JP2014106113A - X-ray inspection device and x-ray inspection method - Google Patents

X-ray inspection device and x-ray inspection method Download PDF

Info

Publication number
JP2014106113A
JP2014106113A JP2012259163A JP2012259163A JP2014106113A JP 2014106113 A JP2014106113 A JP 2014106113A JP 2012259163 A JP2012259163 A JP 2012259163A JP 2012259163 A JP2012259163 A JP 2012259163A JP 2014106113 A JP2014106113 A JP 2014106113A
Authority
JP
Japan
Prior art keywords
ray
transmission
measured
gap
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012259163A
Other languages
Japanese (ja)
Inventor
Masuo Yasuma
益男 安間
Hisashi Akiyama
久 秋山
Masahiro Inoue
雅裕 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2012259163A priority Critical patent/JP2014106113A/en
Publication of JP2014106113A publication Critical patent/JP2014106113A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To calculate a volume of a gap part of a measured object by a simple process at high speed.SOLUTION: An X-ray inspection device 100 comprises: an X-ray source 110 that irradiates with an X-ray a copper-filled part serving as a measured object S filled in a through-hole H of a substrate B; an X-ray camera 120 that captures a transmission X-ray image of the measured object S; thickness estimation means 141 for estimating a thickness distribution of the measured object S from the transmission X-ray image and a relation between a preliminarily acquired thickness of a material and a counting number of the transmission X-ray; gap part estimation means 142 for estimating that a part thinner than a predetermined reference value is a part corresponding to a gap part V on the basis of the estimated thickness distribution; gap part shape estimation means 143 for estimating a contour shape of an area corresponding to the gap part; volume calculation part 144 for calculating a volume of the gap part from the contour shape; fill-up ratio calculation means 145; a measured object stage 130 that causes the measured object S to be tilted; and gap part position estimation means 146 for estimating a position of the gap part on the basis of transmission X-ray images before and after tilted.

Description

本発明は、X線検査装置、およびX線検査方法に係り、特に半導体やプリント基板、リチウムイオン電池等、被測定物の厚さや内部に存在する空隙または空洞の体積を求めることができるX線検査装置、およびX線検査方法に関する。   The present invention relates to an X-ray inspection apparatus and an X-ray inspection method, and in particular, an X-ray capable of obtaining the thickness of an object to be measured, such as a semiconductor, a printed circuit board, a lithium ion battery, or the volume of voids or cavities. The present invention relates to an inspection apparatus and an X-ray inspection method.

プリント基板、IC(Integrated Circuit)回路などにおいて、スルーホールに充填された銅充填層に空隙屋空洞があると、安定した性能を発揮しない。このため、銅充填層に形成された空隙をインラインで検出する需要が高まっている。この空隙の検出に際して、空隙の実体積のみでなくスルーホール容積に対する空隙の体積つまり充填率、空隙の位置などが製品の良否判断の目安となる。一般に空隙の体積や位置は被測定物のCT(Computed Tomography)像により算出できるとされているが、CT画像の取得には時間がかかり、インラインでの検査には向いていない。そこで、高速に空隙の体積や位置、充填率を求める手法が望まれている。   In a printed circuit board, an IC (Integrated Circuit) circuit, and the like, if there is a void space in the copper filling layer filled in the through hole, stable performance is not exhibited. For this reason, the demand which detects the space | gap formed in the copper filling layer in-line is increasing. When detecting this void, not only the actual volume of the void but also the volume of the void relative to the through-hole volume, that is, the filling rate, the position of the void, and the like are used as criteria for determining the quality of the product. In general, it is said that the volume and position of the gap can be calculated from a CT (Computed Tomography) image of the object to be measured. However, it takes time to obtain a CT image and is not suitable for in-line inspection. Therefore, a method for obtaining the volume, position, and filling rate of the gap at high speed is desired.

従来被試験体を透過するX線のカウント数から、被測定物の内部にある空隙の大きさを求め被試験体の、良否を判定する技術として次のものが提案されている。特許文献1には、基板やシリコンウエハー上に形成された球形状のはんだバンプに含まれるボイドを検出するボイドの検査方法において、被検査バンプのX線透過画像の取り込みに続いて、該被検査バンプの形状に類似で、かつ、ボイドが存在しない、あるいは、存在していても不良品とは判定しないモデルバンプ画像の取り込みを行い、次いで、両バンプ画像の差分処理を行った後に、該差分画像から被検査バンプのボイドの体積、面積、厚みのいずれかを求め、該被検査バンプのボイドの体積、面積、厚みのいずれかと、あらかじめ設定した基準値のボイドの体積、面積、厚みとの比較を行って良否判定を行うものが記載されている。   Conventionally, the following techniques have been proposed as a technique for determining the quality of a device under test by obtaining the size of a void in the device under test from the number of X-rays transmitted through the device under test. In Patent Document 1, in a void inspection method for detecting a void contained in a spherical solder bump formed on a substrate or a silicon wafer, following the capture of an X-ray transmission image of the inspection bump, the inspection target A model bump image that is similar to the shape of the bump and that does not have a void or is not determined as a defective product is taken in, and then the difference processing between the two bump images is performed. Obtain either the volume, area, or thickness of the void of the bump to be inspected from the image, and either the volume, area, or thickness of the void of the bump to be inspected, and the volume, area, or thickness of the void of the preset reference value What makes a pass / fail judgment by comparison is described.

特許4162386号公報Japanese Patent No. 4162386

しかしながら、特許文献1に記載のものは、画像の差分処理を行い、空隙のみの体積や面積、厚さを算出するものであり、非測定物自体の厚さや充填率を求めるものではない(段落番号0011〜段落番号0015参照)。また、特許文献1に記載のものは、モデルバンプ画像の取り込みを行う必要があり、処理に時間がかかる。   However, the method described in Patent Document 1 performs image difference processing to calculate the volume, area, and thickness of only the voids, and does not determine the thickness or filling rate of the non-measurement itself (paragraph). No. 0011 to paragraph No. 0015). Further, the one described in Patent Document 1 needs to capture a model bump image, and takes a long time for processing.

本発明は上述した課題に鑑みてなされたものであり、簡単な処理で被測定物の厚さや空隙部の正確な体積を高速に算出し、スルーホール内の銅の充填率から製品の良否を判断することができるX線検査装置、およびX線検査方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and calculates the thickness of the object to be measured and the accurate volume of the gap at high speed with a simple process, and determines the quality of the product from the filling rate of copper in the through hole. An object is to provide an X-ray inspection apparatus and an X-ray inspection method that can be determined.

前記課題を解決する請求項1に記載の発明は、既知の素材で定められた形状に形成された被測定物にX線を照射するX線源と、前記被測定物の透過X線カウント数の分布に基づく透過X線画像を取得する透過X線像取得手段と、取得された前記透過X線像、およびあらかじめ取得してある前記素材の厚さと透過X線のカウント数との関係、から前記被測定物の厚さ分布を推定する厚さ推定手段と、推定した前記厚さ分布に基づいて、あらかじめ定めた基準値より薄い箇所を空隙部に相当する箇所であるとする空隙推定手段と、推定した前記空隙部に相当する領域の輪郭形状を推定する空隙部形状推定手段と、前記輪郭形状から前記空隙部の体積を算出する体積算出手段と、被測定物が有すべき体積に対する測定された被測定物の体積の比率である充填率を求める充填率算出手段と、を備える、ことを特徴とするX線検査装置である。
本発明によれば、取得した透過X線像から、被測定物の厚さ分布を推定し、さらに空隙部分を推定し、さらに空隙の形状を推定して空隙の体積と充填率とを求めるので、被試験体の空隙の体積および充填率を高速かつ正確に算出できる。
The invention according to claim 1, which solves the above problem, is an X-ray source for irradiating a measurement object formed in a shape defined by a known material with X-rays, and a transmission X-ray count of the measurement object. Transmission X-ray image acquisition means for acquiring a transmission X-ray image based on the distribution of the acquired X-ray image, the acquired transmission X-ray image, and the relationship between the thickness of the material acquired in advance and the transmission X-ray count. A thickness estimating means for estimating the thickness distribution of the object to be measured; and a gap estimating means for determining that a portion thinner than a predetermined reference value is a portion corresponding to the gap portion based on the estimated thickness distribution; A gap shape estimating means for estimating the contour shape of the area corresponding to the estimated gap portion, a volume calculating means for calculating the volume of the gap portion from the contour shape, and a measurement for the volume to be measured By the volume ratio of the measured object That and a packing ratio calculating means for calculating the filling factor, it is X-ray inspection apparatus according to claim.
According to the present invention, from the acquired transmission X-ray image, the thickness distribution of the object to be measured is estimated, the void portion is further estimated, and the void shape is further estimated to obtain the void volume and filling rate. The volume and filling rate of the voids in the device under test can be calculated quickly and accurately.

同じく請求項2に記載の発明は、請求項1に記載のX線検査装置において、前記被測定物を、前記X線源に対して傾斜させる傾斜手段と、前記傾斜手段で前記被測定物を前記X線源に対して傾斜させた状態で取得した傾斜X線透過画像と、前記被測定物と前記X線源に対して傾斜させない状態で取得したX線透過画像とから前記被測定物における空隙部の位置を推定する空隙部位置推定手段と、を備えることを特徴とする。
本発明によれば、被測定物をX線源に対して傾斜させた状態で推定された空隙位置と傾斜させない状態で推定された空隙位置とを比較して被試験体における空隙部の厚さ方向位置を推定することができる。
Similarly, the invention according to claim 2 is the X-ray inspection apparatus according to claim 1, wherein the object to be measured is inclined with respect to the X-ray source, and the object to be measured is inclined by the inclination means. From the tilted X-ray transmission image acquired in a state tilted with respect to the X-ray source and the X-ray transmission image acquired without tilting with respect to the target object and the X-ray source, And a gap portion position estimating means for estimating the position of the gap portion.
According to the present invention, the gap position estimated in a state where the object to be measured is tilted with respect to the X-ray source is compared with the gap position estimated in a state where the measurement object is not tilted, and the thickness of the gap portion in the DUT is measured. The direction position can be estimated.

同じく請求項3に記載の発明は、既知の素材で定められた形状に形成された被測定物にX線を照射するステップと、前記被測定物の透過X線カウント数の分布に基づく透過X線像を取得するステップと、取得した前記透過X線像と、あらかじめ取得してある前記素材の厚さと前記透過X線カウント数との関係から前記被測定物の厚さ分布を推定するステップと、前記推定された厚さ分布から、あらかじめ定めた基準値より薄い箇所が空隙部に相当する箇所であると推定するステップと、推定した前記空隙部に相当する領域の輪郭形状を推定するステップと、前記輪郭形状から前記空隙部の体積を算出するステップと、被測定物が有すべき体積に対する測定された被測定物の体積の比率である充填率を求めるステップと、を備えることを特徴とするX線検査方法である。
本発明によれば、取得した透過X線像から、被測定物の厚さ分布を推定し、さらに空隙部分を推定し、さらに空隙の形状を推定して空隙の体積と充填率とを求めるので、被試験体の空隙の体積および充填率を高速かつ正確に算出できる。
Similarly, the invention described in claim 3 irradiates an object to be measured formed in a shape defined by a known material with X-rays, and transmits X based on a distribution of transmitted X-ray counts of the object to be measured. A step of acquiring a line image; a step of estimating a thickness distribution of the object to be measured from a relationship between the acquired transmission X-ray image, the thickness of the material acquired in advance and the transmission X-ray count; and A step of estimating from the estimated thickness distribution that a portion thinner than a predetermined reference value is a portion corresponding to the void portion; and a step of estimating a contour shape of the region corresponding to the estimated void portion; A step of calculating the volume of the gap from the contour shape, and a step of obtaining a filling rate that is a ratio of the volume of the measured object to the volume that the object to be measured should have. Is that X-ray inspection method.
According to the present invention, from the acquired transmission X-ray image, the thickness distribution of the object to be measured is estimated, the void portion is further estimated, and the void shape is further estimated to obtain the void volume and filling rate. The volume and filling rate of the voids in the device under test can be calculated quickly and accurately.

同じく請求項4に記載の発明は、請求項3に記載のX線検査方法において、前記被測定物を前記X線源に対して傾斜させた状態で取得した透過X線像を取得するステップと、前記被測定物を前記X線源に対して傾斜させない状態で取得した透過X線像とから前記被測定物における空隙部の位置を推定するステップと、を備えることを特徴とする。
本発明によれば、被測定物をX線源に対して傾斜させた状態での透過X線画像と傾斜させない状態での透過X線画像とを比較して被試験体における空隙部の位置を推定することができる。
Similarly, the invention according to claim 4 is the X-ray inspection method according to claim 3, wherein the transmitted X-ray image is acquired in a state where the object to be measured is tilted with respect to the X-ray source; And a step of estimating a position of a gap in the measurement object from a transmission X-ray image acquired without tilting the measurement object with respect to the X-ray source.
According to the present invention, the position of the void portion in the DUT is compared by comparing the transmitted X-ray image in a state where the object to be measured is tilted with respect to the X-ray source and the transmitted X-ray image in a state where the object is not tilted. Can be estimated.

本発明に係るX線検査装置、およびX線検査方法によれば、簡単な処理で被測定物のボイドの正確な体積を高速に算出することができる。   According to the X-ray inspection apparatus and the X-ray inspection method according to the present invention, the accurate volume of the void of the object to be measured can be calculated at high speed with a simple process.

本発明の実施形態に係るX線検査装置を示すブロック図である。It is a block diagram which shows the X-ray inspection apparatus which concerns on embodiment of this invention. 同X線検査装置の処理動作を示すフローチャートである。It is a flowchart which shows the processing operation of the same X-ray inspection apparatus. 取得された透過X線画像等を示すものであり、(a)は透過X線画像、(b)は(a)の信号強度プロファイルを示すグラフ、(c)は(a)で示した透過X線像の信号強度を強調した画像である。The acquired transmission X-ray image etc. are shown, (a) is a transmission X-ray image, (b) is a graph which shows the signal intensity profile of (a), (c) is the transmission X shown by (a). This is an image in which the signal intensity of the line image is emphasized. X線透過像と銅の厚さとの関係を示す図である。It is a figure which shows the relationship between an X-ray transmission image and the thickness of copper. X線透過画像を被測定物の銅の厚さに変換した結果を示すものであり、(a)は3D画像、(b)はZ方向からの画像、(c)は(a)のx―z平面に沿った断面に相当する画像、(d)は(a)のy−z平面に沿った断面に相当する画像である。FIG. 6 shows the result of converting an X-ray transmission image into the copper thickness of the object to be measured, where (a) is a 3D image, (b) is an image from the Z direction, (c) is an x- An image corresponding to a cross section along the z plane, (d) is an image corresponding to a cross section along the yz plane of (a). 空隙の状態とX線画像信号強度のプロファイルとの関係を示す図である。It is a figure which shows the relationship between the state of a space | gap, and the profile of X-ray image signal intensity | strength. 同X線検査装置に被測定物のz方向の厚さ寸法を示すグラフである。It is a graph which shows the thickness dimension of the direction of a to-be-measured object to the same X-ray inspection apparatus. 厚さの分布状態から空隙部の形状を推定する手法を示す図である。It is a figure which shows the method of estimating the shape of a space | gap part from the distribution state of thickness. 実施形態に係るX線検査装置でスルーホールの充填率を算出する第1の方法を示す図である。It is a figure which shows the 1st method of calculating the filling rate of a through hole with the X-ray inspection apparatus which concerns on embodiment. 同X線検査装置でスルーホールの充填率を算出する第2の方法を示す図である。It is a figure which shows the 2nd method of calculating the filling rate of a through hole with the same X-ray inspection apparatus. 被測定物中の空隙の位置と取得されるX線透過画像との関係を示す図である。It is a figure which shows the relationship between the position of the space | gap in a to-be-measured object, and the acquired X-ray transmission image.

以下、本発明を実施するための形態に係るX線検査装置、およびX線検査方法について説明する。図1は本発明の実施形態に係るX線検査装置を示すブロック図である。実施形態に係るX線検査装置100は、被測定物Sとして基板BのスルーホールH中にメッキによって充填された銅充填部の空隙部V(ボイド:Void)の体積と位置とを求める。被測定物Sである銅充填部は、均一な銅でスルーホールHを充填して形成されたものであり、定められた形状、すなわち上面と上面とを備える円柱形となっている。また、X線検査装置100は、空隙部Vの被測定物Sにおける位置、例えば上部、中央部、下部を検出する。なお、図1では基板B、スルーホールH、被測定物Sである銅充填部は、X線検査装置100に対して大きく記載されている。   Hereinafter, an X-ray inspection apparatus and an X-ray inspection method according to embodiments for carrying out the present invention will be described. FIG. 1 is a block diagram showing an X-ray inspection apparatus according to an embodiment of the present invention. The X-ray inspection apparatus 100 according to the embodiment obtains the volume and position of a void portion V (Void) of a copper filling portion filled by plating in the through hole H of the substrate B as the object to be measured S. The copper filling portion as the object to be measured S is formed by filling the through hole H with uniform copper, and has a predetermined shape, that is, a cylindrical shape having an upper surface and an upper surface. Further, the X-ray inspection apparatus 100 detects the position of the gap V in the measurement object S, for example, the upper part, the center part, and the lower part. In FIG. 1, the copper filling portion, which is the substrate B, the through hole H, and the object to be measured S, is greatly described with respect to the X-ray inspection apparatus 100.

図1に示すように、X線検査装置100は、被測定物SにX線を照射するX線源110と、被測定物Sの透過X線カウント数の分布に基づく透過X線画像を取得する透過X線像取得手段であるX線カメラ120と、被測定物Sが配置される被測定物ステージ130とを備える。X線カメラ120には取得した透過X線像に基づいて空隙部Vの体積と位置とを検出する処理部140が接続される。また、処理部140は、X線源110、X線カメラ120、被測定物ステージ130の駆動処理を行う。   As shown in FIG. 1, the X-ray inspection apparatus 100 acquires an X-ray source 110 that irradiates the measurement object S with X-rays and a transmission X-ray image based on the distribution of the transmission X-ray count number of the measurement object S. And an X-ray camera 120 that is a transmission X-ray image acquisition means, and a DUT stage 130 on which the DUT S is arranged. The X-ray camera 120 is connected to a processing unit 140 that detects the volume and position of the gap V based on the acquired transmission X-ray image. Further, the processing unit 140 performs a driving process for the X-ray source 110, the X-ray camera 120, and the measurement object stage 130.

X線源110は、図1中z軸に沿ってX線を照射する。X線カメラ120は、被測定物Sをz方向沿って、下面から上面に向けて貫いた透過X線のカウント数に対応するx−y平面での透過X線画像を取得する。空隙部Vがない部分では、銅充填層の厚さ寸法が大きく透過X線カウント数が少なくなり、その結果透過X線画像の信号強度が弱くなる。一方、空隙部Vが存在する部分では銅充填層の寸法が小さく透過X線が多くなり、その結果透過X線画像の信号強度が強くなる。   The X-ray source 110 irradiates X-rays along the z axis in FIG. The X-ray camera 120 acquires a transmission X-ray image on the xy plane corresponding to the transmission X-ray count number that penetrates the measurement object S along the z direction from the lower surface toward the upper surface. In the portion where there is no void V, the thickness dimension of the copper filling layer is large and the transmission X-ray count is reduced, and as a result, the signal intensity of the transmission X-ray image is weakened. On the other hand, in the portion where the void portion V exists, the size of the copper filling layer is small and the amount of transmitted X-rays is increased. As a result, the signal intensity of the transmitted X-ray image is increased.

処理部140は、X線カメラ120で取得した透過X線像と、あらかじめ取得してある銅充填層と同じ素材の厚さと透過X線のカウント数との関係から被測定物Sの厚さ分布を推定する厚さ推定手段141と、推定された厚さ分布に基づいてあらかじめ定めた基準値より薄い箇所を空隙部に相当する箇所であると推定する空隙部推定手段142と、推定した前記空隙部の輪郭形状を推定する空隙部形状推定手段143と、輪郭形状から前記空隙部の体積を算出する体積算出手段144と、スルーホールHの容積に対する銅積層部の充填率を算出する充填率算出手段145と、空隙部位置推定手段146と、X線源110、X線カメラ120および被測定物ステージ130の駆動を制御する駆動制御手段147と、を備える。   The processing unit 140 determines the thickness distribution of the measurement object S from the relationship between the transmission X-ray image acquired by the X-ray camera 120, the thickness of the same material as the copper filling layer acquired in advance and the transmission X-ray count. A thickness estimation means 141 for estimating the gap, a gap estimation means 142 for estimating that a portion thinner than a predetermined reference value based on the estimated thickness distribution is a portion corresponding to the gap, and the estimated gap Void shape estimation means 143 for estimating the contour shape of the portion, volume calculation means 144 for calculating the volume of the void portion from the contour shape, and filling rate calculation for calculating the filling rate of the copper laminated portion with respect to the volume of the through hole H Means 145, gap position estimating means 146, and drive control means 147 for controlling the driving of the X-ray source 110, the X-ray camera 120 and the DUT stage 130.

処理部140は、CPU(central processing unit)、ROM(read only memory)、RAMラム(random access memory)、HDD(hard disk drive)等の補助記憶手段等を備えたコンピュータで構成され、CPUでROM、HDD等に格納された処理プログラムを実行して厚さ推定手段141、空隙部推定手段142、空隙部形状推定手段143、体積算出手段144、空隙部位置推定手段146、駆動制御手段147の機能を実現する。   The processing unit 140 includes a computer having auxiliary storage means such as a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and a hard disk drive (HDD). The functions of the thickness estimation means 141, the gap estimation means 142, the gap shape estimation means 143, the volume calculation means 144, the gap position estimation means 146, and the drive control means 147 are executed by executing a processing program stored in the HDD or the like. Is realized.

また、X線源110には、キーボード、マウス、タッチパネル等から構成される入力手段150と、液晶ディスプレー等から構成される画像表示手段160とが接続されている。入力手段150からオペレーターの指示が入力され、画像表示手段160に取得した透過X線画像、処理中の画像等の各種画像が表示される。   The X-ray source 110 is connected to an input unit 150 composed of a keyboard, a mouse, a touch panel, etc., and an image display unit 160 composed of a liquid crystal display. An operator's instruction is input from the input unit 150, and various images such as a transmitted X-ray image and an image being processed are displayed on the image display unit 160.

次にX線検査装置100で被測定物Sの空隙部Vの体積と位置とを検出する処理について説明する。図2は同X線検査装置の処理動作を示すフローチャートである。まず、被測定物ステージ130に被測定物Sを配置する。このとき、被測定物ステージ130を初期位置として被測定物SがX線源110のX線照射方向zに対して傾斜しない状態とする。すなわち、この状態で、被測定物Sの中心はz軸に沿って配置される。   Next, a process for detecting the volume and position of the void portion V of the measurement object S by the X-ray inspection apparatus 100 will be described. FIG. 2 is a flowchart showing the processing operation of the X-ray inspection apparatus. First, the measurement object S is placed on the measurement object stage 130. At this time, the object to be measured S is not inclined with respect to the X-ray irradiation direction z of the X-ray source 110 with the object stage 130 as the initial position. That is, in this state, the center of the measurement object S is arranged along the z axis.

そして、駆動制御手段147の制御のもと、X線源110からX線を被測定物Sに照射してX線カメラ120で透過X線画像を取得する(ステップS1)。このときX線は、被測定物Sを下面から上面に向けて透過する。このため得られる透過X線画像は、被測定物Sに対応するx−y平面の各部における透過X線のカウント数に対応して濃度が定まる。   Then, under the control of the drive control means 147, the X-ray source 110 irradiates the measurement object S with X-rays and acquires a transmission X-ray image with the X-ray camera 120 (step S1). At this time, the X-rays pass through the object to be measured S from the lower surface toward the upper surface. Therefore, the density of the transmitted X-ray image obtained is determined in accordance with the count of transmitted X-rays at each part of the xy plane corresponding to the measurement object S.

図3は取得された透過X線画像等を示すものであり、(a)は透過X線画像、(b)は(a)の信号強度プロファイルを示すグラフ、(c)は(a)で示した透過X線像の信号強度を強調した画像である。この例では、被測定物Sの中央部210が暗くなっており(図3(a))、信号強度プロファイルでは、中央部210のカウント数が増加していることが分かる。また、図3(a)の透過X線像の信号強度を強調すると中央部210が明確となる。   FIG. 3 shows the acquired transmission X-ray image, etc. (a) is a transmission X-ray image, (b) is a graph showing the signal intensity profile of (a), and (c) is shown by (a). This is an image in which the signal intensity of the transmitted X-ray image is emphasized. In this example, the central portion 210 of the object S to be measured is dark (FIG. 3A), and it can be seen that the count number of the central portion 210 is increased in the signal intensity profile. Further, when the signal intensity of the transmission X-ray image in FIG. 3A is emphasized, the central portion 210 becomes clear.

次に、厚さ推定手段141において、透過X線画像から得られる透過X線カウント数から、x−y平面の各位置における銅の厚さの値に変換して(ステップS2)、被測定物Sの厚さ分布を推定する(ステップS3)。透過X線カウント数から被測定物Sの厚さへの変換は、まず、銅充填層である被測定物SのX線透過画像の各点のカウントを全透過の値で割った透過比に置き換え、この透過比を銅充填層厚さへの変換関数に代入する。この変換関数は基準となる銅充填層を測定してあらかじめ求めておく。これにより、x−y平面おける銅の厚さ(z方向)の分布が取得できる。   Next, the thickness estimation means 141 converts the transmission X-ray count obtained from the transmission X-ray image into a copper thickness value at each position on the xy plane (step S2), and the object to be measured The thickness distribution of S is estimated (step S3). The conversion from the transmission X-ray count number to the thickness of the object S to be measured is first made into a transmission ratio obtained by dividing the count of each point of the X-ray transmission image of the object S to be measured, which is a copper-filled layer, by the total transmission value. Substituting this transmission ratio into the conversion function to copper fill layer thickness. This conversion function is obtained in advance by measuring a copper filling layer as a reference. Thereby, the distribution of the copper thickness (z direction) in the xy plane can be acquired.

銅充填層厚さへの変換関数について説明する。図4はX線透過像と銅の厚さとの関係を示す図である。図4(a)に示すように、厚さT0〜Tnの多数の銅板を試料として、照射強度I0のX線による透過X線の強度I1〜Inを求めておく。そして、図4(b)に示すように、厚さTiにおけるX線の透過率(Ii/I0)との関係T=f(Ii/I0)(図4(b))からX線透過率から銅の厚さへの変換関数を定める。   The conversion function to copper filling layer thickness is demonstrated. FIG. 4 is a diagram showing the relationship between the X-ray transmission image and the copper thickness. As shown in FIG. 4A, the intensities I1 to In of transmitted X-rays by X rays having an irradiation intensity I0 are obtained using a number of copper plates having thicknesses T0 to Tn as samples. Then, as shown in FIG. 4B, the relationship with the X-ray transmittance (Ii / I0) at the thickness Ti is calculated from the X-ray transmittance from T = f (Ii / I0) (FIG. 4B). Define the conversion function for copper thickness.

図5はX線透過画像を被測定物の銅素材の厚さ寸法に変換した結果を示すものであり、(a)は3次元の厚さ分布を示す図、(b)はx−y平面上での厚さ分布を示した図、(c)は(a)のx―z平面に沿った断面に相当する図、(d)は(a)のy−z平面に沿った断面に相当する図である。この例では、x−y平面における中央部付近に、空隙部Vに相当する厚さ寸法が小さい領域が存在していることが分かる。   FIG. 5 shows the result of converting the X-ray transmission image into the thickness dimension of the copper material of the object to be measured, where (a) shows a three-dimensional thickness distribution and (b) shows the xy plane. The figure which showed thickness distribution in the above, (c) is a figure equivalent to the cross section along the xz plane of (a), (d) is equivalent to the cross section along the yz plane of (a). It is a figure to do. In this example, it can be seen that there is a region having a small thickness dimension corresponding to the gap V in the vicinity of the central portion in the xy plane.

なお、実際の空隙部Vの形状は、X線透過画像から得られてプロファイルにより定めるため、決定できない。図6は空隙の状態とX線画像信号強度のプロファイルとの関係を示す図である。例えば空隙部Vが、図6(a)に示すように楕円形の断面形状である場合、図6(b)に示すように、透過X線の強度は、空隙部Vの高さ方向の寸法h1、h2、h3、…、hnで定まる。このため、断面楕円形の空隙部Vの透過X線の強度は、空隙部Vは高さ寸法がh1、h2、h3、…、hnである空隙(図6(b)の右図)を通過した場合と同じとなり、図6(c)に示したものとなる。このため、X線に透過信号プロファイルからは空隙部Vの形状は特定されない。   Note that the actual shape of the void V cannot be determined because it is obtained from the X-ray transmission image and determined by the profile. FIG. 6 is a diagram showing the relationship between the state of the air gap and the profile of the X-ray image signal intensity. For example, when the void portion V has an elliptical cross-sectional shape as shown in FIG. 6A, the transmitted X-ray intensity is the dimension in the height direction of the void portion V as shown in FIG. It is determined by h1, h2, h3,. For this reason, the intensity of the transmitted X-ray of the void V having an elliptical cross section passes through the void (the right diagram in FIG. 6B) where the void V has heights h1, h2, h3,. This is the same as that shown in FIG. 6C. For this reason, the shape of the space V is not specified from the transmission signal profile for X-rays.

次いで、空隙部推定手段142において、空隙部推定手段142のx−y平面上の位置を推定する(ステップS4)。図7は被測定物の厚さ寸法を示すグラフである。空隙部推定手段142では、空隙部Vの広がり寸法Xと、深さ寸法Yとがあらかじめ定めた所定の閾値より大きいとき、空隙部Vが存在する箇所であると推定する。   Next, the gap estimation unit 142 estimates the position of the gap estimation unit 142 on the xy plane (step S4). FIG. 7 is a graph showing the thickness dimension of the object to be measured. In the space | gap part estimation means 142, when the breadth dimension X of the space | gap part V and the depth dimension Y are larger than the predetermined threshold value predetermined, it estimates that it is a location where the space | gap part V exists.

さらに、空隙部形状推定手段143で空隙部Vに相当する領域の形状を推定する。図8は厚さの分布状態から空隙部の形状を推定する手法を示す図である。空隙部形状推定手段143は、取得した厚さの分布画像において空隙部Vと推定された領域で、基準面220と、空隙部Vによって厚さが減少した領域の輪郭面230と、を決定して空隙部Vの形状を推定する。   Further, the shape of the region corresponding to the space V is estimated by the space shape estimation means 143. FIG. 8 is a diagram showing a method for estimating the shape of the gap from the thickness distribution state. The gap shape estimation means 143 determines the reference surface 220 and the contour surface 230 of the area whose thickness is reduced by the gap V in the area estimated as the gap V in the acquired thickness distribution image. Thus, the shape of the gap V is estimated.

この基準面220および輪郭面230は、図8に示した厚さの分布グラフを最小自乗法等の手法により処理することで取得できる。また基準面220は共焦点顕微鏡や干渉顕微鏡等を始めとする既存の表面形状測定器であらかじめ測定しておくことで、空隙部の体積より正確に推定することができる。   The reference surface 220 and the contour surface 230 can be obtained by processing the thickness distribution graph shown in FIG. 8 by a method such as a least square method. The reference plane 220 can be accurately estimated from the volume of the gap by measuring in advance with an existing surface shape measuring instrument such as a confocal microscope or an interference microscope.

そして、得られた基準面220および輪郭面230で囲まれた領域を公知の手法で積分して空隙部Vの体積を取得する(ステップS6)。なお、この処理では、空隙部Vの形状が異なる場合でも、同じ体積として計算されることがある。   Then, the region surrounded by the obtained reference surface 220 and contour surface 230 is integrated by a known method to obtain the volume of the gap V (step S6). In this process, even when the shape of the gap V is different, it may be calculated as the same volume.

次いで、充填率算出手段145で、スルーホールHにおける銅の充填率を算出する(ステップS7)。スルーホールの直径をd、高さをhとしたとき、スルーホールの容積はV0=πhd2/4となる。また、計測した銅充填部の体積V1は、空隙部Vの体積をvとすると、V1=(V0−v)となる。従って、充填率は、V1/V0として求められる。 Next, the filling rate calculation means 145 calculates the filling rate of copper in the through hole H (step S7). When the diameter of the through hole d, the height was is h, the volume of the through hole becomes V0 = πhd 2/4. The measured volume V1 of the copper filling portion is V1 = (V0−v), where v is the volume of the gap V. Therefore, the filling rate is obtained as V1 / V0.

実施形態に係るX線検査装置100では、計算を簡単に行うため以下の方法で充填率を計算する。まず、第1の方法について説明する。図9は実施形態に係るX線検査装置でスルーホールの充填率を算出する第1の方法を示す図である。X線透過画像から求められた被測定物Sである同充填層の体積をV1とする。開口の大きい側(例えば下面)の径を円近似し、この径をd1とする。V1はX線透過画像を銅厚さに変換しX−Y座標にひもづけられた銅厚さデータをd1で表される円領域内の銅厚さ量を積分する事で求まる。 次に、近似的にスルーホールの下面の開口の直径d1と高さH1からスルーホールHの体積をV0として求める。そして、このVoとV1から充填率V0/V1を求める。この充填率よりスルーホール全体の出来栄えを評価できる。V0は設計値を用いても良い。   In the X-ray inspection apparatus 100 according to the embodiment, the filling rate is calculated by the following method for simple calculation. First, the first method will be described. FIG. 9 is a diagram illustrating a first method for calculating the through-hole filling rate in the X-ray inspection apparatus according to the embodiment. Let V1 be the volume of the packed bed, which is the object to be measured S, obtained from the X-ray transmission image. The diameter of the large opening (for example, the lower surface) is approximated by a circle, and this diameter is d1. V1 is obtained by converting the X-ray transmission image into a copper thickness and integrating the copper thickness data in the circular region represented by d1 with the copper thickness data linked to the XY coordinates. Next, the volume of the through hole H is approximately determined as V0 from the diameter d1 and the height H1 of the opening on the lower surface of the through hole. And the filling rate V0 / V1 is calculated | required from this Vo and V1. From this filling rate, the quality of the entire through hole can be evaluated. A design value may be used for V0.

次に第2の方法について説明する。この方法は、測定した被測定物Sから選定した所定の直径dbの範囲における充填率を求めるものである。図10は同X線検査装置でスルーホールの充填率を算出する第2の方法を示す図である。X線透過画像より求められた被測定物Sの高さ分布の開口の小さい側(例えば上面)の径を円近似し、この径をd2とする。さらにこの径d2に所定の割合bを掛け、充填率を測定する円筒部の径をdbとする。これにより、開口dbと高さH1より測定対象とする円柱の体積Vb0を求める。体積Vbは、X線透過画像を銅厚さに変換しX−Y座標にひもづけられた銅厚さデータをdbで表される円領域内の銅厚さ量を積分する事で求まる。この対象とする円柱の体積Vb0と、測定した体積Vbから、充填率Vb/Vb0をもめる。この充填率よりスルーホール内の微小な異常、例えば空隙などを評価できる。なお、割合bは目的に応じて自由に選択することができる。   Next, the second method will be described. In this method, the filling rate in a range of a predetermined diameter db selected from the measured object S is obtained. FIG. 10 is a view showing a second method for calculating the filling rate of the through hole by the X-ray inspection apparatus. The diameter of the small side (for example, the upper surface) of the opening of the height distribution of the measurement object S obtained from the X-ray transmission image is circularly approximated, and this diameter is defined as d2. Furthermore, this diameter d2 is multiplied by a predetermined ratio b, and the diameter of the cylindrical portion for measuring the filling rate is defined as db. Thereby, the volume Vb0 of the cylinder to be measured is obtained from the opening db and the height H1. The volume Vb is obtained by converting the X-ray transmission image into a copper thickness and integrating the copper thickness data in the circular region represented by db with the copper thickness data linked to the XY coordinates. The filling rate Vb / Vb0 is determined from the volume Vb0 of the target cylinder and the measured volume Vb. From this filling rate, a minute abnormality in the through hole, such as a void, can be evaluated. The ratio b can be freely selected according to the purpose.

さらに本実施形態では、空隙部Vの位置を推定する。このため、駆動制御手段147の制御で被測定物ステージ130を駆動して、被測定物SをX線の放射方向に対して所定の角度だけ傾ける(ステップS8)。なお、被測定物Sを傾斜させるのに代え、X線源110とX線カメラ120を被測定物Sに対して傾斜させることができる。   Further, in the present embodiment, the position of the gap V is estimated. Therefore, the device under test stage 130 is driven under the control of the drive control means 147, and the device under test S is tilted by a predetermined angle with respect to the X-ray radiation direction (step S8). Note that the X-ray source 110 and the X-ray camera 120 can be tilted with respect to the measured object S instead of tilting the measured object S.

この状態でX線カメラ120で透過X線像を取得し(ステップS9)、被測定物ステージ130を傾けない状態で取得した透過X線像(ステップS1で取得)と比較する。そして、空隙部Vと推定される位置の変化に基づいて空隙部Vの位置を推定する(ステップS10)。図11は被測定物中の空隙の位置と取得されるX線透過画像との関係を示す図である。この例では、被測定物Sの上部を図中右側に傾けている。被測定物Sを傾斜させない状態(図11(a))から、被測定物Sを傾斜させると、空隙部Vの被測定物Sにおける上下位置に応じて、空隙部Vに対応する投影像が移動することが分かる。   In this state, a transmission X-ray image is acquired by the X-ray camera 120 (step S9), and compared with a transmission X-ray image acquired in a state where the measurement object stage 130 is not tilted (acquired in step S1). And the position of the space | gap part V is estimated based on the change of the position estimated as the space | gap part V (step S10). FIG. 11 is a diagram showing the relationship between the position of the air gap in the object to be measured and the acquired X-ray transmission image. In this example, the upper part of the device under test S is tilted to the right in the figure. When the object to be measured S is tilted from the state in which the object to be measured S is not tilted (FIG. 11A), a projection image corresponding to the gap portion V is obtained according to the vertical position of the gap portion V in the measured object S. You can see that it moves.

すなわち、空隙部Vが底面付近にある場合、透過X線像ではVの投影像が図11(b)に示すように、中央より左に移動している。また、空隙部Vが中央にある場合、透過X線像ではVの投影像が図11(c)に示すように、中央位置にある。さらに、空隙部Vが上面付近にある場合、透過X線像ではVの投影像が図11(d)に示すように、中央より右に移動している。本実施形態ではこの現象を利用して空隙部Vの位置を検出する。   That is, when the gap V is near the bottom surface, the projected image of V is shifted to the left from the center as shown in FIG. 11B in the transmission X-ray image. Further, when the gap V is in the center, in the transmission X-ray image, the projected image of V is at the center as shown in FIG. Further, when the gap V is in the vicinity of the upper surface, in the transmitted X-ray image, the projected image of V moves to the right from the center as shown in FIG. In the present embodiment, the position of the gap V is detected using this phenomenon.

この例では、空隙部Vの概略位置を取得できるだけであるが、被測定物Sの傾斜角度と、被測定物Sの寸法と、空隙部Vの投影像の移動寸法とを数値的に解析すれば、空隙部Vの被測定物Sにおけるz方向の位置を正確に算出することができる。   In this example, the approximate position of the gap V can only be obtained, but the inclination angle of the object S, the dimension of the object S, and the moving dimension of the projected image of the gap V can be numerically analyzed. For example, it is possible to accurately calculate the position of the gap portion V in the measurement object S in the z direction.

以上説明したように、実施形態に係るX線検査装置100によれば、簡単な処理で被測定物のボイドの正確な体積と、充填率と、位置とを高速に算出することができる。   As described above, according to the X-ray inspection apparatus 100 according to the embodiment, the accurate volume, filling rate, and position of the void of the object to be measured can be calculated at high speed by a simple process.

100:X線検査装置
110:X線源
120:X線カメラ
130:被測定物ステージ
140:処理部
141:厚さ推定手段
142:空隙部推定手段
143:空隙部形状推定手段
144:体積算出手段
145:充填率算出手段
146:空隙部位置推定手段
147:駆動制御部
150:入力手段
160:画像表示手段
210:中央部
220:基準面
230:輪郭面
B:基板
H:スルーホール
S:被測定物
DESCRIPTION OF SYMBOLS 100: X-ray inspection apparatus 110: X-ray source 120: X-ray camera 130: DUT stage 140: Processing part 141: Thickness estimation means 142: Gap part estimation means 143: Gap part shape estimation means 144: Volume calculation means 145: Filling rate calculation means 146: gap position estimation means 147: drive control part 150: input means 160: image display means 210: central part 220: reference surface 230: contour surface B: substrate H: through hole S: measured object

Claims (4)

既知の素材で定められた形状に形成された被測定物にX線を照射するX線源と、
前記被測定物の透過X線カウント数の分布に基づく透過X線画像を取得する透過X線像取得手段と、
取得された前記透過X線像、およびあらかじめ取得してある前記素材の厚さと透過X線のカウント数との関係、から前記被測定物の厚さ分布を推定する厚さ推定手段と、
推定した前記厚さ分布に基づいて、あらかじめ定めた基準値より薄い箇所を空隙部に相当する箇所であるとする空隙推定手段と、
推定した前記空隙部に相当する領域の輪郭形状を推定する空隙部形状推定手段と、
前記輪郭形状から前記空隙部の体積を算出する体積算出手段と、
被測定物が有すべき体積に対する測定された被測定物の体積の比率である充填率を求める充填率算出手段と、
を備えることを特徴とするX線検査装置。
An X-ray source for irradiating an object to be measured formed in a shape defined by a known material with X-rays;
A transmission X-ray image acquisition means for acquiring a transmission X-ray image based on a distribution of transmission X-ray counts of the object to be measured;
A thickness estimating means for estimating a thickness distribution of the object to be measured from the acquired transmitted X-ray image and the relationship between the thickness of the material acquired in advance and the count of transmitted X-rays;
Based on the estimated thickness distribution, a gap estimation means that a place thinner than a predetermined reference value is a place corresponding to the gap,
A void shape estimating means for estimating a contour shape of a region corresponding to the estimated void portion;
Volume calculating means for calculating the volume of the gap from the contour shape;
A filling rate calculation means for obtaining a filling rate which is a ratio of the volume of the measured object to be measured to the volume to be measured;
An X-ray inspection apparatus comprising:
前記被測定物を、前記X線源に対して傾斜させる傾斜手段と、
前記傾斜手段で前記被測定物を前記X線源に対して傾斜させた状態で取得した透過X線像と、前記被測定物を前記X線源に対して傾斜させない状態で取得した透過X線像とから前記被測定物における前記空隙部の位置を推定する空隙部位置推定手段と、を備えることを特徴とする請求項1に記載のX線検査装置。
Tilting means for tilting the object to be measured with respect to the X-ray source;
Transmission X-ray image acquired in a state where the measurement object is inclined with respect to the X-ray source by the tilting means, and transmission X-ray acquired in a state where the measurement object is not inclined with respect to the X-ray source. The X-ray inspection apparatus according to claim 1, further comprising: a gap position estimation unit that estimates a position of the gap in the object to be measured from an image.
既知の素材で定められた形状に形成された被測定物にX線を照射するステップと、
前記被測定物の透過X線カウント数の分布に基づく透過X線像を取得するステップと、
取得した前記透過X線像と、あらかじめ取得してある前記素材の厚さと前記透過X線カウント数との関係から前記被測定物の厚さ分布を推定するステップと、
前記推定された厚さ分布から、あらかじめ定めた基準値より薄い箇所が空隙部に相当する箇所であると推定するステップと、
推定した前記空隙部に相当する領域の輪郭形状を推定するステップと、
前記輪郭形状から前記空隙部の体積を算出するステップと、
被測定物が有すべき体積に対する測定された被測定物の体積の比率である充填率を求めるステップと、
を備えることを特徴とするX線検査方法。
Irradiating an object to be measured formed in a shape defined by a known material with X-rays;
Obtaining a transmission X-ray image based on a distribution of transmission X-ray counts of the object to be measured;
Estimating the thickness distribution of the object to be measured from the acquired transmission X-ray image and the relationship between the thickness of the material acquired in advance and the transmission X-ray count;
From the estimated thickness distribution, estimating that a portion thinner than a predetermined reference value is a portion corresponding to the gap,
Estimating a contour shape of an area corresponding to the estimated gap portion;
Calculating the volume of the gap from the contour shape;
Determining a filling factor, which is a ratio of the volume of the measured object to the volume that the object should have;
An X-ray inspection method comprising:
前記被測定物を前記X線に対して傾斜させた状態で取得した透過X線像を取得するステップと、
前記被測定物を前記X線に対して傾斜させない状態で取得した透過X線像とから前記被測定物における前記空隙部の位置を推定するステップと、
を備えることを特徴とする請求項3に記載のX線検査方法。
Acquiring a transmission X-ray image acquired in a state where the object to be measured is inclined with respect to the X-ray;
Estimating a position of the gap in the measurement object from a transmission X-ray image acquired in a state where the measurement object is not inclined with respect to the X-ray;
The X-ray inspection method according to claim 3, further comprising:
JP2012259163A 2012-11-27 2012-11-27 X-ray inspection device and x-ray inspection method Pending JP2014106113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012259163A JP2014106113A (en) 2012-11-27 2012-11-27 X-ray inspection device and x-ray inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012259163A JP2014106113A (en) 2012-11-27 2012-11-27 X-ray inspection device and x-ray inspection method

Publications (1)

Publication Number Publication Date
JP2014106113A true JP2014106113A (en) 2014-06-09

Family

ID=51027727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012259163A Pending JP2014106113A (en) 2012-11-27 2012-11-27 X-ray inspection device and x-ray inspection method

Country Status (1)

Country Link
JP (1) JP2014106113A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016045164A (en) * 2014-08-26 2016-04-04 名古屋電機工業株式会社 X-ray inspection device, x-ray inspection method and x-ray inspection program
US9841279B2 (en) 2015-03-10 2017-12-12 Kabushiki Kaisha Toshiba Apparatus and method for quantitative evaluation of braze bonding length with use of radiation
WO2018003018A1 (en) * 2016-06-28 2018-01-04 株式会社日立ハイテクノロジーズ X-ray inspection method and apparatus
JP2018200256A (en) * 2017-05-29 2018-12-20 株式会社高速道路総合技術研究所 Inspection method and performance determination method of laminated rubber support containing metal plug

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016045164A (en) * 2014-08-26 2016-04-04 名古屋電機工業株式会社 X-ray inspection device, x-ray inspection method and x-ray inspection program
US9841279B2 (en) 2015-03-10 2017-12-12 Kabushiki Kaisha Toshiba Apparatus and method for quantitative evaluation of braze bonding length with use of radiation
WO2018003018A1 (en) * 2016-06-28 2018-01-04 株式会社日立ハイテクノロジーズ X-ray inspection method and apparatus
JP2018200256A (en) * 2017-05-29 2018-12-20 株式会社高速道路総合技術研究所 Inspection method and performance determination method of laminated rubber support containing metal plug

Similar Documents

Publication Publication Date Title
JP6929330B2 (en) Techniques for measuring overlays between layers of a multilayer structure
JP4588414B2 (en) Internal defect inspection method and apparatus
US20180045660A1 (en) X-ray inspection device, x-ray inspection method, and method of manufacturing structure
JP4631460B2 (en) X-ray inspection method
KR102493849B1 (en) Image acquisition device and image acquisition method, and image correction program
JP2005156436A (en) Semiconductor pattern measuring method and process control method
WO2013061976A1 (en) Shape inspection method and device
JP2014106113A (en) X-ray inspection device and x-ray inspection method
JP2011191085A (en) X-ray inspection device, x-ray inspection method, x-ray inspection program, and x-ray inspection system
JPWO2017017745A1 (en) Defect determination method and X-ray inspection apparatus
US20110081070A1 (en) Process and Apparatus for Image Processing and Computer-readable Medium Storing Image Processing Program
EP3179239A1 (en) X-ray apparatus and structure production method
CN107796718A (en) Brineling system and method
KR20150003783A (en) X-ray inspection method and x-ray inspection device
TWI567789B (en) A pattern measuring condition setting means, and a pattern measuring means
JP2013088414A (en) Shape inspection method and device of the same
US10473596B2 (en) X-ray inspection apparatus
Ortega et al. A methodology to obtain traceability for internal and external measurements of Inconel 718 components by means of XRCT
US9857163B2 (en) Parametric control of object scanning
TWI588446B (en) X-ray non-destructive inspection device
US9863897B2 (en) X-ray nondestructive testing device
JP5012045B2 (en) X-ray CT system
JP4039565B2 (en) X-ray inspection apparatus, X-ray inspection method, and control program for X-ray inspection apparatus
US20100128249A1 (en) Test method for compound-eye distance measuring apparatus, test apparatus, and chart used for the same
Matern et al. How much does image quality influence the form error in industrial X-Ray CT