JP2014105260A - Method for producing emulsified fuel and apparatus for producing the same - Google Patents

Method for producing emulsified fuel and apparatus for producing the same Download PDF

Info

Publication number
JP2014105260A
JP2014105260A JP2012258355A JP2012258355A JP2014105260A JP 2014105260 A JP2014105260 A JP 2014105260A JP 2012258355 A JP2012258355 A JP 2012258355A JP 2012258355 A JP2012258355 A JP 2012258355A JP 2014105260 A JP2014105260 A JP 2014105260A
Authority
JP
Japan
Prior art keywords
additive
stage
emulsified fuel
fuel
emulsified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012258355A
Other languages
Japanese (ja)
Other versions
JP5694281B2 (en
Inventor
Mitsutoshi Fujisaki
光俊 藤崎
Masakatsu Okubo
政克 大窪
Masayuki Niinami
正幸 新浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujisaki Kogyo Kk
Original Assignee
Fujisaki Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujisaki Kogyo Kk filed Critical Fujisaki Kogyo Kk
Priority to JP2012258355A priority Critical patent/JP5694281B2/en
Publication of JP2014105260A publication Critical patent/JP2014105260A/en
Application granted granted Critical
Publication of JP5694281B2 publication Critical patent/JP5694281B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Carbonaceous Fuels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus for producing an emulsified fuel stably burning as a fuel for a steam boiler, a burner and the like.SOLUTION: A method for producing an emulsified fuel using fuel oil, water, and an additive includes: an additive production step of producing an additive using a surfactant and a diluent; a first stage emulsified fuel production step of producing an emulsified fuel by mixing and agitating the additive produced in the additive production step, fuel oil, and water; and a second stage emulsified fuel production step of atomizing the emulsified fuel produced in the first stage emulsified fuel production step.

Description

本発明は、蒸気ボイラ及びバーナーなどの燃料として使用されている重油及び軽油の消費量を削減できる燃料油と水及び界面活性剤を混合した乳化燃料の製造方法及びその製造装置に関する。   The present invention relates to a method for producing an emulsified fuel in which fuel oil, water, and a surfactant are mixed, which can reduce the consumption of heavy oil and light oil used as fuel for steam boilers and burners, and a production apparatus therefor.

燃料油と水および界面活性剤と混合してなる乳化燃料は、燃料油消費量および温室効果ガスの排出量を削減できる効果が有るとされている。そのため、従来から乳化燃料や、それを製造する方法が様々開発されてきている。例えば、特許文献1には、液体の攪拌流を発生させる攪拌工程及び液体をセラミック成形体の多孔を通過させることによりエマルジョンとする乳化工程を備え、攪拌工程及び乳化工程を循環している石油系液体燃料に対し、水を供給した後、非イオン界面活性剤、液状アルコール、油剤及びアルカリ水を主体とした添加剤Aを供給し、その後、陰イオン界面活性剤及びアルカリ水を主体とした添加剤Bを供給し、これらの混合液を前記攪拌工程及び乳化工程の間で複数回循環させることを特徴とするエマルジョン燃料の製造方法が開示されており、これにより、安定したエマルジョン燃料を製造することができるとしている。   An emulsified fuel obtained by mixing fuel oil with water and a surfactant is said to have an effect of reducing fuel oil consumption and greenhouse gas emissions. Therefore, conventionally, various emulsified fuels and methods for producing the same have been developed. For example, Patent Document 1 includes a stirring process for generating a stirring flow of a liquid and an emulsification process for forming an emulsion by passing the liquid through the pores of a ceramic molded body, and the petroleum system circulating through the stirring process and the emulsification process. After supplying water to the liquid fuel, the additive A mainly composed of nonionic surfactant, liquid alcohol, oil agent and alkaline water is supplied, and thereafter, the additive mainly composed of anionic surfactant and alkaline water is added. Disclosed is a method for producing an emulsion fuel, characterized in that the agent B is supplied and the mixture is circulated a plurality of times between the stirring step and the emulsification step, thereby producing a stable emulsion fuel. You can do that.

また、特許文献2には、水と油と乳化剤を混合させた混合液を、圧力をかけながら、フィルタが配置された混合部を通過させてエマルジョン燃料を製造するエマルジョン燃料製造方法において、前記混合部の出口を絞り、該出口直前にフィルタを配置させたことを特徴とするエマルジョン燃料製造方法が開示されている。この技術によると、混合部の出口で生じるキャビテーションを有効に利用して混合液の細分化が図れるので、混合液に対してそれほどの高圧をかける必要がない。このため、装置の配管や継ぎ手を高圧耐用とする必要がなく、きわめて簡易な構成で燃料製造工程が行える。したがって、メンテ作業やフィルタの交換作業もきわめて容易となるとしている。   Further, Patent Document 2 discloses an emulsion fuel manufacturing method in which an emulsion fuel is manufactured by passing a mixed liquid obtained by mixing water, oil, and an emulsifier through a mixing portion where a filter is disposed while applying pressure. An emulsion fuel production method is disclosed in which the outlet of the part is throttled and a filter is disposed immediately before the outlet. According to this technique, since the mixed liquid can be subdivided by effectively using cavitation generated at the outlet of the mixing unit, it is not necessary to apply a high pressure to the mixed liquid. For this reason, it is not necessary to make the piping and joints of the apparatus high-pressure resistant, and the fuel production process can be performed with a very simple configuration. Therefore, it is said that maintenance work and filter replacement work are extremely easy.

また、効率良く燃料の細分化が図れるので、特に混合部を複数形成する必要もなく、その点でも装置の簡易化が図れる。もちろん、攪拌装置や振動装置も不要なので、それらを要する他の方法と比較して、設置コストやランコストがきわめて低廉で済む。しかも、この方法によって得られる燃料は、細分化にあたって油と水とがより強固に結合することになり、分離する時間がより遅く、燃料の長期保存が可能となる質の高い燃料が連続的に得られる。すなわち、質の高い燃料が簡易な構成で効率良く得られるという顕著な効果が認められるとしている。   Further, since the fuel can be efficiently subdivided, it is not particularly necessary to form a plurality of mixing portions, and in this respect, the apparatus can be simplified. Of course, since a stirring device and a vibration device are unnecessary, the installation cost and the run cost are extremely low compared with other methods that require them. In addition, the fuel obtained by this method has a stronger bond between oil and water during fragmentation, the separation time is slower, and high-quality fuel that enables long-term storage of fuel is continuously produced. can get. That is, a remarkable effect that high quality fuel can be obtained efficiently with a simple configuration is recognized.

特開2008−13633公報JP 2008-13633 A 特開2008−156438公報JP 2008-156438 A

しかしながら、上記特許文献に開示されている技術では、乳化燃料の混合と微粒化が不十分であるため、乳化燃料単独では着火不良を起こすことがあった。この現象を解決するため、着火時は燃料油のみを供給し、着火後は乳化燃料に切り替える操作を行う必要があり、改善の余地があるとされている。また、乳化燃料で着火したとしても、短期間に油水分離が進行して安定した燃焼が得られないという指摘がされている。   However, in the technique disclosed in the above-mentioned patent document, since the mixing and atomization of the emulsified fuel are insufficient, the emulsified fuel alone sometimes causes poor ignition. In order to solve this phenomenon, it is necessary to supply only fuel oil at the time of ignition and to switch to emulsified fuel after ignition, and there is room for improvement. Further, it has been pointed out that even when ignited with emulsified fuel, oil-water separation proceeds in a short time and stable combustion cannot be obtained.

本発明は、上述の問題を解決するためのもので、蒸気ボイラおよびバーナーなどの燃料として安定に燃焼する乳化燃料の製造方法および装置を提供することを目的としている。   The present invention is intended to solve the above-described problems, and an object of the present invention is to provide a method and apparatus for producing an emulsified fuel that stably burns as a fuel such as a steam boiler and a burner.

上述の課題に対応するため、本発明は、以下の技術的手段を講じている。
即ち、請求項1記載の発明は、燃料油、水および添加剤を用いて製造する乳化燃料の製造方法において、界面活性剤と希釈剤を用いて添加剤を製造する添加剤製造工程と、前記添加剤製造工程で製造した添加剤と、燃料油及び水を混合撹拌することで乳化燃料を製造する第一段乳化燃料製造工程と、前記第一段乳化燃料製造工程で製造した乳化燃料を微粒子化する第二段乳化燃料製造工程とを含むことを特徴とする乳化燃料の製造方法である。
In order to cope with the above-described problems, the present invention takes the following technical means.
That is, the invention according to claim 1 is a method for producing an emulsified fuel produced using a fuel oil, water and an additive, and an additive production process for producing an additive using a surfactant and a diluent, The first stage emulsified fuel production process for producing an emulsified fuel by mixing and stirring the additive produced in the additive production process, fuel oil and water, and the emulsified fuel produced in the first stage emulsified fuel production process in fine particles A method for producing an emulsified fuel, comprising a step of producing a second-stage emulsified fuel.

また、請求項2記載の発明は、請求項1記載の乳化燃料の製造方法であって、前記添加剤製造工程は、界面活性剤と希釈剤を混合撹拌し、添加剤を製造する第一段添加剤製造工程と、前記第一段添加剤製造工程で製造した添加剤を微粒化する第二段添加剤製造工程とを含むことを特徴としている。   The invention according to claim 2 is the method for producing an emulsified fuel according to claim 1, wherein the additive production step is a first step of producing an additive by mixing and stirring a surfactant and a diluent. It includes an additive manufacturing process and a second stage additive manufacturing process for atomizing the additive manufactured in the first stage additive manufacturing process.

そして、請求項3記載の発明は、燃料油、水および添加剤を用いて製造する乳化燃料の製造装置において、界面活性剤と希釈剤を用いて添加剤を製造する添加剤製造装置と、燃料油供給部と、水供給部と、前記添加剤製造装置により製造された添加剤を供給する添加剤供給部と、前記燃料油供給部から供給される燃料油と、前記水供給部から供給される水及び前記添加剤供給部から供給される添加剤を連続的に混合することで第一段乳化燃料を製造する多段羽撹拌機構と、前記多段羽撹拌機構により製造された第一段乳化燃料を貯留する第一段乳化燃料貯槽と、前記第一段乳化燃料貯槽に貯留された第一段乳化燃料をさらに微粒子化して第二段乳化燃料を製造する微粒子化機構と、前記微粒子化機構により製造された第二段乳化燃料を貯留する第二段乳化燃料貯槽とを備えることを特徴とする乳化燃料の製造装置である。   According to a third aspect of the present invention, there is provided an emulsified fuel manufacturing apparatus manufactured using fuel oil, water and an additive, an additive manufacturing apparatus for manufacturing an additive using a surfactant and a diluent, a fuel An oil supply unit, a water supply unit, an additive supply unit for supplying an additive manufactured by the additive manufacturing apparatus, a fuel oil supplied from the fuel oil supply unit, and a water supply unit Multistage feather agitating mechanism for producing a first stage emulsified fuel by continuously mixing water and an additive supplied from the additive supply section, and a first stage emulsified fuel produced by the multistage feather agitator mechanism A first-stage emulsified fuel storage tank, a first-stage emulsified fuel storage tank stored in the first-stage emulsified fuel storage tank, and a second-stage emulsified fuel to produce a second-stage emulsified fuel. Stores manufactured second-stage emulsified fuel Is a manufacturing apparatus of an emulsion fuel, comprising a second stage emulsion fuel storage tank.

また、請求項4記載の発明は、請求項3記載の乳化燃料の製造装置であって、前記添加剤製造装置は、界面活性剤供給部と、希釈剤供給部と、前記界面活性剤供給部から供給される界面活性剤と、前記希釈剤供給部から供給される希釈剤を混合して第一段添加剤を製造する撹拌混合機構と、前記撹拌混合機構により製造された第一段添加剤を微粒化して第二段添加剤を製造する微粒子化機構と、前記微粒子化機構により製造された第二段添加剤を貯留する第二段添加剤貯槽とを備えることを特徴としている。さらに、請求項5記載の発明は、請求項3又は4記載の乳化燃料製造装置であって、前記微粒子化機構は、第一段乳化燃料をスプレー噴射する、或いは高速で噴射させて衝突させる機構であることを特徴としている。   The invention described in claim 4 is the apparatus for producing an emulsified fuel according to claim 3, wherein the additive manufacturing apparatus includes a surfactant supply unit, a diluent supply unit, and the surfactant supply unit. The first stage additive manufactured by the stirring and mixing mechanism, and the stirring and mixing mechanism for manufacturing the first stage additive by mixing the surfactant supplied from the diluent and the diluent supplied from the diluent supply unit And a second-stage additive storage tank for storing the second-stage additive produced by the atomization mechanism. Furthermore, the invention according to claim 5 is the emulsified fuel manufacturing apparatus according to claim 3 or 4, wherein the atomization mechanism is a mechanism in which the first stage emulsified fuel is spray-injected or collided by being injected at high speed. It is characterized by being.

本発明によると、乳化燃料の燃焼による燃料油の消費量は、燃料油単独と比較して大きく(20〜25%程度)低減できるため、燃料油使用に係るコストおよび温室効果ガスの排出量を削減できる。また、乳化燃料を微粒子化するため、油水分離が抑制されて安定した燃焼が得られる。またさらに、多段羽混合撹拌機構と微粒子化機構との組合せで製造した燃料油に水を30〜35%程度添加した場合、それによる乳化燃料は、燃料粒子の粒子径が10μm以下に微粒子化されるため、「空気との接触面積が増加」、「理論値に近い空気量で燃焼」の効果により、空気加熱に奪われる熱損失を小さくすることができる。   According to the present invention, the consumption of fuel oil due to the combustion of emulsified fuel can be greatly reduced (about 20-25%) compared to fuel oil alone, so the cost of using fuel oil and the amount of greenhouse gas emissions can be reduced. Can be reduced. Further, since the emulsified fuel is made into fine particles, oil-water separation is suppressed and stable combustion is obtained. Furthermore, when about 30 to 35% of water is added to the fuel oil produced by the combination of the multistage wing mixing and stirring mechanism and the atomization mechanism, the resulting emulsified fuel is atomized so that the particle size of the fuel particles is 10 μm or less. Therefore, the heat loss deprived of air heating can be reduced by the effects of “increase in contact area with air” and “combustion with an air amount close to the theoretical value”.

本発明に係る乳化燃料の製造方法の実施形態を示したブロックフロー図である。It is the block flow figure showing the embodiment of the manufacturing method of the emulsification fuel concerning the present invention. 本発明に係る乳化燃料の製造方法における添加剤の製造方法を示したブロックフロー図である。It is the block flow figure which showed the manufacturing method of the additive in the manufacturing method of the emulsified fuel which concerns on this invention. 本発明に係る乳化燃料の製造装置の実施形態を示した系統図である。It is the systematic diagram which showed embodiment of the manufacturing apparatus of the emulsified fuel which concerns on this invention. 本発明に係る乳化燃料の製造方法における添加剤製造装置を示した系統図である。It is the systematic diagram which showed the additive manufacturing apparatus in the manufacturing method of the emulsified fuel which concerns on this invention. 本発明に係る乳化燃料の製造装置におけるスプレー噴射機構を示した系統図である。It is the systematic diagram which showed the spray injection mechanism in the manufacturing apparatus of the emulsified fuel which concerns on this invention. 本発明に係る乳化燃料の製造装置における高速衝突機構を示した概略図である。It is the schematic which showed the high-speed collision mechanism in the manufacturing apparatus of the emulsified fuel which concerns on this invention. 本発明に係る乳化燃料の製造装置においてスプレー噴射機構により製造した乳化燃料を真空式給湯暖房温水機で燃焼した際の燃料消費量を測定した結果を示した棒グラフである。It is the bar graph which showed the result of having measured the fuel consumption when the emulsified fuel manufactured with the spray injection mechanism in the manufacturing apparatus of the emulsified fuel which concerns on this invention was burned with the vacuum type hot water supply heating / warm water heater. 本発明に係る乳化燃料の製造装置において高速衝突機構により製造した乳化燃料の粒子径を測定した結果を示したグラフである。It is the graph which showed the result of having measured the particle diameter of the emulsified fuel manufactured by the high-speed collision mechanism in the manufacturing apparatus of the emulsified fuel which concerns on this invention. 本発明に係る乳化燃料の製造装置において高速衝突機構により製造した乳化燃料をバーナーで燃焼した際の燃焼炎温度を測定した結果を示したグラフである。It is the graph which showed the result of having measured the combustion flame temperature at the time of burning the emulsified fuel manufactured by the high-speed collision mechanism with the burner in the manufacturing apparatus of the emulsified fuel which concerns on this invention. 本発明に係る乳化燃料の製造装置において高速衝突機構により製造した乳化燃料をバーナーで燃焼した際の燃料消費量を測定した結果を示した棒グラフである。It is the bar graph which showed the result of having measured the fuel consumption at the time of burning the emulsified fuel manufactured by the high-speed collision mechanism with the burner in the manufacturing apparatus of the emulsified fuel which concerns on this invention. 本発明に係る乳化燃料の製造装置において高速衝突機構により製造した乳化燃料を蒸気ボイラで燃焼した際の排気ガス温度を測定した結果を示したグラフである。It is the graph which showed the result of having measured the exhaust gas temperature at the time of burning the emulsified fuel manufactured by the high-speed collision mechanism with the steam boiler in the manufacturing apparatus of the emulsified fuel which concerns on this invention. 本発明に係る乳化燃料の製造装置において高速衝突機構により製造した乳化燃料を蒸気ボイラで燃焼した際の燃料消費量を測定した結果を示した棒グラフである。It is the bar graph which showed the result of having measured the fuel consumption at the time of burning the emulsified fuel manufactured with the high-speed collision mechanism with the steam boiler in the manufacturing apparatus of the emulsified fuel which concerns on this invention.

本発明に係る乳化燃料の製造方法の実施形態について図1を参照しながら説明する。
図1は、本発明に係る乳化燃料の製造方法の実施形態を示したブロックフロー図を表している。
An embodiment of a method for producing an emulsified fuel according to the present invention will be described with reference to FIG.
FIG. 1 is a block flow diagram showing an embodiment of a method for producing an emulsified fuel according to the present invention.

図1にあるように、本発明に係る乳化燃料の製造方法における第1の実施形態は、まず、界面活性剤供給部からの界面活性剤の供給、そして、希釈剤供給部からの希釈剤の供給を受け、添加剤製造工程において添加剤が製造される。次に、燃料油供給部からの燃料油、水供給部からの水、さらに、添加剤供給部からの添加剤製造工程において製造された添加剤の供給を受け、第一段乳化燃料製造工程において、第一段乳化燃料が製造される。続いて、第一段乳化燃料の供給を受け、第二段乳化燃料製造工程において、第二段乳化燃料が製造され、最終的に乳化燃料が得られるというものである。   As shown in FIG. 1, in the first embodiment of the method for producing an emulsified fuel according to the present invention, first, the surfactant is supplied from the surfactant supply unit, and the diluent is supplied from the diluent supply unit. The supply is received and the additive is manufactured in the additive manufacturing process. Next, the fuel oil from the fuel oil supply unit, the water from the water supply unit, and the additive produced in the additive production process from the additive supply unit are supplied, and in the first stage emulsified fuel production process A first stage emulsified fuel is produced. Subsequently, the first-stage emulsified fuel is supplied, and in the second-stage emulsified fuel production process, the second-stage emulsified fuel is produced, and finally the emulsified fuel is obtained.

次に、本発明に係る乳化燃料の製造方法における第2の実施形態について図1及び図2を参照しながら説明する。本実施形態は、図1中の添加剤製造工程が、図2に表す工程となっているもので、まず、界面活性剤供給部から界面活性剤が、希釈剤供給部から希釈剤がそれぞれ供給され、第一段添加剤製造工程においてこれらが混合攪拌されることで、第一段添加剤が製造される。そして、この第一段添加剤が第二段添加剤製造工程において、微粒子化されることで第二段添加剤が製造される。   Next, a second embodiment of the method for producing an emulsified fuel according to the present invention will be described with reference to FIGS. In the present embodiment, the additive manufacturing process in FIG. 1 is the process shown in FIG. 2. First, the surfactant is supplied from the surfactant supply unit, and the diluent is supplied from the diluent supply unit. In the first stage additive manufacturing step, these are mixed and stirred, whereby the first stage additive is manufactured. Then, the first-stage additive is produced by making the first-stage additive into fine particles in the second-stage additive production process.

次に、図1に表すように、燃料油供給部からの燃料油、水供給部からの水、さらに、添加剤供給部からの添加剤製造工程において製造された添加剤(第二段添加剤)の供給を受け、第一段乳化燃料製造工程において、第一段乳化燃料が製造される。続いて、第一段乳化燃料の供給を受け、第二段乳化燃料製造工程において、第二段乳化燃料が製造され、最終的に乳化燃料が得られることになる。   Next, as shown in FIG. 1, the fuel oil from the fuel oil supply unit, the water from the water supply unit, and the additive produced in the additive production process from the additive supply unit (second stage additive) ) In the first stage emulsified fuel production process, the first stage emulsified fuel is produced. Subsequently, the first-stage emulsified fuel is supplied, and in the second-stage emulsified fuel production process, the second-stage emulsified fuel is produced, and finally the emulsified fuel is obtained.

続いて、本発明に係る乳化燃料の製造装置の実施形態について図面を参照しながら説明する。図3は、本発明に係る乳化燃料の製造装置の実施形態を示した系統図で、10は乳化燃料の製造装置、12は燃料油貯槽、14は燃料油、16は水貯槽、18は水、20は添加剤製造装置、22は添加剤貯槽、24は添加剤、26は多段羽混合攪拌機構、28は第一段乳化燃料貯槽、30は乳化燃料微粒子化機構、32は第二段乳化燃料貯槽、34は燃料油移送ポンプ、36は水移送ポンプ、38は添加剤移送ポンプ、40は羽根、42は回転軸、44はケーシング、46は仕切り板、48は第一段乳化燃料、50は乳化燃料供給ポンプ、52は第二段乳化燃料を示している。   Subsequently, an embodiment of an emulsified fuel production apparatus according to the present invention will be described with reference to the drawings. FIG. 3 is a system diagram showing an embodiment of an emulsified fuel production apparatus according to the present invention, where 10 is an emulsified fuel production apparatus, 12 is a fuel oil storage tank, 14 is fuel oil, 16 is a water storage tank, and 18 is water. , 20 is an additive production apparatus, 22 is an additive storage tank, 24 is an additive, 26 is a multistage wing mixing and stirring mechanism, 28 is a first stage emulsified fuel storage tank, 30 is an emulsified fuel atomization mechanism, and 32 is a second stage emulsification. Fuel storage tank, 34 is a fuel oil transfer pump, 36 is a water transfer pump, 38 is an additive transfer pump, 40 is a blade, 42 is a rotating shaft, 44 is a casing, 46 is a partition plate, 48 is a first stage emulsified fuel, 50 Denotes an emulsified fuel supply pump, and 52 denotes a second-stage emulsified fuel.

まず、本実施形態における乳化燃料の製造装置10は、燃料油14を貯留する燃料油貯槽12と、水18を貯留する水貯槽16と、添加剤製造装置20により製造される添加剤24を貯留する添加剤貯槽22を備えている。そしてさらに、燃料油貯槽12内の燃料油14を多段羽混合攪拌機構26に移送する燃料油移送ポンプ34と、水18を多段羽混合攪拌機構26に移送する水移送ポンプ36と、添加剤24を多段羽混合攪拌機構26に移送する添加剤移送ポンプ38を備えている。   First, the emulsified fuel manufacturing apparatus 10 according to this embodiment stores a fuel oil storage tank 12 that stores fuel oil 14, a water storage tank 16 that stores water 18, and an additive 24 that is manufactured by the additive manufacturing apparatus 20. An additive storage tank 22 is provided. Further, a fuel oil transfer pump 34 for transferring the fuel oil 14 in the fuel oil storage tank 12 to the multistage blade mixing and stirring mechanism 26, a water transfer pump 36 for transferring the water 18 to the multistage blade mixing and stirring mechanism 26, and an additive 24. Is added to the multi-stage blade mixing and stirring mechanism 26.

続いて、多段羽混合攪拌機構26は、ケーシング44内に羽40が多段に取り付けられた回転軸42が収納されてなるもので、またケーシング44の内壁に、仕切り板46が羽根40と交互に取り付けられた構成となっている。なお、多段羽混合撹拌機構26内では、回転軸42が例えば、960rpmで回転するため、移送されてくる燃料油14と水18および添加剤24が連続的に混合撹拌され、その結果、第一段乳化燃料48が製造されることになる。そして、乳化燃料の製造装置10は、第一段乳化燃料貯槽28を備えており、多段羽混合撹拌機構26により製造された第一段乳化燃料48を貯留することができる構成となっている。   Subsequently, the multistage blade mixing and agitating mechanism 26 is configured such that a rotating shaft 42 having blades 40 attached in multiple stages is housed in a casing 44, and partition plates 46 are alternately arranged on the inner wall of the casing 44 with the blades 40. It has an attached configuration. In the multistage blade mixing and stirring mechanism 26, the rotating shaft 42 rotates at, for example, 960 rpm, so that the transported fuel oil 14, water 18 and additive 24 are continuously mixed and stirred. A step emulsified fuel 48 is produced. The emulsified fuel production apparatus 10 includes a first-stage emulsified fuel storage tank 28 and is configured to store the first-stage emulsified fuel 48 produced by the multistage blade mixing and stirring mechanism 26.

次に、乳化燃料の製造装置10には、第一段乳化燃料48を微粒子化させる乳化燃料微粒子化機構30と、この乳化燃料微粒子化機構30に第一段乳化燃料48を供給する乳化燃料供給ポンプ50と、第二段乳化燃料貯槽32とがそれぞれ備えられている。そして、乳化微粒子化機構30では、微粒子化された第二段乳化燃料52が製造され、この第二段乳化燃料52は、第二段乳化燃料貯槽32に貯留される。   Next, the emulsified fuel manufacturing apparatus 10 includes an emulsified fuel atomization mechanism 30 that atomizes the first-stage emulsified fuel 48, and an emulsified fuel supply that supplies the first-stage emulsified fuel 48 to the emulsified fuel atomization mechanism 30. A pump 50 and a second stage emulsified fuel storage tank 32 are provided. The emulsified micronization mechanism 30 produces a micronized second stage emulsified fuel 52, and the second stage emulsified fuel 52 is stored in the second stage emulsified fuel storage tank 32.

ここで、乳化燃料微粒子化機構30の実施例を図5、図6に示す。まず、図5は乳化燃料微粒子化機構30の第1の構成を表したものであり、54は攪拌混合槽、56はスプレーノズル、58はスプレー治具を示している。乳化燃料微粒子化機構30は、攪拌混合槽54を備えており、攪拌混合槽54内にはスプレー治具58が取り付けられている。また、本実施例では、スプレー冶具58には口径約0.7mmのスプレーノズル56が40個装着されている。   Here, an embodiment of the emulsified fuel micronization mechanism 30 is shown in FIGS. First, FIG. 5 shows a first configuration of the emulsified fuel micronization mechanism 30, where 54 is a stirring and mixing tank, 56 is a spray nozzle, and 58 is a spray jig. The emulsified fuel micronization mechanism 30 includes a stirring and mixing tank 54, and a spray jig 58 is attached in the stirring and mixing tank 54. In this embodiment, the spray jig 58 is provided with 40 spray nozzles 56 having a diameter of about 0.7 mm.

乳化燃料供給ポンプ50により第一段乳化燃料48をスプレーノズル56に供給すると、第一段乳化燃料48は2〜4m/secの線流速で噴出し、微粒子化された第二段乳化燃料52が製造されて第二段乳化燃料貯槽32に貯留されるという仕組みである。   When the first-stage emulsified fuel 48 is supplied to the spray nozzle 56 by the emulsified fuel supply pump 50, the first-stage emulsified fuel 48 is ejected at a linear flow velocity of 2 to 4 m / sec. It is a mechanism that is manufactured and stored in the second stage emulsified fuel storage tank 32.

次に、図6は、乳化燃料微粒子化機構30の第2の構成を表したもので、60は衝突治具、62は噴射板、64は衝突球、66は乳化燃料入口部、68は乳化燃料出口部を示している。乳化燃料微粒子化機構30は、衝突治具60を備えており、衝突治具60内の流路には耐摩耗性に優れたアルミナ製の噴射板(直径15mm、厚さ9mm)62が設置されている。また、噴射板62の中心部には直径0.7mmの貫通孔が設けられている。   Next, FIG. 6 shows a second configuration of the emulsified fuel atomization mechanism 30, wherein 60 is a collision jig, 62 is an injection plate, 64 is a collision ball, 66 is an emulsified fuel inlet, and 68 is emulsified. The fuel outlet is shown. The emulsified fuel micronization mechanism 30 includes a collision jig 60, and an alumina injection plate (diameter 15 mm, thickness 9 mm) 62 having excellent wear resistance is installed in the flow path in the collision jig 60. ing. Further, a through hole having a diameter of 0.7 mm is provided at the center of the injection plate 62.

そして、同流路の延長線上にアルミナ製の衝突球(直径12mm)64が設置されている。乳化燃料供給ポンプ50から供給された第一段乳化燃料48は、乳化燃料入口部66と噴射板62の貫通孔を通過して衝突球64に衝突する。噴射板62の貫通孔を通過する際の第一段乳化燃料48の線流速は約90m/secであり、第一段乳化燃料48は高速で衝突球64に衝突してより微粒子化される。   An alumina collision sphere (diameter 12 mm) 64 is installed on the extended line of the flow path. The first-stage emulsified fuel 48 supplied from the emulsified fuel supply pump 50 passes through the emulsified fuel inlet 66 and the through hole of the injection plate 62 and collides with the collision ball 64. The linear flow velocity of the first stage emulsified fuel 48 when passing through the through-hole of the injection plate 62 is about 90 m / sec, and the first stage emulsified fuel 48 collides with the collision sphere 64 at a high speed and becomes finer.

微粒子化された乳化燃料は、衝突球64と通路の隙間を通って乳化燃料出口部68を通過し、第二段乳化燃料52として第二段乳化燃料貯槽32に貯留される。なお、乳化燃料を衝突させる形状は、球以外にラグビーボール状の楕円、あるいは板であっても良い。   The micronized emulsified fuel passes through the gap between the collision sphere 64 and the passage, passes through the emulsified fuel outlet 68, and is stored in the second-stage emulsified fuel storage tank 32 as the second-stage emulsified fuel 52. The shape to which the emulsified fuel collides may be a rugby ball-like ellipse or a plate other than a sphere.

続いて、本発明に係る乳化燃料の製造装置の他の実施形態について図面を参照しながら説明する。図4は、本実施形態における乳化燃料の製造装置に備えられている添加剤製造装置の構成を表したものである。なお、符号については、20が添加剤製造装置、70が界面活性剤供給部、72が希釈剤供給部、74がミキサー、76が攪拌混合槽、78が第一段添加剤、80が添加剤微粒化子機構、82が添加剤供給ポンプ、84が第二段添加剤、86が第二段添加剤貯槽を示している。   Next, another embodiment of the emulsified fuel production apparatus according to the present invention will be described with reference to the drawings. FIG. 4 shows a configuration of an additive manufacturing apparatus provided in the emulsified fuel manufacturing apparatus according to the present embodiment. In addition, about a code | symbol, 20 is an additive manufacturing apparatus, 70 is surfactant supply part, 72 is a diluent supply part, 74 is a mixer, 76 is a stirring mixing tank, 78 is a 1st stage additive, 80 is an additive The atomizer mechanism, 82 is an additive supply pump, 84 is a second stage additive, and 86 is a second stage additive storage tank.

本実施形態における添加剤製造装置20は、攪拌混合槽76と、攪拌混合槽76内の内容物を攪拌するミキサー74と、攪拌混合槽76内に界面活性剤を供給する界面活性剤供給部70及び希釈剤を供給する希釈剤供給部72とが備えられている。そしてさらに、攪拌混合槽76において製造される第一段添加剤78を微粒化させる添加剤微粒化機構80と、攪拌混合槽76から添加剤微粒化子機構80に第一段添加剤78を供給する添加剤供給ポンプ82と、添加剤微粒化機構80において微粒子化された第二段添加剤84を貯留する第二段添加剤貯槽86が備えられている。   In the present embodiment, the additive manufacturing apparatus 20 includes a stirring and mixing tank 76, a mixer 74 that stirs the contents in the stirring and mixing tank 76, and a surfactant supply unit 70 that supplies a surfactant into the stirring and mixing tank 76. And a diluent supply unit 72 for supplying the diluent. Furthermore, an additive atomization mechanism 80 for atomizing the first-stage additive 78 produced in the stirring and mixing tank 76 and a first-stage additive 78 are supplied from the stirring and mixing tank 76 to the additive atomizer mechanism 80. And a second-stage additive storage tank 86 for storing the second-stage additive 84 atomized by the additive atomization mechanism 80.

ここで、本実施形態における添加剤製造装置20を用いた添加剤の製造方法について図4を参照しながら説明する。原液の界面活性剤は粘度が大きいため、そのままの濃度ではポンプによる移送が困難である。そこで、原液の界面活性剤を希釈剤により希釈して撹拌混合槽76内で第一段添加剤78を製造する。なお、界面活性剤は燃料油粒子内に水粒子を分散させるためLHB4〜6の範囲が好ましい。   Here, an additive manufacturing method using the additive manufacturing apparatus 20 in the present embodiment will be described with reference to FIG. Since the surfactant in the stock solution has a large viscosity, it is difficult to transfer it with a pump at the same concentration. Therefore, the first stage additive 78 is manufactured in the stirring and mixing tank 76 by diluting the surfactant in the stock solution with the diluent. The surfactant is preferably in the range of LHB 4 to 6 in order to disperse water particles in the fuel oil particles.

また、希釈剤は乳化燃料を安定して燃焼させるため、燃料油と同じ種類の油を選定する。本実施例では燃料油がA重油であるため、希釈剤はA重油を選定した。界面活性剤供給部70より界面活性剤を体積比率で20%、希釈剤供給部72よりA重油を体積比率で80%の割合で撹拌混合槽76に投入する。攪拌混合槽76では、界面活性剤および希釈剤がミキサー74により撹拌混合されて第一段添加剤78が製造される。   Moreover, since the diluent makes the emulsified fuel burn stably, the same type of oil as the fuel oil is selected. In this embodiment, since the fuel oil is A heavy oil, A heavy oil was selected as the diluent. The surfactant is supplied to the stirring and mixing tank 76 from the surfactant supply unit 70 at a volume ratio of 20% and from the diluent supply part 72 at a volume ratio of 80%. In the stirring and mixing tank 76, the surfactant and diluent are stirred and mixed by the mixer 74 to produce the first stage additive 78.

次に、添加剤供給ポンプ82により第一添加剤78を添加剤微粒子化機構80に供給する。添加剤微粒子化機構80の詳細は前述の実施例(図5、図6)に記載したものの何れかを利用する。添加剤微粒子化機構80内では第一添加剤78がスプレー噴射または高速衝突されて微粒子化する。微粒子化してなる第二段添加剤84は第二添加剤貯槽86に貯留される。   Next, the first additive 78 is supplied to the additive atomization mechanism 80 by the additive supply pump 82. For the details of the additive microparticulation mechanism 80, any of those described in the foregoing embodiments (FIGS. 5 and 6) is used. In the additive atomization mechanism 80, the first additive 78 is sprayed or collided at high speed to be atomized. The second-stage additive 84 formed into fine particles is stored in the second additive storage tank 86.

(燃焼試験1)
続いて、図3の乳化燃料の製造装置に図5のスプレー噴射機構を組み込んだ装置により乳化燃料を製造して真空式給湯暖房温水機による燃焼試験を実施した。実施手順は、燃料油貯槽からA重油168L/h、水貯槽から水72L/h、添加剤貯槽から添加剤1.2L/h(界面活性剤としては0.24L/h)を、各々、多段羽混合撹拌機構に供給した。全供給量は240L/hであるため、各々の体積比率はA重油が70%、水が30%、界面活性剤が0.1%の割合である。多段羽混合撹拌機構内ではA重油と水および界面活性剤が連続的に混合撹拌されて第一段乳化燃料が製造される。第一段乳化燃料は、多段羽混合撹拌機構の出口から排出されて第一段乳化燃料貯槽に貯留される。
(Combustion test 1)
Subsequently, the emulsified fuel was manufactured by an apparatus in which the spray injection mechanism of FIG. 5 was incorporated into the emulsified fuel manufacturing apparatus of FIG. 3, and a combustion test was conducted using a vacuum hot water supply / heating water heater. The implementation procedure is as follows: fuel oil storage tank A fuel oil 168L / h, water storage tank water 72L / h, additive storage tank additive 1.2L / h (surfactant 0.24L / h) The wing mixing and stirring mechanism was supplied. Since the total supply amount is 240 L / h, the respective volume ratios are 70% for heavy oil A, 30% for water, and 0.1% for surfactant. In the multistage wing mixing and stirring mechanism, A heavy oil, water and a surfactant are continuously mixed and stirred to produce a first stage emulsified fuel. The first stage emulsified fuel is discharged from the outlet of the multistage blade mixing and stirring mechanism and stored in the first stage emulsified fuel storage tank.

次に、第一段乳化燃料を240L/hの流量でスプレー噴射機構に供給する。スプレー噴射機構のスプレー槽内では第一段乳化燃料がスプレー噴射(線流速4m/sec)されて微粒子化する。微粒子化された第二段乳化燃料は第二段乳化燃料貯槽に貯留される。引き続き、真空式給湯暖房温水機2台に第二段乳化燃料を供給し、乳化燃料の燃焼試験を実施した。なお、この真空式給油暖房温水機は、通常の運転ではA重油を燃料としている。   Next, the first stage emulsified fuel is supplied to the spray injection mechanism at a flow rate of 240 L / h. In the spray tank of the spray injection mechanism, the first-stage emulsified fuel is spray-injected (linear flow velocity 4 m / sec) to form fine particles. The micronized second stage emulsified fuel is stored in a second stage emulsified fuel storage tank. Subsequently, the second-stage emulsified fuel was supplied to two vacuum hot water heater / warm water heaters, and a combustion test of the emulsified fuel was performed. In addition, this vacuum-type oil supply heating water heater uses A heavy oil as fuel in normal operation.

ここで、上記燃焼試験の結果を図7に示す。乳化燃料の運転試験を44時間実施した結果、A重油が2490L、水が1070L、添加剤中の界面活性剤が0.7L、合計3560Lであった。一方、A重油のみを同一の時間燃焼した際のA重油消費量は3090Lであった。本試験結果より、乳化燃料運転におけるA重油消費量は、A重油単独運転と比較して19%削減できることがわかった。   Here, the result of the combustion test is shown in FIG. As a result of carrying out the operation test of the emulsified fuel for 44 hours, A heavy oil was 2490 L, water was 1070 L, surfactant in the additive was 0.7 L, and the total was 3560 L. On the other hand, A heavy oil consumption when burning only heavy oil A for the same time was 3090L. From this test result, it was found that the consumption of heavy fuel oil A in the emulsified fuel operation can be reduced by 19% compared with the single fuel oil operation alone.

以上のように、真空式給湯暖房温水機の代替燃料に本発明の多段羽撹拌機構とスプレー噴射機構の組合せを備える乳化燃料の製造装置により製造した乳化燃料を適用することにより、A重油、軽油などの消費量を削減できるとともに、温室効果ガス(二酸化炭素)の排出量も削減することができる。なお、バーナーおよび蒸気ボイラでもスプレー噴射機構で製造した乳化燃料の燃焼試験を実施し、真空式給湯暖房温水機と同様にA重油消費量の削減率は20%前後が得られた。   As described above, by applying the emulsified fuel produced by the emulsified fuel production apparatus provided with the combination of the multistage feather stirring mechanism and the spray injection mechanism of the present invention to the alternative fuel for the vacuum hot water supply / heating water heater, the A heavy oil, the light oil Can be reduced, and greenhouse gas (carbon dioxide) emissions can be reduced. In addition, the combustion test of the emulsified fuel manufactured with the spray injection mechanism was conducted also with the burner and the steam boiler, and the reduction rate of the A heavy oil consumption was about 20% as in the case of the vacuum hot water supply / heating water heater.

(燃焼試験2)
上記燃焼試験1におけるスプレー噴射機構では、燃料油の消費量の削減率は20%程度が限界であった。燃料油の消費量をさらに削減するため、図3の乳化燃料の製造装置に図6の高速衝突機構を組み込んだ装置で乳化燃料を製造し、バーナーおよび蒸気ボイラによる燃焼試験を実施した。
(Combustion test 2)
In the spray injection mechanism in the combustion test 1, the reduction rate of fuel oil consumption was limited to about 20%. In order to further reduce the consumption of fuel oil, the emulsified fuel was manufactured by the apparatus incorporating the high-speed collision mechanism of FIG. 6 into the emulsified fuel manufacturing apparatus of FIG. 3, and a combustion test using a burner and a steam boiler was performed.

バーナーによる燃焼試験を実施するに当たっての多段羽供給機構による第一段乳化燃料の製造条件は以下の通りである(表1)。   The production conditions of the first stage emulsified fuel by the multistage wing supply mechanism for carrying out the combustion test with the burner are as follows (Table 1).

Figure 2014105260
Figure 2014105260

上記表1中(1)、(2)の各々の合計供給量は120L/hである。多段羽混合撹拌機構内ではA重油と水および界面活性剤が連続的に混合撹拌されて第一段乳化燃料が製造される。第一段乳化燃料は、多段羽根混合撹拌機構の出口から排出されて第一段乳化燃料貯槽に貯留される。   In Table 1 above, the total supply amount of (1) and (2) is 120 L / h. In the multistage wing mixing and stirring mechanism, A heavy oil, water and a surfactant are continuously mixed and stirred to produce a first stage emulsified fuel. The first stage emulsified fuel is discharged from the outlet of the multistage blade mixing and stirring mechanism and stored in the first stage emulsified fuel storage tank.

次に第一段乳化燃料を540L/hの流量で高速衝突機に供給する。高速衝突機構内では第一段乳化燃料が線流速90m/secにて衝突球に衝突し、より微粒子化された第二段乳化燃料が製造され、第二段乳化燃料貯槽に貯留される。第二段乳化燃料を光学顕微鏡で観察して粒子の粒径を測定した結果を図8に示す。乳化燃料の粒子は粒子径が10μm以下であり、高速衝突により微粒子化したことがわかる。   Next, the first stage emulsified fuel is supplied to the high speed collision machine at a flow rate of 540 L / h. In the high-speed collision mechanism, the first-stage emulsified fuel collides with the collision sphere at a linear flow velocity of 90 m / sec, and the second-stage emulsified fuel that has been made finer is manufactured and stored in the second-stage emulsified fuel storage tank. FIG. 8 shows the result of measuring the particle size of the particles by observing the second stage emulsified fuel with an optical microscope. It can be seen that the particles of the emulsified fuel have a particle size of 10 μm or less and have been atomized by high-speed collision.

引き続き、コンクリートおよび砂利などの乾燥などに使用されているバーナーに第二段乳化燃料を供給して燃焼試験を実施した。燃焼炎の温度測定結果を図9に示す。図9はバーナー燃焼炎温度の経時変化であり、○印は乳化燃料の水の添加割合35%、□印は乳化燃料の水の添加割合40%、△印はA重油単独である。バーナー燃焼炎の温度は、乳化燃料の水添加割合35%とA重油単独ではほとんど同じ値を示し、825℃〜850℃の範囲で推移した。一方、乳化燃料の水添加割合40%では、急激に温度が低下し、750℃〜775℃の範囲であった。本試験結果より乳化燃料に添加する水は35%以下が望ましいことがわかる。   Subsequently, a combustion test was conducted by supplying the second stage emulsified fuel to a burner used for drying concrete and gravel. The temperature measurement result of the combustion flame is shown in FIG. FIG. 9 shows the change over time in the burner combustion flame temperature. The ◯ mark indicates the water addition ratio of the emulsified fuel 35%, the □ mark indicates the water addition ratio of the emulsified fuel 40%, and the Δ mark indicates the A heavy oil alone. The temperature of the burner combustion flame showed almost the same value when the water addition ratio of the emulsified fuel was 35% and A heavy oil alone, and changed in the range of 825 ° C to 850 ° C. On the other hand, at a water addition ratio of 40% in the emulsified fuel, the temperature suddenly decreased and was in the range of 750 ° C to 775 ° C. From this test result, it is understood that the water added to the emulsified fuel is preferably 35% or less.

次に、乳化燃料の水添加割合35%とA重油単独での燃料消費量を測定した。燃料消費量の測定結果を図10に示す。乳化燃料のA重油消費量は4.3L/h、A重油単独でのA重油消費量は5.8L/hであった。本試験結果より、乳化燃料運転におけるA重油消費量は、A重油単独運転と比較して26%削減できることがわかった。   Next, the water addition ratio of the emulsified fuel was 35%, and the fuel consumption of A heavy oil alone was measured. The measurement result of the fuel consumption is shown in FIG. The consumption of A heavy oil of the emulsified fuel was 4.3 L / h, and the consumption of A heavy oil by A heavy oil alone was 5.8 L / h. From this test result, it was found that the consumption of A heavy oil in the emulsified fuel operation can be reduced by 26% as compared with the operation of A heavy oil alone.

以上のように本発明の多段羽撹拌機構と高速噴射機構の組合せで製造した乳化燃料は、微粒子化するため「空気との接触面積が増加」、「理論値に近い空気量で燃焼」の効果により、空気加熱に奪われる熱損失を小さくできることがわかった。これらの効果により乳化燃料のA重油消費量は、A重油単独と比較して26%削減できた。   As described above, the emulsified fuel produced by the combination of the multistage blade stirring mechanism and the high-speed injection mechanism of the present invention is converted into fine particles. Thus, it was found that the heat loss taken by the air heating can be reduced. Due to these effects, the consumption of heavy oil A by emulsified fuel could be reduced by 26% compared with heavy oil A alone.

(燃焼試験3)
本燃焼試験では、前述の燃焼試験2で製造した乳化燃料を蒸気ボイラで燃焼試験した結果を説明する。なお、燃焼試験は、燃焼試験2で製造した第二段乳化燃料を5日間経過後に実施した。乳化燃料燃焼中の排気ガス温度の測定結果を図11に示す。図には比較のためにA重油単独で燃焼した際の排気ガス温度も示した。蒸気ボイラの排気ガス温度は、乳化燃料およびA重油単独とも180℃前後で推移した。
(Combustion test 3)
In this combustion test, the results of a combustion test of the emulsified fuel produced in the above-described combustion test 2 with a steam boiler will be described. In addition, the combustion test was implemented after 5 days for the second stage emulsified fuel produced in the combustion test 2. The measurement result of the exhaust gas temperature during emulsified fuel combustion is shown in FIG. For comparison, the figure also shows the exhaust gas temperature when A fuel oil is burned alone. The exhaust gas temperature of the steam boiler was around 180 ° C. for both emulsified fuel and A heavy oil alone.

次に燃料消費量の測定結果を図12に示す。乳化燃料のA重油消費量は34L/h、A重油単独でのA重油消費量は45L/hであった。本試験結果より、乳化燃料運転におけるA重油消費量はA重油単独運転と比較して24%削減率できた。以上のように本発明の多段羽撹拌機構と高速噴射機構の組合せで製造した乳化燃料は、微粒子化するため「空気との接触面積が増加」、「理論値に近い空気量で燃焼」の効果により、空気加熱に奪われる熱損失を小さくできることがわかった。   Next, the measurement result of the fuel consumption is shown in FIG. The amount of heavy oil A consumed by the emulsified fuel was 34 L / h, and the amount of heavy fuel A consumed by the heavy oil A alone was 45 L / h. From this test result, the consumption of A heavy oil in the emulsified fuel operation was reduced by 24% compared with the operation of A heavy oil alone. As described above, the emulsified fuel produced by the combination of the multistage blade stirring mechanism and the high-speed injection mechanism of the present invention is converted into fine particles. Thus, it was found that the heat loss taken by the air heating can be reduced.

また、微粒子化したことにより製造後5日間経過した乳化燃料でも安定して燃焼し、この時のA重油消費量はA重油単独と比較して24%削減できることも分かった。なお、真空式給湯暖房温水機およびバーナーでも乳化燃料の燃焼試験を実施し、蒸気ボイラと同様にA重油消費量の削減率は25%前後が得られた。   In addition, it was also found that the emulsified fuel that had passed 5 days after production was combusted stably due to the formation of fine particles, and the consumption of A heavy oil at this time could be reduced by 24% compared to A heavy oil alone. In addition, the combustion test of the emulsified fuel was also conducted in the vacuum hot water heater / warm water heater and the burner, and the reduction rate of A heavy oil consumption was about 25% as in the case of the steam boiler.

本発明に係る乳化燃料の製造方法及びその製造装置は、空気加熱に奪われる熱損失が小さい乳化燃料を製造することができるため、燃料油使用に係るコストや温室効果ガスの排出量を削減させる目的に対し、好適に用いることができる。   The method and apparatus for producing an emulsified fuel according to the present invention can produce an emulsified fuel with a small loss of heat lost to air heating, thereby reducing costs associated with the use of fuel oil and greenhouse gas emissions. It can be suitably used for the purpose.

10 乳化燃料の製造装置
12 燃料油貯槽
14 燃料油
16 水貯槽
18 水
20 添加剤製造装置
22 添加剤貯槽
24 添加剤
26 多段羽混合攪拌機構
28 第一段乳化燃料貯槽
30 乳化燃料微粒子化機構
32 第二段乳化燃料貯槽
34 燃料油移送ポンプ
36 水移送ポンプ
38 添加剤移送ポンプ
40 羽根
42 回転軸
44 ケーシング
46 仕切り板
48 第一段乳化燃料
50 乳化燃料供給ポンプ
52 第二段乳化燃料
54 攪拌混合槽
56 スプレーノズル
58 スプレー治具
60 衝突治具
62 噴射板
64 衝突球
66 乳化燃料入口部
68 乳化燃料出口部
70 界面活性剤供給部
72 希釈剤供給部
74 ミキサー
76 攪拌混合槽
78 第一段添加剤
80 添加剤微粒子化機構
82 添加剤供給ポンプ
84 第二段添加剤
86 第二段添加剤貯槽
DESCRIPTION OF SYMBOLS 10 Emulsified fuel manufacturing apparatus 12 Fuel oil storage tank 14 Fuel oil 16 Water storage tank 18 Water 20 Additive manufacturing apparatus 22 Additive storage tank 24 Additive 26 Multistage wing mixing and stirring mechanism 28 First stage emulsified fuel storage tank 30 Emulsified fuel micronization mechanism 32 Second stage emulsified fuel storage tank 34 Fuel oil transfer pump 36 Water transfer pump 38 Additive transfer pump 40 Blade 42 Rotating shaft 44 Casing 46 Partition plate 48 First stage emulsified fuel 50 Emulsified fuel supply pump 52 Second stage emulsified fuel 54 Stir and mix Tank 56 Spray nozzle 58 Spray jig 60 Collision jig 62 Injection plate 64 Collision ball 66 Emulsified fuel inlet section 68 Emulsified fuel outlet section 70 Surfactant supply section 72 Diluent supply section 74 Mixer 76 Stir and mix tank 78 First stage addition Additive agent 80 Additive atomization mechanism 82 Additive supply pump 84 Second stage additive 86 Second stage additive storage tank

Claims (5)

燃料油、水および添加剤を用いて製造する乳化燃料の製造方法において、
界面活性剤と希釈剤を用いて添加剤を製造する添加剤製造工程と、
前記添加剤製造工程で製造した添加剤と、燃料油及び水を混合撹拌することで乳化燃料を製造する第一段乳化燃料製造工程と、
前記第一段乳化燃料製造工程で製造した乳化燃料を微粒子化する第二段乳化燃料製造工程と、
を含むことを特徴とする乳化燃料の製造方法。
In a method for producing an emulsified fuel produced using fuel oil, water and additives,
An additive production process for producing an additive using a surfactant and a diluent;
The first stage emulsified fuel production process for producing an emulsified fuel by mixing and stirring the additive produced in the additive production process and fuel oil and water,
A second-stage emulsified fuel production step of micronizing the emulsified fuel produced in the first-stage emulsified fuel production step;
A method for producing an emulsified fuel, comprising:
前記添加剤製造工程は、
界面活性剤と希釈剤を混合撹拌し、添加剤を製造する第一段添加剤製造工程と、
前記第一段添加剤製造工程で製造した添加剤を微粒子化する第二段添加剤製造工程と、
を含むことを特徴とする請求項1記載の乳化燃料の製造方法。
The additive manufacturing process includes:
First stage additive production process of mixing and stirring the surfactant and diluent to produce the additive,
A second-stage additive production process for micronizing the additive produced in the first-stage additive production process;
The method for producing an emulsified fuel according to claim 1, comprising:
燃料油、水および添加剤を用いて製造する乳化燃料の製造装置において、
界面活性剤と希釈剤を用いて添加剤を製造する添加剤製造装置と、
燃料油供給部と、水供給部と、前記添加剤製造装置により製造された添加剤を供給する添加剤供給部と、
前記燃料油供給部から供給される燃料油と、前記水供給部から供給される水及び前記添加剤供給部から供給される添加剤を連続的に混合することで第一段乳化燃料を製造する多段羽撹拌機構と、
前記多段羽撹拌機構により製造された第一段乳化燃料を貯留する第一段乳化燃料貯槽と、
前記第一段乳化燃料貯槽に貯槽された第一段乳化燃料をさらに微粒子化して第二段乳化燃料を製造する微粒子化機構と、
前記微粒子化機構により製造された第二段乳化燃料を貯留する第二段乳化燃料貯槽と、
を備えることを特徴とする乳化燃料の製造装置。
In a production apparatus for emulsified fuel produced using fuel oil, water and additives,
An additive production device for producing an additive using a surfactant and a diluent;
A fuel oil supply unit, a water supply unit, an additive supply unit for supplying an additive produced by the additive production apparatus,
The first stage emulsified fuel is manufactured by continuously mixing the fuel oil supplied from the fuel oil supply unit, the water supplied from the water supply unit, and the additive supplied from the additive supply unit. A multi-stage feather stirring mechanism;
A first-stage emulsified fuel storage tank for storing the first-stage emulsified fuel produced by the multistage wing stirring mechanism;
A microparticulation mechanism for further microparticulating the first stage emulsified fuel stored in the first stage emulsified fuel storage tank to produce a second stage emulsified fuel;
A second-stage emulsified fuel storage tank for storing the second-stage emulsified fuel produced by the atomization mechanism;
An apparatus for producing an emulsified fuel, comprising:
前記添加剤製造装置は、
界面活性剤供給部と、希釈剤供給部と、
前記界面活性剤供給部から供給される界面活性剤と、前記希釈剤供給部から供給される希釈剤を混合して第一段添加剤を製造する撹拌混合機構と、
前記撹拌混合機構により製造された第一段添加剤を微粒化して第二段添加剤を製造する微粒子化機構と、
前記微粒子化機構により製造された第二段添加剤を貯留する第二段添加剤貯槽と、
を備えることを特徴とする請求項3記載の乳化燃料の製造装置。
The additive manufacturing apparatus comprises:
A surfactant supply unit, a diluent supply unit,
A stirring and mixing mechanism for producing a first-stage additive by mixing the surfactant supplied from the surfactant supply unit and the diluent supplied from the diluent supply unit;
A microparticulation mechanism for producing a second-stage additive by atomizing the first-stage additive produced by the stirring and mixing mechanism;
A second-stage additive storage tank for storing the second-stage additive produced by the micronization mechanism;
The manufacturing apparatus of the emulsified fuel of Claim 3 characterized by the above-mentioned.
前記微粒子化機構は、前記第一段乳化燃料をスプレー噴射する、或いは高速で噴射させて衝突させる機構であることを特徴とする請求項3又は4記載の乳化燃料の製造装置。   The apparatus for producing an emulsified fuel according to claim 3 or 4, wherein the atomization mechanism is a mechanism for spraying the first stage emulsified fuel or causing the first stage emulsified fuel to collide by being injected at a high speed.
JP2012258355A 2012-11-27 2012-11-27 Emulsified fuel manufacturing method and manufacturing apparatus thereof Active JP5694281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012258355A JP5694281B2 (en) 2012-11-27 2012-11-27 Emulsified fuel manufacturing method and manufacturing apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012258355A JP5694281B2 (en) 2012-11-27 2012-11-27 Emulsified fuel manufacturing method and manufacturing apparatus thereof

Publications (2)

Publication Number Publication Date
JP2014105260A true JP2014105260A (en) 2014-06-09
JP5694281B2 JP5694281B2 (en) 2015-04-01

Family

ID=51027044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012258355A Active JP5694281B2 (en) 2012-11-27 2012-11-27 Emulsified fuel manufacturing method and manufacturing apparatus thereof

Country Status (1)

Country Link
JP (1) JP5694281B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102276604B1 (en) * 2020-01-28 2021-07-14 (주)로우카본 Desulfurizer Mixing System for Port Fuel Oil
KR102276599B1 (en) * 2020-01-28 2021-07-14 (주)로우카본 Emulsification Method of Fuel Oil and Desulfurizer for Sulfur Oxide Reduction
KR20210130315A (en) * 2020-04-21 2021-11-01 주식회사 성광이엔에프 Emulsion manufacturing system using ultrafine bubbles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214546A (en) * 2007-03-06 2008-09-18 Kuraray Kiko Kk Method and apparatus for producing emulsion fuel
JP2009179751A (en) * 2008-01-31 2009-08-13 Dai Ichi Kogyo Seiyaku Co Ltd Emulsifier for emulsion fuel
JP2012107169A (en) * 2010-10-21 2012-06-07 Fukunishi Electrical Co Ltd Method for producing emulsion fuel, emulsion fuel, and apparatus for producing emulsion fuel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214546A (en) * 2007-03-06 2008-09-18 Kuraray Kiko Kk Method and apparatus for producing emulsion fuel
JP2009179751A (en) * 2008-01-31 2009-08-13 Dai Ichi Kogyo Seiyaku Co Ltd Emulsifier for emulsion fuel
JP2012107169A (en) * 2010-10-21 2012-06-07 Fukunishi Electrical Co Ltd Method for producing emulsion fuel, emulsion fuel, and apparatus for producing emulsion fuel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102276604B1 (en) * 2020-01-28 2021-07-14 (주)로우카본 Desulfurizer Mixing System for Port Fuel Oil
KR102276599B1 (en) * 2020-01-28 2021-07-14 (주)로우카본 Emulsification Method of Fuel Oil and Desulfurizer for Sulfur Oxide Reduction
KR20210130315A (en) * 2020-04-21 2021-11-01 주식회사 성광이엔에프 Emulsion manufacturing system using ultrafine bubbles
KR102406095B1 (en) * 2020-04-21 2022-06-13 주식회사 성광이엔에프 Emulsion manufacturing system using ultrafine bubbles

Also Published As

Publication number Publication date
JP5694281B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP6317631B2 (en) Spray nozzle, combustion apparatus equipped with spray nozzle, and gas turbine plant
JP5694281B2 (en) Emulsified fuel manufacturing method and manufacturing apparatus thereof
JPWO2009014147A1 (en) Water emulsion production equipment
JP2010117116A (en) Device and method for burning oily substance
WO2020225829A1 (en) System with swirler nozzle having replaceable constituent injection stem
WO2014030242A1 (en) Combustion system
JP2006189247A (en) Combustion method
JP2006112666A (en) Combustion device provided with emulsified fuel supply system
JP2968712B2 (en) High viscosity burning method for heavy oil
CN101403499B (en) Double-Y shaped fuel treble atomizing method and atomizer
JPS5913823A (en) Incineration of waste ion exchange resin
JP2012057927A (en) Method of burning mixed fuel of liquid fuel and water, and mixed fuel injection device
JP2009203323A (en) Apparatus for producing emulsion fuel not containing emulsifying agent and operation method thereof
JP2009192205A (en) Device for generating emulsified fuel not including emulsifier and combustor
JP2011021803A (en) Water oil combustion device
JP2006111666A (en) Method for producing emulsion fuel, apparatus for producing emulsion fuel and emulsion fuel-using equipment equipped with the apparatus for producing emulsion fuel
JP2019117024A (en) Oil burner device, boiler and boiler operating method
CN103666636A (en) Additive for soluble clean fuel oil and preparation method of additive
JP6041383B2 (en) W / O solubilized hydrous fuel
JPWO2007069298A1 (en) Emulsifying device and method for purifying emulsion using such emulsifying device
JP2006112664A (en) Emulsion fuel combustion device
JP3161981B2 (en) Nozzle for combustion of waste oil mixed type liquid fuel and combustion method
JPS58132087A (en) Apparatus for preparing emulsion fuel
JP2011079911A (en) Water-containing fuel oil and method for producing the same
JP3065951B2 (en) Nozzle for combustion of water-mixed liquid fuel and combustion method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150204

R150 Certificate of patent or registration of utility model

Ref document number: 5694281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250