JP2014105202A - Immunostimulator - Google Patents

Immunostimulator Download PDF

Info

Publication number
JP2014105202A
JP2014105202A JP2012261369A JP2012261369A JP2014105202A JP 2014105202 A JP2014105202 A JP 2014105202A JP 2012261369 A JP2012261369 A JP 2012261369A JP 2012261369 A JP2012261369 A JP 2012261369A JP 2014105202 A JP2014105202 A JP 2014105202A
Authority
JP
Japan
Prior art keywords
polysaccharide
parachlorella
galactose
hair
action
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012261369A
Other languages
Japanese (ja)
Inventor
Yoshitaka Sato
剛毅 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panac Co Ltd
Original Assignee
Panac Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panac Co Ltd filed Critical Panac Co Ltd
Priority to JP2012261369A priority Critical patent/JP2014105202A/en
Publication of JP2014105202A publication Critical patent/JP2014105202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an immunostimulator for enhancement of antiviral antibody production.SOLUTION: An immunostimulator contains a polysaccharide, wherein sugar residues in the basic structure comprise galactose and mannose at least and the galactose exists in a furanose form. The content of galactose is preferably 50-79 mass%, when the total amount of the neutral monosaccharide composition is considered to be 100 mass%. A polysaccharide is preferably an extracellular polysaccharide derived from unicellular algae of the Parachlorella group. The immunostimulator significantly reduces the amount of type A influenza viruses both in lung and respiratory tract lavage fluid as compared to a negative control group.

Description

本発明は、免疫賦活剤に関する。   The present invention relates to an immunostimulator.

本発明の背景技術は後述する先行出願のそれと同様である。
[先行技術文献]
The background art of the present invention is the same as that of the prior application described later.
[Prior art documents]

本発明の先行技術文献は後述する先行出願のそれらと同様である。   Prior art documents of the present invention are the same as those of the prior application described later.

本発明が解決しようとする課題は、抗病原体抗体の産生を促進する免疫賦活剤を提供することを目的とする。   An object of the present invention is to provide an immunostimulator that promotes the production of anti-pathogen antibodies.

本発明の免疫賦活剤は、多糖の基本構造の糖残基が少なくともガラクトースとマンノースで構成されており、当該ガラクトースにフラノース型が存在する多糖体を含有することを特徴とする。   The immunostimulant of the present invention is characterized in that the sugar residue of the basic structure of the polysaccharide is composed of at least galactose and mannose, and the galactose contains a polysaccharide having a furanose type.

この態様によると、投与対象における病原体に対する抵抗力を容易に高めることができる。   According to this aspect, the resistance against pathogens in the administration subject can be easily increased.

本発明によれば、投与対象における病原体に対する抵抗力を容易に高めることができる。   According to the present invention, it is possible to easily increase resistance to pathogens in administration subjects.

墨汁染色による細胞(藻体)外の多糖体の可視化を行った結果を示す図である。It is a figure which shows the result of having visualized the polysaccharide outside a cell (algae) by Indian ink stain. 藻体PNC1株の18S rRNA遺伝子配列に基づく分子系統樹である。It is a molecular phylogenetic tree based on the 18S rRNA gene sequence of the algal PNC1 strain. 開示の多糖体のGPC分析の結果を示す。The result of the GPC analysis of the disclosed polysaccharide is shown. 単純ヘルペスウイルス2型(HSV−2)を感染させたマウスの症状の経時変化を示す図である。図4(A)は、HSV−2を感染させたマウスの発症スコアの経時変化を示すグラフである。図4(B)は、HSV−2を感染させたマウスの死亡状況を示す表である。It is a figure which shows the time-dependent change of the symptom of the mouse | mouth infected with the herpes simplex virus type 2 (HSV-2). FIG. 4 (A) is a graph showing changes over time in the onset score of mice infected with HSV-2. FIG. 4 (B) is a table showing the death status of mice infected with HSV-2. HSV−2を感染させたマウスにおける感染3日後のHSV−2の増殖量を示すグラフである。It is a graph which shows the proliferation amount of HSV-2 in the mouse | mouth infected with HSV-2 3 days after the infection. A型インフルエンザウイルスを感染させたマウスにおける体重の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the body weight in the mouse | mouth infected with the influenza A virus. A型インフルエンザウイルスを感染させたマウスにおける感染3日後のA型インフルエンザウイルスの増殖量を示すグラフである。It is a graph which shows the proliferation amount of the influenza A virus in the mouse | mouth infected with the influenza A virus 3 days after the infection. A型インフルエンザウイルスを感染させたマウスにおける感染14日後の中和抗体量を示すグラフである。図8(A)は、血清における中和抗体量を示すグラフである。図8(B)は、気道洗浄液における中和抗体量を示すグラフである。It is a graph which shows the amount of neutralizing antibodies 14 days after the infection in the mouse | mouth infected with the influenza A virus. FIG. 8A is a graph showing the amount of neutralizing antibody in serum. FIG. 8B is a graph showing the amount of neutralizing antibody in the airway washing solution. A型インフルエンザウイルスを感染させたマウスにおける感染14日後のウイルス特異的分泌型免疫グロブリンA(IgA)量を示すグラフである。図8(A)は、気道洗浄液におけるIgA抗体量を示すグラフである。図8(B)は、排泄物におけるIgA抗体量を示すグラフである。It is a graph which shows the virus specific secretory immunoglobulin A (IgA) amount 14 days after the infection in the mouse | mouth infected with the influenza A virus. FIG. 8 (A) is a graph showing the amount of IgA antibody in the airway washing solution. FIG. 8 (B) is a graph showing the amount of IgA antibody in excreta.

本発明の実施の形態を説明するために、まず本発明の基礎となる特願2012−168776(以下先行出願という)の記載内容を説明し、その後、本発明の実施の形態を説明する。なお、先行出願に関する記述の中([本発明の実施の形態]の前までの部分)において「本発明」「本開示」「本技術」というときは、それぞれ「先行出願の発明」「先行出願の開示」「先行出願の技術」と読み替えるものとする。
[先行出願の技術分野]
In order to describe the embodiments of the present invention, first, the description of Japanese Patent Application No. 2012-168776 (hereinafter referred to as the prior application) which is the basis of the present invention will be described, and then the embodiments of the present invention will be described. In the description related to the prior application (the part up to [the embodiment of the present invention]), “the present invention”, “the present disclosure”, and “the present technology” are respectively referred to as “the invention of the prior application” and “the prior application”. "Disclosure of" and "technology of prior application".
[Technical Field of Prior Application]

本発明は、新規多糖体及びその製造方法、並びに当該新規多糖体を含有する皮膚外用剤、育毛剤、美白剤等に関する。
[先行出願の背景技術]
The present invention relates to a novel polysaccharide, a method for producing the same, and a skin external preparation, a hair-restoring agent, a whitening agent and the like containing the novel polysaccharide.
[Background of prior application]

多糖類は、医薬品、食品、工業品等幅広い分野で利用されている。医薬品や食品分野等でよく知られている酸性多糖類として、コンドロイチン硫酸やヒアルロン酸等のグリコサミノグリカン、キサンタンガム等;中性多糖類としてβ1,3グルカン、シクロデキストリン等が挙げられる。サメ軟骨やトリ鶏冠等に含まれているコンドロイチン硫酸や微生物生産が可能となったヒアルロン酸は、膝関節痛改善作用等を有することが知られている。またβ1,3グルカンは免疫賦活作用等を有することが知られている。
また、キサンタンガムは、Xanthomonas campestris細菌が生産する多糖であり、その糖の構成はD−グルコース、D−マンノース、D−グルクロン酸を構成糖にもつ分岐多糖であり、現在では工業的に大量生産可能であるため、増粘剤等として世界中で利用されている(例えば特許文献1)。
また、クロレラ属単細胞緑藻が細胞外に産生するガラクトース81.4〜91.9%含有の多糖体が、マウス肉腫細胞株に対して抗腫瘍作用を有することが記載されている(例えば特許文献2)。
さらに、種々の用途に利用可能な新規多糖体が、産業界において望まれているのが実状である。
[先行出願の先行技術文献]
[特許文献]
Polysaccharides are used in a wide range of fields such as pharmaceuticals, foods, and industrial products. Examples of acidic polysaccharides well known in the pharmaceutical and food fields include glycosaminoglycans such as chondroitin sulfate and hyaluronic acid, xanthan gum, and the like, and β1,3 glucan and cyclodextrin as neutral polysaccharides. It is known that chondroitin sulfate contained in shark cartilage, chicken fowl, etc. and hyaluronic acid capable of producing microorganisms have an effect of improving knee joint pain and the like. Β1,3 glucan is known to have an immunostimulatory action and the like.
Xanthan gum is a polysaccharide produced by Xanthomonas campestris bacteria, and its sugar composition is a branched polysaccharide having D-glucose, D-mannose, and D-glucuronic acid as constituent sugars, and can now be industrially mass-produced. Therefore, it is used around the world as a thickener and the like (for example, Patent Document 1).
Moreover, it is described that the polysaccharide containing 81.4 to 91.9% galactose produced extracellularly by Chlorella unicellular green algae has an antitumor effect on mouse sarcoma cell lines (for example, Patent Document 2). ).
Furthermore, in reality, new polysaccharides that can be used in various applications are desired in the industry.
[Prior Art Documents of Prior Applications]
[Patent Literature]

特公昭61−11596号公報Japanese Patent Publication No. 61-11596 特開平6−248003号公報[先行出願の発明の概要][先行出願の発明が解決しようとする課題]Japanese Patent Laid-Open No. 6-248003 [Summary of Invention of Prior Application] [Problems to be Solved by Invention of Prior Application]

そこで、本発明は、斯かる実状に鑑み、種々の用途に利用可能な新規多糖体を提供しようとするものである。
[先行出願の課題を解決するための手段]
Therefore, in view of such a situation, the present invention intends to provide a novel polysaccharide that can be used for various applications.
[Means for solving the problems of the prior application]

本発明者らは、種々の用途に利用可能な新規多糖体を鋭意検討した結果、ガラクトース
及びマンノースを主な構成糖とする新規多糖体を見出した。さらに、本発明の新規多糖体は、優れた育毛作用があること及び美白作用があることも見出した。本発明の新規多糖体は、皮膚外用剤、化粧料、食品、医薬品等にも利用可能であることを見出した。しかも、本発明の新規多糖体は、パラクロレラ属(Parachlorella)単細胞緑藻類がその細胞外で生産可能な多糖体であるので、工業的に大量生産可能であり、幅広い分野での利用が期待できる物質である。
As a result of intensive studies on novel polysaccharides that can be used for various applications, the present inventors have found novel polysaccharides containing galactose and mannose as main constituent sugars. Furthermore, it has also been found that the novel polysaccharide of the present invention has an excellent hair growth effect and a whitening effect. It has been found that the novel polysaccharide of the present invention can also be used for external preparations for skin, cosmetics, foods, pharmaceuticals and the like. Moreover, since the novel polysaccharide of the present invention is a polysaccharide that can be produced extracellularly by Parachlorella unicellular green algae, it can be industrially mass-produced and can be expected to be used in a wide range of fields. It is.

ところで、近年、ストレスの増加や食生活の変化など様々な要因によって、薄毛や抜け毛で悩む男女は増加傾向にあり、育毛剤への期待が高まっている。
例えば、特開2010−150203号公報には、ダイジン、ゲスチニン及びフラボステロンSEから選ばれる大豆イソフラボン配糖体と、6−ベンジルアミノピリンとを含有する育毛剤組成物が、抜け毛を低減すること及び硬毛化することが開示されている。
特開2012−097008号公報には、パイナップル可食部を90体積%エタノールで80℃2時間抽出して得られた糖不含有のパイナップル抽出物が、毛乳頭細胞増殖促進作用があることが開示されている。
特開2010−100536号公報には、アメリカンアンジェリカ(Angelica atropurpurea)の抽出物に含まれる所定の構造を有するアンギュラー型フロクマリン骨格を有する化合物が、ブタ毛包の毛伸長を示したことが開示されている。
このように、幅広い化合物による様々な作用機序からの有効な育毛剤の検討が行われているのが実状である。しかしながら、本発明の多糖体は高分子系でありながら優れた育毛作用を有することは全くの意外であり、そして優れた育毛剤を提供することも可能である。
By the way, in recent years, due to various factors such as increased stress and changes in dietary habits, men and women who suffer from thinning hair and hair loss have been on the rise, and expectations for hair restorers are increasing.
For example, Japanese Patent Application Laid-Open No. 2010-150203 discloses that a hair restoration composition containing soybean isoflavone glycoside selected from daidzin, gestinin and flavosterone SE and 6-benzylaminopyrine reduces hair loss and bristle hair. Is disclosed.
JP 2012-097008 A discloses that a sugar-free pineapple extract obtained by extracting a pineapple edible portion with 90% by volume ethanol at 80 ° C. for 2 hours has an effect of promoting proliferation of hair papilla cells. Has been.
JP 2010-1000053 discloses that a compound having an angular furocoumarin skeleton having a predetermined structure contained in an extract of Angelica atropurpurea exhibited hair elongation of pig hair follicles. Yes.
Thus, the actual condition is that studies on effective hair-growth agents from various action mechanisms by a wide range of compounds are being conducted. However, it is completely unexpected that the polysaccharide of the present invention has a high hair-growth action even though it is a polymer system, and it is also possible to provide an excellent hair-growth agent.

よって、本発明は、上記課題を解決するために、多糖の基本構造の糖残基が少なくともガラクトースとマンノースで構成されており、当該ガラクトースにフラノース型が存在する多糖体を提供するものである。   Therefore, in order to solve the above problems, the present invention provides a polysaccharide in which the sugar residue of the basic structure of the polysaccharide is composed of at least galactose and mannose, and the galactose has a furanose type.

また、本発明は、多糖の基本構造の糖残基が少なくともガラクトースとマンノースで構成されており、当該ガラクトースにフラノース型が存在する多糖体及び/又はパラクロレラ由来の細胞外多糖体を含有する、毛母細胞増殖賦活剤、FGF−7産生促進剤、VEGF産生促進剤、育毛剤、メラニン産生抑制剤、美白剤又は皮膚外用剤を提供するものである。   In the present invention, the sugar residue of the basic structure of the polysaccharide is composed of at least galactose and mannose, and contains a polysaccharide having a furanose type in the galactose and / or an extracellular polysaccharide derived from parachlorella. The present invention provides hair matrix cell growth activators, FGF-7 production promoters, VEGF production promoters, hair restorers, melanin production inhibitors, whitening agents, and skin external preparations.

また、本発明は、パラクロレラ属単細胞藻類又は改変体を炭素源含有培養培地で好気的な条件下で従属培養し、生産される多糖体を回収する多糖体の製造方法を提供するものである。
また、本発明は、Parachlorella kessleri-PNC1と命名され、FERM BP-11493として寄託された藻体を提供するものである。
[先行出願の発明の効果]
The present invention also provides a method for producing a polysaccharide by subculturing a Parachlorella unicellular algae or a modified form in a carbon source-containing culture medium under aerobic conditions and recovering the produced polysaccharide. is there.
The present invention also provides an algal body named Parachlorella kessleri-PNC1 and deposited as FERM BP-11493.
[Effect of invention of prior application]

本発明によれば、種々の用途に利用可能な新規な多糖体を提供することができる。
[先行出願の発明を実施するための形態]
ADVANTAGE OF THE INVENTION According to this invention, the novel polysaccharide which can be utilized for various uses can be provided.
[Mode for carrying out the invention of the prior application]

1.本開示の多糖体
2.本開示の多糖体の製造方法
3.本開示の多糖体の用途
1. 1. Polysaccharides of the present disclosure 2. Production method of polysaccharide of the present disclosure Uses of polysaccharides of the present disclosure

1.本開示の多糖体
本開示の多糖体は、多糖の基本構造の糖残基が少なくともガラクトース(以下「Gal」ともいう)とマンノース(以下「Man」ともいう)で構成される。当該ガラクトースには、少なくともフラノース型が存在するのが好適である。
前記マンノースとガラクトースとの糖残基の比率が、マンノースを1としたときに、好ましくはMan 1:Gal 2〜4、より好ましくはMan 1:Gal 2.5〜3.5であるのが好適である。
1. Polysaccharide of the Present Disclosure In the polysaccharide of the present disclosure, the sugar residue of the basic structure of the polysaccharide is composed of at least galactose (hereinafter also referred to as “Gal”) and mannose (hereinafter also referred to as “Man”). The galactose preferably has at least a furanose type.
The ratio of the sugar residues of the mannose and galactose is preferably Man 1: Gal 2-4, more preferably Man 1: Gal 2.5-3.5, where mannose is 1. It is.

前記ガラクトースの含有量は、多糖体の中性単糖組成の全量を100質量%としたとき(以下、「全中性糖中」とする)に、好ましくは50〜79質量%であり、より好ましくは60〜79質量%である。
本開示の多糖体の中性単糖組成は、マンノース及びガラクトースの他に、アラビノース(以下、「Ara」ともいう)、ラムノース(以下、「Rha」ともいう)及びキシロール(以下、「Xyl」ともいう)が含まれてもよい。
これらの含有量は、多糖体の中性単糖組成の全量を100質量%としたとき(以下、「全中性糖中」とする)に、好ましくは0〜16質量%、より好ましくは5〜16質量%である。さらに、アラビノース、ラムノース及びキシロースの含有量は、全中性糖中、それぞれ、アラビノース 3〜7質量%、ラムノース 2〜6質量%、キシロース 0〜3質量%であるのが好適である。
このときマンノース及びガラクトースのこれら含有量は、全中性糖中、好ましくは84〜100質量%である。このマンノースの含有量は、全中性糖中、好ましくは19〜25質量%であり、またガラクトースの含有量は、全中性糖中、好ましくは65〜75質量%である。
The content of the galactose is preferably 50 to 79% by mass when the total amount of the neutral monosaccharide composition of the polysaccharide is 100% by mass (hereinafter referred to as “in all neutral sugars”). Preferably it is 60-79 mass%.
In addition to mannose and galactose, the neutral monosaccharide composition of the polysaccharide of the present disclosure includes arabinose (hereinafter also referred to as “Ara”), rhamnose (hereinafter also referred to as “Rha”) and xylol (hereinafter referred to as “Xyl”). May be included).
These contents are preferably 0 to 16% by mass, more preferably 5% when the total amount of the neutral monosaccharide composition of the polysaccharide is 100% by mass (hereinafter referred to as “in total neutral sugar”). ~ 16% by weight. Further, the contents of arabinose, rhamnose, and xylose are preferably 3-7% by mass of arabinose, 2-6% by mass of rhamnose, and 0-3% by mass of xylose, respectively, in the total neutral sugar.
At this time, the content of mannose and galactose is preferably 84 to 100% by mass in the total neutral sugar. The content of mannose is preferably 19 to 25% by mass in the total neutral sugar, and the content of galactose is preferably 65 to 75% by mass in the total neutral sugar.

本開示の多糖体の分子量は、GPC測定において、好ましくは3〜9×10、より好ましくは5〜8×10である。
また、本開示の多糖体は水溶性のものが、様々な分野の用途で利用しやすいので、好適である。
The molecular weight of the polysaccharide of the present disclosure is preferably 3 to 9 × 10 4 , more preferably 5 to 8 × 10 4 in GPC measurement.
Moreover, since the polysaccharide of this indication is water-soluble, since it is easy to utilize for the use of various fields, it is suitable.

2.本開示の多糖体の製造方法
本開示の多糖体の製造方法は、本開示の多糖体を産生することが可能であれば、その手段は特に限定されず、例えば、細菌や藻類等の微生物及びこの改変体を用いることが挙げられる。当該改変体とは、本開示の多糖体を産生することが可能な機能をする微生物の遺伝子組み換え体、突然変異体等であり、必要に応じて生産性や耐久性等を向上させている微生物である。
2. The polysaccharide production method of the present disclosure is not particularly limited as long as the polysaccharide production method of the present disclosure can produce the polysaccharide of the present disclosure. For example, microorganisms such as bacteria and algae and It is mentioned to use this modification. The modified body is a genetically modified or mutant microorganism having a function capable of producing the polysaccharide of the present disclosure, and a microorganism whose productivity and durability are improved as necessary It is.

好適な本開示の多糖体の製造方法として、本開示の多糖体は、パラクロレラ属(Parachlorella)単細胞緑藻類又は改変体を独立的培養法又は従属的培養法等の任意の培養方法により培養することで製造することが可能である。
当該緑藻類を用いることで、本開示の多糖体は、藻類の細胞外に生産させて回収することが可能である。細胞外に産出させることで、遠心分離等の物理的手段等により藻体と多糖体とを分離させることが容易となる。これによって、培養培地交換等による連続培養による多糖体の生産も容易である。よって、本開示のパラクロレラ属単細胞緑藻類又は改変体を用いることは、多糖体の生産性を非常に向上させることができ、工業的生産に適しており、本開示の多糖体の安定的供給を可能とする。安定的供給性が可能となるため、本開示の多糖体は幅広い分野での利用も可能となる。
As a preferable method for producing the polysaccharide of the present disclosure, the polysaccharide of the present disclosure is obtained by culturing Parachlorella unicellular green algae or a modified form by any culture method such as an independent culture method or a subordinate culture method. It is possible to manufacture with.
By using the green algae, the polysaccharide of the present disclosure can be produced and recovered outside the cells of the algae. By producing it extracellularly, it becomes easy to separate algal bodies and polysaccharides by physical means such as centrifugation. Thereby, it is easy to produce polysaccharides by continuous culture such as culture medium exchange. Therefore, using the Parachlorella unicellular green algae or the modified form of the present disclosure can greatly improve the productivity of the polysaccharide, is suitable for industrial production, and provides a stable supply of the polysaccharide of the present disclosure. Make it possible. Since stable supply is possible, the polysaccharide of the present disclosure can be used in a wide range of fields.

前記パラクロレラ属単細胞緑藻類のうち、好ましくはパラクロレラ属ケッセリ(Parachlorella kessreli)であり、より好ましくはParachlorella kessleri-PNC1株(FERM BP-11493)が好適である。
独立行政法人 国立環境研究所 微生物系統保存施設(NIESコレクション)から、NIES-2152〜NIES-2162、2177、2178、2179の14株を、パナック株式会社新規事業開発第二部が入手した。この入手した株を継代培養しながら、これらの中から、細胞外多糖体の生産性が高く、かつ従属培養に適した株を探索した。
具体的には、NIES-2152株を複数に分けて、後記実施例に示す従属培養条件下にて、継代培養を繰り返した。他の株についても同様に継代培養を繰り返し行った。継代培養を繰り返しながら、これらの中から、細胞外多糖体の生産性が高く、かつ従属培養に適した株を見出し、これをPNC1株とした。
当該PNC1株に関する形態観察及びrRNA遺伝子配列に基づく分子系統樹により、パラクロレラ属ケッセリ(Parachlorella kessreli)単細胞緑藻類と判断し、Parachlorella kessleri-PNC1株と命名した。この株は、新規な藻類として、2012年7月19日、〒305-8566 茨城県つくば市東1-1-1 つくばセンター中央第6、独立行政法人 製品評価技術基盤機構 特許微生物寄託センター(NITE-IPOD)に、Parachlorella kessleri-PNC1株(FERM BP-11493)として寄託した。
Of the Parachlorella unicellular green algae, Parachlorella kessreli is preferable, and Parachlorella kessleri-PNC1 strain (FERM BP-11493) is more preferable.
Panac Co., Ltd. New Business Development Department 2 obtained 14 strains of NIES-2152 to NIES-2162, 2177, 2178, and 2179 from the National Institute for Environmental Studies Microbial System Storage Facility (NIES Collection). While subculturing the obtained strain, a strain having a high extracellular polysaccharide productivity and suitable for subculture was searched for.
Specifically, the NIES-2152 strain was divided into a plurality of cells, and subculture was repeated under the subculture conditions shown in Examples below. Subculture was repeated in the same manner for other strains. While repeating subculture, a strain having high productivity of extracellular polysaccharide and suitable for subculture was found out of these, and this strain was designated as PNC1 strain.
Based on the morphological observation on the PNC1 strain and the molecular phylogenetic tree based on the rRNA gene sequence, it was judged to be a Parachlorella kessreli unicellular green algae and named Parachlorella kessleri-PNC1 strain. As a new algae, this strain was founded on July 19, 2012, 1-1-6 Higashi Tsukuba, Tsukuba City, Ibaraki Prefecture 305-8566, Tsukuba Center Chuo No. 6, National Institute for Product Evaluation Technology (NITE-) IPOD) was deposited as Parachlorella kessleri-PNC1 strain (FERM BP-11493).

本開示のパラクロレラ属単細胞緑藻類を培養して多糖体を製造させる際に用いる培地として、一般的な単細胞緑藻類が培養可能な基礎培地に、グルコース等の炭素源を含有させた炭素源含有の培養培地が好適である。単細胞緑藻類が培養可能な基礎培地とは、例えば、〔Appl Microbiol Biotechnol. 2011 Jul;91(1):31-46. Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations.Bumbak F, Cook S, Zachleder V, Hauser S, Kovar K〕に記載されている培地が挙げられる。
基礎培地中の無機塩としてKHPO、MgSO等の微量無機成分が挙げられ、窒素源としては硫酸アンモニウム、尿素等が挙げられる。この基礎培地として、本開示のパラクロレラ属単細胞緑藻類を培養する際に好適なものとしては表1に示す培地の組成が挙げられ、各成分の含有量は±10%の範囲であることが好ましい。
前記炭素源として、グルコース、果糖等の単糖類;ショ糖等のオリゴ糖等が挙げられる。これらから1種又は2種以上選択して基礎培地に添加してもよい。
前記炭素源の濃度は、特に限定されないが、培養培地中、好ましくは0.1〜30質量%、より好ましくは1〜10質量%とするのが好適である。
As a medium used when culturing the single cell green algae of the genus Parachlorella of the present disclosure to produce a polysaccharide, a culture containing a carbon source containing a carbon source such as glucose in a basic medium capable of culturing general single cell green algae A medium is preferred. The basic medium in which unicellular green algae can be cultured is, for example, (Appl Microbiol Biotechnol. 2011 Jul; 91 (1): 31-46.Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations. F, Cook S, Zachleder V, Hauser S, Kovar K].
Examples of inorganic salts in the basal medium include trace inorganic components such as KH 2 PO 4 and MgSO 4, and examples of nitrogen sources include ammonium sulfate and urea. Examples of the basal medium suitable for culturing the Parachlorella unicellular green algae of the present disclosure include the composition of the medium shown in Table 1, and the content of each component is preferably in the range of ± 10%. .
Examples of the carbon source include monosaccharides such as glucose and fructose; oligosaccharides such as sucrose. One or more of these may be selected and added to the basal medium.
The concentration of the carbon source is not particularly limited, but is preferably 0.1 to 30% by mass, more preferably 1 to 10% by mass in the culture medium.

本開示の多糖体を製造するための培養に際し、好気的な条件下で培養することが、上記多糖体を安定的に生産させることができるので好適である。通気培養することが、多糖体の生産性を向上させる点で、好ましい。通気手段として、例えば、撹拌、振盪、通気及びバブリング等が挙げられる。これらを単独で又は2種以上組み合わせて行うことが可能である。これにより、培養培地中に適度な気体が混合されるようになる。
培養培地中の溶存酸素(DO)は、好気的な条件になるように調整すればよく、好ましくは3ppm以上、より好ましくは5〜13ppmとするのが好適である。
培養温度は、特に限定されないが、5〜40℃の常温程度であればよい。
また、培養培地中のpH(20℃)は、好ましくは4〜9、より好ましくは5〜8とするのが好適である。
培養期間は、特に限定されないが、4日〜2週間程度を1サイクルとするのが、多糖体を産出させるのが好適である。また、前培養及び本培養を行う際には、本培養の期間は、4日〜1週間程度であればよい。この際、光照射を行なってもよいが、光照射を行わなくとも、多糖体を生産することが可能である。
また、独立栄養培養条件下にて藻体数を多くする場合、太陽光;植物栽培用ランプ、LED等の人工光源等の光を用いることが可能であり、炭酸ガスの補給と撹拌をすることが好ましい。
In culturing for producing the polysaccharide of the present disclosure, culturing under an aerobic condition is preferable because the polysaccharide can be stably produced. Aeration culture is preferable from the viewpoint of improving the productivity of polysaccharides. Examples of the aeration means include stirring, shaking, aeration, and bubbling. These can be performed alone or in combination of two or more. Thereby, an appropriate gas comes to be mixed in the culture medium.
What is necessary is just to adjust dissolved oxygen (DO) in a culture medium so that it may be aerobic conditions, Preferably it is 3 ppm or more, More preferably, it is 5-13 ppm.
Although culture temperature is not specifically limited, What is necessary is just about the normal temperature of 5-40 degreeC.
Further, the pH (20 ° C.) in the culture medium is preferably 4-9, more preferably 5-8.
The culture period is not particularly limited, but it is preferable to produce polysaccharides by setting one cycle to 4 days to 2 weeks. Moreover, when performing preculture and main culture, the period of main culture should just be about 4 days-1 week. At this time, light irradiation may be performed, but a polysaccharide can be produced without light irradiation.
In addition, when increasing the number of algal bodies under autotrophic culture conditions, it is possible to use sunlight; light from artificial light sources such as lamps for plant cultivation and LEDs, and supply and agitate carbon dioxide. Is preferred.

また、本開示の多糖の生産方法は、バッチ式、連続式の何れでもよいが、連続式が生産性向上のため好ましい。また、開放系培養及び閉鎖系培養の何れでもよく、例えば、培養タンク内の密閉培養及び開放系の露天培養等が挙げられる。培養条件管理の点で、閉鎖系培養が好ましい。   In addition, the polysaccharide production method of the present disclosure may be either a batch type or a continuous type, but the continuous type is preferable for improving productivity. Moreover, any of open system culture and closed system culture may be sufficient, for example, closed culture in a culture tank, open system open culture, etc. are mentioned. Closed culture is preferable from the viewpoint of culture condition management.

本開示の多糖体を前記単細胞緑藻類又は改変体に産生させた後に、水溶液洗浄、超音波、遠心分離、ろ過等の物理的手段及び化学的手段にて、藻体から多糖体を分離し、本開示の多糖体が含まれる上清液を得るのが好適である。このとき、培養後の藻体表面から多糖体を分離することがその藻体を用いて連続的に多糖体を生産することも可能であるので好ましい。例えば、遠心分離の際には、5000〜9000rpm、5分間程度でよい。さらに濾過助剤及びろ過フィルター等を単独で又は組み合わせて用いてろ過を行うことが不純物をより除去できるので好ましい。
得られた本開示の多糖体は、希釈液、濃縮液又は乾燥物等の状態に適宜調整してもよい。乾燥手段として凍結乾燥が好ましい。
After the polysaccharide of the present disclosure is produced in the unicellular green algae or the modified body, the polysaccharide is separated from the alga body by physical means and chemical means such as aqueous solution washing, ultrasonic wave, centrifugation, filtration, etc. It is preferred to obtain a supernatant containing the disclosed polysaccharide. At this time, it is preferable to separate the polysaccharide from the surface of the cultured alga, since it is also possible to continuously produce the polysaccharide using the alga. For example, at the time of centrifugation, it may be 5000 to 9000 rpm for about 5 minutes. Further, it is preferable to perform filtration using a filter aid and a filtration filter alone or in combination because impurities can be further removed.
The obtained polysaccharide of the present disclosure may be appropriately adjusted to a diluted solution, a concentrated solution, a dried product, or the like. As the drying means, freeze-drying is preferable.

本開示の多糖体は、適宜公知の分離・精製技術、例えば液々分液、固液分液、濾過膜、活性炭、吸着樹脂、イオン交換樹脂等の方法によって不活性な不純物を除去し、更に精製してもよい。
本開示の多糖体を水溶液に溶解後、不溶性画分を除去し、水溶性画分を回収することが好適である。水に溶解の際に混合することが好ましく、この水温は、5〜40℃であるのが好ましい。溶解後、低温(例えば1〜10℃)に放置(例えば5〜15時間)することが好ましい。
不溶性画分の除去は、遠心分離及び限界ろ過膜等の物理的手段にて行うことが好ましい。これにより、より水溶性の高い多糖体を得ることができるので、種々の用途に利用可能である。さらに得られた水溶性多糖体を、凍結乾燥することが好ましい。
The polysaccharides of the present disclosure can remove inert impurities by a known separation / purification technique, such as liquid-liquid separation, solid-liquid separation, filtration membrane, activated carbon, adsorption resin, ion exchange resin, and the like. It may be purified.
It is preferable to dissolve the polysaccharide of the present disclosure in an aqueous solution, then remove the insoluble fraction and collect the water-soluble fraction. It is preferable to mix when dissolving in water, and the water temperature is preferably 5 to 40 ° C. After dissolution, it is preferably left at a low temperature (eg, 1 to 10 ° C.) (eg, 5 to 15 hours).
The insoluble fraction is preferably removed by physical means such as centrifugation and ultrafiltration membrane. Thereby, since a polysaccharide with higher water solubility can be obtained, it can be used for various applications. Further, the obtained water-soluble polysaccharide is preferably lyophilized.

3.本開示の多糖体の用途
本開示の多糖体は、後記実施例に示すように、線維芽細胞増殖因子のファミリーの一つである線維芽細胞増殖因子−7(FGF−7)の量が増加することが認められている。よって、本開示の多糖体は、FGF−7産生促進作用、線維芽細胞増殖賦活作用、皮膚の抗老化防止作用、シワ改善作用、毛母細胞増殖作用及び育毛作用等を有する。
3. Use of Polysaccharides of the Present Disclosure The polysaccharides of the present disclosure increase the amount of fibroblast growth factor-7 (FGF-7), which is one of the family of fibroblast growth factors, as shown in the Examples below. Is allowed to do. Therefore, the polysaccharide of the present disclosure has an FGF-7 production promoting action, a fibroblast proliferation activation action, a skin anti-aging prevention action, a wrinkle improvement action, a hair matrix cell proliferation action, a hair growth action and the like.

ここで、線維芽細胞増殖因子は、血管新生作用、コラーゲンやフィブロネクチンの合成抑制作用等を有することや、ヘパリンに対して強い親和性を有していることが知られている。
また、線維芽細胞は、真皮に含まれており、線維芽細胞の増殖機能が維持されることによって、皮膚の水分量、柔軟性、弾力性等が良好な状態に保たれ、美しく健康的な皮膚(肌)の状態が維持される。また、線維芽細胞の増殖機能が低下することによって、皮膚の線維成分及び基質の産生量が減少する。これは、皮膚の表面形状及び物理的性状に変化を及ぼす要因となり、皮膚のガサつき、肌荒れ、しわ、たるみ等の原因となる。よって、線維芽細胞増殖賦活作用を有すると、皮膚の抗老化防止作用、シワ改善作用等に寄与すると考えられる。
また、FGF−7は毛乳頭細胞から分泌される因子であり、このFGF−7が毛母細胞に作用し、毛母細胞の増殖を促進し、毛髪成長が促進すると考えられている。よって、FGF−7産生促進作用を有すると、毛母細胞増殖作用、育毛作用等に寄与すると考えられる。
Here, it is known that the fibroblast growth factor has an angiogenesis action, an action for inhibiting the synthesis of collagen and fibronectin, and has a strong affinity for heparin.
In addition, fibroblasts are contained in the dermis, and by maintaining the proliferative function of fibroblasts, the moisture content, flexibility, elasticity, etc. of the skin are maintained in a good state, which is beautiful and healthy. The condition of the skin (skin) is maintained. Moreover, the production amount of the fiber component and the substrate of the skin decreases due to the decrease in the proliferation function of fibroblasts. This causes changes in the surface shape and physical properties of the skin, and causes skin roughness, rough skin, wrinkles, sagging, and the like. Therefore, it is considered that having a fibroblast proliferation activation action contributes to an anti-aging prevention action, wrinkle improvement action and the like of the skin.
FGF-7 is a factor secreted from hair papilla cells, and it is considered that this FGF-7 acts on hair matrix cells to promote hair matrix cell proliferation and promote hair growth. Therefore, it is considered that having FGF-7 production promoting action contributes to hair matrix cell growth action, hair growth action and the like.

さらに、本開示の多糖体は、上述のように、FGF−7産生促進作用及び線維芽細胞増殖賦活作用等を有することで、FGF−7産生量減少、線維芽細胞増殖能の低減、毛母細胞増殖能の低減、線維芽細胞増殖能の低減等に起因する疾患や症状の予防、改善又は治療が可能と考えられる。
本開示のFGF−7産生量減少、線維芽細胞増殖能の低減、毛母細胞増殖能の低減等に起因する各種疾患や症状として、例えば、皮膚の老化、シワ形成、脱毛症等が挙げられる。この脱毛症としては、男性型脱毛症、女性のびまん性脱毛症、円形脱毛症等が挙げられる。
Furthermore, as described above, the polysaccharide of the present disclosure has an FGF-7 production promoting action, a fibroblast proliferation activation action, and the like, thereby reducing FGF-7 production, reducing fibroblast proliferation ability, hair matrix. It is considered possible to prevent, ameliorate, or treat diseases and symptoms caused by reduced cell proliferative ability, fibroblast proliferative ability and the like.
Examples of various diseases and symptoms resulting from a decrease in FGF-7 production, a reduction in fibroblast proliferation ability, a reduction in hair matrix proliferation ability, and the like of the present disclosure include skin aging, wrinkle formation, and alopecia. . Examples of the alopecia include male pattern alopecia, female diffuse alopecia, alopecia areata and the like.

また、本開示の多糖体は、後記実施例に示すように血管内皮増殖因子(VEGF)の量が増加することが認められている。よって、本開示の多糖体は、VEGF産生促進作用、血管内皮増殖賦活作用、血管新生促進作用、毛母細胞活性化作用、発毛促進作用等を有する。   Moreover, it is recognized that the polysaccharide of this indication increases the quantity of vascular endothelial growth factor (VEGF) as shown in the below-mentioned Example. Therefore, the polysaccharide of the present disclosure has a VEGF production promoting action, a vascular endothelial growth activating action, an angiogenesis promoting action, a hair matrix activation action, a hair growth promoting action and the like.

ここで、血管内皮増殖因子は、血管内皮細胞に働き、細胞の増殖、遊走を促進させたり、血管新生を促進させたり、また血管透過性を亢進させたりすることが知られている。このように、血管内皮増殖賦活作用を有すると、血管内皮細胞増殖促進作用、血管新生促進作用等に寄与すると考えられる。
また、本開示の多糖体は、血管内皮増殖因子(VEGF)を有するが、このVEGFは、毛乳頭細胞から分泌され、このVEGFが血管新生を促進し、それにより毛母細胞が活性化することで発毛が促進されると考えられている。このように、VEGF産生促進作用を有すると、毛母細胞活性化作用、発毛促進作用等に寄与すると考えられる。
さらに、本開示の多糖体は、上述のように、VEGF産生促進作用及び血管内皮増殖賦活作用を有することで、VEGF産生量減少、血管内皮増殖抑制、毛母細胞活性低下等に起因する各種疾患や症状の予防、改善又は治療が可能と考える。
本開示のVEGF産生抑制、血管内皮増殖抑制、毛母細胞活性低下等に起因する各種疾患や症状として、脈管形成不全、血管系の発達異常、脱毛症等が挙げられる。
Here, vascular endothelial growth factor is known to act on vascular endothelial cells to promote cell proliferation and migration, promote angiogenesis, and enhance vascular permeability. Thus, having a vascular endothelial growth activating effect is thought to contribute to a vascular endothelial cell growth promoting action, an angiogenesis promoting action, and the like.
In addition, the polysaccharide of the present disclosure has vascular endothelial growth factor (VEGF), which is secreted from hair papilla cells, and this VEGF promotes angiogenesis, thereby activating hair matrix cells. It is thought that hair growth is promoted. Thus, having a VEGF production promoting action is considered to contribute to hair matrix activation, hair growth promoting action, and the like.
Furthermore, as described above, the polysaccharide of the present disclosure has a VEGF production promoting action and a vascular endothelial growth activating action, thereby causing various diseases caused by a decrease in VEGF production, vascular endothelial growth inhibition, hair matrix activity reduction, and the like. It is possible to prevent, improve or treat symptoms and symptoms.
Examples of various diseases and symptoms resulting from suppression of VEGF production, suppression of vascular endothelial growth, reduction of hair matrix cell activity, and the like of the present disclosure include vascular dysplasia, abnormal development of the vascular system, and alopecia.

本開示の多糖体は、後記実施例に示すように、毛乳頭の細胞を賦活することが認められている。よって、本開示の多糖体は、上述のように、FGF−7産生促進作用及びVEGF産生促進作用も有していることから、非常に良好に毛母細胞増殖賦活作用、育毛作用等に寄与すると考えられる。
一般的に、育毛作用物質の探索は、アデノシンのような低分子化合物又は植物等由来の有機溶媒抽出物等から行われているが、これとは本開示の多糖体は分子量や性質も異なる高分子かつ多糖体であり、さらに新規である本開示の多糖体に優れた育毛作用があることは全くの意外である。
The polysaccharides of the present disclosure have been found to activate hair papilla cells as shown in the Examples below. Therefore, since the polysaccharide of the present disclosure also has an FGF-7 production promoting action and a VEGF production promoting action as described above, it contributes very well to hair matrix cell growth activation action, hair growth action and the like. Conceivable.
In general, the search for a hair growth active substance is performed from a low molecular weight compound such as adenosine or an organic solvent extract derived from a plant, etc., but the polysaccharides of the present disclosure are different in molecular weight and properties. It is quite surprising that the polysaccharides of the present disclosure, which are molecular and polysaccharides, and which are novel, have an excellent hair-growth effect.

よって、本開示の多糖体は、上述のような、FGF−7産生促進作用、線維芽細胞増殖賦活作用、細胞賦活作用、毛乳頭細胞賦活作用、育毛作用、皮膚の抗老化防止作用、シワ改善作用、VEGF産生促進作用、血管内皮増殖賦活作用等のために使用してもよく、また、FGF−7産生促進剤、線維芽細胞増殖賦活剤、細胞増殖賦活剤、毛乳頭細胞増殖賦活剤、育毛剤、皮膚の抗老化防止剤、シワ改善剤、VEGF産生促進剤、血管内皮増殖賦活剤等の上述のような使用を目的とした各種製剤に使用することができ、これら各種製剤を製造するために使用することができる。
なお、本開示における「育毛剤」とは、毛を発育させること、毛の発育を促進させること、毛の健康状態を保つこと、脱毛を予防すること、及び脱毛を低減させること等の効果を発揮することを意味し、「養毛剤」をも包含する。
Therefore, the polysaccharide of the present disclosure has the above-described FGF-7 production promoting action, fibroblast proliferation activation action, cell activation action, hair papilla cell activation action, hair growth action, skin anti-aging prevention action, and wrinkle improvement. May be used for action, VEGF production promoting action, vascular endothelial growth stimulating action, etc., and FGF-7 production promoter, fibroblast proliferation activator, cell proliferation activator, hair papillary cell proliferation activator, It can be used in various preparations intended for use as described above, such as hair restorers, anti-aging agents for skin, wrinkle improving agents, VEGF production promoters, vascular endothelial growth activators, etc., and produce these various preparations Can be used for.
In addition, the “hair growth agent” in the present disclosure has effects such as growing hair, promoting hair growth, maintaining hair health, preventing hair loss, and reducing hair loss. It means to exert, and includes “hair restorer”.

通常、皮膚においてメラニンは紫外線から生体を保護する役目も果たしているが、過剰生成や不均一な蓄積は、皮膚の黒化やシミの原因となる。一般的に、メラニンは色素細胞中で生成されるチロシナーゼの酵素の働きによって、チロシンからドーパ、ドーパからトーパキノンに変化し、次いで、5,6―ジヒドロキシインドフェノール等の中間体を経て形成される。従って、皮膚の色黒(皮膚色素沈着症)を予防又は改善するため、すなわち、美白のためには、メラニン産生過程を阻害すること、又は既に産生したメラニンを淡色化漂白することが有効と考えられている。
このようなチロキシナーゼ活性阻害作用を有する物質として、例えば、特開2002−370962号公報には、藤茶枝葉部からのエタノール抽出物に優れたチロシナーゼ活性があることが開示されている。
また、特開2001−026530号公報には、スフィンゴ脂質という脂質に、メラノーマB16細胞のメラニン生成抑制作用があることが開示されている。
このように、従来植物抽出物やスフィンゴ脂質等の低分子系について美白作用が多く報告されているため、高分子で中性の多糖体に美白作用があるとの知見はほとんど見出されていない。
Normally, melanin also plays a role in protecting the body from ultraviolet rays in the skin, but overproduction and uneven accumulation cause skin darkening and spots. In general, melanin is changed from tyrosine to dopa, from dopa to topaquinone, and then formed through an intermediate such as 5,6-dihydroxyindophenol by the action of an enzyme of tyrosinase produced in pigment cells. Therefore, in order to prevent or improve skin darkness (skin pigmentation), that is, for whitening, it is effective to inhibit the melanin production process or to lighten and bleach the already produced melanin. It has been.
As such a substance having an inhibitory action on tyroxynase activity, for example, JP-A-2002-370962 discloses that an ethanol extract from Fuji tea branch leaves has excellent tyrosinase activity.
Japanese Patent Application Laid-Open No. 2001-026530 discloses that a lipid called sphingolipid has an inhibitory action on melanin production of melanoma B16 cells.
As described above, since many whitening effects have been reported for low molecular weight systems such as plant extracts and sphingolipids, little knowledge has been found that white polysaccharides have a whitening action. .

本開示の多糖体は、後記実施例に示すように、B16メラノーマ細胞増殖抑制作用が認められている。よって、本開示の多糖体は、メラニン産生抑制作用及び美白作用を有する。
さらに、本開示の多糖体は、メラノーマ細胞増殖抑制作用及びメラニン産生抑制作用を有することで、メラノーマ細胞増殖促進及びメラニン産生量増加等に起因する疾患や症状の予防、改善又は治療が可能と考えられる。
本開示のメラノーマ細胞増殖促進及びメラニン産生量増加等に起因する各種疾患や症状として、例えば、皮膚がん、皮膚の色黒化(皮膚色素沈着症、悪性黒色腫)等が挙げられる。
よって、本開示の多糖体は、上述のような、メラノーマ細胞増殖抑制作用、メラニン産生抑制作用及び美白作用等のために使用してもよく、また、メラノーマ細胞増殖抑制剤、メラニン産生抑制剤、美白剤等の上述のような使用を目的とした各種製剤に使用することができ、これら各種製剤を製造するために使用することができる。
The polysaccharide of the present disclosure has been observed to have a B16 melanoma cell growth inhibitory effect, as shown in Examples below. Therefore, the polysaccharide of the present disclosure has a melanin production inhibitory action and a whitening action.
Furthermore, the polysaccharide of the present disclosure has a melanoma cell growth inhibitory action and a melanin production inhibitory action, and thus is considered capable of preventing, improving, or treating diseases and symptoms caused by melanoma cell growth promotion and melanin production increase. It is done.
Examples of various diseases and symptoms resulting from the promotion of melanoma cell proliferation and increased melanin production of the present disclosure include skin cancer, skin darkening (skin pigmentation, malignant melanoma), and the like.
Therefore, the polysaccharide of the present disclosure may be used for the melanoma cell growth inhibitory action, the melanin production inhibitory action, the whitening action, etc. as described above, and the melanoma cell growth inhibitor, the melanin production inhibitor, It can be used in various preparations intended for use as described above, such as whitening agents, and can be used to produce these various preparations.

また、本開示の多糖体は、ヒトを含む動物に摂取、投与又は接触させて、上述のような、線維芽細胞増殖賦活作用、FGF−7産生促進作用、皮膚の抗老化防止作用、シワ改善作用、血管内皮増殖賦活作用、VEGF産生促進作用、育毛作用、メラノーマ細胞増殖抑制作用、メラニン産生抑制作用及び美白作用等を図るために、使用することができる物質である。
従って、本開示の多糖体は、上述のような、線維芽細胞増殖賦活、FGF−7産生促進、皮膚の抗老化防止、シワ改善、血管内皮増殖賦活、VEGF産生促進、育毛、メラノーマ細胞増殖抑制、メラニン産生抑制及び美白等のために、皮膚外用剤、化粧品、医薬品、医薬部外品、食品や機能性食品(例えば特定保健用食品等)等に配合することが可能であり、本開示の育毛剤、美白剤等は、これら皮膚外用剤、化粧品等として有用である。
In addition, the polysaccharide of the present disclosure is ingested, administered or brought into contact with animals including humans, as described above, fibroblast proliferation activation action, FGF-7 production promotion action, skin anti-aging prevention action, wrinkle improvement It is a substance that can be used to achieve an action, a vascular endothelial growth activation action, a VEGF production promotion action, a hair growth action, a melanoma cell growth inhibition action, a melanin production inhibition action, a whitening action and the like.
Accordingly, the polysaccharides of the present disclosure have the above-described fibroblast proliferation activation, FGF-7 production promotion, skin anti-aging prevention, wrinkle improvement, vascular endothelial growth activation, VEGF production promotion, hair growth, and melanoma cell growth inhibition. For the purpose of inhibiting melanin production and whitening, it can be incorporated into external preparations for skin, cosmetics, pharmaceuticals, quasi drugs, foods and functional foods (for example, foods for specified health use), etc. Hair restorers, whitening agents and the like are useful as these external preparations for skin, cosmetics and the like.

本開示の多糖体は、特に皮膚外用剤、化粧品、医薬部外品に用いるのが好ましく、皮膚に塗布などに接触させる製剤が好適である。
前記育毛剤、美白剤等の製剤中における多糖体の含有量は、好ましくは0.001〜0.01質量%、より好ましくは0.01〜0.1質量%であり、さらに好ましくは0.1〜1質量%である。
The polysaccharide of the present disclosure is particularly preferably used for an external preparation for skin, cosmetics, and quasi drugs, and a preparation that is brought into contact with the skin for application or the like is suitable.
The content of the polysaccharide in the preparation such as the hair restorer or whitening agent is preferably 0.001 to 0.01% by mass, more preferably 0.01 to 0.1% by mass, and still more preferably 0.00. It is 1-1 mass%.

なお、前記育毛剤及び美白剤等には、本開示の多糖体に、必要に応じて、任意の成分を組み合わせて使用してもよい。好ましい他の成分としては、薬学的に又は食品的に許容される成分であればよく、例えば、細胞賦活剤、抗酸化剤、保湿剤、紫外線防止剤、溶剤(水、アルコール類等)、油剤、界面活性剤、増粘剤、粉体、キレート剤、pH調整剤、乳化剤、安定化剤、着色剤、光沢剤、矯味剤、矯臭剤、賦形剤、結合剤、崩壊剤、滑沢剤、希釈剤、浸透圧調整剤、香料等が挙げられ、これらを目的とする製剤に応じて配合すればよい。
また、前記育毛剤及び美白剤等の形態は、特に限定されず、液状、ペースト状、ゲル状、固形状、粉末状等の何れの形態でもよい。
In addition, you may use for the said hair restorer, whitening agent, etc., combining the arbitrary component with the polysaccharide of this indication as needed. Other preferable components may be pharmaceutically or food-acceptable components. For example, cell activators, antioxidants, moisturizers, UV inhibitors, solvents (water, alcohols, etc.), oil agents , Surfactant, thickener, powder, chelating agent, pH adjuster, emulsifier, stabilizer, colorant, brightener, flavoring agent, flavoring agent, excipient, binder, disintegrant, lubricant , Diluents, osmotic pressure adjusting agents, fragrances and the like, and these may be blended according to the intended preparation.
The form of the hair-restoring agent and whitening agent is not particularly limited, and may be any form such as liquid, paste, gel, solid, and powder.

本技術は、以下の構成を採用することが可能である。
〔1〕 多糖の基本構造の糖残基が少なくともガラクトースとマンノースで構成されており、当該ガラクトースにフラノース型が存在する多糖体。
〔2〕前記ガラクトースの含有量が、全中性糖中、50〜79質量%である前記〔1〕記載の多糖体。
〔3〕前記多糖体の分子量が、GPC測定において3〜9×10である前記〔1〕又は〔2〕記載の多糖体。
〔4〕 前記ガラクトースとマンノースの糖残基の比率が2.5〜3.5:1である前記〔1〕〜〔3〕の何れか1項記載の多糖体。
〔5〕 パラクロレラ由来の細胞外多糖体である前記〔1〕〜〔4〕の何れか1項記載の多糖体。好適にはパラクロレラ属ケッセリ(Parachlorella kessreli)由来の多糖体である。また、前記多糖体は水溶性であるのが好適である。
The present technology can employ the following configurations.
[1] A polysaccharide in which the sugar residue of the basic structure of the polysaccharide is composed of at least galactose and mannose, and the galactose has a furanose type.
[2] The polysaccharide according to [1], wherein the content of the galactose is 50 to 79% by mass in the total neutral sugar.
[3] The polysaccharide according to [1] or [2], wherein the polysaccharide has a molecular weight of 3 to 9 × 10 4 in GPC measurement.
[4] The polysaccharide according to any one of [1] to [3], wherein a ratio of sugar residues of the galactose and mannose is 2.5 to 3.5: 1.
[5] The polysaccharide according to any one of [1] to [4], which is an extracellular polysaccharide derived from parachlorella. Preferred is a polysaccharide derived from Parachlorella kessreli. In addition, the polysaccharide is preferably water-soluble.

〔7〕 多糖の基本構造の糖残基が少なくともガラクトースとマンノースで構成されており、当該ガラクトースにフラノース型が存在する多糖体を含有するFGF−7産生促進剤、VEGF産生促進剤、線維芽細胞増殖賦活剤、血管内皮増殖賦活剤、細胞増殖賦活剤、育毛剤、メラニン産生抑制剤、美白剤、シワ改善剤、皮膚の抗老化剤、血管新生促進剤。
〔8〕 前記〔2〕〜〔5〕の何れか1項記載のパラクロレラ細胞外多糖体を含有するFGF−7産生促進剤、VEGF産生促進剤、線維芽細胞増殖賦活剤、血管内皮増殖賦活剤、細胞増殖賦活剤、育毛剤、メラニン産生抑制剤、美白剤、シワ改善剤、皮膚の抗老化剤、又は血管新生促進剤。
〔9〕 前記細胞増殖賦活が、毛乳頭細胞増殖賦活である前記〔7〕又は〔8〕記載の細胞増殖賦活剤。
〔10〕 多糖の基本構造の糖残基が少なくともガラクトースとマンノースで構成されており、当該ガラクトースにフラノース型が存在する多糖体を含有する皮膚外用剤。
〔11〕好適には、前記〔7〕〜〔13〕に記載の各種製剤の多糖体は、前記〔2〕〜〔5〕の何れか1項記載の多糖体である。
[7] FGF-7 production promoter, VEGF production promoter, fibroblast, wherein the sugar residue of the basic structure of the polysaccharide is composed of at least galactose and mannose, and contains a polysaccharide having a furanose type in the galactose Growth activator, vascular endothelial growth activator, cell proliferation activator, hair restorer, melanin production inhibitor, whitening agent, wrinkle improving agent, skin anti-aging agent, angiogenesis promoter.
[8] FGF-7 production promoter, VEGF production promoter, fibroblast proliferation activator, vascular endothelial proliferation activator containing the parachlorella extracellular polysaccharide according to any one of [2] to [5] Agent, cell proliferation activator, hair restorer, melanin production inhibitor, whitening agent, wrinkle improving agent, skin anti-aging agent, or angiogenesis promoter.
[9] The cell proliferation activator according to [7] or [8], wherein the cell proliferation activation is hair papilla cell proliferation activation.
[10] A skin external preparation containing a polysaccharide in which a sugar residue having a basic structure of a polysaccharide is composed of at least galactose and mannose, and the galactose has a furanose type.
[11] Preferably, the polysaccharide of the various preparations according to [7] to [13] is the polysaccharide according to any one of [2] to [5].

〔12〕 FGF−7産生促進剤、VEGF産生促進剤、線維芽細胞増殖賦活剤、血管内皮増殖賦活剤、細胞増殖賦活剤、育毛剤、メラニン産生抑制剤、美白剤、シワ改善剤、皮膚の抗老化剤又は血管新生促進剤の製造のための、多糖の基本構造の糖残基が少なくともガラクトースとマンノースで構成されており、当該ガラクトースにフラノース型が存在する多糖体の使用。
好適には、前記〔2〕〜〔5〕の何れか1項記載の多糖体である。
〔13〕 多糖の基本構造の糖残基が少なくともガラクトースとマンノースで構成されており、当該ガラクトースにフラノース型が存在する多糖体の、FGF−7産生促進剤、VEGF産生促進剤、線維芽細胞増殖賦活剤、血管内皮増殖賦活剤、細胞増殖賦活剤、育毛剤、メラニン産生抑制剤、美白剤、シワ改善剤、皮膚の抗老化剤又は血管新生促進剤への使用。
好適には、前記〔2〕〜〔5〕の何れか1項記載の多糖体である。
〔14〕 FGF−7産生量減少、線維芽細胞増殖能の低減、毛母細胞増殖能の低減、線維芽細胞増殖能の低減、VEGF産生量減少、血管内皮増殖抑制、毛母細胞活性低下、メラノーマ細胞増殖促進及びメラニン産生量増加等に起因する疾患の、予防、改善又は治療のための、〕多糖の基本構造の糖残基が少なくともガラクトースとマンノースで構成されており、当該ガラクトースにフラノース型が存在する多糖体。
好適には、前記〔2〕〜〔5〕の何れか1項記載の多糖体である。
[12] FGF-7 production promoter, VEGF production promoter, fibroblast proliferation activator, vascular endothelial growth activator, cell proliferation activator, hair restorer, melanin production inhibitor, whitening agent, wrinkle improving agent, skin Use of a polysaccharide in which the sugar residue of the basic structure of a polysaccharide is composed of at least galactose and mannose, and the galactose has a furanose type, for the production of an anti-aging agent or angiogenesis-promoting agent.
The polysaccharide according to any one of [2] to [5] is preferable.
[13] FGF-7 production promoter, VEGF production promoter, fibroblast proliferation of polysaccharides in which the sugar residue of the basic structure of the polysaccharide is composed of at least galactose and mannose, and the galactose has a furanose type Use as an activator, vascular endothelial growth activator, cell proliferation activator, hair restorer, melanin production inhibitor, whitening agent, wrinkle improving agent, skin anti-aging agent or angiogenesis promoter.
The polysaccharide according to any one of [2] to [5] is preferable.
[14] Reduction of FGF-7 production, reduction of fibroblast proliferation ability, reduction of hair matrix proliferation ability, reduction of fibroblast proliferation ability, reduction of VEGF production, inhibition of vascular endothelial growth, reduction of hair matrix activity, (For prevention, improvement or treatment of diseases caused by melanoma cell proliferation promotion and melanin production increase, etc.) The sugar residue of the basic structure of the polysaccharide is composed of at least galactose and mannose, and the galactose has a furanose type Is a polysaccharide.
The polysaccharide according to any one of [2] to [5] is preferable.

また、本技術は、以下の構成を採用することが可能である。
(1) パラクロレラ属単細胞藻類又は改変体を炭素源含有培養培地で好気的な条件下で従属培養し、生産される多糖体を回収する多糖体の製造方法。
(2) 前記多糖体が、前記〔1〕多糖の基本構造の糖残基が少なくともガラクトースとマンノースで構成されており、当該ガラクトースにフラノース型が存在する多糖体である、前記(1)〜(10)の何れか1項記載の多糖体の製造方法。好適には前記〔2〕〜〔5〕の多糖体である。
(3)パラクロレラ属単細胞藻類が、パラクロレラ属ケッセリ(Parachlorella kessreli)である前記(1)又は(2)記載の多糖体の製造方法。
(4)前記炭素源の培地中の濃度が、0.1〜10質量%である前記(1)〜(3)の何れか1項記載の多糖体の製造方法。
(5) 前記炭素原が、グルコース、果糖及びショ糖から選ばれる1種又は2種以上のものである前記(1)〜(4)記載の多糖体の製造方法。
(6) 前記培養が、通気条件下の従属的培養である前記(1)〜(5)の何れか1項記載の多糖体の製造方法。
(7) 前記培養の溶存酸素濃度が、3〜13ppmである前記(1)〜(6)の何れか1項記載の多糖体の製造方法。
(8) 前記培養の温度が、5〜40℃である前記(1)〜(7)の何れか1項記載の多糖体の製造方法。
(9) 前記培養のpHが、4〜9である前記(1)〜(8)の何れか1項記載の多糖体の製造方法。
(10) 前記培養後、遠心分離及びろ過を単独で又は2種組み合わせて藻体を除去する前記(1)〜(9)の何れか1項記載の多糖体の製造方法。
(11) 前記藻体を除去した後に凍結乾燥し、さらに水溶液に溶解後、水溶性画分を回収する前記(1)〜(10)の何れか1項記載の多糖体の製造方法。
(12) 前記(1)〜(11)の何れか1項記載の多糖体の製造方法にて得られた多糖体。
(13)Parachlorella kessleri-PNC1と命名され、FERM BP-11493として寄託された藻体である前記(1)〜(12)の何れか1項記載の多糖体の製造方法。
(14) Parachlorella kessleri-PNC1と命名され、FERM BP-11493として寄託された藻体。
[先行出願の実施例]
Further, the present technology can employ the following configurations.
(1) A method for producing a polysaccharide, comprising subjecting Parachlorella unicellular algae or a modified body to subculture under aerobic conditions in a carbon source-containing culture medium and recovering the produced polysaccharide.
(2) The above-mentioned (1) to (1), wherein the polysaccharide is a polysaccharide in which the sugar residue of the basic structure of [1] polysaccharide is composed of at least galactose and mannose, and the galactose has a furanose type. 10. The method for producing a polysaccharide according to any one of 10). The polysaccharides [2] to [5] are preferred.
(3) The method for producing a polysaccharide according to (1) or (2) above, wherein the unicellular algae of Parachlorella is Parachlorella kessreli.
(4) The method for producing a polysaccharide according to any one of (1) to (3), wherein the concentration of the carbon source in the medium is 0.1 to 10% by mass.
(5) The method for producing a polysaccharide according to (1) to (4), wherein the carbon source is one or more selected from glucose, fructose and sucrose.
(6) The method for producing a polysaccharide according to any one of (1) to (5), wherein the culture is subordinate culture under aerated conditions.
(7) The method for producing a polysaccharide according to any one of (1) to (6), wherein the dissolved oxygen concentration in the culture is 3 to 13 ppm.
(8) The method for producing a polysaccharide according to any one of (1) to (7), wherein the culture temperature is 5 to 40 ° C.
(9) The method for producing a polysaccharide according to any one of (1) to (8), wherein the pH of the culture is 4 to 9.
(10) The method for producing a polysaccharide according to any one of (1) to (9), wherein the algal bodies are removed by centrifuging and filtration singly or in combination after the culturing.
(11) The method for producing a polysaccharide according to any one of (1) to (10), wherein the algal bodies are removed, freeze-dried, and further dissolved in an aqueous solution, and then the water-soluble fraction is collected.
(12) A polysaccharide obtained by the method for producing a polysaccharide according to any one of (1) to (11).
(13) The method for producing a polysaccharide according to any one of (1) to (12), which is an alga body named Parachlorella kessleri-PNC1 and deposited as FERM BP-11493.
(14) Algae named Parachlorella kessleri-PNC1 and deposited as FERM BP-11493.
[Examples of prior application]

以下、本発明(本技術)を具体的に説明するために実施例及び比較例等を挙げるが、本
発明(本技術)は実施例等に限定されるものではない。
Hereinafter, examples and comparative examples will be given to specifically describe the present invention (present technique), but the present invention (present technique) is not limited to the examples.

独立行政法人 国立環境研究所 微生物系統保存施設(NIESコレクション)から、NIES-2152〜NIES-2162、2177、2178、2179の14株を、パナック株式会社新規事業開発第二部が入手した。各1株を複数に分けて、表1に示す培地にて継代培養しながら、これらの中から、光学顕微鏡において、細胞体の細胞外に墨汁に染まらない部分が非常に多く認められるものを、細胞外多糖体の生産性が高い株として探索した。
ここで、多糖体が細胞外に多く生産されること;藻体と多糖体との分離が容易であると、多糖体の回収が容易であること;藻体が多糖体生産に再利用可能なものであること;従属培養に適していると、大型タンクでの培養も可能であることが、工業的生産に適している藻体と考える。
継代培養を繰り返しながら、これらの中から、細胞外多糖体の生産性が高く、かつ従属培養に適した株を見出し、これをPNC1株とした。
Panac Co., Ltd. New Business Development Department 2 obtained 14 strains of NIES-2152 to NIES-2162, 2177, 2178, and 2179 from the National Institute for Environmental Studies Microbial System Storage Facility (NIES Collection). Dividing each strain into a plurality of subcultures in the medium shown in Table 1, and from these, in the optical microscope, those that do not stain the ink body outside the cell body of the cell body very much The strain was searched for as a high productivity of extracellular polysaccharides.
Here, a large amount of polysaccharides are produced extracellularly; the separation of alga bodies and polysaccharides is easy and the polysaccharides can be easily recovered; the alga bodies can be reused for polysaccharide production. Being suitable for subculture, it is possible to cultivate in a large tank, and it is considered an algal body suitable for industrial production.
While repeating subculture, a strain having high productivity of extracellular polysaccharide and suitable for subculture was found out of these, and this strain was designated as PNC1 strain.

藻体PNC1株を、表1に示す培地にて従属培養を行い、光学顕微鏡において、墨汁染色を行った。細胞体の細胞外に墨汁に染まらない部分が認められた。その墨汁に染まらない部分について、以下の製造例1〜3に示す方法にて多糖体を分離し、分析を行った結果、藻体の細胞外に多糖体が生産されていることを見出した(図1)。
さらに、前記PNC1株に関する形態観察及びrRNA遺伝子配列に基づく分子系統樹により(図2)、パラクロレラ属ケッセリ(Parachlorella kessreli)単細胞緑藻類と判断し、Parachlorella kessleri-PNC1株と命名した。独立行政法人 製品評価技術基盤機構 特許微生物寄託センター(NITE-IPOD)に、Parachlorella kessleri-PNC1株(FERM BP-11493)として寄託した。
The algal PNC1 strain was subcultured in the medium shown in Table 1 and stained with ink using an optical microscope. A portion of the cell body that was not stained with ink was found outside the cell body. As a result of separating and analyzing the polysaccharides by the methods shown in the following Production Examples 1 to 3 for the portion not stained with the ink, it was found that the polysaccharides were produced outside the algal cells ( FIG. 1).
Further, by morphological observation and molecular phylogenetic tree based on the rRNA gene sequence (FIG. 2), the PNC1 strain was judged to be a Parachlorella kessreli unicellular green algae and named Parachlorella kessleri-PNC1 strain. Deposited as a Parachlorella kessleri-PNC1 strain (FERM BP-11493) at the National Institute for Microbiology (NITE-IPOD), National Institute of Technology and Evaluation.

製造例1:本開示の多糖体の製造方法
Parachlorella kessleri-PNC1株(FERM BP-11493)を含むスラント状培地(50ml)を、グルコース含有培養培地250mlを含む3L容バッフル付き三角フラスコに添加し、照度8000〜10000lux、28℃で、160rpmにて4日間前培養した。なお、前培養前に、予備的に藻体数を増やしてもよい。
なお、グルコース含有培養培地は、表1の基礎培地1L当たりにグルコース10gを含有させたものである。
前培養物240mlを30L容のジャーファメンターに移して12日間本培養を行い、これを本培養物とした。このときの培養条件は、30℃、230rpm、通気0.56vvm、内圧0.3kgf/cm、pH7.2の好気的な条件下であり、光照射は行わなかった。
本培養物を、遠心分離(7000rpm(6500G)、25℃)し、目的とする多糖体を含有する上清液と藻体とに分離した。さらに分画分子量6000のUF膜(SIP1013)を用いて、原液を2Lまで濃縮した。濃縮物(2L)に、陰イオン交換樹脂200mLを添加し、ブリックス0.1まで回収し、UF膜ろ過にて、500mL濃縮し、凍結乾燥して、パラクロレラ由来の多糖体を得た。収率は、培養液1L当たり、0.2〜0.4gであった。
Production Example 1: Production method of polysaccharide of the present disclosure
A slant medium (50 ml) containing Parachlorella kessleri-PNC1 strain (FERM BP-11493) is added to a 3 L baffled Erlenmeyer flask containing 250 ml of glucose-containing culture medium, and an illuminance of 8000 to 10,000 lux at 28 ° C. and 160 rpm. Pre-cultured for 4 days. In addition, you may increase the number of algal bodies preliminarily before preculture.
The glucose-containing culture medium contains 10 g of glucose per liter of the basal medium shown in Table 1.
240 ml of the preculture was transferred to a 30 L jar fermenter and main culture was carried out for 12 days, which was designated as the main culture. The culture conditions at this time were aerobic conditions of 30 ° C., 230 rpm, aeration 0.56 vvm, internal pressure 0.3 kgf / cm 2 , pH 7.2, and no light irradiation was performed.
The main culture was centrifuged (7000 rpm (6500 G), 25 ° C.) and separated into a supernatant liquid containing the target polysaccharide and algal bodies. Further, the stock solution was concentrated to 2 L using a UF membrane (SIP1013) with a molecular weight cut off of 6000. 200 mL of an anion exchange resin was added to the concentrate (2 L), recovered to Brix 0.1, concentrated to 500 mL by UF membrane filtration, and freeze-dried to obtain a parachlorella-derived polysaccharide. The yield was 0.2 to 0.4 g per liter of the culture solution.

製造例2:多糖体の精製
パラクロレラ由来の多糖体1gに蒸留水40mLを添加して混合撹拌し、懸濁液を得た。この懸濁液を4℃にて一晩放置し、この懸濁液を遠心分離(7000rpm、6500g、5分間)し、上清と沈殿部とに分けた。上清について凍結乾燥し、水溶性のパラクロレラ由来の多糖体(以下、「水溶性パラクロレラ多糖」という)を得た(0.4〜0.5g)。
Production Example 2: Purification of polysaccharide 40 mL of distilled water was added to 1 g of a polysaccharide derived from Parachlorella and mixed and stirred to obtain a suspension. This suspension was allowed to stand at 4 ° C. overnight, and this suspension was centrifuged (7000 rpm, 6500 g, 5 minutes) to separate into a supernatant and a precipitate. The supernatant was freeze-dried to obtain a water-soluble parachlorella-derived polysaccharide (hereinafter referred to as “water-soluble parachlorella polysaccharide”) (0.4 to 0.5 g).

実施例1:水溶性パラクロレラ多糖体の構造解析
〔多糖体の分子量〕
水溶性パラクロレラ多糖体の分子量(Mw)を、GPC分析にて測定した結果、6.2×10、Mw(重量平均分子量)/Mn(数平均分子量)=1.5あった(図3のP1参照)。また、上述の製造例1及び2と同様にして得られた水溶性パラクロレラ多糖体の分子量(Mw)を、GPC分析にて測定した結果、6.7×10、Mw(重量平均分子量)/Mn(数平均分子量)=1.5あった(図3のP2参照)。
<GPC分析>
測定カラム:TSKgel GMPWXL (7.6mmID x 300 mm:東ソー株式会社)の2本直列
測定温度:40℃
移動相:0.1 M NaNO3
HPLCシステム:島津 LC-20システム
検出器:示差屈折計 LaboSystem RI-2000
標準物質:プルラン(昭和電工 P-52)
使用ソフト(GPC計算):LC Solutions, GPC software(島津)
Example 1: Structural analysis of water-soluble parachlorella polysaccharide [molecular weight of polysaccharide]
As a result of measuring the molecular weight (Mw) of the water-soluble parachlorella polysaccharide by GPC analysis, it was 6.2 × 10 4 , Mw (weight average molecular weight) / Mn (number average molecular weight) = 1.5 (FIG. 3). P1). Moreover, as a result of measuring the molecular weight (Mw) of the water-soluble parachlorella polysaccharide obtained by carrying out similarly to the above-mentioned manufacture examples 1 and 2 by GPC analysis, 6.7 * 10 < 4 >, Mw (weight average molecular weight) / Mn (number average molecular weight) = 1.5 (see P2 in FIG. 3).
<GPC analysis>
Measurement column: TSKgel GMPW XL (7.6mmID x 300 mm: Tosoh Corporation) in series Measurement temperature: 40 ° C
Mobile phase: 0.1 M NaNO 3
HPLC system: Shimadzu LC-20 system Detector: Differential refractometer LaboSystem RI-2000
Reference material: Pullulan (Showa Denko P-52)
Software used (GPC calculation): LC Solutions, GPC software (Shimadzu)

〔多糖体の組成〕
水溶性パラクロレラ多糖体を、2M−TFA(トリフルオロ酢酸)、120℃、2時間で加水分解した。この加水分解物を、室温、NaBHにて還元し、さらに(無水酢酸:1−メチルイミダゾール 9:1)にてアセテート化し、アルジトールアセテート誘導体を得た。アルジトールアセテート誘導体は、GCで分析を行った。
GC測定は、GL Science GC-353ガスクロマトグラフ(カラム SP-2330 (Spelco);検出器 FID;220 ℃の恒温分析)にて、行った。
アラビノース(4.7%)、ラムノース(4.0%)、キシロース(1.7%)、マンノース(22.5%)、ガラクトース(67.1%)であった。
[Polysaccharide composition]
The water-soluble parachlorella polysaccharide was hydrolyzed with 2M-TFA (trifluoroacetic acid) at 120 ° C. for 2 hours. This hydrolyzate was reduced with NaBH 4 at room temperature and further acetated with (acetic anhydride: 1-methylimidazole 9: 1) to obtain an alditol acetate derivative. The alditol acetate derivative was analyzed by GC.
GC measurement was performed with a GL Science GC-353 gas chromatograph (column SP-2330 (Spelco); detector FID; constant temperature analysis at 220 ° C.).
They were arabinose (4.7%), rhamnose (4.0%), xylose (1.7%), mannose (22.5%) and galactose (67.1%).

また、水溶性パラクロレラ多糖体について、メチル化分析を行った。
多糖試料をDMSOに溶解後、粉末NaOHを加え撹拌した後、CHIを加え多糖をメチル化した。メチル化多糖を回収後、2M−TFA中120?Cで2時間加水分解し、NaBDで還元後、無水酢酸と1−メチルイミダゾールでアセチル化した。得られた誘導体はGC−MSで分析した。
GC-MSは、Shimadzu QP-5000 GC-MS ガスクロマトグラフ質量分析装置〔カラム:SPB-50 (0.32 x 30 m)〕を行った。
本多糖体のマンノース残基として、非還元末端、1,2−結合、1,3−結合した残基が認められた。また、本多糖体のガラクトース残基の大部分はフラノースである、また本多糖体のガラクトース残基として、非還元末端、1,2−結合フラノース、1,5−結合フラノース、1,6−結合フラノース, 1,2,6−結合フラノース、そして1,3−結合ピラノースが認められた。
Moreover, methylation analysis was performed about water-soluble parachlorella polysaccharide.
The polysaccharide sample was dissolved in DMSO, powdered NaOH was added and stirred, and then CH 3 I was added to methylate the polysaccharide. After recovering the methylated polysaccharide, it was hydrolyzed at 120 ° C in 2M-TFA for 2 hours, reduced with NaBD 4 and then acetylated with acetic anhydride and 1-methylimidazole. The obtained derivative was analyzed by GC-MS.
GC-MS was performed using Shimadzu QP-5000 GC-MS gas chromatograph mass spectrometer [column: SPB-50 (0.32 × 30 m)].
As the mannose residue of the polysaccharide, a non-reducing end, 1,2-linked, and 1,3-linked residues were observed. Further, most of the galactose residues of the polysaccharide are furanose, and as the galactose residues of the polysaccharide, non-reducing ends, 1,2-linked furanose, 1,5-linked furanose, 1,6-linked Furanose, 1,2,6-linked furanose, and 1,3-linked pyranose were observed.

また、H-NMR分析(Varian Unity plus 500、1H:500MHz,13C:125MHz、〔溶媒:重水(DO)、測定温度は30℃、内部標準:DSS〕)により、水溶性パラクロレラ多糖体のガラクトース残基の多くは、フラノース型で存在することが認められた。
水溶性パラクロレラ多糖体のタンパク質含量(ローリー法)及びウロン酸含量(カルバゾール−硫酸法)にて測定を行った結果、タンパク質及びウロン酸の存在は、多量ではないが、認められた。
In addition, by 1 H-NMR analysis (Varian Unity plus 500, 1H: 500 MHz, 13 C: 125 MHz, [solvent: heavy water (D 2 O), measurement temperature is 30 ° C., internal standard: DSS]), water-soluble parachlorella polysaccharide Many of the body's galactose residues were found to exist in the furanose form.
As a result of measuring the protein content (Raleigh method) and uronic acid content (carbazole-sulfuric acid method) of the water-soluble parachlorella polysaccharide, the presence of protein and uronic acid was recognized, although not in large quantities.

水溶性パラクロレラ多糖体に存在するガラクトース及びマンノースのDLを調べた。
水溶性パラクロレラ多糖体の試料を2M TFA中、120℃で2時間加水分解した後、酸を窒素気流下で除去した。
加水分解物に(S)−(+)−2−butanol(100μL)と塩化アセチル(7.5μL)を加え、60℃で一晩加熱し、ブチルグリコシドとした。試薬を窒素気流下で除去後、トリメチルシリル化し得られた誘導体をGCで分析した。このとき、既知のD−Gal,L−Gal,D−Man及びL−Manも同様に誘導体を調製し、それぞれの保持時間との比較により、構成糖の絶対配置を確認した。D−ガラクトース及びD−マンノースが認められた。
<GC条件>
Column: SPB−1 (Spelco, 0.32 mm x 30 m)
GC: GL Science GC−353ガスクロマトグラフ(検出器 FID)
キャリアガス:窒素
オーブン温度: 135−200℃(1℃/min)
The DL of galactose and mannose present in the water-soluble parachlorella polysaccharide was examined.
A sample of the water-soluble parachlorella polysaccharide was hydrolyzed in 2M TFA at 120 ° C. for 2 hours, and then the acid was removed under a stream of nitrogen.
(S)-(+)-2-butanol (100 μL) and acetyl chloride (7.5 μL) were added to the hydrolyzate and heated at 60 ° C. overnight to form butyl glycoside. After removing the reagent under a nitrogen stream, the derivative obtained by trimethylsilylation was analyzed by GC. At this time, derivatives of known D-Gal, L-Gal, D-Man and L-Man were prepared in the same manner, and the absolute configuration of the constituent sugars was confirmed by comparison with the respective retention times. D-galactose and D-mannose were observed.
<GC conditions>
Column: SPB-1 (Spelco, 0.32 mm x 30 m)
GC: GL Science GC-353 gas chromatograph (detector FID)
Carrier gas: Nitrogen Oven temperature: 135-200 ° C (1 ° C / min)

このことから、本開示の多糖の基本構造の糖残基は、少なくともガラクトースとマンノースを主体として構成されており、当該ガラクトースのほとんどがフラノース型で存在するものと推定した。   From this, it was estimated that the sugar residue of the basic structure of the polysaccharide of the present disclosure is mainly composed of at least galactose and mannose, and most of the galactose exists in the furanose type.

実施例2:毛乳頭細胞賦活試験
〔ヒト正常毛乳頭細胞〕
凍結保存ヒト正常毛乳頭細胞(TOYOBO, Code No.CA60205a)の起眠時、継代培養、必要細胞数までの増殖には、毛乳頭細胞専用培地を使用した。培養はインキュベーター(5%CO、37℃)内で行った。
Example 2: Hair papilla cell activation test [human normal hair papilla cells]
For the preservation of cryopreserved human normal hair papilla cells (TOYOBO, Code No. CA60205a) during sleep, subculture, and growth to the required number of cells, a medium dedicated to hair papilla cells was used. The culture was performed in an incubator (5% CO 2 , 37 ° C.).

なお、実施例2及び後述の実施例3で使用する試薬等について、以下に示す。
<試薬>
DMEM 培地 (Nacalai tesque, 14242-65)
FBS (Invitrogen, Cat. No. 10091-148)
Penicillin-streptmycin solution (Nacalai tesque, Cat.No.26253-84)
0.25% trypsin-EDTA solution (Nacalai tesque、32777-44)
PBS (日水製薬株式会社, Code No. 05913)
Melanin (Sigma, Cat. No. M8631-100MG)
Phenyl-1-thiourea (PTU) (Wako, Cat. No. 166-13702)
Dimethyl sulfoxide (Nacalai tesque Cat. No. 13445-74)
Theophyline (Wako, Cat. No. 209-09932)
毛乳頭細胞増殖培地(TOYOBO, Code No.TMTPGM-250)添加剤含
毛乳頭細胞専用サブカルチャーセット(TOYOBO, Code No.CA090K)
生細胞数測定試薬SF(nacalai tesque, Cat.No. 07553)
Adenosine (Wako, Cat. No. 016-10493)
<その他>
Minisart 0.2 μm (Sartorius, Code No. 16534)
96 well culture plate (SUMILON, Cat. No. MS-8096F)
24 well cell culture cluster (TPP, Code No. 92424)
15 ml centrifuge tube (Corning, Code No. 430766)
Precision microplate reader (Molecular Devices)
Thermo Alumi Bath (IWAKI, ALB-121)
<標品等>
[1]メラニン生成を促進させるためテオフィリンを使用した。テオフィリンはDMSOに溶解・濾過滅菌し、36mg/ml溶液を調製した。使用時は培地にて希釈し、90μg/mLに調整した。
[2] Adenosine
毛乳頭細胞賦活試験の陽性コントロールとしてアデノシンを使用した。アデノシンはDMSOに溶解・濾過滅菌し、100mM溶液を調製した。使用時は培地にて希釈し、100μMに調整した。
In addition, it shows below about the reagent etc. which are used in Example 2 and Example 3 mentioned later.
<Reagent>
DMEM medium (Nacalai tesque, 14242-65)
FBS (Invitrogen, Cat. No. 10091-148)
Penicillin-streptmycin solution (Nacalai tesque, Cat.No.26253-84)
0.25% trypsin-EDTA solution (Nacalai tesque, 32777-44)
PBS (Nissui Pharmaceutical Co., Ltd., Code No. 05913)
Melanin (Sigma, Cat. No. M8631-100MG)
Phenyl-1-thiourea (PTU) (Wako, Cat. No. 166-13702)
Dimethyl sulfoxide (Nacalai tesque Cat. No. 13445-74)
Theophyline (Wako, Cat. No. 209-09932)
Hair papilla cell growth medium (TOYOBO, Code No.TMTPGM-250) additive-containing subculture set for hair papilla cells (TOYOBO, Code No. CA090K)
Viable cell count reagent SF (nacalai tesque, Cat. No. 07553)
Adenosine (Wako, Cat.No. 016-10493)
<Others>
Minisart 0.2 μm (Sartorius, Code No. 16534)
96 well culture plate (SUMILON, Cat. No. MS-8096F)
24 well cell culture cluster (TPP, Code No. 92424)
15 ml centrifuge tube (Corning, Code No. 430766)
Precision microplate reader (Molecular Devices)
Thermo Alumi Bath (IWAKI, ALB-121)
<Standard products>
[1] Theophylline was used to promote melanin production. Theophylline was dissolved in DMSO and sterilized by filtration to prepare a 36 mg / ml solution. At the time of use, it was diluted with a medium and adjusted to 90 μg / mL.
[2] Adenosine
Adenosine was used as a positive control for the dermal papilla cell activation test. Adenosine was dissolved in DMSO and sterilized by filtration to prepare a 100 mM solution. At the time of use, it was diluted with a medium and adjusted to 100 μM.

〔毛乳頭毒性試験〕
毛乳頭細胞を1.4x10個/100μL/wellの濃度で96ウェルプレートに播種し、翌日(80%コンフルエント)、各濃度(0.01、0.1、1質量%)の水溶性パラクロレラ多糖体を含む試験培地に交換し、24時間培養した。
細胞の増殖性を、生細胞数測定試薬SFにて、測定した。生細胞数測定試薬を10%含む増殖培地を100μL/wellで添加し、37℃、5%COでインキュベートした。30、90分後にマイクロプレートリーダーを用いて反応培地の吸光度を測定した(測定波長:450nm、対照波長:595nm)。試験数3にて行った。
水溶性パラクロレラ多糖体の0.01、0.1及び1質量%の何れの濃度でも、毛乳頭細胞に対して細胞毒性がほとんど認められなかった。
[Hair nipple toxicity test]
Papilla cells are seeded in a 96-well plate at a concentration of 1.4 × 10 4 cells / 100 μL / well, and the following day (80% confluent), each concentration (0.01, 0.1, 1% by mass) of water-soluble parachlorella The test medium was replaced with a polysaccharide and cultured for 24 hours.
Cell proliferation was measured with a living cell number measuring reagent SF. A growth medium containing 10% of a viable cell count measurement reagent was added at 100 μL / well, and incubated at 37 ° C. and 5% CO 2 . After 30 and 90 minutes, the absorbance of the reaction medium was measured using a microplate reader (measurement wavelength: 450 nm, control wavelength: 595 nm). The number of tests was three.
At any concentration of the water-soluble parachlorella polysaccharide of 0.01, 0.1 and 1% by mass, almost no cytotoxicity was observed on the hair papilla cells.

〔毛乳頭細胞・細胞賦活試験〕
毛乳頭細胞を5x10個/100μL/wellの濃度で96ウェルプレートに播種し、翌日(50%コンフルエント)、各濃度(0.00001、0.001、0.1質量%)の被験物質を含む試験培地に交換し、24時間、72時間培養した。細胞増殖性を、生細胞数測定試薬SFを用いて測定した。生細胞数測定試薬を10%含む増殖培地を100μL/wellで添加し、37℃、5%COでインキュベートした。30、90分後にマイクロプレートリーダーを用いて反応培地の吸光度を測定した(測定波長:450nm、対照波長:595nm)。試験数5にて行った。
表2に示すように、水溶性パラクロレラ多糖体の0.00001質量%以上の濃度で、優れた毛乳頭細胞増殖賦活作用が認められた。
<有意差検定>
比較試験区間では有意差検定を行った。検定はStudent T−testとして行いP<0.05(帰無仮説が5%未満)のものを有意差ありと判断した。
[Papilla cells / cell activation test]
Papilla cells are seeded in a 96-well plate at a concentration of 5 × 10 3 cells / 100 μL / well and contain the test substance at each concentration (0.00001, 0.001, 0.1% by mass) the next day (50% confluent). The culture medium was changed to a test medium and cultured for 24 hours and 72 hours. Cell proliferation was measured using a living cell count reagent SF. A growth medium containing 10% of a viable cell count measurement reagent was added at 100 μL / well, and incubated at 37 ° C. and 5% CO 2 . After 30 and 90 minutes, the absorbance of the reaction medium was measured using a microplate reader (measurement wavelength: 450 nm, control wavelength: 595 nm). The number of tests was 5.
As shown in Table 2, an excellent hair papillary cell proliferation activating effect was observed at a concentration of 0.00001% by mass or more of the water-soluble parachlorella polysaccharide.
<Significant difference test>
A significant difference test was performed in the comparative test section. The test was performed as Student T-test, and P <0.05 (the null hypothesis was less than 5%) was judged to be significant.

一般に細胞増殖過程では分裂が盛んな指数増殖期と分裂を停止し安定的に細胞を維持する維持期に大別できる。本試験において各時期における水溶性パラクロレラ多糖の効果を検証するため細胞密度(コンフルエント)が40〜60%の状態で水溶性パラクロレラ多糖を添加し、24時間培養後の生細胞数を測定した。また、さらに48時間培養(合計3日間)により維持期における細胞へ与える影響を検証した。
指数増殖期(培養1日)、維持期(培養3日)において水溶性クロレラ多糖体の最低濃度区において無添加区と比較して約1.1〜1.4倍の増殖促進を示した。これは被験物質に細胞分裂促進効果と維持促進効果があることが考えられる。
一方、陽性対照であるアデノシンは指数増殖期において増殖促進作用を示したものの、維持期では無添加区と同程度の生細胞数であった。これはアデノシンが細胞分裂を促進するものの細胞密度が100%となった後では細胞維持には作用しないことが考えられる。
よって、本開示の多糖体は、優れた細胞増殖賦活作用及び優れた毛乳頭細胞増殖賦活作用を有することが認められた。
In general, the cell growth process can be broadly divided into an exponential growth phase in which division is active and a maintenance phase in which division is stopped and cells are stably maintained. In this test, in order to verify the effect of water-soluble parachlorella polysaccharide at each stage, water-soluble parachlorella polysaccharide was added at a cell density (confluent) of 40 to 60%, and the number of living cells after 24 hours of culture was measured. . Further, the effect on the cells in the maintenance phase was verified by further 48 hours of culture (total 3 days).
In the exponential growth phase (1 day of culture) and the maintenance phase (3 days of culture), the lowest concentration group of the water-soluble chlorella polysaccharide showed about 1.1 to 1.4 times the growth promotion as compared to the non-added group. This may be because the test substance has a cell division promoting effect and a maintenance promoting effect.
On the other hand, adenosine, which is a positive control, showed a growth promoting effect in the exponential growth phase, but in the maintenance phase, the number of living cells was the same as that in the non-added group. This may be because adenosine promotes cell division but does not act on cell maintenance after the cell density reaches 100%.
Therefore, it was confirmed that the polysaccharide of the present disclosure has an excellent cell proliferation activating effect and an excellent hair papillary cell proliferation activating effect.

実施例3:美白作用(メラニン産生抑制)試験
〔細胞培養〕
B16 melanoma細胞を3x10個/ml/wellで24ウェルプレートに播種し、翌日、各濃度(0.01、0.1質量%)の水溶性パラクロレラ多糖体を含む試験培地1mlに交換し、48時間培養した。その後、全細胞の細胞内メラニン量を測定した。試験数5にて行った。
〔細胞内メラニンの測定〕
培地上清を除去後、ウェルに接着している細胞をPBS、1mlで洗浄する。細胞に0.25% trypsin−EDTA solutionを100μlを加え37℃、5%CO条件下で1分間静置する。トリプシン処理によって剥離した細胞をPBS1mlにて回収し、1.5mlチューブに移した。その後、1,000rpm、4℃で5分間遠心し、上清を除去後、PBSにて細胞ペレットを2回洗浄した。細胞懸濁液を3,000rpmで5分間遠心した後、PBSを除去し、1N水酸化ナトリウム溶液110μlに細胞を懸濁した。剥離した細胞を含むすべてのメラニン量を測定するため、培地上清、洗浄後のPBSを回収し3,000rpmで5分間遠心した後、得られた沈殿と細胞懸濁液を混ぜ、100℃で30分インキュベートして細胞を溶解し、この溶解液80μlを96ウェルプレートに移し、405nmにおける吸光度をマイクロプレートリーダーにて測定し、細胞内のメラニン量を算出した。メラニンの標準品として、市販合成メラニンを用いた。1N水酸化ナトリウム溶液にて2.5〜160μg/ml溶液を調製し、それぞれの吸光度から検量線を作成した。この標準検量線をもとに、各検体におけるメラニン量を算出した。
メラニン産生抑制試験の結果を表4に示す。水溶性パラクロレラ多糖体にてメラニン産生抑制を有意に示した。
よって、本開示の多糖体は、優れたメラニン産生抑制作用及び優れた美白作用を有することが認められた。
Example 3: Whitening action (melanin production inhibition) test [cell culture]
B16 melanoma cells were seeded in a 24-well plate at 3 × 10 4 cells / ml / well, and the following day, the test medium was replaced with 1 ml of a test medium containing water-soluble parachlorella polysaccharides of each concentration (0.01, 0.1% by mass). Cultured for 48 hours. Thereafter, the amount of intracellular melanin in all cells was measured. The number of tests was 5.
[Measurement of intracellular melanin]
After removing the culture supernatant, the cells adhering to the wells are washed with 1 ml of PBS. 100 μl of 0.25% trypsin-EDTA solution is added to the cells, and the cells are allowed to stand at 37 ° C. under 5% CO 2 for 1 minute. Cells detached by trypsin treatment were collected with 1 ml of PBS and transferred to a 1.5 ml tube. Then, it centrifuged at 1,000 rpm and 4 degreeC for 5 minute (s), the supernatant was removed, and the cell pellet was wash | cleaned twice by PBS. After centrifuging the cell suspension at 3,000 rpm for 5 minutes, PBS was removed and the cells were suspended in 110 μl of 1N sodium hydroxide solution. In order to measure the total amount of melanin including detached cells, the culture medium supernatant and the washed PBS were collected and centrifuged at 3,000 rpm for 5 minutes, and the resulting precipitate and the cell suspension were mixed at 100 ° C. Cells were lysed by incubating for 30 minutes, 80 μl of this lysate was transferred to a 96-well plate, the absorbance at 405 nm was measured with a microplate reader, and the amount of intracellular melanin was calculated. Commercially available synthetic melanin was used as a standard product of melanin. A 2.5 to 160 μg / ml solution was prepared with a 1N sodium hydroxide solution, and a calibration curve was prepared from each absorbance. Based on this standard calibration curve, the amount of melanin in each specimen was calculated.
The results of the melanin production inhibition test are shown in Table 4. The water-soluble parachlorella polysaccharide showed significant inhibition of melanin production.
Therefore, it was recognized that the polysaccharide of this indication has the outstanding melanin production inhibitory effect and the outstanding whitening effect | action.

実施例4:線維芽細胞増殖賦活試験
〔培養上清〕
毛乳頭細胞の培養条件及び被験物質処理条件などは、上述の実施例1及び2と同様に行った。培養上清は測定まで冷凍保存した。
〔試薬〕
FGF7 Human ELISA kit(abcam、Code No.ablOO519)
〔分析装置〕
Precision microplate reader(Molecular Devices)
〔試薬等の調製〕
FGF−7測定において必要量100μL、VEGF測定において必要量200μLである。
実施例2で得られた培養上清量が約90μLを、1×PBSを用いて約4倍に希釈しFGF−7測定に使用した。
〔培養上清中のFGF−7量の測定〕
[1]FGF−7の測定はキットのプロトコールに順じて行った。以下にその詳細を述べる。
[2]FGF−7標準原液(50ng/ml)をもとに、反応緩衝液を用いて400、133.3、44.44、14.81、4.94、1.65、0.55pg/mlのFGF−7標準溶液を調製する。
[3]FGF−7標準溶液および検体(培養上清)100μlをFGF−7固相化マイクロプレートの各ウェルに添加し、室温にて2時間30分反応した(一次反応)。
ウェル内の溶液を除去し、洗浄液で4回洗浄する。
[4]ビオチン標識抗FGF−7抗体溶液を各ウェルに100μlずつ添加し、室温で60分間反応させる(二次反応)。
[5]ウェル内の溶液を除去し、洗浄液で4回洗浄する。
[6]ストレプトアピジン溶液100μlを各ウェルに添加し、室温で45分反応する。
[7]酵素基質溶液100μlを各ウェルに添加し、遮光・室温下で30分間静置する(発色反応)。
[8]反応停止溶液を各ウェルに50μlずつ添加し、プレートミキサーで1分間混和後、プレートリーダーで各ウェルの吸光度を測定する(測定波長450nm)。
[9]標準曲線から、検体中のFGF−7濃度を算出する。
Example 4: Fibroblast proliferation activation test [culture supernatant]
The culture conditions of the dermal papilla cells and the test substance treatment conditions were the same as in Examples 1 and 2 above. The culture supernatant was stored frozen until measurement.
〔reagent〕
FGF7 Human ELISA kit (abcam, Code No. ablOO519)
〔Analysis equipment〕
Precision microplate reader (Molecular Devices)
[Preparation of reagents, etc.]
The required amount is 100 μL for FGF-7 measurement, and the required amount is 200 μL for VEGF measurement.
About 90 μL of the culture supernatant obtained in Example 2 was diluted about 4 times with 1 × PBS and used for FGF-7 measurement.
[Measurement of the amount of FGF-7 in the culture supernatant]
[1] FGF-7 was measured according to the protocol of the kit. Details are described below.
[2] Based on FGF-7 standard stock solution (50 ng / ml), 400, 133.3, 44.44, 14.81, 4.94, 1.65, 0.55 pg / Prepare ml FGF-7 standard solution.
[3] FGF-7 standard solution and 100 μl of specimen (culture supernatant) were added to each well of the FGF-7 solid-phased microplate and reacted at room temperature for 2 hours 30 minutes (primary reaction).
Remove the solution in the well and wash 4 times with the washing solution.
[4] 100 μl of biotin-labeled anti-FGF-7 antibody solution is added to each well and reacted at room temperature for 60 minutes (secondary reaction).
[5] The solution in the well is removed and the plate is washed 4 times with a washing solution.
[6] Add 100 μl of streptapidin solution to each well and react for 45 minutes at room temperature.
[7] Add 100 μl of the enzyme substrate solution to each well, and allow to stand at room temperature for 30 minutes in the dark (coloring reaction).
[8] Add 50 μl of the reaction stop solution to each well, mix with a plate mixer for 1 minute, and then measure the absorbance of each well with a plate reader (measurement wavelength: 450 nm).
[9] Calculate the FGF-7 concentration in the specimen from the standard curve.

実施例2で回収した毛乳頭細胞培養上清中のFGF−7産生量を測定した。
表5及び6に示すように、毛乳頭細胞培養1日間では、陽性対照であるアデノシンにおいてFGF−7が未検出であった。しかし、水溶性パラクロレラ多糖体において、FGF−7産生促進効果が認められた。さらに、3日間では、水溶性パラクロレラ多糖体の0.01〜1質量%の濃度において、アデノシンと比較しても高いFGF−7産生促進効果が認められた。
よって、本開示の多糖体に非常に優れたFGF−7の産生促進作用、線維芽細胞増殖賦活作用を有することが認められた。
The amount of FGF-7 produced in the dermal papilla cell culture supernatant collected in Example 2 was measured.
As shown in Tables 5 and 6, FGF-7 was not detected in the positive control, adenosine, in the dermal papilla cell culture for 1 day. However, the FGF-7 production promoting effect was observed in the water-soluble parachlorella polysaccharide. Further, in 3 days, a high FGF-7 production promoting effect was observed even at a concentration of 0.01 to 1% by mass of the water-soluble parachlorella polysaccharide compared with adenosine.
Therefore, it was confirmed that the polysaccharide of the present disclosure has a very excellent FGF-7 production promoting action and fibroblast proliferation activating action.

実施例5:血管内皮増殖賦活試験
〔培養上清〕
毛乳頭細胞の培養条件及び被験物質処理条件などは、上述の実施例1及び2と同様に行った。培養上清は測定まで冷凍保存した。
〔試薬〕
Human VEGF Quantikine ELISA(R&D Systems,Cat.No.DVEOO)
〔分析装置〕
Precision microplate reader(Molecular Devices)
〔培養上清中のVEGF量の測定〕
VEGFの測定はキットのプロトコールに順じて行った。以下にその詳細を述べる。
[1]VEGF標準原液(2000pg/ml)をもとに、反応緩衝液を用いて1000、500、250、125、62.5、31.2、15.6pg/mlのVEGF標準溶液を調製する。
[2]VEGF標準溶液および検体(培養上清)200μlを50μlの希釈溶液を各ウェルに添加したVEGF固相化マイクロプレートに添加し、室温にて2時間反応した(一次反応)。
[3]ウェル内の溶液を除去し、洗浄液で3回洗浄する。
[4]西洋ワサビベルオキシダーゼ結合VEGF抗体溶液を各ウェルに200μlずつ添加し、室温で2時間反応させる(二次反応)。
[5]ウェル内の溶液を除去し、洗浄液で3回洗浄する。
[6]基質溶液200μLを各ウェルに添加し、室温で20分反応する。
[7]反応停止溶液を各ウェルに50μlずつ添加し、プレートミキサーで1分間混和後、プレートリーダーで各ウェルの吸光度を測定する(測定波長450nm)。
[8]標準曲線から、検体中のVEGF濃度を算出する。
〔有意差検定〕
比較試験区間では有意差検定を行った。検定はStudentT−testとして行いPく0.05(帰無仮説が5%未満)のものを有意差ありと判断した。
Example 5: Vascular endothelial growth activation test [culture supernatant]
The culture conditions of the dermal papilla cells and the test substance treatment conditions were the same as in Examples 1 and 2 above. The culture supernatant was stored frozen until measurement.
〔reagent〕
Human VEGF Quantikine ELISA (R & D Systems, Cat. No. DVEOO)
〔Analysis equipment〕
Precision microplate reader (Molecular Devices)
[Measurement of VEGF content in culture supernatant]
VEGF was measured according to the kit protocol. Details are described below.
[1] Based on VEGF standard stock solution (2000 pg / ml), prepare 1000, 500, 250, 125, 62.5, 31.2, 15.6 pg / ml VEGF standard solution using reaction buffer. .
[2] VEGF standard solution and 200 μl of specimen (culture supernatant) were added to a VEGF-immobilized microplate to which 50 μl of diluted solution was added to each well, and reacted at room temperature for 2 hours (primary reaction).
[3] The solution in the well is removed and washed with a washing solution three times.
[4] 200 μl of a horseradish oxidase-conjugated VEGF antibody solution is added to each well and reacted at room temperature for 2 hours (secondary reaction).
[5] The solution in the well is removed and washed with a washing solution three times.
[6] Add 200 μL of the substrate solution to each well and react at room temperature for 20 minutes.
[7] Add 50 μl of the reaction stop solution to each well, mix with a plate mixer for 1 minute, and then measure the absorbance of each well with a plate reader (measurement wavelength: 450 nm).
[8] Calculate the VEGF concentration in the specimen from the standard curve.
[Significant difference test]
A significant difference test was performed in the comparative test section. The test was performed as Student T-test, and a value of 0.05 (null hypothesis was less than 5%) was judged to be significant.

実施例2で回収した毛乳頭細胞培養上清中のVEGF産生量を測定した。
表7及び8に示すように、陽性対照であるアデノシンのVEGF産生促進効果はあまりなかった。しかし、水溶性パラクロレラ多糖体いずれも高濃度試験区でVEGF産生促進効果が認められた。
よって、本開示の多糖体に非常に優れたVEGFの産生促進作用及び血管内皮増殖賦活作用を有することが認められた。
The amount of VEGF produced in the dermal papilla cell culture supernatant collected in Example 2 was measured.
As shown in Tables 7 and 8, the positive control, adenosine, had little VEGF production promoting effect. However, all the water-soluble parachlorella polysaccharides were found to promote VEGF production in the high concentration test section.
Therefore, it was confirmed that the polysaccharide of the present disclosure has a very excellent VEGF production promoting action and vascular endothelial growth activation action.

実際の毛髪組織では毛乳頭細胞は3次元的に増殖していることから、産生促進されたFGF−7及びVEGFが十分に機能すると考えられ、さらに毛乳頭細胞増殖賦活作用も認められているので、本開示の多糖体は、非常に優れた育毛作用を発揮すると考えられる。   In the actual hair tissue, dermal papilla cells are three-dimensionally proliferated. Therefore, it is considered that the production-promoted FGF-7 and VEGF function sufficiently, and further, the dermal papilla cell proliferation activation effect is also recognized. The polysaccharide of the present disclosure is considered to exhibit a very excellent hair-growth effect.

本開示の多糖体は、種々の効能が認められ、また大量生産も可能であるため、幅広い分野での応用が可能である。また、本開示の多糖体の製造方法にて、高付加価値の多糖体を効率良く生産することが可能であるため、製造コストの点や安定供給の点からも、産業上の利用可能性が非常に高い。   Since the polysaccharide of the present disclosure has various effects and can be mass-produced, it can be applied in a wide range of fields. In addition, since the polysaccharide manufacturing method of the present disclosure can efficiently produce a high-value-added polysaccharide, the industrial applicability can be achieved in terms of manufacturing cost and stable supply. Very expensive.

(1)Parachlorella kessleri-PNC1株(FERM BP-11493)(受託日:2012年 7月19日)
寄託先:〒305-8566 茨城県つくば市東1-1-1 つくばセンター中央第6、独立行政法人 製品評価技術基盤機構 特許微生物寄託センター(NITE-IPOD)。
(1) Parachlorella kessleri-PNC1 strain (FERM BP-11493) (Contract date: July 19, 2012)
Deposit place: 1-1-1 Higashi Tsukuba City, Ibaraki 305-8566, Tsukuba Center Chuo No. 6, National Institute for Product Evaluation Technology Patent Microbiology Deposit Center (NITE-IPOD).

[先行出願の特許請求の範囲]
[1]
多糖の基本構造の糖残基が少なくともガラクトースとマンノースで構成されており、当該ガラクトースにフラノース型が存在する多糖体。
[2]
前記ガラクトースの含有量が、全中性糖中、50〜79質量%である請求項1記載の多糖体。
[3]
パラクロレラ由来の細胞外多糖体である請求項1又は2記載の多糖体。
[4]
多糖の基本構造の糖残基が少なくともガラクトースとマンノースで構成されており、当該ガラクトースにフラノース型が存在する多糖体を含有する育毛剤。
[5]
請求項2又は3記載の多糖体を含有する育毛剤。
[6]
請求項1〜3の何れか1項記載の多糖体を含有する毛母細胞増殖賦活剤。
[7]
請求項1〜3の何れか1項記載の多糖体を含有するFGF−7産生促進剤。
[8]
請求項1〜3の何れか1項記載の多糖体を含有するVEGF産生促進剤。
[9]
請求項1〜3の何れか1項記載の多糖体を含有するメラニン産生抑制剤。
[10]
請求項1〜3の何れか1項記載の多糖体を含有する皮膚外用剤。
[11]
パラクロレラ属単細胞藻類又は改変体を炭素源含有培養培地で好気的な条件下で従属培養し、生産される多糖体を回収する多糖体の製造方法。
[12]
前記培養の溶存酸素濃度が、3〜13ppmである請求項11項記載の多糖体の製造方法。
[13]
前記培養後、遠心分離及びろ過を単独で又は2種組み合わせて藻体を除去した後に凍結乾燥し、さらに水溶液に溶解後、水溶性画分を回収する請求項12又は13記載の多糖体の製造方法。
[14]
前記パラクロレラ属単細胞藻類が、パラクロレラ属ケッセリ(Parachlorella kessreli)である請求項11〜13の何れか1項記載の製造方法。
[15]
前記パラクロレラ属単細胞藻類が、Parachlorella kessleri-PNC1と命名され、FERM BP-11493として寄託された藻体である請求項11〜14の何れか1項記載の多糖体の製造方法。
[16]
Parachlorella kessleri-PNC1と命名され、FERM BP-11493として寄託された藻体。
[Claims of Prior Application]
[1]
A polysaccharide in which the sugar residue of the basic structure of the polysaccharide is composed of at least galactose and mannose, and the galactose has a furanose type.
[2]
The polysaccharide according to claim 1, wherein a content of the galactose is 50 to 79% by mass in all neutral sugars.
[3]
The polysaccharide according to claim 1 or 2, which is an extracellular polysaccharide derived from parachlorella.
[4]
A hair restorer containing a polysaccharide in which a sugar residue having a basic structure of a polysaccharide is composed of at least galactose and mannose, and the galactose has a furanose type.
[5]
A hair restorer containing the polysaccharide according to claim 2 or 3.
[6]
A hair matrix cell growth activator comprising the polysaccharide according to any one of claims 1 to 3.
[7]
The FGF-7 production promoter containing the polysaccharide of any one of Claims 1-3.
[8]
A VEGF production promoter containing the polysaccharide according to any one of claims 1 to 3.
[9]
The melanin production inhibitor containing the polysaccharide of any one of Claims 1-3.
[10]
The skin external preparation containing the polysaccharide of any one of Claims 1-3.
[11]
A method for producing a polysaccharide, comprising subjecting Parachlorella unicellular algae or a modified body to subculture under aerobic conditions in a carbon source-containing culture medium and recovering the produced polysaccharide.
[12]
The method for producing a polysaccharide according to claim 11, wherein the dissolved oxygen concentration in the culture is 3 to 13 ppm.
[13]
The polysaccharide production according to claim 12 or 13, wherein after the culturing, centrifugation and filtration are used alone or in combination to remove algal bodies and then freeze-dried and further dissolved in an aqueous solution, and then the water-soluble fraction is recovered. Method.
[14]
The method according to any one of claims 11 to 13, wherein the unicellular algae of the genus Parachlorella is Parachlorella kessreli.
[15]
The method for producing a polysaccharide according to any one of claims 11 to 14, wherein the unicellular algae of the genus Parachlorella is an algal body named Parachlorella kessleri-PNC1 and deposited as FERM BP-11493.
[16]
Algal body named Parachlorella kessleri-PNC1 and deposited as FERM BP-11493.

[本発明の実施の形態]
以下、先行出願の多糖体を利用した本発明の実施の形態を示す。
[Embodiments of the present invention]
Hereinafter, embodiments of the present invention using polysaccharides of prior applications will be described.

本実施の形態では、先行出願の製造例1により得られた多糖体、特に藻類の培養物を遠心分離後、UF膜ろ過により精製して得られた多糖体(以下、精製多糖ともいう)を、免疫賦活剤に利用する。本実施の形態において免疫賦活剤とは、投与された対象中における免疫作用を高める作用をもつ薬剤をいう。なお、免疫賦活剤には、先行出願の製造例2により精製された多糖体を用いてもよい。また、精製しない多糖体を用いてもよい。また、免疫賦活剤には、多糖体以外の成分が含まれていてもよい。   In the present embodiment, the polysaccharide obtained by Production Example 1 of the prior application, particularly the polysaccharide obtained by centrifuging the algal culture and then purified by UF membrane filtration (hereinafter also referred to as purified polysaccharide) is used. Used as an immunostimulator. In the present embodiment, the immunostimulant refers to a drug having an action of enhancing the immune action in the administered subject. In addition, you may use the polysaccharide refine | purified by the manufacture example 2 of a prior application as an immunostimulator. Moreover, you may use the polysaccharide which is not refine | purified. The immunostimulant may contain components other than polysaccharides.

多糖体においては、基本構造の糖残基が少なくともガラクトースとマンノースで構成されており、当該ガラクトースにフラノース型が存在する。また、多糖体において、ガラクトースの含有量が、全中性糖中、50〜79質量%であることが好ましい。   In polysaccharides, the sugar residue of the basic structure is composed of at least galactose and mannose, and the galactose has a furanose type. Moreover, in a polysaccharide, it is preferable that content of galactose is 50-79 mass% in all the neutral sugars.

(由来)
多糖体として、生物から抽出する天然の多糖体を用いることが好ましい。このような生物としては、淡水性の単細胞藻類、特にパラクロレラ属単細胞藻類を用いることが好ましい。パラクロレラ属単細胞藻類としては、パラクロレラ属ケッセリ(Parachlorella kessreli)、特にParachlorella kessleri-PNC1と命名され、FERM BP-11493として寄託された藻体であることが好ましい。寄託先は、上記のとおりである。
(Origin)
It is preferable to use a natural polysaccharide extracted from a living organism as the polysaccharide. As such an organism, it is preferable to use freshwater unicellular algae, particularly Parachlorella unicellular algae. The parachlorella unicellular algae is preferably an alga body named Parachlorella kessreli, particularly Parachlorella kessleri-PNC1, and deposited as FERM BP-11493. The deposit destination is as described above.

(作用機序)
本実施の形態の免疫賦活剤は、アシクロビルやリン酸オセルタミビルなど従来のウイルス感染症の治療薬(以下、従来薬という)とは異なり、病原体の中和抗体量と分泌型IgA抗体量の産生をいずれも促進させる。分泌型IgA抗体は、粘膜免疫防御系において、中心的な役割を担う。粘膜免疫防御系は、常時抗原や微生物にさらされている投与対象の粘膜面を防御する局所粘膜機構である。粘膜免疫防御系として、たとえば消化管免疫防御系、気道免疫防御系および鼻腔免疫防御系が知られている。
(Mechanism of action)
The immunostimulatory agent of the present embodiment is different from conventional therapeutic agents for viral infections such as acyclovir and oseltamivir phosphate (hereinafter referred to as conventional drugs), and produces neutralizing antibody amounts and secretory IgA antibody amounts of pathogens. Both are promoted. Secretory IgA antibodies play a central role in the mucosal immune defense system. The mucosal immune defense system is a local mucosal mechanism that protects the mucosal surface of an administration subject that is constantly exposed to antigens and microorganisms. As the mucosal immune defense system, for example, the digestive tract immune defense system, the respiratory tract immune defense system and the nasal cavity immune defense system are known.

抗体量の産生パターンの違いから、免疫賦活剤の主成分である多糖体は、リン酸オセルタミビルとは作用機序が異なると考えられる。つまり、多糖体は病原体に作用するだけではなく、ヒトの免疫系にも作用して抗体の産生を促進すると推察される。具体的には、たとえば多糖体が経口投与される場合には、多糖体がパイエル板の関与により腸管免疫系に取り込まれる。その後、多糖体がマクロファージ、樹状細胞、NK細胞などの自然免疫担当細胞に認識され、その情報がT細胞やB細胞に伝達される。最終的に、獲得免疫系が活性化されることにより、対象とする病原体特異的な抗体の産生能も向上するものと推察される。この場合、免疫系全体が活性化されているため、次に別の病原体が投与対象の体内に侵入した場合にも、この病原体に対して効率的に免疫系が機能することができると予想される。   From the difference in the production pattern of the antibody amount, it is considered that the polysaccharide, which is the main component of the immunostimulant, has a different mechanism of action from oseltamivir phosphate. That is, it is speculated that polysaccharides not only act on pathogens but also act on the human immune system to promote antibody production. Specifically, for example, when a polysaccharide is orally administered, the polysaccharide is taken into the intestinal tract immune system due to the involvement of Peyer's patch. Thereafter, the polysaccharide is recognized by innate immune cells such as macrophages, dendritic cells, and NK cells, and the information is transmitted to T cells and B cells. Finally, it is presumed that when the acquired immune system is activated, the target pathogen-specific antibody producing ability is also improved. In this case, since the entire immune system is activated, it is expected that the immune system can function efficiently against this pathogen when another pathogen enters the body of the administration target next time. The

(投与対象)
本実施の形態の免疫賦活剤の投与対象は、特に限定されない。ヒト、マウス、ブタ、ウシなどの哺乳類の他、ニワトリなどの鳥類にも投与することができる。従来薬やワクチンは、対象とする動物種や病原体の種類に大きく依存する。一方、本実施の形態の免疫賦活剤は、投与される動物種や病原体の種類には依存しないと考えられる。
(Subject of administration)
The administration target of the immunostimulant of the present embodiment is not particularly limited. In addition to mammals such as humans, mice, pigs and cows, it can also be administered to birds such as chickens. Conventional drugs and vaccines greatly depend on the target animal species and pathogen type. On the other hand, it is considered that the immunostimulant of the present embodiment does not depend on the animal species or pathogen types to be administered.

(投与方法)
本実施の形態の免疫賦活剤は、投与対象が食べても無害な生物が産生する多糖体を主成分とする。そのため、投与期間、投与量、投与回数は特に限定されない。たとえばマウスに投与する場合、1回あたり1mgを1日2回、または1回あたり5mgを1日1回、14日継続して投与してもよい。本実施の形態の免疫賦活剤は、好ましくは3日間以上、より好ましくは7日間以上、継続的に投与される。これにより、投与対象に十分な免疫賦活機能を付与することができる。また、投与経路は特に限定されないが、簡便性や非侵襲性の観点から、経口投与が好ましい。
(Method of administration)
The immunostimulant of the present embodiment is mainly composed of a polysaccharide that is produced by a harmless organism even if the administration subject eats it. Therefore, the administration period, dosage, and administration frequency are not particularly limited. For example, when administered to mice, 1 mg per dose may be administered twice a day, or 5 mg per dose once a day for 14 consecutive days. The immunostimulant of this embodiment is preferably administered continuously for 3 days or longer, more preferably 7 days or longer. Thereby, sufficient immunostimulatory function can be provided to the administration subject. The administration route is not particularly limited, but oral administration is preferred from the viewpoint of convenience and noninvasiveness.

また、本実施の形態の免疫賦活剤は、A型インフルエンザウイルスの抑制剤として単独で使用することができるとともに、従来薬やワクチンなどの抗感染症薬と併用することにより、これらの薬剤の機能を補強することもできると考えられる。   In addition, the immunostimulant of the present embodiment can be used alone as an inhibitor of influenza A virus, and functions of these drugs can be used in combination with anti-infectives such as conventional drugs and vaccines. It is thought that it can be reinforced.

(病原体)
本実施の形態の免疫賦活剤は、投与対象の病原体に対する抵抗力を高めるために使用することができる。このような病原体として、主に細菌、真菌、原虫や、種々のウイルスなどの微生物が想定される。細菌としては、たとえば黄色ブドウ球菌、結核菌、コレラ菌、ジフテリア菌、赤痢菌、炭疽菌、また原虫としてはマラリア原虫などが想定される。ウイルスとしては、たとえばインフルエンザウイルス、エイズウイルス、コロナウイルスなどのRNAウイルス、ヘルペスウイルス(HSV−1、HSV−2など)、アデノウイルスなどのDNAウイルスが想定される。本実施の形態の免疫賦活剤は、特に気道で増殖する一般的なインフルエンザウイルスに有効であると考えられる。従来薬やワクチンは、対象とする病原体の種類に大きく依存する。一方、本実施の形態の免疫賦活剤では、複数の種類の病原体に対して増殖抑制効果を有する。
(Pathogen)
The immunostimulant of this Embodiment can be used in order to raise the resistance with respect to the pathogen of administration object. As such pathogens, microorganisms such as bacteria, fungi, protozoa, and various viruses are mainly assumed. As bacteria, for example, Staphylococcus aureus, Mycobacterium tuberculosis, Vibrio cholerae, Diphtheria, Shigella, Bacillus anthracis, and protozoa such as Plasmodium are considered. As viruses, for example, RNA viruses such as influenza virus, AIDS virus and coronavirus, DNA viruses such as herpes virus (HSV-1, HSV-2, etc.) and adenovirus are envisaged. The immunostimulant of the present embodiment is considered to be particularly effective for general influenza viruses that grow in the respiratory tract. Conventional drugs and vaccines greatly depend on the type of target pathogen. On the other hand, the immunostimulant of the present embodiment has a growth inhibitory effect against a plurality of types of pathogens.

(有用性)
以上の通り、本実施の形態の免疫賦活剤は、主に以下の点で有用である。
・投与対象における病原体に対する抵抗力を容易に高めることができる。
・主成分である多糖体は、容易に培養可能な淡水性の単細胞藻類を用いて、大量に精製可能である。
・主成分である多糖体は、投与対象にとって無害であると考えられる。そのため、投与方法を適宜選択することができる。
・投与対象に制限がないと考えられる。そのため、幅広い生物に対して投与することができる。
・病原体に対する特異性が低い。そのため、種々の病原体に対する抵抗力を高めるために使用することができる。
・従来薬とは作用機序が異なると考えられる。そのため、従来薬を補強する目的で従来薬と併用することができると考えられる。
[本発明の実施例]
(Usefulness)
As described above, the immunostimulant of the present embodiment is mainly useful in the following points.
-Resistance to pathogens in administration subjects can be easily increased.
-The polysaccharide as the main component can be purified in large quantities using fresh water unicellular algae that can be easily cultured.
-The polysaccharide, which is the main component, is considered harmless to the administration subject. Therefore, the administration method can be appropriately selected.
・ There is no limit to the subject of administration. Therefore, it can be administered to a wide range of organisms.
・ Low specificity for pathogens. Therefore, it can be used to increase resistance against various pathogens.
・ It is considered that the mechanism of action is different from that of conventional drugs. Therefore, it is thought that it can be used together with a conventional drug for the purpose of reinforcing the conventional drug.
[Embodiments of the present invention]

実施例6:HSV−2感染マウスにおける症状の経時変化の比較
HSV−2感染マウスに対して、定期的にパラクロレラ(Parachlorella kessleri-PNC1:FERM BP-11493)から得られた精製多糖(以下、パラクロレラ精製多糖)を投与させた場合とさせなかった場合における症状の経時変化を比較した。本実施例では、以下の投与群および方法を使用した。
Example 6: Comparison of chronological changes in symptoms in HSV-2 infected mice For HSV-2 infected mice, a purified polysaccharide (hereinafter referred to as “Parachlorella kessleri-PNC1: FERM BP-11493”) obtained periodically from Parachlorella kessleri-PNC1: The time course of the symptom was compared with and without administration of purified parachlorella polysaccharide. In this example, the following administration groups and methods were used.

(投与群)
・コントロール(生理食塩水)(1回投与量:20μl)(以下、ネガティブコントロール群)
・パラクロレラ精製多糖(PCP2)(1回投与量:1mg/20μl)(以下、サンプル投与群)
(Administration group)
Control (saline) (single dose: 20 μl) (hereinafter, negative control group)
Parachlorella purified polysaccharide (PCP2) (single dose: 1 mg / 20 μl) (hereinafter, sample administration group)

(方法)
〔1〕 BALB/cマウス(雌、6週齢、n=5)にウイルス接種の6日前および1日前に17−メドロキシプロゲステロン(Sigma社)(3mg/0.1ml/マウス)を皮下注射した。
〔2〕 HSV−2(1×10PFU/20μl/マウス:致死量)を局所(性器)接種した。
〔3〕 投与は、感染1時間前から1日2回(朝9時と夜6時)、局所投与にておこなった。
〔4〕 感染日(0日後とする)から感染14日後まで、発症スコア(lesion score)を記録した。用いたスコアは以下の通りである。スコアは、5個体の平均スコアとして算出した。
0:無症状、1:局所に軽度の発赤、2:局所に高度の発赤・腫脹、3:局所に浸出液の出現、4:後肢の麻痺、5:死亡
(Method)
[1] BALB / c mice (female, 6 weeks old, n = 5) were subcutaneously injected with 17-medroxyprogesterone (Sigma) (3 mg / 0.1 ml / mouse) 6 days before and 1 day before virus inoculation. .
[2] HSV-2 (1 × 10 4 PFU / 20 μl / mouse: lethal dose) was inoculated locally (genital).
[3] Administration was carried out by local administration twice a day (9:00 am and 6 pm) 1 hour before infection.
[4] The onset score was recorded from the day of infection (0 days later) to 14 days after infection. The score used is as follows. The score was calculated as an average score of 5 individuals.
0: asymptomatic, 1: mild redness locally, 2: severe redness / swelling locally, 3: appearance of exudate locally, 4: paralysis of hind limbs, 5: death

(結果)
図4は、単純ヘルペスウイルス2型(HSV−2)を感染させたマウスの病状の経時変化を示す図である。図4(A)は、HSV−2を感染させたマウスの発症スコアの経時変化を示すグラフである。図4(B)は、HSV−2を感染させたマウスの死亡状況を示す表である。
(result)
FIG. 4 is a graph showing changes over time in the pathology of mice infected with herpes simplex virus type 2 (HSV-2). FIG. 4 (A) is a graph showing changes over time in the onset score of mice infected with HSV-2. FIG. 4 (B) is a table showing the death status of mice infected with HSV-2.

ネガティブコントロール群(比較例6)では、感染4日後から発症し(図4(A))、感染9日後には全例死亡した(図4(B))。一方、サンプル投与群(実施例6)では、感染11日後には全例が死亡したが(図4(B))、それまではネガティブコントロール群に比べて有意に発症が抑制された(図4(A))。   In the negative control group (Comparative Example 6), the disease developed from 4 days after infection (FIG. 4A), and all cases died 9 days after infection (FIG. 4B). On the other hand, in the sample administration group (Example 6), all cases died 11 days after the infection (FIG. 4B), but until then, the onset was significantly suppressed compared to the negative control group (FIG. 4). (A)).

実施例7:HSV−2感染マウスにおけるHSV−2の増殖量の比較
実施例6において、感染3日後のHSV−2の増殖量を比較した。実施例6の方法〔3〕に続いて、感染3日後に、局所をリン酸緩衝生理食塩水(100μl)で洗浄し、洗浄液中のウイルス量を、35mmディッシュに培養したVero細胞(アフリカミドリザル腎由来細胞)を用いたプラークアッセイ法にて測定した。得られたデータの統計処理には、Student’s t testを用いた。
Example 7: Comparison of the amount of HSV-2 proliferation in HSV-2 infected mice In Example 6, the amount of HSV-2 proliferation 3 days after infection was compared. Following the method [3] of Example 6, 3 days after infection, the local area was washed with phosphate buffered saline (100 μl), and the amount of virus in the washing solution was measured in Vero cells (African green monkey kidney) cultured in a 35 mm dish. (Derived cells) was measured by a plaque assay method. Student's t test was used for statistical processing of the obtained data.

図5は、図4のHSV−2を感染させたマウスにおける感染3日後のHSV−2の増殖量を示すグラフである。   FIG. 5 is a graph showing the amount of growth of HSV-2 three days after infection in the mouse infected with HSV-2 in FIG.

サンプル投与群(実施例7)では、個体間のばらつきが大きかったため有意差こそなかったものの、感染3日後のウイルス量はネガティブコントロール群(比較例7)に比べて減少した。   In the sample administration group (Example 7), although there was no significant difference due to large variation among individuals, the amount of virus 3 days after infection decreased compared to the negative control group (Comparative Example 7).

以上の実施例6および7により、パラクロレラ精製多糖は、HSV−2による性器ヘルペスの発症を抑制することにより、マウスの生存期間を延長させることができることが示された。   From the above Examples 6 and 7, it was shown that the parachlorella purified polysaccharide can prolong the survival period of the mouse by suppressing the onset of genital herpes due to HSV-2.

実施例8:A型インフルエンザウイルス感染マウスにおける症状の経時変化の比較
A型インフルエンザウイルス感染マウスに対して、定期的にパラクロレラ精製多糖を投与させた場合とさせなかった場合における症状の経時変化を比較した。本実施例では、以下の投与群および方法を使用した。
Example 8: Comparison of changes over time in symptoms of influenza A virus-infected mice Changes in symptoms over time when the parachlorella purified polysaccharide was regularly administered to influenza A virus-infected mice. Compared. In this example, the following administration groups and methods were used.

(投与群)
・コントロール(滅菌蒸留水)(0.4ml/日)(以下、ネガティブコントロール群)
・パラクロレラ精製多糖(PCP2)(5mg/日)(以下、サンプル投与群)
(Administration group)
Control (sterile distilled water) (0.4 ml / day) (hereinafter, negative control group)
Parachlorella purified polysaccharide (PCP2) (5 mg / day) (hereinafter, sample administration group)

(方法)
〔1〕 BALB/cマウス(雌、6週齢、n=10)に、A型インフルエンザウイルス(A/NWS/33)(2×10PFU/50μl/マウス)を経鼻接種した。
〔2〕 投与は、感染7日前から1日2回(朝9時と夜6時)、経口投与にておこなった。
〔3〕 感染日(0日後とする)から感染14日後まで、体重の変化を記録した。体重は、各投与群の感染当日の体重を100(%)としたときの相対値に換算した。得られたデータの統計処理には、Student’s t testを用いた。図7〜11の*、**、***は、ネガティブコントロール群との比較において、それぞれp<0.05、p<0.01、p<0.001の場合を示す。
(Method)
[1] BALB / c mice (female, 6 weeks old, n = 10) were inoculated intranasally with influenza A virus (A / NWS / 33) (2 × 10 4 PFU / 50 μl / mouse).
[2] Administration was carried out by oral administration twice a day (9:00 am and 6 pm) 7 days before infection.
[3] The change in body weight was recorded from the day of infection (0 days later) to 14 days after infection. The body weight was converted into a relative value when the body weight on the day of infection in each administration group was defined as 100 (%). Student's t test was used for statistical processing of the obtained data. *, **, and *** in FIGS. 7 to 11 indicate cases where p <0.05, p <0.01, and p <0.001, respectively, in comparison with the negative control group.

(結果)
図6は、A型インフルエンザウイルスを感染させたマウスにおける体重の経時変化を示すグラフである。
(result)
FIG. 6 is a graph showing changes in body weight over time in mice infected with influenza A virus.

ネガティブコントロール群(比較例8)、サンプル投与群(実施例8)ともに死亡例は見られなかった。サンプル投与群では、感染1日後から14日後まで、ネガティブコントロール群に比べてマウスの平均体重の低下が有意に抑制された。   In the negative control group (Comparative Example 8) and the sample administration group (Example 8), no death was observed. In the sample administration group, the decrease in the average body weight of the mice was significantly suppressed from 1 day to 14 days after the infection as compared with the negative control group.

実施例9:A型インフルエンザウイルス感染マウスにおけるA型インフルエンザウイルスの増殖量の比較
実施例8において、感染3日後のA型インフルエンザウイルスの増殖量を比較した。実施例8の方法〔3〕に続いて、感染3日後に、肺と気道洗浄液(BALF)におけるウイルス量を、35mmディッシュに培養したMDCK細胞(イヌ腎由来細胞)を用いたプラークアッセイにて測定した。
Example 9: Comparison of proliferation amount of influenza A virus in mice infected with influenza A virus In Example 8, the proliferation amount of influenza A virus 3 days after infection was compared. Following method [3] in Example 8, 3 days after infection, the viral load in lung and airway lavage fluid (BALF) was measured by plaque assay using MDCK cells (canine kidney-derived cells) cultured in 35 mm dishes. did.

(結果)
図7は、図6のA型インフルエンザウイルスを感染させたマウス(各群5匹)における感染3日後のA型インフルエンザウイルスの増殖量を示すグラフである。
(result)
FIG. 7 is a graph showing the proliferation amount of influenza A virus 3 days after infection in mice infected with the influenza A virus of FIG. 6 (5 mice in each group).

サンプル投与群では、ネガティブコントロール群(比較例9−1、9−2)と比較して、A型インフルエンザウイルス量は肺(実施例9−1)、気道洗浄液(実施例9−2)とも有意に減少した(p<0.01)。   In the sample administration group, the amount of influenza A virus was significant in both lung (Example 9-1) and airway lavage fluid (Example 9-2) compared to the negative control group (Comparative Examples 9-1 and 9-2). (P <0.01).

実施例10:A型インフルエンザウイルス感染マウス(各群5匹)における中和抗体量の比較
実施例8において、感染14日後のA型インフルエンザウイルスに対する中和抗体量を比較した。本実施例では、サンプル投与群およびネガティブコントロール群に加えて、リン酸オセルタミビル(タミフル(登録商標)、ロシュ社)を投与(0.2mg/日)したオセルタミビル投与群を参考例として用いた。実施例8の方法〔4〕に続いて、感染14日後に、血清と気道洗浄液(BALF)における中和抗体量を、MDCK細胞を用いたプラークアッセイ法にて測定した。
Example 10: Comparison of the amount of neutralizing antibody in mice infected with influenza A virus (5 mice per group) In Example 8, the amount of neutralizing antibody against influenza A virus 14 days after infection was compared. In this example, in addition to the sample administration group and the negative control group, an oseltamivir administration group administered with oseltamivir phosphate (Tamiflu (registered trademark), Roche) (0.2 mg / day) was used as a reference example. Following the method [4] of Example 8, 14 days after infection, the amount of neutralizing antibody in serum and airway lavage fluid (BALF) was measured by plaque assay using MDCK cells.

(結果)
図8は、図6のA型インフルエンザウイルスを感染させたマウスにおける感染14日後の中和抗体量を示すグラフである。図8(A)は、血清における中和抗体量を示すグラフである。図8(B)は、気道洗浄液における中和抗体量を示すグラフである。
(result)
FIG. 8 is a graph showing the amount of neutralizing antibody 14 days after infection in mice infected with the influenza A virus of FIG. FIG. 8A is a graph showing the amount of neutralizing antibody in serum. FIG. 8B is a graph showing the amount of neutralizing antibody in the airway washing solution.

オセルタミビル投与群では、ネガティブコントロール群(比較例10−1、10−2)と比較して、中和抗体量は血清(参考例10−1)、気道洗浄液(参考例10−2)とも有意に減少した(それぞれp<0.05、p<0.001)。一方、サンプル投与群では、ネガティブコントロール群と比較して、中和抗体量は血清(実施例10−1)、気道洗浄液(実施例10−2)とも有意に増加した(p<0.001)。   In the oseltamivir-administered group, the amount of neutralizing antibody was significantly higher in both serum (Reference Example 10-1) and airway lavage fluid (Reference Example 10-2) than in the negative control group (Comparative Examples 10-1 and 10-2). Decreased (p <0.05 and p <0.001 respectively). On the other hand, in the sample administration group, the amount of neutralizing antibody was significantly increased in both serum (Example 10-1) and airway lavage fluid (Example 10-2) compared to the negative control group (p <0.001). .

実施例11:A型インフルエンザウイルス感染マウスにおけるウイルス特異的分泌型免疫グロブリンA(IgA)量の比較
実施例8において、感染14日後のA型インフルエンザウイルスに対するウイルス特異的な分泌型IgA抗体量を比較した。実施例10と同様に、本実施例でも、サンプル投与群およびネガティブコントロール群に加えて、リン酸オセルタミビル(タミフル(登録商標)、ロシュ社)を投与(0.2mg/日)したオセルタミビル投与群を参考例として用いた。実施例8の方法〔4〕に続いて、感染14日後に、気道洗浄液(BALF)と排泄物におけるウイルス特異的な分泌型IgA抗体量を、下記の酵素結合免疫吸着法(ELISA法)で測定した。
1)サンプルの調製:気道洗浄液は生理食塩水で5倍希釈する。排泄物は、10倍量の生理食塩水を加え、15分間静置後、vortexをかけ、4℃で遠心(3,000rpm、10分間)して、その上清を採取する。
2)抗原(超遠心処理で精製したインフルエンザウイルス、1mg/ml)を、ELISA用96−wellプレートに50ml/wellずつ加え、37℃で1時間処理する。
3)0.05% Tween−20加リン酸緩衝生理食塩水(PBS−T)で3回洗浄する。
4)5%スキムミルクを100ml/well加え、4℃に一晩放置し、ブロッキング処理する。
5)上記1)のサンプルを、50ml/well加え、37℃で1時間処理する。
6)PBS−Tで3回洗浄する。
7)二次抗体(HRP標識抗マウスIgA抗体)を50ml/well加え、37℃で1時間処理する。
8)PBS−Tで5回洗浄する。
9)基質溶液(0.4mg/ml o−フェニレンジアミン+10ml/ml 過酸化水素)を50ml/well加え、室温で20分間放置する。
10)4N HSOを25ml/well加え、反応を停止させる。
11)490nmで吸光度を測定し、各サンプルについて3回の測定値の平均を求める。別に準備したIgAの検量線から、サンプルのIgA量を計算する。
排泄物におけるIgA抗体量は、腸において分泌されたIgA抗体量の指標となる。
Example 11: Comparison of the amount of virus-specific secretory immunoglobulin A (IgA) in mice infected with influenza A virus In Example 8, the amount of virus-specific secretory IgA antibody against influenza A virus 14 days after infection was compared. did. Similar to Example 10, in this example, in addition to the sample administration group and the negative control group, the oseltamivir administration group to which oseltamivir phosphate (Tamiflu (registered trademark), Roche) was administered (0.2 mg / day) Used as a reference example. Following the method [4] of Example 8, 14 days after infection, the amount of virus-specific secretory IgA antibody in airway lavage fluid (BALF) and excreta was measured by the following enzyme-linked immunosorbent assay (ELISA method). did.
1) Sample preparation: The airway washing solution is diluted 5-fold with physiological saline. The excreta is added with 10 times the amount of physiological saline, allowed to stand for 15 minutes, vortexed, centrifuged at 4 ° C. (3,000 rpm, 10 minutes), and the supernatant is collected.
2) An antigen (influenza virus purified by ultracentrifugation, 1 mg / ml) is added to each 96-well plate for ELISA at 50 ml / well and treated at 37 ° C. for 1 hour.
3) Wash 3 times with 0.05% Tween-20 phosphate buffered saline (PBS-T).
4) Add 5% skimmed milk at 100 ml / well and leave at 4 ° C. overnight to block.
5) Add 50 ml / well of the sample of 1) above and treat at 37 ° C. for 1 hour.
6) Wash 3 times with PBS-T.
7) Add 50 ml / well of secondary antibody (HRP-labeled anti-mouse IgA antibody) and treat at 37 ° C. for 1 hour.
8) Wash 5 times with PBS-T.
9) Add 50 ml / well of the substrate solution (0.4 mg / ml o-phenylenediamine + 10 ml / ml hydrogen peroxide) and let stand at room temperature for 20 minutes.
10) Add 4N H 2 SO 4 at 25 ml / well to stop the reaction.
11) Measure absorbance at 490 nm and determine the average of three measurements for each sample. The IgA amount of the sample is calculated from a separately prepared IgA calibration curve.
The amount of IgA antibody in the excrement serves as an index of the amount of IgA antibody secreted in the intestine.

(結果)
図9は、図6のA型インフルエンザウイルスを感染させたマウスにおける感染14日後のウイルス特異的分泌型免疫グロブリンA(IgA)量を示すグラフである。図8(A)は、気道洗浄液におけるIgA抗体量を示すグラフである。図8(B)は、排泄物におけるIgA抗体量を示すグラフである。
(result)
FIG. 9 is a graph showing the amount of virus-specific secretory immunoglobulin A (IgA) 14 days after infection in mice infected with influenza A virus of FIG. FIG. 8 (A) is a graph showing the amount of IgA antibody in the airway washing solution. FIG. 8 (B) is a graph showing the amount of IgA antibody in excreta.

オセルタミビル投与群では、ネガティブコントロール群(比較例11−1、11−2)と比較して、IgA抗体量は気道洗浄液(参考例11−1)、排泄物(参考例11−2)とも有意に減少した(それぞれp<0.001、p<0.01)。一方、サンプル投与群では、ネガティブコントロール群と比較して、IgA抗体量は排泄物(実施例11−2)では有意に増加した(p<0.001)。また、有意差は見られなかったものの、気道洗浄液(実施例11−1)においてもネガティブコントロール群と比較して高い値を示した。   In the oseltamivir-administered group, IgA antibody levels were significantly higher in both the airway lavage fluid (Reference Example 11-1) and the excreta (Reference Example 11-2) than in the negative control group (Comparative Examples 11-1 and 11-2). Decreased (p <0.001 and p <0.01, respectively). On the other hand, compared with the negative control group, the IgA antibody amount was significantly increased in the excrement (Example 11-2) in the sample administration group (p <0.001). Moreover, although a significant difference was not seen, the airway washing liquid (Example 11-1) also showed a higher value than the negative control group.

以上の実施例8〜11の結果より、パラクロレラ精製多糖は、A型インフルエンザウイルスの増殖を効果的に抑制することが明らかとなった。また、リン酸オセルタミビルとは異なり、中和抗体量とIgA抗体量のいずれもが、ネガティブコントロール群と比較して上昇していた。このことから、パラクロレラ精製多糖はリン酸オセルタミビルとは作用機序が異なると考えられる。具体的には、パラクロレラ精製多糖は、A型インフルエンザウイルスの増殖に抑制的に作用するとともに、生体の免疫系を刺激して抗体の産生を促進する効果を有すると推察される。そのため、A型インフルエンザウイルスの抑制剤としてパラクロレラ精製多糖を単独で使用することができるとともに、従来薬やワクチンなどの抗感染症薬と併用することにより、これらの薬剤の機能を増強することもできると考えられる。   From the results of Examples 8 to 11 described above, it was revealed that the purified parachlorella polysaccharide effectively suppresses the growth of influenza A virus. Also, unlike oseltamivir phosphate, both the neutralizing antibody amount and the IgA antibody amount were increased compared to the negative control group. This suggests that parachlorella purified polysaccharide has a different mechanism of action from oseltamivir phosphate. Specifically, it is speculated that the purified parachlorella polysaccharide has an effect of suppressing the growth of influenza A virus and stimulating the body's immune system to promote antibody production. Therefore, parachlorella purified polysaccharide can be used alone as an inhibitor of influenza A virus, and the function of these drugs can be enhanced by using it together with anti-infective drugs such as conventional drugs and vaccines. It is considered possible.

本発明は、上述の実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。   The present invention is not limited to the above-described embodiments, and various modifications such as design changes can be added based on the knowledge of those skilled in the art. Embodiments to which such modifications are added Can also be included in the scope of the present invention.

Claims (7)

多糖の基本構造の糖残基が少なくともガラクトースとマンノースで構成されており、当該ガラクトースにフラノース型が存在する多糖体を含有する免疫賦活剤。   An immunostimulant comprising a polysaccharide in which a sugar residue having a basic structure of a polysaccharide is composed of at least galactose and mannose, and the galactose has a furanose type. 前記ガラクトースの含有量が、多糖体の中性単糖組成の全量を100質量%としたときに、50〜79質量%である請求項1記載の免疫賦活剤。   The immunostimulant according to claim 1, wherein the content of the galactose is 50 to 79% by mass when the total amount of the neutral monosaccharide composition of the polysaccharide is 100% by mass. 前記多糖体は、パラクロレラ属単細胞藻類由来の細胞外多糖体である請求項1又は2記載の免疫賦活剤。   The immunostimulant according to claim 1 or 2, wherein the polysaccharide is an extracellular polysaccharide derived from a unicellular alga of the genus Parachlorella. 前記多糖体は、前記パラクロレラ属単細胞藻類から多糖体を分離後、精製して得られた多糖体である請求項3に記載の免疫賦活剤。   The immunostimulant according to claim 3, wherein the polysaccharide is a polysaccharide obtained by separating and purifying a polysaccharide from the Parachlorella unicellular algae. 前記パラクロレラ属単細胞藻類が、パラクロレラ属ケッセリ(Parachlorella kessreli)である請求項3または4に記載の免疫賦活剤。   The immunostimulant according to claim 3 or 4, wherein the Parachlorella unicellular algae is Parachlorella kessreli. 前記パラクロレラ属ケッセリが、Parachlorella kessleri-PNC1と命名され、FERM BP-11493として寄託された藻体である請求項5に記載の免疫賦活剤。   The immunostimulant according to claim 5, wherein the parachlorella genus Kesseri is an algal body named Parachlorella kessleri-PNC1 and deposited as FERM BP-11493. 他の抗感染症薬と併用される請求項1〜6のいずれかに記載の免疫賦活剤。   The immunostimulant according to any one of claims 1 to 6, which is used in combination with another anti-infective drug.
JP2012261369A 2012-11-29 2012-11-29 Immunostimulator Pending JP2014105202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012261369A JP2014105202A (en) 2012-11-29 2012-11-29 Immunostimulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012261369A JP2014105202A (en) 2012-11-29 2012-11-29 Immunostimulator

Publications (1)

Publication Number Publication Date
JP2014105202A true JP2014105202A (en) 2014-06-09

Family

ID=51026995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012261369A Pending JP2014105202A (en) 2012-11-29 2012-11-29 Immunostimulator

Country Status (1)

Country Link
JP (1) JP2014105202A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080198A1 (en) * 2013-11-28 2015-06-04 株式会社カネカ Method for suppressing infectious disease in crustaceans
CN113181222A (en) * 2021-04-26 2021-07-30 武汉大学 Application of extracellular polysaccharide metabolite of cryptococcus lactis in resisting viruses

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080198A1 (en) * 2013-11-28 2015-06-04 株式会社カネカ Method for suppressing infectious disease in crustaceans
JPWO2015080198A1 (en) * 2013-11-28 2017-03-16 株式会社カネカ Methods for controlling crustacean infections
CN113181222A (en) * 2021-04-26 2021-07-30 武汉大学 Application of extracellular polysaccharide metabolite of cryptococcus lactis in resisting viruses

Similar Documents

Publication Publication Date Title
Hayashi et al. A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities
Sun et al. Purification, structural features and immunostimulatory activity of novel polysaccharides from Caulerpa lentillifera
Barboríková et al. Extracellular polysaccharide produced by Chlorella vulgaris–chemical characterization and anti-asthmatic profile
Lu et al. Sulfated modification of epimedium polysaccharide and effects of the modifiers on cellular infectivity of IBDV
AU2011230685B2 (en) Anti-allergic agent
Guo et al. Sulfated modification can enhance the adjuvanticity of lentinan and improve the immune effect of ND vaccine
Liu et al. A review: Natural polysaccharides from medicinal plants and microorganisms and their anti-herpetic mechanism
US11672833B2 (en) Edible bird&#39;s nest extract and method of extraction
JP6174219B2 (en) New polysaccharide
Lee et al. Characterization and biological effects of two polysaccharides isolated from Acanthopanax sciadophylloides
Jiang et al. Immunomodulatory effects of fucosylated chondroitin sulfate from Stichopus chloronotus on RAW 264.7 cells
KR20080034973A (en) Composition containing fucoidan or fucoidan hydrolysate and immunopotentiating material
Wang et al. Effects of sulfated lentinan on cellular infectivity of avian infectious bronchitis virus
Wang et al. Quorum sensing molecule-farnesol increased the production and biological activities of extracellular polysaccharide from Trametes versicolor
Kim et al. Low-molecular weight mannogalactofucans prevent herpes simplex virus type 1 infection via activation of Toll-like receptor 2
CN109415682A (en) Novel fish spore Cordycepps microorganism and application thereof
Liu et al. Effect of intake pattern of sulfated polysaccharides on its biological activity in high fat diet-fed mice
GB2552926A (en) Method
JP4369258B2 (en) Immunostimulator
JP2014105202A (en) Immunostimulator
JP6118519B2 (en) New polysaccharide
KR102007421B1 (en) Composition for anti-influenza virus comprising as active ingredient polysaccharide derived from Lactobacillus plantarum and method for producing the polysaccharide
JP4461286B2 (en) Chondrocyte proliferation promoter and cartilage disorder preventive or therapeutic agent
FR3021219A1 (en) OLIGO-PORPHYRANES, METHOD AND MEDICINAL PRODUCT
Arumugam et al. Biological activities of heparan sulfate