having a pad electrode. A method of manufacturing a semiconductor device in which the bump electrode and the pad electrode are electrically connected by heating and pressurizing together with the surface on the insulating resin sheet side of the wiring board with sheet, wherein the bump electrode The displacement of the semiconductor chip relative to the wiring board when the pressurization is started in contact with the insulating resin sheet is 0, the displacement when the displacement becomes constant is d, and the displacement is 0.8d from the start of pressurization. T 0.8d (T c ) ≦ t 0.8d (T) ≦ 3t 0 , where T c (T c <250 ° C.) is the temperature at which the time to reach (t 0.8d ) is the minimum .8d (T ) And performing heating and pressurization at a temperature (T) that satisfies.

本発明の半導体装置の製造方法においては、バンプ電極を有する半導体チップのバンプ電極側の面と、パッド電極を有する配線基板のパッド電極側の面に絶縁性樹脂シートを貼り付けた絶縁性樹脂シート付配線基板の絶縁性樹脂シート側の面とを合わせる。例えば前述の背景技術で図1(a)〜(c)を用いて説明した工程については同様にして実施することができる。   In the method for manufacturing a semiconductor device of the present invention, an insulating resin sheet in which an insulating resin sheet is bonded to the bump electrode side surface of a semiconductor chip having a bump electrode and the pad electrode side surface of a wiring substrate having a pad electrode Match the surface of the attached wiring board with the surface of the insulating resin sheet. For example, the steps described in the background art with reference to FIGS. 1A to 1C can be performed in the same manner.

次に加熱および加圧により前記バンプ電極と前記パッド電極とを電気的に接続する。その際、半導体チップを絶縁性樹脂シートが軟化する温度以上である第1の温度で加熱しながら加圧を開始して、バンプ電極の先端が絶縁性樹脂シートに接触させることが好ましい。その例を図2(a)に示す。次にさらに加圧を続けて、バンプ電極が軟化した絶縁性樹脂を押しのけながら下降させることが好ましい。その例を図2(b)に示す。なおバンプ電極の先端が配線の表面に到達すると、配線基板に対する半導体チップの変位は一定となる。その例を図2(c)に示す。   Next, the bump electrode and the pad electrode are electrically connected by heating and pressing. At that time, it is preferable that pressurization is started while heating the semiconductor chip at a first temperature that is equal to or higher than the temperature at which the insulating resin sheet softens, and the tip of the bump electrode is brought into contact with the insulating resin sheet. An example is shown in FIG. Next, it is preferable to further pressurize and lower the bump electrode while pushing away the softened insulating resin. An example is shown in FIG. When the tip of the bump electrode reaches the surface of the wiring, the displacement of the semiconductor chip with respect to the wiring substrate becomes constant. An example is shown in FIG.

本発明ではこの時、第1の温度を次のようにして決定する。すなわち、前記バンプ電極が前記絶縁性樹脂シートに接触して前記加圧が開始されるときの前記配線基板に対する前記半導体チップの変位を0、前記変位が一定となったときの変位をd、加圧開始から変位0.8dに到達するまでの時間(t0.8dとする)が最小となる温度をT(T<250℃)、温度TおよびTにおけるt0.8dをそれぞれt0.8d(T)、t0.8d(T)として、t0.8d(T)≦t0.8d(T)≦3t0.8d(T)を満たす温度(T)を第1の温度とする。 In the present invention, at this time, the first temperature is determined as follows. That is, the displacement of the semiconductor chip relative to the wiring board when the bump electrode comes into contact with the insulating resin sheet and the pressurization is started is 0, and the displacement when the displacement becomes constant is d. T c (T c <250 ° C.) is the temperature at which the time from the start of pressure to the displacement 0.8d (t 0.8d ) is minimized, and t 0.8d at temperatures T and T c is t 0.8d (T), as t 0.8d (T c), t 0.8d a (T c) ≦ t 0.8d ( T) temperature satisfying ≦ 3t 0.8d (T c) ( T) first The temperature is 1.

その後、背景技術と同様にバンプ電極がパッド電極に到達後両者の電気的接続に必要な第2の温度まで昇温し、電気的接続と絶縁性樹脂シートの硬化を行うことが好ましい。   Thereafter, as in the background art, it is preferable that after the bump electrode reaches the pad electrode, the temperature is raised to a second temperature necessary for electrical connection between the two to cure the electrical connection and the insulating resin sheet.

以下、図3〜5を用いて第1の温度の決定方法を説明する。   Hereinafter, the method for determining the first temperature will be described with reference to FIGS.

ある温度での配線基板に対する半導体チップの変位と加圧開始からの時間の関係を図3に示す。先に述べたようにバンプ電極の先端が配線の表面に到達すると、配線基板に対する半導体チップの変位は一定となる(図2(c))が、実用的な温度範囲でこれに要する時間は通常1〜5秒である。5秒後に一定となった変位をdとしたとき、変位が0.8dまで変化するのに必要な時間t0.8dを加熱温度毎に求める。 FIG. 3 shows the relationship between the displacement of the semiconductor chip relative to the wiring board at a certain temperature and the time from the start of pressurization. As described above, when the tip of the bump electrode reaches the surface of the wiring, the displacement of the semiconductor chip with respect to the wiring substrate becomes constant (FIG. 2C), but the time required for this in the practical temperature range is usually 1-5 seconds. When the displacement that becomes constant after 5 seconds is defined as d, a time t 0.8d required for the displacement to change to 0.8 d is obtained for each heating temperature.

求めた加熱温度毎の変位が0.8dまで変化するのに必要な時間t0.8dをプロットした例を図4に示す。また、この時の最小値(この例ではt0.8d(200℃))に対する比t0.8d/t0.8d(T)を図5に示す。図5において、t0.8d/t0.8d(T)が3以下となる温度を第1の温度として選択できる。 FIG. 4 shows an example in which the time t 0.8d required for the obtained displacement at each heating temperature to change to 0.8d is plotted. FIG. 5 shows a ratio t 0.8d / t 0.8d (T c ) with respect to the minimum value at this time (in this example, t 0.8d (200 ° C.)). In FIG. 5, the temperature at which t 0.8d / t 0.8d (T c ) is 3 or less can be selected as the first temperature.

本発明の実施形態では、加熱および加圧が開始されバンプ電極が絶縁性樹脂シートに接触してから、バンプ電極の先端が配線の表面に到達するまでの時間の内、最初の80%の変位に最も早く達する温度の場合を基準とし、最初の80%の変位に達する時間がその3倍までであればボイドの発生がほとんど無いことが種々の検討から明らかになった。   In the embodiment of the present invention, the first 80% of the displacement from the time when the heating and pressurization is started and the bump electrode contacts the insulating resin sheet until the tip of the bump electrode reaches the surface of the wiring. Based on the case of the temperature that reaches the earliest, it has become clear from various examinations that there is almost no void if the time to reach the first 80% displacement is up to three times that time.

0.8d/t0.8d(T)が3以下であっても、加熱温度が配線基板の耐熱温度(例えば250℃)以上の場合、脱ガスによるボイドが多発するため、配線基板の耐熱温度以上の加熱温度は選択できない。 Even when t 0.8d / t 0.8d (T c ) is 3 or less, voids due to degassing frequently occur when the heating temperature is equal to or higher than the heat resistance temperature of the wiring substrate (for example, 250 ° C.). A heating temperature higher than the heat resistance temperature cannot be selected.

また本発明の製造方法においては、パッド電極の少なくとも表面が、Au、Snおよび半田から選ばれる1以上の金属を含有することが好ましい。表面をAuとすることで、パッド電極の酸化を防ぎ良好な接合が得られる。また、Snや半田を表面に有することで、ボンディングの際にパッド電極上のSnや半田が溶融し、容易に接合を形成することが可能となる。   In the production method of the present invention, it is preferable that at least the surface of the pad electrode contains one or more metals selected from Au, Sn and solder. By using Au as the surface, oxidation of the pad electrode can be prevented and good bonding can be obtained. Further, since Sn or solder is provided on the surface, Sn or solder on the pad electrode is melted during bonding, and a bond can be easily formed.

また本発明の製造方法においては、バンプ電極の少なくとも表面が、Au、Cuおよび半田から選ばれる1以上の金属を含有することが好ましい。   In the production method of the present invention, it is preferable that at least the surface of the bump electrode contains one or more metals selected from Au, Cu and solder.

また本発明の製造方法においては、パッド電極の少なくとも表面および/または前記バンプ電極の少なくとも表面が半田を含有しており、前記加熱温度(T)が前記半田の融点未満であることが好ましい。加熱温度(T)を半田の融点未満にすることで、バンプ電極とパッド電極の間の樹脂シートを排除し、接合を形成することができる。   In the manufacturing method of the present invention, it is preferable that at least the surface of the pad electrode and / or at least the surface of the bump electrode contains solder, and the heating temperature (T) is lower than the melting point of the solder. By setting the heating temperature (T) below the melting point of the solder, the resin sheet between the bump electrode and the pad electrode can be eliminated and a bond can be formed.

本発明の製造方法によれば、半導体チップのサイズ、バンプ電極の種類やサイズ、配線基板の配線幅、ピッチ、段差等が異なる場合であっても、ボイドの発生を防止できる汎用的な半導体装置が得られるという優れた産業上の効果を奏しえる。   According to the manufacturing method of the present invention, a general-purpose semiconductor device capable of preventing the generation of voids even when the size of the semiconductor chip, the type and size of the bump electrode, the wiring width, pitch, and level difference of the wiring board are different. Can achieve an excellent industrial effect.

以下実施例等を挙げて本発明を説明するが、本発明はこれらの例によって限定されるものではない。実施例1〜30、比較例1〜7に用いた材料と評価方法を下記に示す。また、各実施例および各比較例の水準と評価結果を表1に示す。   Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples. The materials and evaluation methods used in Examples 1 to 30 and Comparative Examples 1 to 7 are shown below. Table 1 shows the levels and evaluation results of each example and each comparative example.

<熱硬化性接着剤フィルム>(絶縁性樹脂シート)
以下に記載した(a)ポリイミド、(b)エポキシ樹脂、(c)硬化促進剤、(e)絶縁性フィラーを混合し、さらに(d)溶剤を塗布膜厚が均一になるよう適宜調整しながら加えて離型のプラスチックフィルム(ポリエチレンテレフタレートフィルム)上に塗布および乾燥することにより、熱硬化性接着剤フィルムを作製した。(a)、(b)、(c)、(e)それぞれ重量比で25:10:25:50となるよう混合した。作製した熱硬化性接着剤フィルムの厚さは45μmだった。
<Thermosetting adhesive film> (insulating resin sheet)
The following (a) polyimide, (b) epoxy resin, (c) curing accelerator, (e) insulating filler are mixed, and (d) the solvent is appropriately adjusted so that the coating film thickness becomes uniform. In addition, a thermosetting adhesive film was prepared by coating and drying on a release plastic film (polyethylene terephthalate film). (A), (b), (c), and (e) were mixed at a weight ratio of 25: 10: 25: 50. The thickness of the produced thermosetting adhesive film was 45 μm.

なお、(c)はマイクロカプセル型硬化促進剤がエポキシ樹脂に分散されたものであり、その重量比はマイクロカプセル型硬化促進剤/エポキシ樹脂=33/67であるが、上記の割合については(c)の割合は(c)全体の量を基準に算出しており、また、(b)の割合には(c)中のエポキシ樹脂は含めていない。   (C) is a microcapsule type curing accelerator dispersed in an epoxy resin, and the weight ratio is microcapsule type curing accelerator / epoxy resin = 33/67. The proportion of c) is calculated based on the total amount of (c), and the epoxy resin in (c) is not included in the proportion of (b).

(a)ポリイミド
下記プロセスで合成した有機溶剤可溶性ポリイミドを用いた。
(A) Polyimide An organic solvent-soluble polyimide synthesized by the following process was used.

まず、乾燥窒素気流下、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン24.54g(0.067モル)、1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン4.97g(0.02モル)、末端封止剤として、3−アミノフェノール2.18g(0.02モル)をN−メチル−2−ピロリドン(以下、NMPとする。)80gに溶解させた。ここにビス(3,4−ジカルボキシフェニル)エーテル二無水物31.02g(0.1モル)をNMP20gとともに加えて、20℃で1時間反応させ、次いで50℃で4時間撹拌した。その後、キシレンを15g添加し、水をキシレンとともに共沸させながら、180℃で5時間攪拌した。攪拌終了後、溶液を水3Lに投入して白色沈殿したポリマーを得た。この沈殿をろ過して回収し、水で3回洗浄した後、真空乾燥機を用いて80℃、20時間乾燥した。   First, 24.54 g (0.067 mol) of 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane and 1,3-bis (3-aminopropyl) tetramethyldisiloxane under a dry nitrogen stream 4.97 g (0.02 mol) and 2.18 g (0.02 mol) of 3-aminophenol as an end-capping agent were dissolved in 80 g of N-methyl-2-pyrrolidone (hereinafter referred to as NMP). . Here, 31.02 g (0.1 mol) of bis (3,4-dicarboxyphenyl) ether dianhydride was added together with 20 g of NMP, reacted at 20 ° C. for 1 hour, and then stirred at 50 ° C. for 4 hours. Thereafter, 15 g of xylene was added, and the mixture was stirred at 180 ° C. for 5 hours while water was azeotroped with xylene. After the stirring was completed, the solution was poured into 3 L of water to obtain a white precipitated polymer. The precipitate was collected by filtration, washed with water three times, and then dried at 80 ° C. for 20 hours using a vacuum dryer.

(b)エポキシ樹脂
固形のエポキシ化合物(ジャパンエポキシレジン(株)製、エピコート157S70)を使用した。
(B) Epoxy resin A solid epoxy compound (Japan Epoxy Resin Co., Ltd., Epicoat 157S70) was used.

(c)硬化促進剤
マイクロカプセル型硬化促進剤(旭化成ケミカルズ(株)製、ノバキュアHX−3941HP)を使用した。
(C) Curing accelerator A microcapsule-type curing accelerator (manufactured by Asahi Kasei Chemicals Corporation, NovaCure HX-3941HP) was used.

(d)溶剤
メチルエチルケトン/トルエン=4/1(重量比)を使用した。
(D) Solvent Methyl ethyl ketone / toluene = 4/1 (weight ratio) was used.

(e)絶縁性無機フィラー
SO−E2(商品名、アドマテックス(株)製、球形シリカ粒子、平均粒子径0.5μm)を用いた。
(E) Insulating inorganic filler SO-E2 (trade name, manufactured by Admatechs Co., Ltd., spherical silica particles, average particle size 0.5 μm) was used.

<半導体チップの構造>
シリコン基板上の酸化膜上に厚さ1μmのアルミニウム配線が形成され、その上に形成された厚さ1μmの窒化シリコン絶縁膜の開口部にクロムが形成され、銅の高さ10μmのポストが形成された半導体チップを作製した。バンプ表面状態として、被覆無し(銅皮膜を有する半導体チップ)、金皮膜を有する半導体チップ、半田皮膜(SnAg、融点220℃)を有する半導体チップの3種類を作製した。バンプ径は、25、30、35、40μm、バンプピッチは、それぞれのバンプ径に対して75、80、85、90μmのものが形成されている。また、バンプ数は、各ピッチに対して、138個、150個、162個、174個形成されている。配線基板への実装後に、各バンプ構造に対して接続抵抗が測定できるようアルミニウム配線がパターニングされている。チップサイズは、7mm×7mm、チップ厚は100μmである。
<Semiconductor chip structure>
An aluminum wiring having a thickness of 1 μm is formed on an oxide film on a silicon substrate, chromium is formed in an opening of a silicon nitride insulating film having a thickness of 1 μm formed thereon, and a post having a height of 10 μm is formed of copper. A manufactured semiconductor chip was produced. As bump surface states, three types were prepared: a semiconductor chip having no coating (a semiconductor chip having a copper film), a semiconductor chip having a gold film, and a solder film (SnAg, melting point 220 ° C.). The bump diameter is 25, 30, 35, 40 μm, and the bump pitch is 75, 80, 85, 90 μm for each bump diameter. Further, 138, 150, 162, and 174 bumps are formed for each pitch. The aluminum wiring is patterned so that the connection resistance can be measured for each bump structure after mounting on the wiring board. The chip size is 7 mm × 7 mm, and the chip thickness is 100 μm.

<配線基板>
配線基板として、厚さ15μmの銅配線とパッド電極が形成され、その上に形成された厚さ20μmのソルダーレジストの開口部からパッド電極が露出した構造を有する配線版(厚さ300μm)を作製した。パッド電極は全て半導体チップのバンプ電極に対応する位置に形成されている。パッド電極の表面状態として、スズ皮膜を有する配線基板、半田皮膜(SnAg、融点220℃)を有する配線基板、金皮膜を有する配線基板の3種類を作製した。この配線基板は、上記半導体チップを実装することにより、ディジーチェーンを形成し、引き出し電極を通じてバンプ電極とパッド電極との接合抵抗が測定できる。配線基板サイズは、12mm×12mmであり、チップが搭載されていない領域にディジーチェーンの導通抵抗を測定するための300μmφの引き出し電極のパッドが形成されている。
<Wiring board>
A wiring plate (thickness: 300 μm) having a structure in which a copper wiring of 15 μm thickness and a pad electrode are formed as a wiring board, and the pad electrode is exposed from an opening of a solder resist of 20 μm thickness formed thereon. did. All pad electrodes are formed at positions corresponding to the bump electrodes of the semiconductor chip. As the surface state of the pad electrode, three types were produced: a wiring board having a tin film, a wiring board having a solder film (SnAg, melting point 220 ° C.), and a wiring board having a gold film. This wiring board forms a daisy chain by mounting the semiconductor chip, and the junction resistance between the bump electrode and the pad electrode can be measured through the lead electrode. The size of the wiring board is 12 mm × 12 mm, and a 300 μmφ lead electrode pad for measuring the conduction resistance of the daisy chain is formed in an area where no chip is mounted.

<配線基板への熱硬化性接着剤材フィルムのラミネート>
熱硬化性接着剤フィルムの配線基板へのラミネートは、真空加圧ラミネーター(ニチゴーモートン(株)製、CVP−300T)を用いた。ポリエチレンテレフタレートフィルム上に形成した熱硬化性接着剤フィルムを半導体チップと同じサイズに切り、熱硬化性接着剤フィルムの面を配線基板に押し付けながら、真空中で80℃、30秒間、加圧0.5MPaの条件でラミネートした。
<Lamination of thermosetting adhesive film on wiring board>
The lamination of the thermosetting adhesive film to the wiring board was performed using a vacuum pressure laminator (Nichigo Morton Co., Ltd., CVP-300T). The thermosetting adhesive film formed on the polyethylene terephthalate film is cut into the same size as the semiconductor chip, and the surface of the thermosetting adhesive film is pressed against the wiring board at 80 ° C. for 30 seconds in a vacuum. Lamination was performed under conditions of 5 MPa.

<Tの算出>
まず、ボンディング装置(東レエンジニアリング(株)製、FC3000S)を用い、バンプ電極を有する面を下向きにしてチップトレイに収納された半導体チップを、50℃に設定されたヒートツールで吸着して取り上げた。次に、半導体チップを吸着したヒートツールを、80℃のステージ上に置かれた熱硬化性接着剤材フィルムがラミネートされた配線基板の上方まで搬送した。次に半導体チップのバンプ電極と配線基板上のパッド電極が所定の位置に重なるようにアライメント認識カメラが半導体チップと配線基板の間に入り、それぞれのアライメントマークの検出を行った。
<Calculation of Tc >
First, using a bonding apparatus (manufactured by Toray Engineering Co., Ltd., FC3000S), the semiconductor chip stored in the chip tray with the surface having the bump electrode facing downward was picked up by a heat tool set at 50 ° C. . Next, the heat tool that adsorbed the semiconductor chip was conveyed to above the wiring board on which the thermosetting adhesive material film placed on the stage at 80 ° C. was laminated. Next, the alignment recognition camera entered between the semiconductor chip and the wiring board so that the bump electrodes of the semiconductor chip and the pad electrodes on the wiring board overlapped at predetermined positions, and the respective alignment marks were detected.

アライメントマークの検出後、120℃〜280℃の各温度において50Nの荷重で5秒間の押圧を行った。このとき、ヘッドの高さを計測して記録し、実装開始から5秒後のヘッドの変位量をdとし、ヘッドが0.8dに到達する時間をt0.8d(T)とした。上記温度範囲の中でt0.8dが最小となる温度を求めると、T=200℃、t0.8d(T)=0.5sであった。各温度でのt0.8d(T)/t0.8d(T)を図5に示す。 After the alignment mark was detected, pressing was performed for 5 seconds with a load of 50 N at each temperature of 120 ° C. to 280 ° C. At this time, the height of the head was measured and recorded, the displacement amount of the head 5 seconds after the start of mounting was set as d, and the time for the head to reach 0.8d was set as t 0.8d (T). When the temperature at which t 0.8d is minimum in the above temperature range was determined, T c = 200 ° C. and t 0.8d (T c ) = 0.5 s. FIG. 5 shows t 0.8d (T) / t 0.8d (T c ) at each temperature.

実装中の熱硬化性接着剤フィルム内部温度は、あらかじめ温度レコーダ((株)キーエンス製、NR100)とK熱電対を用いて校正を行った。   The temperature inside the thermosetting adhesive film during mounting was calibrated in advance using a temperature recorder (manufactured by Keyence Corporation, NR100) and a K thermocouple.

<実装性評価>
ボイド噛み評価、導通評価(ディジーチェーンの導通抵抗測定)により、実装性の評価を行った。
<Mountability evaluation>
The mountability was evaluated by void bite evaluation and conduction evaluation (measurement of daisy chain conduction resistance).

ボイド噛み評価は、研磨により半導体チップを除去してから顕微鏡で観察することで実施した。ボイドがチップ面積の1%以下であれば◎、1%より大きく5%以下であれば○、それ以上ボイドが入っている場合は×と評価した。   Evaluation of void biting was performed by observing with a microscope after removing the semiconductor chip by polishing. If the void was 1% or less of the chip area, it was evaluated as ◎ if it was larger than 1% and 5% or smaller, and × if it contained more voids.

各実施例の評価で用いた半導体チップと配線基板は、各バンプピッチに対して、それぞれ138個、150個、162個、174個形成の接続部分を介して電気的に接続されるよう設計されている。バンプ電極とパッド電極が一つでも接触していない部分があれば、接続不良となる。   The semiconductor chip and the wiring board used in the evaluation of each example are designed to be electrically connected to each bump pitch through connecting portions of 138, 150, 162, and 174, respectively. ing. If there is a portion where even one bump electrode and one pad electrode are not in contact, connection failure occurs.

導通評価は、DIGITAL VOLTMETER(HEWLETT PACKARD社製、3455A)の測定端子を接続し、その抵抗値を測定した。抵抗値はバンプ電極とパッド電極の接続部分だけでなく、半導体チップ内部の抵抗やリード電極の値を含むものである。各バンプピッチのディジーチェーンに対して、それぞれ測定した抵抗値が全て100kΩ未満であるか否かを判定した。3サンプルについて実装を行ったうち、3サンプルとも、測定したディジーチェーンの抵抗値が全て100kΩ未満であった場合を◎、1サンプルまたは2サンプルについてディジーチェーンの抵抗値が100kΩ以上となるものがあった場合を○、3サンプルともディジーチェーンの抵抗値が100kΩ以上となるものがあった場合を×と判定した。   For the continuity evaluation, a measurement terminal of DIGITAL VOLMETER (made by HEWLETT PACKARD, 3455A) was connected, and the resistance value was measured. The resistance value includes not only the connection portion between the bump electrode and the pad electrode but also the resistance inside the semiconductor chip and the value of the lead electrode. It was determined whether or not all measured resistance values were less than 100 kΩ for each bump pitch daisy chain. Of the three samples implemented, all three samples had a measured daisy chain resistance value of less than 100 kΩ. ◎ One sample or two samples had a daisy chain resistance value of 100 kΩ or more. The case where the resistance value of the daisy chain was 100 kΩ or more in all three samples was judged as x.

実施例1
<実装性評価用サンプルの作製>
パッド電極表面にスズ皮膜を有する配線基板、バンプ表面に半田皮膜(SnAg、融点220℃)を有する半導体チップを用いた。
Example 1
<Preparation of mountability evaluation sample>
A wiring substrate having a tin film on the pad electrode surface and a semiconductor chip having a solder film (SnAg, melting point 220 ° C.) on the bump surface were used.

まず、ボンディング装置(東レエンジニアリング(株)製、FC3000S)でバンプ電極を有する面を下向きにしてチップトレイに収納された半導体チップを、50℃に設定されたヒートツールで吸着して取り上げた。次に、半導体チップを吸着したヒートツールを、80℃のステージ上に置かれた熱硬化性接着剤材フィルムがラミネートされた配線基板の上方まで搬送した。次に半導体チップのバンプ電極と配線基板上のパッド電極が所定の位置に重なるようにアライメント認識カメラが半導体チップと配線基板の間に入り、それぞれのアライメントマークの検出を行った。   First, the semiconductor chip housed in the chip tray with the bonding electrode (Toray Engineering Co., Ltd., FC3000S) faced down with the bump electrode faced down was picked up with a heat tool set at 50 ° C. and picked up. Next, the heat tool that adsorbed the semiconductor chip was conveyed to above the wiring board on which the thermosetting adhesive material film placed on the stage at 80 ° C. was laminated. Next, the alignment recognition camera entered between the semiconductor chip and the wiring board so that the bump electrodes of the semiconductor chip and the pad electrodes on the wiring board overlapped at predetermined positions, and the respective alignment marks were detected.

アライメントマークの検出後、温度150℃、荷重50Nで1秒間の押圧を行った(ステップ1)。次に250℃に昇温し、荷重50Nで10秒間の押圧を行った(ステップ2)。   After detection of the alignment mark, pressing was performed for 1 second at a temperature of 150 ° C. and a load of 50 N (step 1). Next, the temperature was raised to 250 ° C., and pressing was performed with a load of 50 N for 10 seconds (step 2).

実装中の熱硬化性接着剤フィルム内部温度は、あらかじめ温度レコーダ((株)キーエンス製、NR100)とK熱電対を用いて校正を行った。   The temperature inside the thermosetting adhesive film during mounting was calibrated in advance using a temperature recorder (manufactured by Keyence Corporation, NR100) and a K thermocouple.

<実装性評価>
ボイド噛み評価は○、導通評価は◎であった。
<Mountability evaluation>
The void biting evaluation was ○, and the conduction evaluation was ◎.

実施例2
パッド電極表面に半田皮膜(SnAg、融点220℃)を有する配線基板、バンプ表面に銅皮膜を有する半導体チップを用いたことを除けば実施例1と同様に評価を行った。ボイド噛み評価は○、導通評価は◎であった。
Example 2
Evaluation was performed in the same manner as in Example 1 except that a wiring substrate having a solder film (SnAg, melting point 220 ° C.) on the pad electrode surface and a semiconductor chip having a copper film on the bump surface were used. The void biting evaluation was ○, and the conduction evaluation was ◎.

実施例3
パッド電極表面に金皮膜を有する配線基板、バンプ表面に金皮膜を有する半導体チップを用いたことを除けば実施例1と同様に評価を行った。ボイド噛み評価は○、導通評価は◎であった。
Example 3
Evaluation was performed in the same manner as in Example 1 except that a wiring substrate having a gold film on the pad electrode surface and a semiconductor chip having a gold film on the bump surface were used. The void biting evaluation was ○, and the conduction evaluation was ◎.

実施例4〜6
ステップ1の温度を160℃としたことを除けば、それぞれ実施例1〜3と同様に評価した。ボイド噛み評価、導通評価いずれも◎であった。
Examples 4-6
Evaluations were made in the same manner as in Examples 1 to 3, except that the temperature in Step 1 was 160 ° C. Both void biting evaluation and conduction evaluation were ◎.

実施例7〜9
ステップ1の温度を170℃としたことを除けば、それぞれ実施例1〜3と同様に評価した。ボイド噛み評価、導通評価いずれも◎であった。
Examples 7-9
Evaluations were made in the same manner as in Examples 1 to 3, except that the temperature in Step 1 was 170 ° C. Both void biting evaluation and conduction evaluation were ◎.

実施例10〜12
ステップ1の温度を180℃としたことを除けば、それぞれ実施例1〜3と同様に評価した。ボイド噛み評価、導通評価いずれも◎であった。
Examples 10-12
Evaluations were made in the same manner as in Examples 1 to 3 except that the temperature in Step 1 was 180 ° C. Both void biting evaluation and conduction evaluation were ◎.

実施例13〜15
ステップ1の温度を190℃としたことを除けば、それぞれ実施例1〜3と同様に評価した。ボイド噛み評価、導通評価いずれも◎であった。
Examples 13-15
Evaluations were made in the same manner as in Examples 1 to 3, except that the temperature in Step 1 was 190 ° C. Both void biting evaluation and conduction evaluation were ◎.

実施例16〜18
ステップ1の温度を200℃としたことを除けば、それぞれ実施例1〜3と同様に評価した。ボイド噛み評価、導通評価いずれも◎であった。
Examples 16-18
Evaluations were made in the same manner as in Examples 1 to 3, except that the temperature in Step 1 was 200 ° C. Both void biting evaluation and conduction evaluation were ◎.

実施例19〜21
ステップ1の温度を210℃としたことを除けば、それぞれ実施例1〜3と同様に評価した。ボイド噛み評価、導通評価いずれも◎であった。
Examples 19-21
Evaluations were made in the same manner as in Examples 1 to 3, except that the temperature in Step 1 was 210 ° C. Both void biting evaluation and conduction evaluation were ◎.

実施例22〜24
ステップ1の温度を220℃としたことを除けば、それぞれ実施例1〜3と同様に評価した。ボイド噛み評価は実施例22〜24いずれも◎であった。導通評価は、バンプ表面に半田皮膜(SnAg、融点220℃)を有する場合(実施例22)、1サンプルについてディジーチェーンの抵抗値が100kΩ以上となるものがあり○であり、実施例23、24ではともに◎であった。
Examples 22-24
Evaluations were made in the same manner as in Examples 1 to 3, except that the temperature in Step 1 was 220 ° C. The void biting evaluation was ◎ in all of Examples 22 to 24. The continuity evaluation is ○ when there is a solder film (SnAg, melting point 220 ° C.) on the bump surface (Example 22), and the resistance value of the daisy chain becomes 100 kΩ or more for one sample. Both were ◎.

実施例25〜27
ステップ1の温度を230℃としたことを除けば、それぞれ実施例1〜3と同様に評価した。ボイド噛み評価は実施例25〜27いずれも◎であった。導通評価は、バンプ表面に半田皮膜(SnAg、融点220℃)を有する場合(実施例25)、1サンプルについてディジーチェーンの抵抗値が100kΩ以上となるものがあり○であり、実施例26、27ではともに◎であった。
Examples 25-27
Evaluations were made in the same manner as in Examples 1 to 3, except that the temperature in Step 1 was 230 ° C. The void biting evaluation was ◎ in all of Examples 25 to 27. In the case of having a solder film (SnAg, melting point of 220 ° C.) on the bump surface (Example 25), the continuity evaluation is “Good” when the resistance value of the daisy chain is 100 kΩ or more for one sample. Both were ◎.

実施例28〜30
ステップ1の温度を240℃としたことを除けば、それぞれ実施例1〜3と同様に評価した。ボイド噛み評価は実施例28〜30いずれも◎であった。導通評価は、バンプ表面に半田皮膜(SnAg、融点220℃)を有する場合(実施例28)、2サンプルについてディジーチェーンの抵抗値が100kΩ以上となるものがあり○であり、実施例29、30ではともに◎であった。
Examples 28-30
Evaluations were made in the same manner as in Examples 1 to 3, except that the temperature in Step 1 was 240 ° C. Evaluation of void biting was ◎ in all of Examples 28 to 30. In the case of having a solder film (SnAg, melting point of 220 ° C.) on the bump surface (Example 28), the continuity evaluation is “Good” in some cases where the resistance value of the daisy chain is 100 kΩ or more for two samples. Both were ◎.

バンプ電極が半田の場合、実施例22、25、28のように、半田の融点以上で加熱および加圧を行うと導通評価で抵抗が微増し、半田が樹脂の硬さに負けて変形する現象が見られた。   When the bump electrode is solder, as in Examples 22, 25, and 28, when heating and pressurization is performed at a temperature higher than the melting point of the solder, the resistance is slightly increased in the conduction evaluation, and the solder is deformed by losing the hardness of the resin. It was observed.

比較例1
ステップ1の温度を120℃としたことを除けば実施例1と同様に評価した。ボイド噛み評価は×、導通評価は◎であった。
Comparative Example 1
Evaluation was performed in the same manner as in Example 1 except that the temperature in Step 1 was 120 ° C. The void biting evaluation was x, and the conduction evaluation was ◎.

比較例2
ステップ1の温度を130℃としたことを除けば実施例1と同様に評価した。ボイド噛み評価は×、導通評価は◎であった。
Comparative Example 2
Evaluation was performed in the same manner as in Example 1 except that the temperature in Step 1 was 130 ° C. The void biting evaluation was x, and the conduction evaluation was ◎.

比較例3
ステップ1の温度を140℃としたことを除けば実施例1と同様に評価した。ボイド噛み評価は×、導通評価は◎であった。
Comparative Example 3
Evaluation was performed in the same manner as in Example 1 except that the temperature in Step 1 was 140 ° C. The void biting evaluation was x, and the conduction evaluation was ◎.

比較例4
ステップ1の温度を250℃としたことを除けば実施例1と同様に評価した。ボイド噛み評価は×であった。導通評価は、1サンプルにおいてのみディジーチェーンの抵抗値が全て100kΩ未満となるものがあり○であった。
Comparative Example 4
Evaluation was performed in the same manner as in Example 1 except that the temperature in Step 1 was 250 ° C. The void bite evaluation was x. In the continuity evaluation, there was a case where the resistance value of the daisy chain was less than 100 kΩ in only one sample.

比較例5
ステップ1の温度を260℃としたことを除けば実施例1と同様に評価した。ボイド噛み評価、導通評価いずれも×であった。
Comparative Example 5
Evaluation was performed in the same manner as in Example 1 except that the temperature in Step 1 was 260 ° C. Both void biting evaluation and conduction evaluation were x.

比較例6
ステップ1の温度を270℃としたことを除けば実施例1と同様に評価した。ボイド噛み評価、導通評価いずれも×であった。
Comparative Example 6
Evaluation was performed in the same manner as in Example 1 except that the temperature in Step 1 was 270 ° C. Both void biting evaluation and conduction evaluation were x.

比較例7
ステップ1の温度を280℃としたことを除けば実施例1と同様に評価した。ボイド噛み評価、導通評価いずれも×であった。
Comparative Example 7
Evaluation was performed in the same manner as in Example 1 except that the temperature in Step 1 was 280 ° C. Both void biting evaluation and conduction evaluation were x.

Figure 2014107320
Figure 2014107320

1 バンプ電極
2 半導体チップ
3 パッド電極
4 配線基板
5 絶縁性樹脂シート
6 配線
DESCRIPTION OF SYMBOLS 1 Bump electrode 2 Semiconductor chip 3 Pad electrode 4 Wiring board 5 Insulating resin sheet 6 Wiring

Claims (4)

バンプ電極を有する半導体チップのバンプ電極側の面と、パッド電極を有する配線基板のパッド電極側の面に絶縁性樹脂シートを貼り付けた絶縁性樹脂シート付配線基板の絶縁性樹脂シート側の面とを合わせて、加熱および加圧により前記バンプ電極と前記パッド電極とを電気的に接続する半導体装置の製造方法であって、前記バンプ電極が前記絶縁性樹脂シートに接触して前記加圧が開始されるときの前記配線基板に対する前記半導体チップの変位を0、前記変位が一定となったときの変位をd、加圧開始から変位0.8dに到達するまでの時間(t0.8dとする)が最小となる温度をT(T<250℃)として、t0.8d(T)≦t0.8d(T)≦3t0.8d(T)を満たす温度(T)で加熱加圧を行うことを特徴とする半導体装置の製造方法。 The surface on the side of the bump electrode of the semiconductor chip having the bump electrode and the surface on the side of the insulating resin sheet of the wiring substrate with the insulating resin sheet in which the insulating resin sheet is bonded to the surface on the side of the pad electrode of the wiring substrate having the pad electrode The bump electrode and the pad electrode are electrically connected by heating and pressurizing, and the bump electrode contacts the insulating resin sheet and the pressurization is performed. The displacement of the semiconductor chip relative to the wiring board when started is 0, the displacement when the displacement becomes constant is d, and the time from the start of pressurization to the displacement 0.8d (t 0.8d ) Is the temperature that satisfies t 0.8d (T c ) ≦ t 0.8d (T) ≦ 3t 0.8d (T c ), where T c (T c <250 ° C.) is the minimum temperature (T) Heating and pressurizing with The method of manufacturing a semiconductor device according to claim. 前記パッド電極の少なくとも表面が、Au、Snおよび半田から選ばれる1以上の金属を含有することを特徴とする請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein at least a surface of the pad electrode contains one or more metals selected from Au, Sn, and solder. 前記バンプ電極の少なくとも表面が、Au、Cuおよび半田から選ばれる1以上の金属を含有することを特徴とする請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein at least a surface of the bump electrode contains one or more metals selected from Au, Cu, and solder. 前記パッド電極の少なくとも表面および/または前記バンプ電極の少なくとも表面が半田を含有しており、前記加熱温度(T)が前記半田の融点未満であることを特徴とする請求項1〜3のいずれかに記載の半導体装置の製造方法。 4. At least the surface of the pad electrode and / or at least the surface of the bump electrode contains solder, and the heating temperature (T) is lower than the melting point of the solder. The manufacturing method of the semiconductor device as described in any one of.
JP2012257210A 2012-11-26 2012-11-26 Semiconductor device manufacturing method Pending JP2014107320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012257210A JP2014107320A (en) 2012-11-26 2012-11-26 Semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012257210A JP2014107320A (en) 2012-11-26 2012-11-26 Semiconductor device manufacturing method

Publications (1)

Publication Number Publication Date
JP2014107320A true JP2014107320A (en) 2014-06-09

Family

ID=51028577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012257210A Pending JP2014107320A (en) 2012-11-26 2012-11-26 Semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP2014107320A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021093412A (en) * 2019-12-09 2021-06-17 東レ株式会社 Sheet-like resin composition for underfill and semiconductor device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021093412A (en) * 2019-12-09 2021-06-17 東レ株式会社 Sheet-like resin composition for underfill and semiconductor device using the same
JP7276105B2 (en) 2019-12-09 2023-05-18 東レ株式会社 Sheet-shaped resin composition for underfill, and semiconductor device using the same

Similar Documents

Publication Publication Date Title
KR101372061B1 (en) Adhesive tape and semiconductor device using the same
WO2013133015A1 (en) Method and apparatus for manufacturing semiconductor device
TWI580754B (en) Semiconductor device and manufacturing method thereof
CN110556344A (en) Adhesive for semiconductor, method for manufacturing semiconductor device, and semiconductor device
JP3735059B2 (en) Adhesive film, semiconductor package or semiconductor device using the same, and method for manufacturing semiconductor package or semiconductor device
JP4802987B2 (en) Adhesive film
JP6589638B2 (en) Adhesive composition, semiconductor device including cured product thereof, and method of manufacturing semiconductor device using the same
WO2012077447A1 (en) Method for mounting semiconductor elements, and mounted body
TW201335302A (en) Adhesive for semiconductor, fluxing agent, manufacturing method for semiconductor device, and semiconductor device
JP2014107320A (en) Semiconductor device manufacturing method
JP7276105B2 (en) Sheet-shaped resin composition for underfill, and semiconductor device using the same
JP3957244B2 (en) Manufacturing method of semiconductor devices
JPH11297904A (en) Semiconductor device
JP2010245418A (en) Electronic element, method of mounting the electronic element, and method of manufacturing electronic device
JP2014146638A (en) Method of manufacturing semiconductor device
JP4415920B2 (en) Adhesive film, semiconductor package or semiconductor device using the same, and method for manufacturing semiconductor package or semiconductor device
Lee et al. The Effect of the Thermal Mechanical Properties of Nonconductive Films on the Thermal Cycle Reliability of 40-$\mu $ m Fine Pitch Cu-Pillar/Ni/SnAg Microbump Flip-Chip Assembly
JP4218181B2 (en) Solder bonding method
JP4314718B2 (en) Curable flux
JP7314808B2 (en) Method for manufacturing mounted wiring board and method for manufacturing semiconductor device using the same
JP2004244486A (en) Adhesive film, and semiconductor package and semiconductor device using it
KR101428466B1 (en) Non-conductive polymer adhesive material for packaging of device and method for packaging of device using the same
JP2022126264A (en) Resin composition, cured product, and semiconductor device
JP2006016623A (en) Adhesive film, semiconductor package or semiconductor device using the same, and method for manufacturing semiconductor package or semiconductor device
KR101390437B1 (en) Non-conductive polymer adhesive film for packaging of device and method for packaging of device using the same