JP2014107176A - Lead wire for nonaqueous electrolyte battery use and nonaqueous electrolyte battery using the same - Google Patents

Lead wire for nonaqueous electrolyte battery use and nonaqueous electrolyte battery using the same Download PDF

Info

Publication number
JP2014107176A
JP2014107176A JP2012260430A JP2012260430A JP2014107176A JP 2014107176 A JP2014107176 A JP 2014107176A JP 2012260430 A JP2012260430 A JP 2012260430A JP 2012260430 A JP2012260430 A JP 2012260430A JP 2014107176 A JP2014107176 A JP 2014107176A
Authority
JP
Japan
Prior art keywords
electrolyte battery
nonaqueous electrolyte
lead conductor
acid copolymer
lead wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012260430A
Other languages
Japanese (ja)
Other versions
JP6070117B2 (en
Inventor
Yutaka Matsumura
友多佳 松村
Yutaka Fukuda
豊 福田
Shinya Nishikawa
信也 西川
Kosuke Tanaka
浩介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012260430A priority Critical patent/JP6070117B2/en
Publication of JP2014107176A publication Critical patent/JP2014107176A/en
Application granted granted Critical
Publication of JP6070117B2 publication Critical patent/JP6070117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a lead wire for nonaqueous electrolyte battery use which enables the reduction in cost, and has good resistance against electrolyte; and a nonaqueous electrolyte battery.SOLUTION: A lead wire for nonaqueous electrolyte battery use comprises: a lead conductor made of copper; a composite coating layer which covers the surface of the lead conductor; and a heat-seal layer which covers at least part of the composite coating layer. The composite coating layer which covers the surface of the lead conductor is made of a polyacrylic acid copolymer or polymethacrylic acid copolymer, or a hardened material thereof. The heat-seal layer is made of a resin composition including 0.05 pts.mass or more of a copper inhibitor to 100 pts.mass of a polyolefin-based resin.

Description

本発明は、小型電子機器の電源等として用いられる非水電解質電池、及びこれを構成する部材である非水電解質電池用リード線に関するものである。   The present invention relates to a non-aqueous electrolyte battery used as a power source for a small electronic device and the like, and a lead wire for a non-aqueous electrolyte battery which is a member constituting the non-aqueous electrolyte battery.

電子機器の小型化、軽量化に伴って、これらの機器に使用される電池、コンデンサなどの電気部品についても小型化、軽量化が求められている。このため、例えば、袋体を封入容器として用い、その内部に非水電解質(電解液)、正極、及び負極を封入してなる非水電解質電池が採用されている。非水電解質としてはLiPF、LiBFなどのフッ素を含有するリチウム塩をプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどに溶解した電解液が使用されている。 As electronic devices become smaller and lighter, electric components such as batteries and capacitors used in these devices are also required to be smaller and lighter. For this reason, for example, a nonaqueous electrolyte battery in which a bag body is used as an enclosure and a nonaqueous electrolyte (electrolyte), a positive electrode, and a negative electrode are enclosed therein is employed. As the nonaqueous electrolyte, an electrolytic solution in which a lithium salt containing fluorine such as LiPF 6 or LiBF 4 is dissolved in propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate or the like is used.

封入容器には電解液やガスの透過、外部からの水分の浸入を防止する性質が求められる。このため、アルミニウム箔などの金属層を樹脂で被覆したラミネートフィルムが封入容器の材料として用いられ、2枚のラミネートフィルムの端部を熱融着して封入容器を形成する。   The sealed container is required to have a property of preventing permeation of the electrolyte and gas and moisture from the outside. For this reason, a laminate film in which a metal layer such as an aluminum foil is coated with a resin is used as a material for the enclosure, and the ends of the two laminate films are heat-sealed to form an enclosure.

封入容器の一端は開口部とし、この内部には非水電解質、正極板、負極板、セパレータ等を封入する。さらに正極板及び負極板にその一端が接続されたリード導体を封入容器の内部から外部へ延びるように配置して、最後に開口部をヒートシール(熱融着)することで封入容器の開口部を閉じると共に、封入容器とリード導体とを接着して開口部を封止する。この最後に熱融着される部分をシール部と呼ぶ。   One end of the enclosure is an opening, and a nonaqueous electrolyte, a positive electrode plate, a negative electrode plate, a separator, and the like are enclosed in the inside. Furthermore, a lead conductor having one end connected to the positive electrode plate and the negative electrode plate is arranged so as to extend from the inside of the enclosure to the outside, and finally the opening of the enclosure is heat-sealed (heat fusion). Is closed and the enclosure and the lead conductor are bonded to seal the opening. This last part to be heat-sealed is called a seal part.

このとき、封入容器とリード導体とは熱融着層を介して接着(熱融着)される。熱融着層はあらかじめリード導体のシール部に対応する部分に設けておくか、又は封入容器のシール部に対応する部分に設けておくことで封入容器の金属層とリード導体との間に介在させる。ヒートシール時に熱融着層の流動性が高いと、封入容器とリード導体との接着力を高めることができる。しかし熱融着時に流動しすぎると、金属層とリード導体とが短絡してしまう。このことから、シール部には金属層とリード導体との短絡を発生させることなく、接着性、シール性(密封性)を維持できるという特性が求められる。   At this time, the sealed container and the lead conductor are bonded (heat-sealed) via the heat-sealing layer. The heat-sealing layer is provided in advance in a portion corresponding to the seal portion of the lead conductor, or is provided in a portion corresponding to the seal portion of the enclosure, so that it is interposed between the metal layer of the enclosure and the lead conductor. Let If the fluidity of the heat-fusible layer is high at the time of heat sealing, the adhesive force between the enclosing container and the lead conductor can be increased. However, if it flows too much at the time of heat fusion, the metal layer and the lead conductor are short-circuited. For this reason, the seal portion is required to have a characteristic that the adhesiveness and the sealing property (sealing property) can be maintained without causing a short circuit between the metal layer and the lead conductor.

特許文献1にはこのような非水電解質電池に用いる電池用封入袋及びリード線が開示されている。リード導体の導体直上にマレイン酸変性ポリオレフィン層を設けて熱融着層とすることで、シール部の密封性を高めることができると記載されている。   Patent Document 1 discloses a battery enclosing bag and lead wires used in such a non-aqueous electrolyte battery. It is described that a maleic acid-modified polyolefin layer is provided directly on the conductor of the lead conductor to form a heat-sealing layer, whereby the sealing performance of the seal portion can be improved.

シール部においては封入容器とリード導体との接着性、密封性が必要とされるが、封止直後の接着性が充分であっても、時間が経過すると徐々に接着力が低下し、金属層またはリード導体との界面で剥がれが生じるという問題がある。これは時間の経過と共にシール部分から水分が透過し、封入容器の内部に封入された電解質と水との反応でフッ化水素酸が発生してリード導体(金属)が腐食することに起因する。特に自動車用途に用いられる電気部品では長期にわたって使用できる必要があり、熱融着部分の耐電解液性をさらに向上することが課題となっている。特に負極のリード導体として用いるニッケルやニッケルメッキ層との界面での剥がれが生じやすく、耐電解液性の改善が求められている。   The seal part requires adhesion and sealing between the enclosing container and the lead conductor, but even if the adhesion immediately after sealing is sufficient, the adhesive force gradually decreases over time, and the metal layer Another problem is that peeling occurs at the interface with the lead conductor. This is because moisture permeates from the seal portion with the passage of time, and hydrofluoric acid is generated by the reaction between the electrolyte enclosed in the enclosure and the water, and the lead conductor (metal) is corroded. In particular, electrical components used in automobile applications need to be usable for a long period of time, and it is an issue to further improve the electrolyte resistance of the heat fusion part. In particular, peeling at the interface with nickel or a nickel plating layer used as a negative electrode lead conductor is likely to occur, and improvement in resistance to electrolytic solution is required.

耐電解液性を改善するために、特許文献2では表面がニッケルであるリード導体の表面および側面にアミノ化フェノール重合体、3価クロム化合物およびリン化合物の複合皮膜層を形成した電池タブが開示されている。複合皮膜層を形成することにより電解質と水分により発生するフッ化水素酸によるニッケル層の腐食を防止し、ニッケル層の溶出を防ぐことができると記載されている。しかしこの方法では重金属であるクロムを使用するため、環境面で好ましくない。   In order to improve the electrolytic solution resistance, Patent Document 2 discloses a battery tab in which a composite film layer of an aminated phenol polymer, a trivalent chromium compound and a phosphorus compound is formed on the surface and side of a lead conductor whose surface is nickel. Has been. It is described that by forming a composite coating layer, corrosion of the nickel layer by hydrofluoric acid generated by the electrolyte and moisture can be prevented, and elution of the nickel layer can be prevented. However, this method uses chromium, which is a heavy metal, and is not preferable in terms of environment.

また特許文献3では、シール部のリード導体と接する部分に酸変性スチレン系エラストマーからなる層を設けることが提案されている。   In Patent Document 3, it is proposed to provide a layer made of an acid-modified styrene-based elastomer at a portion of the seal portion in contact with the lead conductor.

特許第3562129号公報Japanese Patent No. 3562129 特開2009−99527号公報JP 2009-99527 A 特開2010−92631号公報JP 2010-92631 A

リチウムイオン電池のような非水電解質電池では、リード導体として正極にアルミニウム、負極にニッケル又はニッケルめっき銅を用いている。銅はニッケルよりも導電性が高い材料であるがニッケルよりもさらにフッ化水素酸に腐食されやすいため耐電解液性が悪く、銅単体でリード導体として使用することは困難である。そのため表面にニッケル等の金属をめっきして使用されているが、めっき工程を行うことでコストが高くなるため導電性の良い銅を単体でリード導体として使用したいという要求がある。   In a nonaqueous electrolyte battery such as a lithium ion battery, aluminum is used for the positive electrode and nickel or nickel-plated copper is used for the negative electrode as the lead conductor. Although copper is a material having higher conductivity than nickel, it is more easily corroded by hydrofluoric acid than nickel, so the resistance to electrolytic solution is poor, and it is difficult to use copper alone as a lead conductor. For this reason, the surface is plated with a metal such as nickel. However, since the cost is increased by performing the plating process, there is a demand to use copper having good conductivity as a single lead conductor.

本発明はこのような問題に鑑み、ニッケル等の金属めっき層を有していない銅をリード導体として使用することでコストを低減するとともに耐電解液性が良好な非水電解質電池用リード線、及びそれを用いた非水電解質電池を提供することを課題とする。   In view of such a problem, the present invention reduces the cost by using copper that does not have a metal plating layer such as nickel as a lead conductor and has a good electrolytic solution resistance, and a lead wire for a non-aqueous electrolyte battery, It is another object of the present invention to provide a nonaqueous electrolyte battery using the same.

本発明は、銅からなるリード導体、前記リード導体の表面を被覆する複合皮膜層、及び前記複合皮膜層の少なくとも一部を被覆する熱融着層を有する非水電解質電池用リード線であって、前記リード導体の表面を被覆する複合皮膜層はアクリル酸共重合体又は/及びメタクリル酸共重合体、若しくはそれらの硬化物であり、前記熱融着層はポリオレフィン系樹脂100質量部に対して銅害防止剤を0.05質量部以上含有する樹脂組成物からなる、非水電解質電池用リード線である。   The present invention is a lead wire for a non-aqueous electrolyte battery comprising a lead conductor made of copper, a composite coating layer covering the surface of the lead conductor, and a heat-sealing layer covering at least a part of the composite coating layer. The composite film layer covering the surface of the lead conductor is an acrylic acid copolymer and / or a methacrylic acid copolymer, or a cured product thereof, and the thermal fusion layer is based on 100 parts by mass of the polyolefin resin. A lead wire for a non-aqueous electrolyte battery comprising a resin composition containing 0.05 parts by mass or more of a copper damage inhibitor.

リード線の表面をアクリル酸共重合体又は/及びメタクリル酸共重合体、若しくはそれらの硬化物である複合皮膜層で被覆することで銅の腐食を防ぎ、耐電解液性(耐フッ化水素酸性)を良好とすることができる。そのため銅の表面をニッケル等の金属でめっきしていないリード線を使用可能となり、コストを低減できる。なおアクリル酸共重合体とはアクリル酸の単独重合体、及び、アクリル酸とアクリル酸エステル、メタクリル酸、メタクリル酸エステル等との共重合体を含むものである。またメタクリル酸共重合体とはメタクリル酸の単独重合体、及び、メタクリル酸とメタクリル酸エステル、アクリル酸、アクリル酸エステル等との共重合体を含むものである。   The surface of the lead wire is covered with an acrylic acid copolymer and / or methacrylic acid copolymer, or a composite film layer that is a cured product thereof to prevent copper corrosion and resistance to electrolyte solution (acid resistance to hydrogen fluoride) ) Can be good. Therefore, it is possible to use a lead wire whose copper surface is not plated with a metal such as nickel, and the cost can be reduced. The acrylic acid copolymer includes a homopolymer of acrylic acid and a copolymer of acrylic acid and acrylic acid ester, methacrylic acid, methacrylic acid ester or the like. The methacrylic acid copolymer includes a homopolymer of methacrylic acid and a copolymer of methacrylic acid and methacrylic acid ester, acrylic acid, acrylic acid ester and the like.

リード線に使用する銅と融着層に使用するポリオレフィン系樹脂とが接触した状態で長時間経過すると、ポリオレフィン系樹脂中に銅イオンが拡散してポリオレフィン系樹脂が劣化する。銅害防止剤をポリオレフィン系樹脂100質量部に対して0.05質量部以上含有する樹脂組成物を熱融着層として使用することで熱融着層の劣化を防止できる。   When copper used for the lead wire and the polyolefin resin used for the fusion layer are in contact with each other for a long time, copper ions diffuse into the polyolefin resin and the polyolefin resin deteriorates. By using a resin composition containing 0.05 parts by mass or more of a copper damage inhibitor as a heat-sealable layer with respect to 100 parts by mass of a polyolefin-based resin, deterioration of the heat-sealable layer can be prevented.

さらに本発明は、上記非水電解質電池用リード線を用いた非水電解質電池を提供する。このような構成の非水電解質電池は低コストで製造できるとともに耐電解液性を良好とできる。   Furthermore, the present invention provides a nonaqueous electrolyte battery using the lead wire for a nonaqueous electrolyte battery. The non-aqueous electrolyte battery having such a configuration can be manufactured at low cost and can have good resistance to electrolytic solution.

本発明によれば、ニッケル等の金属めっき層を有しない銅をリード導体として使用することでコストを低減できるとともに耐電解液性を良好とできる非水電解質電池用リード線及び非水電解質電池を得ることができる。   According to the present invention, there is provided a lead wire for a non-aqueous electrolyte battery and a non-aqueous electrolyte battery that can reduce cost and can have good electrolytic solution resistance by using copper having no metal plating layer such as nickel as a lead conductor. Can be obtained.

本発明の一実施形態に係る非水電解質電池の正面図である。It is a front view of the nonaqueous electrolyte battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る非水電解質電池の部分断面図である。It is a fragmentary sectional view of the nonaqueous electrolyte battery concerning one embodiment of the present invention. 本発明の一実施形態に係るリード線の部分断面図である。It is a fragmentary sectional view of the lead wire concerning one embodiment of the present invention.

図1は非水電解質電池の一実施形態を模式的に表す正面図であり、図2は図1のA−A’部における部分断面図である。この非水電解質電池1は、略長方形の封入容器2と、封入容器2の内部から外部に延びるリード導体3を有している。   FIG. 1 is a front view schematically showing an embodiment of a nonaqueous electrolyte battery, and FIG. 2 is a partial cross-sectional view taken along line A-A ′ of FIG. 1. This nonaqueous electrolyte battery 1 has a substantially rectangular enclosure 2 and a lead conductor 3 extending from the inside of the enclosure 2 to the outside.

封入容器2は、図2に示されるように金属層5と、金属層5を被覆する樹脂層6、樹脂層7とからなる3層のラミネートフィルム8からなる。金属層5はアルミニウム箔などの金属から形成される。封入容器の外側に位置する樹脂層6としては6,6−ナイロン、6−ナイロンなどのポリアミド樹脂や、ポリエステル樹脂、ポリイミド樹脂等を用いることができる。また封入容器2の内部に位置する樹脂層7には非水電解質に溶解せず、また加熱して溶融する絶縁性樹脂を用いることが好ましく、ポリオレフィン系樹脂、酸変性ポリオレフィン系樹脂、酸変性スチレン系エラストマーが例示される。封入容器2は、2枚のラミネートフィルム8を重ね合わせて、リード導体が貫通する辺以外の3辺をヒートシールして作製する。封入容器の外周部では、2つの金属層5は樹脂層7を介して接着される。   As shown in FIG. 2, the enclosure 2 includes a three-layer laminate film 8 including a metal layer 5, a resin layer 6 that covers the metal layer 5, and a resin layer 7. The metal layer 5 is formed from a metal such as an aluminum foil. As the resin layer 6 positioned outside the enclosure, polyamide resin such as 6,6-nylon and 6-nylon, polyester resin, polyimide resin, or the like can be used. In addition, it is preferable to use an insulating resin that does not dissolve in the non-aqueous electrolyte and melts when heated, for the resin layer 7 located inside the enclosing container 2, and is a polyolefin resin, an acid-modified polyolefin resin, an acid-modified styrene. Examples are based on elastomers. The enclosure 2 is produced by superposing two laminated films 8 and heat-sealing three sides other than the side through which the lead conductor passes. At the outer peripheral portion of the enclosure, the two metal layers 5 are bonded via the resin layer 7.

シール部9において、リード導体3は熱融着層4を介して封入容器(ラミネートフィルム8)と接着(熱融着)される。非水電解質電池の内部には、更に、リード導体3の端部に接続された正極集電体10および負極集電体11、非水電解質13、並びにセパレータ12が封入される。   In the seal portion 9, the lead conductor 3 is bonded (heat-sealed) to the sealed container (laminate film 8) via the heat-sealing layer 4. Further, inside the nonaqueous electrolyte battery, a positive electrode current collector 10 and a negative electrode current collector 11, a nonaqueous electrolyte 13, and a separator 12 connected to the end of the lead conductor 3 are enclosed.

図3はリード線の概略断面図である。板状のリード導体3の表面にアクリル酸共重合体又は/及びメタクリル酸共重合体、若しくはそれらの硬化物からなる複合皮膜層14を有している。さらにリード導体3の両面を被覆する熱融着層4を有する。熱融着層4は非水電解質電池のシール部に対応させる。複合皮膜層はリード導体3が非水電解液と接する部分の全面を被覆するように設ける。なおリード線はタブリードと呼ばれることもある。   FIG. 3 is a schematic cross-sectional view of a lead wire. The surface of the plate-like lead conductor 3 has a composite coating layer 14 made of an acrylic acid copolymer and / or methacrylic acid copolymer, or a cured product thereof. Furthermore, it has the heat sealing | fusion layer 4 which coat | covers both surfaces of the lead conductor 3. As shown in FIG. The heat sealing layer 4 is made to correspond to the seal part of the nonaqueous electrolyte battery. The composite coating layer is provided so as to cover the entire surface of the portion where the lead conductor 3 is in contact with the non-aqueous electrolyte. The lead wire is sometimes called a tab lead.

アクリル酸共重合体及びメタクリル酸共重合体は、不飽和カルボン酸であるアクリル酸やメタクリル酸又はそのエステルの重合体であり、分子内に多数のカルボキシル基を持つ。モノマー組成としては、水溶性をもつ限り特に制限はなく、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルヘキシル、アクリル酸ステアリル、アクリル酸フェニル、アクリル酸2−ヒドロキシエチル、アクリル酸2−アミノエチル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸ステアリル、メタクリル酸フェニル、メタクリル酸2−ヒドロキシエチル、メタクリル酸2−アミノエチルなどの内、これらの1種または2種以上のモノマーを用いた共重合体やその共重合体の混合物を使用することができる。取扱いのしやすさ、リード導体との接着力の観点から分子量が1,000〜100,000、より好ましくは10,000〜50,000程度のアクリル酸共重合体またはメタクリル酸共重合体が使用できる。アクリル酸共重合体、メタクリル酸共重合体は単独で使用しても良いが、硬化剤で硬化させるとより耐電解液性が向上して好ましい。   An acrylic acid copolymer and a methacrylic acid copolymer are polymers of acrylic acid, methacrylic acid or esters thereof, which are unsaturated carboxylic acids, and have a number of carboxyl groups in the molecule. The monomer composition is not particularly limited as long as it has water solubility, and acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, stearyl acrylate, phenyl acrylate, 2-hydroxyethyl acrylate , 2-aminoethyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, stearyl methacrylate, phenyl methacrylate, 2-hydroxyethyl methacrylate, 2-aminoethyl methacrylate Among them, a copolymer using one or more of these monomers or a mixture of the copolymers can be used. An acrylic acid copolymer or a methacrylic acid copolymer having a molecular weight of about 1,000 to 100,000, more preferably about 10,000 to 50,000 is used from the viewpoint of ease of handling and adhesion to the lead conductor. it can. An acrylic acid copolymer and a methacrylic acid copolymer may be used alone, but curing with a curing agent is preferable because the resistance to electrolytic solution is further improved.

アクリル酸共重合体又は/及びメタクリル酸共重合体の硬化剤としては、アクリル酸共重合体またはメタクリル酸共重合体のカルボキシル基と反応可能な任意のものを使用できる。ジルコニウム塩、チタニウム塩、モリブデン塩などの金属塩、オキサゾリン基含有ポリマー等が硬化剤として例示できる。ジルコニウム塩としてはフッ化ジルコン酸塩や炭酸ジルコニウム塩、リン酸ジルコニウム塩などが、チタニウム塩としてはチタンジイソプロポキシビス(トリエタノールアミネート)、チタンラクテートアンモニウム塩、チタンラクテートなどが、モリブデン塩としてはオルトモリブデン酸塩、パラモリブデン酸塩、メタモリブデン酸塩、リンモリブデン酸塩などが使用できる。なお硬化剤はここに例示したものに限定するものではない。   As the curing agent for the acrylic acid copolymer and / or methacrylic acid copolymer, any one capable of reacting with the carboxyl group of the acrylic acid copolymer or methacrylic acid copolymer can be used. Examples of the curing agent include metal salts such as zirconium salts, titanium salts, and molybdenum salts, and oxazoline group-containing polymers. Zirconium fluoride salt, zirconium carbonate salt, zirconium phosphate salt, etc. as zirconium salt, titanium diisopropoxybis (triethanolaminate), titanium lactate ammonium salt, titanium lactate etc. as molybdenum salt as titanium salt For example, orthomolybdate, paramolybdate, metamolybdate, and phosphomolybdate can be used. In addition, a hardening | curing agent is not limited to what was illustrated here.

オキサゾリン基含有ポリマーとしては分子内にオキサゾリン基を2つ以上有するポリマーを使用できる。ポリマー中のオキサゾリン基がアクリル酸共重合体、メタクリル酸共重合体のカルボキシル基と反応することでアクリル酸共重合体、メタクリル酸共重合体を架橋する。オキサゾリン基含有ポリマーは、2−ビニル−2−オキサゾリン、2−ビニル−4−メチル−2−オキサゾリン、2−イソペニル−2−オキサゾリン等、付加重合性を備えた不飽和結合とオキサゾリン基とを含むモノマーを重合又は共重合させて得られる。分子内にオキサゾリン基を含有するアクリル酸エステル共重合体は、アクリル酸共重合体、メタクリル酸共重合体との相溶性に優れているため好ましく使用できる。   As the oxazoline group-containing polymer, a polymer having two or more oxazoline groups in the molecule can be used. The oxazoline group in the polymer reacts with the carboxyl group of the acrylic acid copolymer or methacrylic acid copolymer to crosslink the acrylic acid copolymer or methacrylic acid copolymer. The oxazoline group-containing polymer includes an unsaturated bond having addition polymerizability and an oxazoline group, such as 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, and 2-isophenyl-2-oxazoline. It is obtained by polymerizing or copolymerizing monomers. An acrylic ester copolymer containing an oxazoline group in the molecule is excellent in compatibility with an acrylic acid copolymer and a methacrylic acid copolymer, and thus can be preferably used.

上記硬化剤と、アクリル酸共重合体又は/及びメタクリル酸共重合体とは適当な比率で混合して使用する。アクリル酸共重合体、メタクリル酸共重合体は水溶性であるので、両者を水に溶解した液、若しくはアクリル酸共重合体又はメタクリル酸共重合体単独の水溶液をリード導体に塗布した後、乾燥するとリード導体の表面に複合皮膜層が形成される。乾燥時の加熱によってアクリル酸共重合体又は/及びメタクリル酸共重合体と硬化剤とが反応してアクリル酸共重合体又は/及びメタクリル酸共重合体が硬化する。複合皮膜層の塗布量は、1mg/m〜300mg/m、より好ましくは10mg/m〜100mg/m(厚み換算では、約1nm〜100nm)とすることが好ましい。複合皮膜層の塗布量が多すぎると導体の溶接性が悪化したり、耐電解液性が低下したりする。また塗布量が少なすぎると管理が困難になる。 The above curing agent and acrylic acid copolymer or / and methacrylic acid copolymer are mixed and used at an appropriate ratio. Since acrylic acid copolymer and methacrylic acid copolymer are water-soluble, a solution obtained by dissolving both in water or an aqueous solution of acrylic acid copolymer or methacrylic acid copolymer alone is applied to the lead conductor and then dried. Then, a composite film layer is formed on the surface of the lead conductor. The acrylic acid copolymer or / and the methacrylic acid copolymer reacts with the curing agent by heating at the time of drying to cure the acrylic acid copolymer or / and the methacrylic acid copolymer. The coating amount of the composite coating layer, 1mg / m 2 ~300mg / m 2, and more (in the thickness in terms of about 1 nm~100 nm) preferably 10mg / m 2 ~100mg / m 2 is preferably set to. When the coating amount of the composite coating layer is too large, the weldability of the conductor is deteriorated or the resistance to the electrolytic solution is lowered. Moreover, management will become difficult when there is too little coating amount.

リード導体3には銅を使用する。リチウムイオン電池の場合は正極にはアルミニウム、負極にはニッケルまたはニッケルめっき銅が用いられることが多い。本発明のリード線はリチウムイオン電池の負極として好適に用いられる。リード導体の形状は特に限定されないが、厚み50μm〜500μm、幅1mm〜200mm、長さ5mm〜200mmの平板形状の金属が好ましく使用できる。   Copper is used for the lead conductor 3. In the case of a lithium ion battery, aluminum is often used for the positive electrode, and nickel or nickel-plated copper is often used for the negative electrode. The lead wire of this invention is used suitably as a negative electrode of a lithium ion battery. The shape of the lead conductor is not particularly limited, but a flat metal having a thickness of 50 μm to 500 μm, a width of 1 mm to 200 mm, and a length of 5 mm to 200 mm can be preferably used.

熱融着層4には、ヒートシール時の熱によって溶融して封入容器とリード導体とを接着可能であるポリオレフィン系樹脂100質量部に対して銅害防止剤を0.05質量部以上含有する樹脂組成物を使用する。ポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレン、アイオノマー樹脂、酸変性ポリオレフィンなどが例示される。特にマレイン酸、アクリル酸、メタクリル酸、無水マレイン酸等で変性されて接着性の官能基を持つ酸変性ポリオレフィンが好ましい。なかでも無水マレイン酸変性ポリオレフィン樹脂は金属との接着性、シール性にすぐれており好ましい。   The heat-sealing layer 4 contains 0.05 parts by mass or more of a copper damage preventing agent with respect to 100 parts by mass of the polyolefin resin that can be melted by heat at the time of heat sealing and can adhere the sealed container and the lead conductor. A resin composition is used. Examples of the polyolefin resin include polyethylene, polypropylene, ionomer resin, and acid-modified polyolefin. In particular, an acid-modified polyolefin having an adhesive functional group modified with maleic acid, acrylic acid, methacrylic acid, maleic anhydride or the like is preferable. Of these, maleic anhydride-modified polyolefin resin is preferable because of its excellent adhesion to metal and sealing properties.

銅害防止剤としては特に制限なく、従来既知のものを使用できる。3−(N−サリチロイル)アミノ1,2,4−トリアゾール、2,3−ビス[[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル]プロピオニル]プロピオニル]プロピオノノヒドラジド、サリチルヒドラジド、2’,3−ビス[[3−[3,5−ジ−tert−ブチル−4−ヒドロキシフェニル]プロピオニル]プロピオヒドラジドなどが好ましく使用できる。   There are no particular limitations on the copper damage inhibitor, and any conventionally known one can be used. 3- (N-salicyloyl) amino 1,2,4-triazole, 2,3-bis [[3- (3,5-di-tert-butyl-4-hydroxyphenyl] propionyl] propionyl] propiononohydrazide, salicyl Hydrazide, 2 ′, 3-bis [[3- [3,5-di-tert-butyl-4-hydroxyphenyl] propionyl] propiohydrazide and the like can be preferably used.

熱融着層を構成する樹脂組成物には、他に難燃剤、紫外線吸収剤、光安定剤、熱安定剤、滑剤、着色剤等の各種添加剤を混合することが可能である。これらの樹脂材料及び添加剤をオープンロール、加圧ニーダー、単軸混合機、2軸混合機などの既知の混合装置を用いて混合した後押出成形などによってフィルム状の熱融着層を作製する。熱融着層の厚みはリード導体の厚みに依存するが、30μm〜200μmが好ましい。   In addition, various additives such as a flame retardant, an ultraviolet absorber, a light stabilizer, a heat stabilizer, a lubricant, and a colorant can be mixed in the resin composition constituting the heat fusion layer. These resin materials and additives are mixed using a known mixing device such as an open roll, a pressure kneader, a single-screw mixer, or a twin-screw mixer, and then a film-like heat-fusible layer is produced by extrusion molding or the like. . Although the thickness of the heat sealing | fusion layer is dependent on the thickness of a lead conductor, 30 micrometers-200 micrometers are preferable.

熱融着層は、加速電子線やγ線などの電離放射線の照射によって架橋して使用することもできる。架橋することで耐熱性を高めることができ、使用時の温度が上がった場合の接着力の低下や、リード導体と金属層との短絡を防止することができる。熱融着層全体を架橋しても良いし、熱融着層を多層構造とし、非架橋層と架橋した層とを積層しても良い。   The heat-fusible layer can also be used after being crosslinked by irradiation with ionizing radiation such as an accelerated electron beam or γ-ray. By cross-linking, the heat resistance can be increased, and a decrease in adhesive strength when the temperature during use is increased and a short circuit between the lead conductor and the metal layer can be prevented. The entire heat-sealing layer may be crosslinked, or the heat-sealing layer may have a multilayer structure, and a non-crosslinked layer and a crosslinked layer may be laminated.

次に、本発明を実施例に基づいてさらに詳細に説明する。実施例は本発明の範囲を限定するものではない。   Next, the present invention will be described in more detail based on examples. The examples are not intended to limit the scope of the invention.

(実施例1〜3、比較例1)
ポリアクリル酸(日本触媒(株)製、分子量(Mw)10,000)1質量部を水87.77質量部に溶解した水溶液にオキサゾリン基含有ポリマー(日本触媒(株)製、エポクロス(登録商標)WS−700、分子量20,000)を1質量部加え、さらにpH調整剤として25%アンモニア水をpHが9になるように加えた混合液を厚さ0.2mm、幅35mm、長さ45mmの銅(リード導体)の表面に塗布した後120℃で5分間乾燥して複合皮膜層を形成した。
(Examples 1 to 3, Comparative Example 1)
Polyacrylic acid (manufactured by Nippon Shokubai Co., Ltd., molecular weight (Mw) 10,000) in an aqueous solution in which 87 parts by weight of water was dissolved in 87.77 parts by weight of water, an oxazoline group-containing polymer (manufactured by Nippon Shokubai Co., Ltd., Epocross (registered trademark)) ) WS-700, molecular weight 20,000) is added 1 part by mass, and a mixed solution obtained by adding 25% ammonia water as a pH adjuster so that the pH is 9 is 0.2 mm thick, 35 mm wide, 45 mm long. After being applied to the surface of copper (lead conductor), it was dried at 120 ° C. for 5 minutes to form a composite coating layer.

表1に示す割合でポリオレフィン系樹脂(酸変性ポリプロピレン:三井化学、アドマーQF551)、銅害防止剤(アデカスタブCDA1)、酸化防止剤(イルガノックス1010)を混合した樹脂組成物を成形して厚み50μmの熱融着層を作製した。表面に複合皮膜層を形成したリード導体の両面に熱融着層を被覆して260℃で10秒プレスして接着し、リード線を作製した。   A resin composition in which a polyolefin resin (acid-modified polypropylene: Mitsui Chemicals, Admer QF551), copper damage inhibitor (ADK STAB CDA1), and antioxidant (Irganox 1010) are mixed at a ratio shown in Table 1 is molded to a thickness of 50 μm. A heat-sealing layer was prepared. A heat-sealable layer was coated on both surfaces of the lead conductor having a composite coating layer formed on the surface, and pressed and adhered at 260 ° C. for 10 seconds to produce a lead wire.

(参考例1)
リード導体として厚さ0.2mm、幅35mm、長さ45mmのニッケルめっき銅を用い、実施例1〜3、比較例1と同様に複合皮膜層を形成し、表1に示す割合の熱融着層を用いてリード線を作製した。
(Reference Example 1)
Using a nickel-plated copper having a thickness of 0.2 mm, a width of 35 mm, and a length of 45 mm as the lead conductor, a composite coating layer was formed in the same manner as in Examples 1 to 3 and Comparative Example 1, and heat fusion at the ratios shown in Table 1 A lead wire was prepared using the layer.

(初期接着力の評価)
作製したリード線を10mm幅に切断し、熱融着層とリード導体との接着力を180°剥離試験で測定した。なお引張速度は100mm/分とした。接着力が6N/cm以上のとき、良好と接着していると判断した。
(Evaluation of initial adhesive strength)
The produced lead wire was cut into a width of 10 mm, and the adhesive force between the heat-fusible layer and the lead conductor was measured by a 180 ° peel test. The tensile speed was 100 mm / min. When the adhesive force was 6 N / cm or more, it was judged that the adhesive was good.

(耐電解液性の評価)
エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、炭酸ジメチル(DMC)を1:1:1の体積比率で混合し、電解質として六フッ化リン酸リチウム(LiPF)を1.0mol/lとなるように溶解した電解液を準備した。この電解液にリード線を浸漬し、電解液の水分率が1000ppmになるように調整して60℃の恒温槽内に表1に示す期間放置した後、初期接着力の評価と同様に熱融着層とリード導体との接着力を測定した。
(Evaluation of electrolyte resistance)
Ethylene carbonate (EC), diethyl carbonate (DEC), and dimethyl carbonate (DMC) are mixed at a volume ratio of 1: 1: 1, so that lithium hexafluorophosphate (LiPF 6 ) is 1.0 mol / l as an electrolyte. Thus, the melted electrolyte solution was prepared. A lead wire is immersed in this electrolytic solution, adjusted so that the moisture content of the electrolytic solution becomes 1000 ppm, and left in a 60 ° C. thermostatic bath for the period shown in Table 1, and then heat-melted in the same manner as in the evaluation of the initial adhesive strength. The adhesion force between the deposition layer and the lead conductor was measured.

(長期耐熱性の評価)
作製したリード線を136℃、130℃、125℃の恒温槽内に放置した後、180°に曲げた状態でクラックが発生するまでの日数を観察した。以上の結果を表1に示す。
(Evaluation of long-term heat resistance)
After the produced lead wire was left in a thermostat bath at 136 ° C., 130 ° C., and 125 ° C., the number of days until a crack was generated in a state bent at 180 ° was observed. The results are shown in Table 1.

Figure 2014107176
Figure 2014107176

実施例1〜3のリード線は比較例1のリード線と比べると長期耐熱性が良好である。特に銅害防止剤をポリオレフィン系樹脂100質量部に対して2質量部含有している実施例3は、ニッケルメッキ銅を使用した参考例1と同等の長期耐熱性を有している。この結果をアレニウスプロットすると、実施例1〜3とも95℃では電池の耐用年数である10年以上は使用可能であると推測される。また実施例1〜3とも初期接着力、耐電解液性が良好である。   The lead wires of Examples 1 to 3 have better long-term heat resistance than the lead wires of Comparative Example 1. In particular, Example 3 containing 2 parts by mass of copper damage inhibitor with respect to 100 parts by mass of polyolefin resin has long-term heat resistance equivalent to Reference Example 1 using nickel-plated copper. When this result is Arrhenius-plotted, it is estimated that in Examples 1 to 3, the battery can be used for more than 10 years, which is the useful life of the battery, at 95 ° C. In addition, in all of Examples 1 to 3, the initial adhesive strength and the electrolytic solution resistance are good.

1 非水電解質電池
2 封入容器
3 リード導体
4 熱融着層
5 金属層
6 樹脂層
7 樹脂層
8 ラミネートフィルム
9 シール部
10 正極集電体
11 負極集電体
12 セパレータ
13 非水電解質
14 複合皮膜層
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte battery 2 Enclosed container 3 Lead conductor 4 Thermal fusion layer 5 Metal layer 6 Resin layer 7 Resin layer 8 Laminate film 9 Sealing part 10 Positive electrode current collector 11 Negative electrode current collector 12 Separator 13 Nonaqueous electrolyte 14 Composite film layer

Claims (5)

銅からなるリード導体、前記リード導体の表面を被覆する複合皮膜層、及び前記複合皮膜層の少なくとも一部を被覆する熱融着層を有する非水電解質電池用リード線であって、
前記リード導体の表面を被覆する複合皮膜層は、アクリル酸共重合体又は/及びメタクリル酸共重合体、若しくはそれらの硬化物であり、
前記熱融着層はポリオレフィン系樹脂100質量部に対して銅害防止剤を0.05質量部以上含有する樹脂組成物からなる、非水電解質電池用リード線。
A lead conductor for a non-aqueous electrolyte battery comprising a lead conductor made of copper, a composite coating layer covering the surface of the lead conductor, and a thermal fusion layer covering at least a part of the composite coating layer;
The composite film layer covering the surface of the lead conductor is an acrylic acid copolymer or / and a methacrylic acid copolymer, or a cured product thereof.
The said heat-fusion layer is a lead wire for non-aqueous electrolyte batteries which consists of a resin composition which contains 0.05 mass part or more of copper damage inhibitors with respect to 100 mass parts of polyolefin resin.
前記銅害防止剤が、3−(N−サリチロイル)アミノ1,2,4−トリアゾール、2,3−ビス[[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル]プロピオニル]プロピオニル]プロピオノノヒドラジド、サリチルヒドラジド、2’,3−ビス[[3−[3,5−ジ−tert−ブチル−4−ヒドロキシフェニル]プロピオニル]プロピオヒドラジドからなる群から選ばれる1種以上である、請求項1に記載の非水電解質電池用リード線。   The copper damage inhibitor is 3- (N-salicyloyl) amino 1,2,4-triazole, 2,3-bis [[3- (3,5-di-tert-butyl-4-hydroxyphenyl] propionyl]. One or more selected from the group consisting of propionyl] propiononohydrazide, salicylhydrazide, 2 ′, 3-bis [[3- [3,5-di-tert-butyl-4-hydroxyphenyl] propionyl] propiohydrazide The lead wire for a nonaqueous electrolyte battery according to claim 1. 前記複合皮膜層は、アクリル酸共重合体又は/及びメタクリル酸共重合体の硬化物である請求項1又は2に記載の非水電解質電池用リード線。   The lead wire for a non-aqueous electrolyte battery according to claim 1, wherein the composite coating layer is a cured product of an acrylic acid copolymer and / or a methacrylic acid copolymer. 前記ポリオレフィン系樹脂は、ポリプロピレン又は酸変性ポリプロピレンである、請求項1〜3のいずれか1項に記載の非水電解質電池用リード線。   The lead wire for a nonaqueous electrolyte battery according to any one of claims 1 to 3, wherein the polyolefin resin is polypropylene or acid-modified polypropylene. 請求項1〜4のいずれか1項に記載の非水電解質電池用リード線を用いた非水電解質電池。   The nonaqueous electrolyte battery using the lead wire for nonaqueous electrolyte batteries of any one of Claims 1-4.
JP2012260430A 2012-11-29 2012-11-29 Non-aqueous electrolyte battery lead wire and non-aqueous electrolyte battery using the same Active JP6070117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012260430A JP6070117B2 (en) 2012-11-29 2012-11-29 Non-aqueous electrolyte battery lead wire and non-aqueous electrolyte battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012260430A JP6070117B2 (en) 2012-11-29 2012-11-29 Non-aqueous electrolyte battery lead wire and non-aqueous electrolyte battery using the same

Publications (2)

Publication Number Publication Date
JP2014107176A true JP2014107176A (en) 2014-06-09
JP6070117B2 JP6070117B2 (en) 2017-02-01

Family

ID=51028479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012260430A Active JP6070117B2 (en) 2012-11-29 2012-11-29 Non-aqueous electrolyte battery lead wire and non-aqueous electrolyte battery using the same

Country Status (1)

Country Link
JP (1) JP6070117B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184546A (en) * 2015-03-26 2016-10-20 大日本印刷株式会社 Adhesive film for metal terminal
US10312494B2 (en) * 2015-02-23 2019-06-04 Automotive Energy Supply Corporation Tab lead including surface treatment film with polymer having carboxylic acid anhydride groups, and nonaqueous electrolyte secondary battery using the same
CN114725629A (en) * 2020-12-22 2022-07-08 双叶电子工业株式会社 Tab lead and nonaqueous electrolyte device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10110069A (en) * 1996-10-08 1998-04-28 Asahi Chem Ind Co Ltd Resin composition excellent in resistance to metal-induced deterioration
JPH11312514A (en) * 1998-02-24 1999-11-09 Sony Corp Lead used for lithium ion secondary battery, ribbon for lead, the lithium ion secondary battery, and sealing method for container for the lithium ion secondary battery
JP2003077429A (en) * 2001-09-05 2003-03-14 Mitsubishi Cable Ind Ltd Sealed battery
JP2004063133A (en) * 2002-07-25 2004-02-26 Toshiba Corp Thin secondary battery
JP2006128096A (en) * 2004-09-30 2006-05-18 Sumitomo Electric Ind Ltd Lead wire for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
JP2009176647A (en) * 2008-01-28 2009-08-06 Sumitomo Chemical Co Ltd Battery case for secondary battery, and secondary battery having the battery case
JP2011159569A (en) * 2010-02-03 2011-08-18 Toppan Printing Co Ltd Metal terminal for secondary battery
JP2012124146A (en) * 2010-11-17 2012-06-28 Sony Corp Secondary battery, battery unit, and battery module
JP2012174335A (en) * 2011-02-17 2012-09-10 Sumitomo Electric Ind Ltd Lead member

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10110069A (en) * 1996-10-08 1998-04-28 Asahi Chem Ind Co Ltd Resin composition excellent in resistance to metal-induced deterioration
JPH11312514A (en) * 1998-02-24 1999-11-09 Sony Corp Lead used for lithium ion secondary battery, ribbon for lead, the lithium ion secondary battery, and sealing method for container for the lithium ion secondary battery
JP2003077429A (en) * 2001-09-05 2003-03-14 Mitsubishi Cable Ind Ltd Sealed battery
JP2004063133A (en) * 2002-07-25 2004-02-26 Toshiba Corp Thin secondary battery
JP2006128096A (en) * 2004-09-30 2006-05-18 Sumitomo Electric Ind Ltd Lead wire for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
JP2009176647A (en) * 2008-01-28 2009-08-06 Sumitomo Chemical Co Ltd Battery case for secondary battery, and secondary battery having the battery case
JP2011159569A (en) * 2010-02-03 2011-08-18 Toppan Printing Co Ltd Metal terminal for secondary battery
JP2012124146A (en) * 2010-11-17 2012-06-28 Sony Corp Secondary battery, battery unit, and battery module
JP2012174335A (en) * 2011-02-17 2012-09-10 Sumitomo Electric Ind Ltd Lead member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10312494B2 (en) * 2015-02-23 2019-06-04 Automotive Energy Supply Corporation Tab lead including surface treatment film with polymer having carboxylic acid anhydride groups, and nonaqueous electrolyte secondary battery using the same
JP2016184546A (en) * 2015-03-26 2016-10-20 大日本印刷株式会社 Adhesive film for metal terminal
CN114725629A (en) * 2020-12-22 2022-07-08 双叶电子工业株式会社 Tab lead and nonaqueous electrolyte device

Also Published As

Publication number Publication date
JP6070117B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP5540967B2 (en) Electrical parts, non-aqueous electrolyte batteries, lead wires and enclosures used therefor
JP6458338B2 (en) Secondary battery exterior material, secondary battery, and secondary battery exterior material manufacturing method
JP2002231217A (en) Film sealed nonaqueous electrolyte battery
JP5495195B2 (en) Electrical parts, non-aqueous electrolyte batteries, lead wires and enclosures used therefor
JP6387938B2 (en) Battery packaging materials
JP6584088B2 (en) Tab lead and secondary battery using the same
JP2014238978A (en) Packaging material for battery
JP5375013B2 (en) Electrical parts, non-aqueous electrolyte batteries, and lead wires and enclosures used for them
JP6070117B2 (en) Non-aqueous electrolyte battery lead wire and non-aqueous electrolyte battery using the same
JP2010212070A (en) Battery and method of manufacturing the same
JP6015066B2 (en) Battery packaging materials
JP2017059402A (en) Tab sealant heat-resistant insulating structure for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP5783196B2 (en) Battery packaging materials
KR20160062870A (en) Sealing member for lead tab of secondary battery and method of sealing using the member
WO2018074090A1 (en) Lead wire for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery comprising same
KR20200003559A (en) Lead tab film for secondary battery and secondary battery comprising the same
JP6019593B2 (en) Non-aqueous electrolyte battery lead wire and non-aqueous electrolyte battery using the same
JP5672196B2 (en) Electrical parts, non-aqueous electrolyte batteries, lead wires and enclosures used therefor
JP2011216358A (en) Packaging material for electrochemical cells
JP2015213064A (en) Battery-packaging material
KR20200132517A (en) Lead tab film for secondary battery and secondary battery comprising the same
JP2012164676A (en) Manufacturing method for polymer battery composite packaging material
JP2017022132A (en) Battery packaging material
JP2014146611A (en) Packaging material for electrochemical cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R150 Certificate of patent or registration of utility model

Ref document number: 6070117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250