JP2014103958A - System for controlling plant growth environment, and method for controlling plant growth environment - Google Patents

System for controlling plant growth environment, and method for controlling plant growth environment Download PDF

Info

Publication number
JP2014103958A
JP2014103958A JP2012261757A JP2012261757A JP2014103958A JP 2014103958 A JP2014103958 A JP 2014103958A JP 2012261757 A JP2012261757 A JP 2012261757A JP 2012261757 A JP2012261757 A JP 2012261757A JP 2014103958 A JP2014103958 A JP 2014103958A
Authority
JP
Japan
Prior art keywords
plant
growth
input voltage
plants
environment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012261757A
Other languages
Japanese (ja)
Other versions
JP6147493B2 (en
Inventor
Yasuo Takahashi
康夫 高橋
Yasushi Sugano
泰史 菅野
Ayako Ito
亜矢子 伊東
Shigeto Inoue
繁人 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa House Industry Co Ltd
Original Assignee
Daiwa House Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa House Industry Co Ltd filed Critical Daiwa House Industry Co Ltd
Priority to JP2012261757A priority Critical patent/JP6147493B2/en
Publication of JP2014103958A publication Critical patent/JP2014103958A/en
Application granted granted Critical
Publication of JP6147493B2 publication Critical patent/JP6147493B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a system and a method for controlling plant growth environment in which, according to plant growth conditions of a plant cultivated in a plant cultivation chamber, environment inside the plant cultivation chamber can be controlled.SOLUTION: A system for controlling plant growth environment comprises: a plurality of illumination units 20, 20, ... (control parts of indoor environment) by which environment inside a plant cultivation chamber 1 can be controlled; a camera 30 (a plant information detection part) which detects for each of plural areas T, T, ..., information related to growing conditions of plants 2, 2, ... arranged and cultivated in the plant cultivation chamber 1; and a control device 40 (a control part) which controls the illumination units 20, 20, ... on the basis of the growing conditions of the plants for each of the areas T, T, ... detected by the camera 30.

Description

本発明は、植物栽培室内で栽培される植物の生育状況をより良くするために当該植物栽培室内の環境を調節する植物生育環境制御システム及び植物生育環境制御方法の技術に関する。   The present invention relates to a plant growth environment control system and a plant growth environment control method for adjusting the environment in a plant cultivation room in order to improve the growth status of plants cultivated in the plant cultivation room.

従来、植物栽培室内で栽培される植物の生育状況をより良くするために当該植物栽培室内の環境を調節する植物生育環境制御システム及び植物生育環境制御方法の技術は公知となっている。例えば、特許文献1に記載の如くである。   Conventionally, techniques of a plant growth environment control system and a plant growth environment control method for adjusting the environment in the plant cultivation room in order to improve the growth status of plants cultivated in the plant cultivation room are known. For example, as described in Patent Document 1.

特許文献1には、室内で養殖される魚介類や植物に光を照射するための照明の照度を、予め設定したパターンに沿うように変化させる技術が開示されている。例えば、当該変化のパターンを、天然の魚介類や植物が最も成長し易い時期における太陽光の照度の変化と同様のパターンとなるように設定すれば、養殖される魚介類や植物の成長を促進させることができる。   Patent Document 1 discloses a technique for changing the illuminance of illumination for irradiating light to seafood and plants cultivated indoors so as to follow a preset pattern. For example, if the pattern of the change is set to be the same pattern as the change in illuminance of sunlight when natural seafood and plants are most likely to grow, the growth of the seafood and plants to be cultivated is promoted Can be made.

しかしながら、特許文献1に記載の技術では、照明の照度の変化のパターンは予め設定されたものであるため、養殖される魚介類や植物の生育状況が好ましくない場合であっても、当該生育状況に応じた照明の制御ができない点で不利であった。   However, in the technique described in Patent Document 1, since the pattern of change in the illuminance of illumination is set in advance, even if the growth situation of the seafood and plants to be cultured is not preferable, the growth situation It was disadvantageous in that the lighting could not be controlled according to.

特開2010−187625号公報JP 2010-187625 A

本発明は以上の如き状況に鑑みてなされたものであり、その解決しようとする課題は、植物栽培室内で栽培される植物の生育状況に応じて、当該植物栽培室内の環境を調節することが可能な植物生育環境制御システム及び植物生育環境制御方法を提供することである。   This invention is made | formed in view of the above situations, The subject which it is going to solve is adjusting the environment in the said plant cultivation room according to the growth condition of the plant cultivated in a plant cultivation room. A plant growth environment control system and a plant growth environment control method are provided.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.

即ち、請求項1においては、植物栽培室内の環境を調節することが可能な複数の室内環境調節部と、前記植物栽培室内に配置されて栽培される植物の生育状況に関する情報を複数の領域ごと又は植物単体ごとに検知する植物情報検知部と、前記植物情報検知部により検知される前記領域ごと又は植物単体ごとの植物の生育状況に基づいて、前記室内環境調節部を制御する制御部と、を具備するものである。   That is, according to claim 1, a plurality of indoor environment adjusting units capable of adjusting the environment in the plant cultivation room, and information on the growth status of the plants that are arranged and cultivated in the plant cultivation room are classified into a plurality of regions. Or, a plant information detection unit that detects each plant unit, and a control unit that controls the indoor environment adjustment unit based on the growth status of the plant for each region or each plant unit detected by the plant information detection unit, It comprises.

請求項2においては、前記制御部は、前記領域ごと又は植物単体ごとの植物の生育状況が、適切になるように、前記室内環境調節部を制御するものである。   In Claim 2, the said control part controls the said indoor environment adjustment part so that the growth condition of the plant for every said area | region or every plant single-piece | unit will become suitable.

請求項3においては、前記制御部は、前記室内環境調節部を制御する際に生体ゆらぎ理論を取り入れるものである。   According to a third aspect of the present invention, the control unit incorporates a biological fluctuation theory when controlling the indoor environment adjustment unit.

請求項4においては、植物栽培室内に配置されて栽培される植物の生育状況に関する情報を複数の領域ごと又は植物単体ごとに検知する植物情報検知工程と、検知される前記領域ごと又は植物単体ごとの植物の生育状況に基づいて、前記植物栽培室内の環境を調節する制御工程と、を具備するものである。   In Claim 4, the plant information detection process which detects the information regarding the growth condition of the plant arrange | positioned and cultivated in a plant cultivation room for every several area | region or every single plant, and every said detected area | region or every single plant And a control step of adjusting the environment in the plant cultivation room based on the growth status of the plant.

請求項5においては、前記制御工程は、前記領域ごと又は植物単体ごとの植物の生育状況が、適切になるように、前記植物栽培室内の環境を調節するものである。   In Claim 5, the said control process adjusts the environment in the said plant cultivation room so that the growth condition of the plant for every said area | region or every single plant may become appropriate.

請求項6においては、前記制御工程は、前記植物栽培室内の環境を調節する際に生体ゆらぎ理論を取り入れるものである。   In Claim 6, the said control process takes in a biological fluctuation theory, when adjusting the environment in the said plant cultivation room.

本発明の効果として、以下に示すような効果を奏する。   As effects of the present invention, the following effects can be obtained.

請求項1においては、植物栽培室内で栽培される植物の生育状況に応じて当該植物栽培室内の環境を調節することができる。   In Claim 1, the environment in the said plant cultivation room can be adjusted according to the growth condition of the plant grown in a plant cultivation room.

請求項2においては、植物の生育状況が適切になるように植物栽培室内の環境を調節することができる。   In Claim 2, the environment in a plant cultivation room can be adjusted so that the growth condition of a plant may become suitable.

請求項3においては、植物栽培室内の環境をどのように調節すれば植物の生育状況を改善することができるか予め分かっていない場合であっても、植物の生育状況をセンシングすることにより、当該植物栽培室内の環境を調節することができる。   In claim 3, even if it is not known in advance how to adjust the environment in the plant cultivation room to improve the growth status of the plant, by sensing the growth status of the plant, The environment in the plant cultivation room can be adjusted.

請求項4においては、植物栽培室内で栽培される植物の生育状況に応じて当該植物栽培室内の環境を調節することができる。   In Claim 4, according to the growth condition of the plant cultivated in a plant cultivation room, the environment in the said plant cultivation room can be adjusted.

請求項5においては、植物の生育状況が適切になるように植物栽培室内の環境を調節することができる。   In Claim 5, the environment in a plant cultivation room can be adjusted so that the growth condition of a plant may become appropriate.

請求項6においては、植物栽培室内の環境をどのように調節すれば植物の生育状況を改善することができるか予め分かっていない場合であっても、植物の生育状況をセンシングすることにより、当該植物栽培室内の環境を調節することができる。   In claim 6, even if it is not known in advance how to adjust the environment in the plant cultivation room to improve the growth status of the plant, by sensing the growth status of the plant, The environment in the plant cultivation room can be adjusted.

本発明の一実施形態に係る植物生育環境制御システムの全体的な構成を示した模式図。The schematic diagram which showed the whole structure of the plant growth environment control system which concerns on one Embodiment of this invention. 植物が栽培されている領域を示した平面図。The top view which showed the area | region where the plant is grown. 植物生育環境制御システムによる制御態様を示したフローチャート。The flowchart which showed the control aspect by a plant growth environment control system. (a)入力電圧の初期値を示した図。(b)点p1を基準とするノイズの範囲を示した図。(A) The figure which showed the initial value of the input voltage. (B) The figure which showed the range of the noise on the basis of the point p1. (a)点p1を基準とするノイズの範囲及び次の入力電圧を示した図。(b)点p1と点p2との重み付き平均値r2を示した図。(A) The figure which showed the range of the noise on the basis of the point p1, and the next input voltage. (B) The figure which showed the weighted average value r2 of the point p1 and the point p2. 点p2と重み付き平均値r2との内分点M2を示した図。The figure which showed the internal dividing point M2 of the point p2 and the weighted average value r2. (a)内分点M2を基準とするノイズの範囲及び次の入力電圧を示した図。(b)点p1、点p2及び点p3の重み付き平均値r3を示した図。(A) The figure which showed the range of the noise on the basis of the internal dividing point M2, and the next input voltage. (B) The figure which showed the weighted average value r3 of the point p1, the point p2, and the point p3. 点p3と重み付き平均値r3との内分点M3を示した図。The figure which showed the internal dividing point M3 of the point p3 and the weighted average value r3. 第四実施形態に係る植物生育環境制御システムによる制御態様を示したフローチャート。The flowchart which showed the control aspect by the plant growth environment control system which concerns on 4th embodiment.

以下では、図中に示した矢印に従って、前後方向、上下方向及び左右方向をそれぞれ定義する。   Hereinafter, the front-rear direction, the up-down direction, and the left-right direction are defined according to the arrows shown in the drawing.

以下では、本発明の第一実施形態に係る植物生育環境制御システム10について説明する。   Below, the plant growth environment control system 10 which concerns on 1st embodiment of this invention is demonstrated.

まず、図1及び図2を用いて、植物生育環境制御システム10の全体構成について説明する。
なお、図1に記載する一点鎖線は、その一点鎖線で結ばれた部材が電気的に接続されていることを示している。
First, the whole structure of the plant growth environment control system 10 is demonstrated using FIG.1 and FIG.2.
In addition, the dashed-dotted line described in FIG. 1 has shown that the member connected by the dashed-dotted line is electrically connected.

植物生育環境制御システム10は、植物栽培室1内の環境を調節するためのものである。本実施形態において、植物栽培室1は、その内部で植物2・2・・・(野菜や果物等)を栽培するための建物であり、その内部に略直方体状の空間を形成するものである。植物2・2・・・は、植物栽培室1内に前後左右に並べられて栽培される。   The plant growth environment control system 10 is for adjusting the environment in the plant cultivation room 1. In this embodiment, the plant cultivation room 1 is a building for cultivating plants 2, 2... (Vegetables, fruits, etc.) therein, and forms a substantially rectangular parallelepiped space inside. . The plants 2, 2,...

植物生育環境制御システム10は、主として複数の照明ユニット20・20・・・、カメラ30及び制御装置40を具備する。   The plant growth environment control system 10 mainly includes a plurality of lighting units 20, 20..., A camera 30 and a control device 40.

照明ユニット20・20・・・は、本発明に係る室内環境調節部の実施の一形態であり、植物栽培室1内の環境を調節するものである。照明ユニット20・20・・・は、その長手方向を前後方向に向けた状態で植物栽培室1の前部から後部に亘るように、かつ左右方向に互いに所定間隔をあけるようにして植物栽培室1の天井に設けられる。照明ユニット20・20・・・は、入力される電圧(入力電圧)を調節することにより、それぞれの光度及び光の色(スペクトル)を個別に調節(制御)することが可能である。また、照明ユニット20・20・・・は、主に直下の植物2・2・・・を照らす。   The lighting units 20, 20... Are an embodiment of the indoor environment adjusting unit according to the present invention, and adjust the environment in the plant cultivation room 1. The lighting units 20, 20... Extend from the front part to the rear part of the plant cultivation room 1 with the longitudinal direction thereof directed in the front-rear direction, and are spaced apart from each other by a predetermined distance in the left-right direction. 1 on the ceiling. The lighting units 20, 20... Can individually adjust (control) the light intensity and light color (spectrum) by adjusting the input voltage (input voltage). Further, the lighting units 20, 20... Mainly illuminate the plants 2.

カメラ30は、本発明に係る植物情報検知部の実施の一形態であり、植物栽培室1内に配置されて栽培される植物2・2・・・の生育状況に関する情報を複数の領域ごとに検知するものである。カメラ30は、植物栽培室1の天井の略中央部に設けられる。カメラ30は、植物栽培室1内に配置された植物2・2・・・全体の生育状況(大きさ、色、形等)を撮影し、その映像を取得することができる。   The camera 30 is one embodiment of the plant information detection unit according to the present invention, and information on the growth status of the plants 2, 2... It is something to detect. The camera 30 is provided at a substantially central portion of the ceiling of the plant cultivation room 1. The camera 30 can take an image of the growth status (size, color, shape, etc.) of the plants 2, 2... Arranged in the plant cultivation room 1 and acquire the video.

制御装置40は、本発明に係る制御部の実施の一形態であり、カメラ30によって撮影された植物2・2・・・の生育状況に基づいて、照明ユニット20・20・・・の光度及び光の色(スペクトル)を調節するものである。制御装置40は、主としてCPU等の演算処理装置、RAMやROM等の記憶装置、並びにI/O等の入出力装置等により構成される。   The control device 40 is an embodiment of the control unit according to the present invention, and based on the growth status of the plants 2. It adjusts the color (spectrum) of light. The control device 40 is mainly composed of an arithmetic processing device such as a CPU, a storage device such as a RAM and a ROM, and an input / output device such as an I / O.

制御装置40は、照明ユニット20・20・・・とそれぞれ電気的に接続される。そして、制御装置40は、照明ユニット20・20・・・への入力電圧の調節に関する信号(コマンド)を発信することができる。
なお、図1においては、図面の簡略化のために1つの照明ユニット20だけが制御装置40と一点鎖線で結ばれているが、実際には全ての照明ユニット20・20・・・と制御装置40とが電気的に接続されている。
The control device 40 is electrically connected to the lighting units 20, 20. And the control apparatus 40 can transmit the signal (command) regarding adjustment of the input voltage to lighting unit 20,20 ....
In FIG. 1, only one lighting unit 20 is connected to the control device 40 by a one-dot chain line for simplification of the drawing, but in reality, all the lighting units 20, 20... 40 is electrically connected.

制御装置40は、カメラ30と電気的に接続される。そして、制御装置40は、カメラ30による検知結果(植物2・2・・・の映像)に関する信号を受信することができる。   The control device 40 is electrically connected to the camera 30. And the control apparatus 40 can receive the signal regarding the detection result (image of plant 2 * 2 ...) by the camera 30. FIG.

より詳細には、制御装置40は、カメラ30が撮影した植物2・2・・・の映像を取得し、当該植物2・2・・・が栽培されている領域を、複数の領域T・T・・・に分割する。
本実施形態においては、前後方向に4株並べて配置された植物が左右方向に5列栽培されている。制御装置40は、各列の4株の植物2・2・・・が配置されている領域を、それぞれ領域T・T・・・とする。
In more detail, the control apparatus 40 acquires the image | video of the plant 2 * 2 ... which the camera 30 image | photographed, and the area | region where the said plant 2 * 2 ... is grown is made into several area | region TT. Divide into.
In this embodiment, five rows of plants arranged side by side in the front-rear direction are cultivated in five rows in the left-right direction. The control device 40 sets the areas where the four plants 2... In each row are arranged as areas T, T.

また、制御装置40には、植物栽培室1内の環境を制御(本実施形態においては、照明を制御)するための種々のデータが記憶される。より詳細には、制御装置40には、照明ユニット20・20・・・の入力電圧と光度及び点灯した照明と照射される色(スペクトル)の関係に関するデータ等が記憶される。   Further, the control device 40 stores various data for controlling the environment in the plant cultivation room 1 (in this embodiment, lighting is controlled). More specifically, the control device 40 stores data relating to the relationship between the input voltage and luminous intensity of the lighting units 20, 20.

次に、図1から図3までを用いて、上述の如く構成された植物生育環境制御システム10による、植物栽培室1内の環境の調節(具体的には、照明の調節)の様子(植物生育環境制御方法)について説明する。   Next, referring to FIGS. 1 to 3, the state of the environment in the plant cultivation room 1 (specifically, the adjustment of lighting) by the plant growth environment control system 10 configured as described above (specifically, the adjustment of lighting) (plants) The growth environment control method) will be described.

図3のステップS100において、制御装置40は、各照明ユニット20・20・・・の入力電圧や照射させる色(スペクトル)等の初期値をそれぞれ決定する。また制御装置40は、当該決定された入力電圧等を各照明ユニット20・20・・・にそれぞれ付与し、当該各照明ユニット20・20・・・を点灯させる。   In step S100 of FIG. 3, the control device 40 determines initial values such as input voltages of the respective lighting units 20, 20. Moreover, the control apparatus 40 gives the determined input voltage etc. to each lighting unit 20,20 ..., respectively, and makes each said lighting unit 20,20 ... light.

ここでは、適切な入力電圧や色(スペクトル)を算出するための情報はまだ得られていないため、例えば入力電圧をそれぞれ50%(最大入力電圧の50%)かつ色は全て白色(のスペクトル)等の値に暫定的に決定する。   Here, since information for calculating an appropriate input voltage and color (spectrum) has not been obtained yet, for example, the input voltage is 50% (50% of the maximum input voltage) and the color is all white (spectrum). Etc. are provisionally determined.

制御装置40は、上記処理を行った後、ステップS101に移行する。   After performing the above processing, the control device 40 proceeds to step S101.

ステップS101において、制御装置40は、一定期間の間継続して、ステップS100において決定した入力電圧や色(スペクトル)を各照明ユニット20・20・・・にそれぞれ付与し続ける。これによって、植物2・2・・・は各照明ユニット20・20・・・からの光を受けながら生育する。   In step S101, the control device 40 continues to apply the input voltage and color (spectrum) determined in step S100 to each of the lighting units 20, 20. Thus, the plants 2, 2... Grow while receiving light from the respective lighting units 20, 20.

入力電圧が各照明ユニット20・20・・・にそれぞれ付与され続ける上述の「一定期間」は予め任意に設定され、制御装置40に記憶されている。なお、当該「一定期間」は、植物の成長変化に合わせて適宜変化するもの(調節されるもの)であっても良い。   The above-mentioned “predetermined period” in which the input voltage is continuously applied to each of the lighting units 20, 20... Is arbitrarily set in advance and stored in the control device 40. The “certain period” may be changed (adjusted) as appropriate according to changes in plant growth.

制御装置40は、上記処理を行った後、ステップS102に移行する。   After performing the above processing, the control device 40 proceeds to step S102.

ステップS102において、制御装置40は、各領域T・T・・・において栽培されている植物2・2・・・の生育状況を確認する。   In step S102, the control device 40 confirms the growth status of the plants 2...

具体的には、制御装置40は、まず各領域T・T・・・において栽培されている植物2・2・・・の現時点での生育状況(大きさ、色、形等)を認識する。   Specifically, the control device 40 first recognizes the current growth status (size, color, shape, etc.) of the plants 2...

次に、予め制御装置40に記憶された植物2の現時点での理想的な生育状況に関する情報と、実際の各領域T・T・・・において栽培されている植物2・2・・・の現時点での生育状況と、を比較する。
この場合における「理想的な生育状況」とは、植物2の大きさ、色、形等についてそれぞれ予め任意に定めることができる。
Next, information on the ideal growth status of the plant 2 at the current time stored in the control device 40 in advance, and the current time of the plants 2. Compare the growth situation in Japan.
The “ideal growth situation” in this case can be arbitrarily determined in advance for the size, color, shape, etc. of the plant 2.

ここで、各領域T・T・・・にはそれぞれ複数(本実施形態においては、4株)の植物2・2・・・が栽培されているため、比較し易いように各領域T・T・・・の植物2・2・・・の生育状況(大きさ、色、形等)を制御装置40がそれぞれ平均し、当該平均された生育状況を用いて比較する構成としても良い。
また、客観的に比較し易いように、植物2・2・・・の生育状況(大きさ、色、形等)を数値で表現(数値換算)する構成としても良い。
Here, a plurality of (in this embodiment, four strains) plants 2... Are cultivated in each region T · T..., So that each region T · T is easy to compare. It is good also as a structure which the control apparatus 40 each averages the growth condition (a magnitude | size, a color, a shape, etc.) of ... plants 2 ... 2 and compares using the averaged growth condition.
Moreover, it is good also as a structure which expresses the growth condition (a magnitude | size, a color, a shape, etc.) of plant 2 * 2 ... numerically (numeric conversion) so that it may be compared objectively.

上述の如く、実際の生育状況と理想的な生育状況とを比較することで、現在植物2・2・・・の現時点での生育状況がどのような状況であるかを判断することができる。   As described above, by comparing the actual growth state and the ideal growth state, it is possible to determine what the current growth state of the plants 2.

制御装置40は、上記処理を行った後、ステップS103に移行する。   After performing the above processing, the control device 40 proceeds to step S103.

ステップS103において、制御装置40は、各領域T・T・・・において栽培されている植物2・2・・・が十分に成長したか否かを判定する。   In step S103, the control device 40 determines whether or not the plants 2... Cultivated in each region T · T · · · have grown sufficiently.

植物2・2・・・が十分に成長したか否かは、ステップS102において確認された当該植物2・2・・・の生育状況に基づいて判定される。   It is determined whether or not the plants 2... Have sufficiently grown based on the growth status of the plants 2.

ステップS102において確認された植物2・2・・・の生育状況が、予め制御装置40に記憶されている十分に成長した状態の植物2・2・・・の生育状況に関する情報と同程度(当該「同程度」の範囲は、予め任意に設定することができる)であれば、植物栽培室1内の植物2・2・・・は十分に成長していると判定することができる。   The growth status of the plants 2, 2... Confirmed in step S 102 is comparable to the information on the growth status of the fully grown plants 2. If the range of “same level” can be arbitrarily set in advance, it can be determined that the plants 2, 2... In the plant cultivation room 1 are sufficiently grown.

ここで、植物2・2・・・の生育状況は領域T・T・・・ごとに異なるため、判定し易いように複数の領域T・T・・・の植物2・2・・・の生育状況を制御装置40がそれぞれ平均し、当該平均された生育状況を用いて判定する構成としても良い。   Here, since the growth situation of the plants 2... Is different for each region T.T..., The growth of the plants 2. It is good also as a structure which the control apparatus 40 averages, respectively, and determines using the said averaged growth condition.

制御装置40は、各領域T・T・・・において栽培されている植物2・2・・・が十分に成長したと判定した場合、当該植物2・2・・・の栽培自体を終了するため、植物生育環境制御システム10による植物栽培室1内の照明の調節(制御)を終了する。
制御装置40は、各領域T・T・・・において栽培されている植物2・2・・・が十分に成長していないと判定した場合、ステップS104に移行する。
When the control device 40 determines that the plants 2, 2,... Cultivated in each region T, T... Have grown sufficiently, the control device 40 ends the cultivation of the plants 2, 2. Then, the adjustment (control) of the lighting in the plant cultivation room 1 by the plant growth environment control system 10 is finished.
When it is determined that the plants 2, 2,... Cultivated in each region TT are not sufficiently grown, the control device 40 proceeds to step S <b> 104.

ステップS104において、制御装置40は、照明の変更が必要であるか否かを判定する。   In step S104, the control device 40 determines whether or not it is necessary to change the illumination.

照明の変更が必要であるか否かは、ステップS102において確認された植物2・2・・・の生育状況に基づいて判定される。
ステップS102において確認された植物2・2・・・の生育状況が、理想的な生育状況と同程度(当該「同程度」の範囲は、予め任意に設定することができる)の状況であれば、照明の変更は必要ではないと判定することができる。
ステップS102において確認された植物2・2・・・の生育状況が、理想的な生育状況と異なる(同程度ではない)状況であれば、照明の変更が必要であると判定することができる。
Whether or not the illumination needs to be changed is determined based on the growth status of the plants 2.
If the growth status of the plants 2, 2,... Confirmed in step S102 is the same level as the ideal growth status (the range of the “same level” can be arbitrarily set in advance). It can be determined that no change in lighting is necessary.
If the growth status of the plants 2, 2,... Confirmed in step S102 is different from the ideal growth status (not the same level), it can be determined that the lighting needs to be changed.

制御装置40は、照明の変更が必要でないと判定した場合、ステップS101に移行する。すなわちこの場合、照明を変更することなく、再度一定期間の間植物2・2・・・を生育(ステップS101参照)させる。
制御装置40は、照明の変更が必要であると判定した場合、ステップS105に移行する。
When the control device 40 determines that the illumination change is not necessary, the control device 40 proceeds to step S101. That is, in this case, the plants 2, 2... Are grown again for a certain period without changing the illumination (see step S 101).
When determining that the illumination needs to be changed, the control device 40 proceeds to step S105.

ステップS105において、制御装置40は、照明を、各領域T・T・・・において栽培されている植物2・2・・・の生育状況に応じた照明に変更する。   In step S105, the control device 40 changes the illumination to illumination according to the growth status of the plants 2 · 2 ··· grown in each region T · T ···.

具体的には、ステップS102において確認されたある領域Tの植物2・2・・・の生育状況が、現時点での理想的な生育状況に比べて悪い(例えば、大きさが小さい、色が悪い等)場合、当該植物2・2・・・の生育状況が改善するように、当該領域T近傍の照明ユニット20・20・・・の照明を調節する。例えば、照明ユニット20・20・・・の光度を上げれば当該植物2・2・・・の生育状況が改善されることが予め分かっている場合、制御装置40は、当該植物2・2・・・の領域T近傍の照明ユニット20・20・・・に付与される入力電圧を上昇させる。これによって当該照明ユニット20・20・・・の光度が上昇する。   Specifically, the growth status of the plants 2... In a certain region T confirmed in step S102 is worse than the ideal growth status at the present time (for example, the size is small and the color is bad). Etc.), the illumination of the lighting units 20, 20... In the vicinity of the region T is adjusted so that the growth status of the plants 2. For example, if it is known in advance that the growth status of the plants 2, 2... Is improved by increasing the luminous intensity of the lighting units 20, 20. The input voltage applied to the lighting units 20, 20. As a result, the luminous intensity of the lighting units 20, 20.

また、ステップS102において確認されたある領域Tの植物2・2・・・の生育状況が、現時点での理想的な生育状況に比べて良すぎる(例えば、大きさが大きすぎる等)場合、必要に応じて当該植物2・2・・・の生育が抑制されるように、当該領域T近傍の照明ユニット20・20・・・の照明を調節する。例えば、照明ユニット20・20・・・の光度を下げれば当該植物2・2・・・の生育が抑制されることがあらかじめ分かっている場合、制御装置40は、当該植物2・2・・・の領域T近傍の照明ユニット20・20・・・に付与される入力電圧を下降させる。これによって当該照明ユニット20・20・・・の光度が下降する。   Also, it is necessary when the growth status of the plants 2, 2... In the certain region T confirmed in step S 102 is too good (for example, the size is too large) compared to the ideal growth status at the present time. The lighting of the lighting units 20, 20... In the vicinity of the region T is adjusted so that the growth of the plants 2. For example, if it is known in advance that the growth of the plants 2, 2... Is suppressed if the light intensity of the lighting units 20, 20. The input voltage applied to the lighting units 20, 20. As a result, the luminous intensity of the illumination units 20, 20.

制御装置40は、上記処理を行った後、ステップS101に移行する。すなわちこの場合、植物2・2・・・の生育状況に応じた照明に変更した状態で、再度一定期間の間植物2・2・・・を育成(ステップS101)させる。   After performing the above processing, the control device 40 proceeds to step S101. That is, in this case, the plants 2... Are grown again for a certain period (step S <b> 101) with the lighting changed according to the growth status of the plants 2.

ステップS105から移行されたステップS101において、制御装置40は、再度一定期間の間継続して、ステップS105において決定した入力電圧や色(スペクトル)を各照明ユニット20・20・・・にそれぞれ付与し続ける。これによって、植物2・2・・・は各照明ユニット20・20・・・からの光を受けながら生育する。   In step S101 transferred from step S105, the control device 40 continues again for a certain period of time, and applies the input voltage and color (spectrum) determined in step S105 to each of the lighting units 20, 20. to continue. Thus, the plants 2, 2... Grow while receiving light from the respective lighting units 20, 20.

このように、植物栽培室1内で栽培される植物2・2・・・が十分に成長するまで(ステップS103参照)ステップS101からステップS105までの処理を繰り返すことで、当該植物2・2・・・全体の生育状況を、理想的な生育状況に近づけることができる。これによって、最終的に十分に成長した時点での植物2・2・・・全体の生育状況を「適切」にすることができる。この場合における「適切」とは、植物2・2・・・全体の生育状況が予め定められた理想的な生育状況に近い状態であり、かつ植物2・2・・・全体の生育状況が略均一である状態を言うものとする。   In this way, by repeating the processes from step S101 to step S105 until the plants 2... Cultivated in the plant cultivation room 1 are sufficiently grown (see step S103), the plant 2.・ ・ The overall growth situation can be brought close to the ideal growth situation. This makes it possible to make the growth state of the plants 2.... “Appropriate” in this case is a state in which the overall growth status of the plants 2... Is close to a predetermined ideal growth status, and the overall growth status of the plants 2. A uniform state shall be said.

なお、上記第一実施形態において、「適切」とは、植物2・2・・・全体の生育状況が予め定められた理想的な生育状況に近い状態であり、かつ植物2・2・・・全体の生育状況が略均一である状態を言うものとしたが、本発明はこれに限るものではない。すなわち、「適切」な状態とは植物2・2・・・の良好な生育状況を示すものとして任意に定めることが可能であり、例えば、植物2・2・・・全体の生育状況が予め定められた理想的な生育状況に近い状態のみや、植物2・2・・・全体の生育状況が略均一である状態のみを意味するものであっても良い。   In addition, in said 1st embodiment, "appropriate" is a state in which the growth condition of the whole plant 2 ... 2 is close to the ideal growth condition determined beforehand, and the plant 2 ... 2 ... The state where the overall growth state is substantially uniform is described, but the present invention is not limited to this. That is, the “appropriate” state can be arbitrarily determined as indicating a good growth status of the plants 2, 2..., For example, the overall growth status of the plants 2, 2. It may mean only a state close to the ideal growth state, or only a state where the entire growth state of the plants 2, 2... Is substantially uniform.

以上の如く、本実施形態に係る植物生育環境制御システム10は、
植物栽培室1内の環境を調節することが可能な複数の照明ユニット20・20・・・(室内環境調節部)と、
植物栽培室1内に配置されて栽培される植物2・2・・・の生育状況に関する情報を複数の領域T・T・・・ごとに検知するカメラ30(植物情報検知部)と、
カメラ30により検知される領域T・T・・・ごとの植物の生育状況に基づいて、照明ユニット20・20・・・を制御する制御装置40(制御部)と、
を具備するものである。
このように構成することにより、植物栽培室1内で栽培される植物2・2・・・の生育状況に応じて当該植物栽培室1内の環境を調節することができる。
As described above, the plant growth environment control system 10 according to the present embodiment is
A plurality of lighting units 20, 20... (Indoor environment adjusting unit) capable of adjusting the environment in the plant cultivation room 1;
A camera 30 (plant information detection unit) that detects information about the growth status of the plants 2, 2...
A control device 40 (control unit) for controlling the lighting units 20, 20... Based on the growth state of the plants for each of the regions T, T.
It comprises.
By comprising in this way, the environment in the said plant cultivation room 1 can be adjusted according to the growth condition of the plant 2 * 2 ... cultivated in the plant cultivation room 1. FIG.

また、制御装置40は、
領域T・T・・・ごとの植物2・2・・・の生育状況が、適切になるように、照明ユニット20・20・・・を制御するものである。
このように構成することにより、植物2・2・・・の生育状況が適切になるように植物栽培室1内の環境を調節することができる。
In addition, the control device 40
The lighting units 20, 20... Are controlled so that the growth conditions of the plants 2, 2,.
By comprising in this way, the environment in the plant cultivation room 1 can be adjusted so that the growth condition of plant 2 * 2 ... may become appropriate.

また、本実施形態に係る植物生育環境制御方法は、
植物栽培室1内に配置されて栽培される植物2・2・・・の生育状況に関する情報を複数の領域T・T・・・ごとに検知する植物情報検知工程(ステップS102参照)と、
検知される領域T・T・・・ごとの植物2・2・・・の生育状況に基づいて、植物栽培室1内の環境を調節する制御工程(ステップS105参照)と、
を具備するものである。
このように構成することにより、植物栽培室1内で栽培される植物2・2・・・の生育状況に応じて当該植物栽培室1内の環境を調節することができる。
Moreover, the plant growth environment control method according to the present embodiment,
A plant information detection step (see step S102) for detecting information on the growth status of the plants 2, 2,... That are arranged and cultivated in the plant cultivation room 1 for each of a plurality of regions T, T,.
A control step (see step S105) for adjusting the environment in the plant cultivation room 1, based on the growth status of the plants 2, 2,.
It comprises.
By comprising in this way, the environment in the said plant cultivation room 1 can be adjusted according to the growth condition of the plant 2 * 2 ... cultivated in the plant cultivation room 1. FIG.

また、前記制御工程は、
領域T・T・・・ごとの植物2・2・・・の生育状況が、適切になるように、植物栽培室1内の環境を調節するものである。
このように構成することにより、植物2・2・・・の生育状況が適切になるように植物栽培室1内の環境を調節することができる。
The control step includes
The environment in the plant cultivation room 1 is adjusted so that the growth situation of the plants 2...
By comprising in this way, the environment in the plant cultivation room 1 can be adjusted so that the growth condition of plant 2 * 2 ... may become appropriate.

なお、上記実施形態においては、植物2・2・・・の生育状況に関する情報を複数の領域T・T・・・ごとに検知するものとしたが、本発明はこれに限るものではなく、植物2単体ごとに検知する構成とすることも可能である。   In the above embodiment, the information on the growth status of the plants 2, 2... Is detected for each of the plurality of regions T. T. However, the present invention is not limited to this. It is also possible to adopt a configuration in which detection is performed every two units.

また、上記ステップS105の処理において、植物2・2・・・の生育状況に応じた照明環境(生育状況が改善するような照明環境(光度や色))が不明である場合には、現状と全く異なる照明環境(光度や色)で光を照射するように、照明ユニット20・20・・・の照明を調節する構成とすることも可能である。   Moreover, in the process of step S105, if the lighting environment (lighting environment (luminance or color) that improves the growth status) according to the growth status of the plants 2. It is also possible to adjust the illumination of the illumination units 20, 20... So that light is emitted in completely different illumination environments (luminosity and color).

次に、以下では、本発明の第二実施形態について説明する。
なお、本発明の第二実施形態が前述の第一実施形態と異なる点はその制御態様(植物栽培室1内の環境(照明)の調節の様子)だけであり、その他の構成は同様である。そのため、以下では当該相違点についてのみ説明する。
Next, a second embodiment of the present invention will be described below.
Note that the second embodiment of the present invention differs from the first embodiment described above only in its control mode (state of adjustment of the environment (lighting) in the plant cultivation room 1), and the other configurations are the same. . Therefore, only the difference will be described below.

第二実施形態に係る植物生育環境制御システム10の制御装置40は、図3のステップS105において、照明を、各領域T・T・・・において栽培されている植物2・2・・・の生育状況に応じた照明に変更する際に、生体ゆらぎ理論を取り入れるものである。   The control device 40 of the plant growth environment control system 10 according to the second embodiment performs the growth of the plants 2, 2... Cultivated in each region TT in step S 105 of FIG. When changing to lighting according to the situation, the biological fluctuation theory is adopted.

すなわち、第二実施形態に係る制御装置40は、生体の振る舞いをモデル化した以下の数1で表されるゆらぎ方程式を利用し、植物2・2・・・の生育状況に応じた照明(すなわち、照明ユニット20・20・・・に付与すべき入力電圧や照射させる色(スペクトル))を探索する。   That is, the control device 40 according to the second embodiment uses the fluctuation equation represented by the following formula 1 that models the behavior of the living body, and illuminates according to the growth status of the plants 2. , The input voltage to be applied to the lighting units 20.

Figure 2014103958
Figure 2014103958

上記数1において、xは状態(入力電圧又は光の色(スペクトル))、Aはゆらぎ指標(アクティビティ)、ηiはノイズ(ランダムな動作)を表す。   In the above equation 1, x represents a state (input voltage or light color (spectrum)), A represents a fluctuation index (activity), and ηi represents noise (random operation).

ゆらぎ指標(アクティビティ)Aは、真の解までの距離、すなわち、本実施形態においては植物2・2・・・の理想的な生育状況に関する情報と、実際の植物2・2・・・の生育状況との差等に基づいて算出される値である。当該差が小さくなるほどゆらぎ指標(アクティビティ)Aは大きくなり、当該差が大きくなるほどゆらぎ指標(アクティビティ)Aは小さくなる。   The fluctuation index (activity) A is the distance to the true solution, that is, in this embodiment, information on the ideal growth status of the plants 2... And the actual growth of the plants 2. It is a value calculated based on the difference from the situation. The fluctuation index (activity) A increases as the difference decreases, and the fluctuation index (activity) A decreases as the difference increases.

また、ゆらぎ指標(アクティビティ)Aが大きくなるほどノイズηiは小さくなり、ゆらぎ指標(アクティビティ)Aが小さくなるほどノイズηiは大きくなる。これによって、植物2・2・・・の生育状況に適した照明(すなわち、照明ユニット20・20・・・に付与すべき入力電圧や照射させる色(スペクトル))を効率的に探索することができる。   The noise ηi decreases as the fluctuation index (activity) A increases, and the noise ηi increases as the fluctuation index (activity) A decreases. By this, it is possible to efficiently search for lighting suitable for the growth state of the plants 2... (That is, the input voltage to be applied to the lighting units 20. it can.

以上の如く、本実施形態に係る制御装置40は、
制御ユニット20・20・・・を制御する際に生体ゆらぎ理論を取り入れるものである。
このように構成することにより、植物栽培室1内の環境をどのように調節すれば植物2・2・・・の生育状況を改善することができるか予め分かっていない場合であっても、植物2・2・・・の生育状況をセンシングすることにより、植物2・2・・・が適切に生育するように当該植物栽培室1内の環境を調節することができる。
As described above, the control device 40 according to the present embodiment is
The biological fluctuation theory is adopted when controlling the control units 20, 20.
Even if it is not known in advance how to adjust the environment in the plant cultivation room 1 to improve the growth status of the plants 2. It is possible to adjust the environment in the plant cultivation room 1 so that the plants 2, 2.

また、本実施形態に係る制御工程は、
植物栽培室1内の環境を調節する際に生体ゆらぎ理論を取り入れるものである。
このように構成することにより、植物栽培室1内の環境をどのように調節すれば植物2・2・・・の生育状況を改善することができるか予め分かっていない場合であっても、植物2・2・・・の生育状況をセンシングすることにより、植物2・2・・・が適切に生育するように当該植物栽培室1内の環境を調節することができる。
In addition, the control process according to the present embodiment is as follows:
The biological fluctuation theory is adopted when adjusting the environment in the plant cultivation room 1.
Even if it is not known in advance how to adjust the environment in the plant cultivation room 1 to improve the growth status of the plants 2. It is possible to adjust the environment in the plant cultivation room 1 so that the plants 2, 2.

次に、以下では、本発明の第三実施形態について説明する。
なお、本発明の第三実施形態が前述の第一実施形態と異なる点はその制御態様(植物栽培室1内の環境(照明)の調節の様子)だけであり、その他の構成は同様である。そのため、以下では当該相違点についてのみ説明する。
Next, a third embodiment of the present invention will be described below.
The third embodiment of the present invention is different from the first embodiment described above only in its control mode (state of adjustment of the environment (lighting) in the plant cultivation room 1), and the other configurations are the same. . Therefore, only the difference will be described below.

また、以下では、説明の簡略化のため、植物生育環境制御システム10は図1及び図2に示した照明ユニット20・20・・・及び領域T・T・・・のうち、第一照明ユニット21及び第二照明ユニット22、並びに第一領域T1及び第二領域T2のみに着目して植物栽培室1内の照明の制御を行うものとする。
ここで、第一照明ユニット21は、最も右側に配置された照明ユニット20であり、第二照明ユニット22は、第一照明ユニット21の左隣の照明ユニット20である。また、第一領域T1は、最も右側の領域Tであり、第二領域T2は、第一領域T1の左隣の領域Tである。
In the following, for simplification of explanation, the plant growth environment control system 10 is the first lighting unit among the lighting units 20, 20... And the regions T · T shown in FIGS. It is assumed that the lighting in the plant cultivation room 1 is controlled by paying attention only to the first and second lighting units 22 and 22 and the first and second regions T1 and T2.
Here, the first illumination unit 21 is the illumination unit 20 arranged on the rightmost side, and the second illumination unit 22 is the illumination unit 20 adjacent to the left of the first illumination unit 21. The first region T1 is the rightmost region T, and the second region T2 is the region T adjacent to the left of the first region T1.

図3のステップS100において、制御装置40は、第一照明ユニット21の入力電圧x1と色(スペクトル)y1及び第二照明ユニット22の入力電圧x2と色(スペクトル)y2等の初期値をそれぞれ決定する。
ここでは、適切な入力電圧を算出するための情報はまだ得られていないため、例えば入力電圧x1及び入力電圧x2をそれぞれ50%(最大入力電圧の50%)に、かつ色(スペクトル)y1及び色(スペクトル)y2を白色に暫定的に決定する(図4(a)の点p1参照)。
また、ここで制御装置40は、後述する平均生育度Gの目標となる目標生育範囲も決定する。
制御装置40は、上記処理を行った後、ステップS101に移行する。
In step S100 of FIG. 3, the control device 40 determines initial values such as the input voltage x1 and color (spectrum) y1 of the first lighting unit 21 and the input voltage x2 and color (spectrum) y2 of the second lighting unit 22, respectively. To do.
Here, since information for calculating an appropriate input voltage is not yet obtained, for example, the input voltage x1 and the input voltage x2 are set to 50% (50% of the maximum input voltage), respectively, and the color (spectrum) y1 and The color (spectrum) y2 is provisionally determined to be white (see point p1 in FIG. 4A).
Moreover, the control apparatus 40 determines the target growth range used as the target of the average growth degree G mentioned later here.
After performing the above processing, the control device 40 proceeds to step S101.

ステップS101において、制御装置40は、一定期間の間継続して、ステップS100において決定した入力電圧x1と色(スペクトル)y1及び入力電圧x2と色(スペクトル)y2を第一照明ユニット21及び第二照明ユニット22にそれぞれ付与し続ける。これによって、植物2・2・・・は第一照明ユニット21及び第二照明ユニット22からの光を受けながら生育する。   In step S101, the control device 40 continues the input voltage x1 and the color (spectrum) y1 and the input voltage x2 and the color (spectrum) y2 determined in step S100 continuously for a certain period. Each of the lighting units 22 is continuously applied. Accordingly, the plants 2, 2... Grow while receiving light from the first lighting unit 21 and the second lighting unit 22.

入力電圧x1と色(スペクトル)y1及び入力電圧x2と色(スペクトル)y2が第一照明ユニット21及び第二照明ユニット22にそれぞれ付与され続ける上述の「一定期間」は予め任意に設定され、制御装置40に記憶されている。   The above-mentioned “certain period” in which the input voltage x1 and the color (spectrum) y1 and the input voltage x2 and the color (spectrum) y2 are continuously applied to the first lighting unit 21 and the second lighting unit 22, respectively, is arbitrarily set and controlled in advance. It is stored in the device 40.

制御装置40は、上記処理を行った後、ステップS102に移行する。   After performing the above processing, the control device 40 proceeds to step S102.

ステップS102において、制御装置40は、第一領域T1及び第二領域T2において栽培されている植物2・2・・・の生育状況を確認する。より具体的には、制御装置40は、平均生育度Gを算出する。
以下、このステップS102の処理について詳細に説明する。
In step S102, the control apparatus 40 confirms the growth status of the plants 2... Cultivated in the first region T1 and the second region T2. More specifically, the control device 40 calculates the average growth degree G.
Hereinafter, the process of step S102 will be described in detail.

まず、制御装置40は、カメラ30によって撮影された第一領域T1及び第二領域T2の映像に基づいて、当該各領域T(第一領域T1及び第二領域T2)で栽培されている植物2・2・・・の各生育度gi(生育度g1及び生育度g2)をそれぞれ算出する。   First, the control device 40 is based on the images of the first region T1 and the second region T2 photographed by the camera 30, and the plant 2 cultivated in each region T (first region T1 and second region T2). -Each growth degree gi (growth degree g1 and growth degree g2) of 2 ... is calculated, respectively.

具体的には、制御装置40は、まず第一領域T1及び第二領域T2において栽培されている植物2・2・・・の現時点での生育状況(大きさ、色、形等)を認識する。   Specifically, the control device 40 first recognizes the current growth status (size, color, shape, etc.) of the plants 2, 2... Cultivated in the first region T 1 and the second region T 2. .

次に、予め制御装置40に記憶された植物2の現時点での理想的な生育状況に関する情報と、実際の第一領域T1及び第二領域T2において栽培されている植物2・2・・・の現時点での生育状況と、を比較する。   Next, information on the ideal growth status of the plant 2 at the present time stored in the control device 40 in advance and the plants 2... Cultivated in the actual first region T 1 and the second region T 2. Compare the current growth situation.

ここで、第一領域T1及び第二領域T2にはそれぞれ複数(本実施形態においては、4株)の植物2・2・・・が栽培されているため、比較し易いように第一領域T1及び第二領域T2の植物2・2・・・の生育状況(大きさ、色、形等)を制御装置40がそれぞれ平均し、当該平均された生育状況を用いて比較する構成としても良い。
また、客観的に比較し易いように、植物2・2・・・の生育状況(大きさ、色、形等)を数値で表現(数値換算)する構成としても良い。
Here, since a plurality (four in this embodiment) of plants 2... Are cultivated in each of the first region T1 and the second region T2, the first region T1 is easy to compare. The control device 40 may average the growth conditions (size, color, shape, etc.) of the plants 2... 2 in the second region T2 and compare them using the averaged growth conditions.
Moreover, it is good also as a structure which expresses the growth condition (a magnitude | size, a color, a shape, etc.) of plant 2 * 2 ... numerically (numeric conversion) so that it may be compared objectively.

最後に、実際の生育状況と理想的な生育状況とを比較した結果、及び予め制御装置40に記憶されたデータベース等に基づいて、第一領域T1及び第二領域T2における植物2・2・・・の生育状況を表すパラメータである生育度g1及び生育度g2がそれぞれ算出される。本実施形態においては、第一領域T1における生育度g1=0.4、第二領域T2における生育度g2=0.2であるものとする(図4(a)の点p1参照)。   Finally, based on the result of comparing the actual growth state and the ideal growth state, and a database stored in the control device 40 in advance, the plants 2... In the first region T 1 and the second region T 2. The growth degree g1 and the growth degree g2 which are parameters representing the growth status of are respectively calculated. In the present embodiment, it is assumed that the growth degree g1 = 0.4 in the first region T1 and the growth degree g2 = 0.2 in the second region T2 (see point p1 in FIG. 4A).

次に、制御装置40は、第一領域T1及び第二領域T2における植物2・2・・・の生育度g1及び生育度g2の平均値である平均生育度Gを算出する。本実施形態においては、平均生育度G(生育度g1及び生育度g2の平均値)=0.3となる(図4(a)の点p1参照)   Next, the control device 40 calculates an average growth degree G that is an average value of the growth degree g1 and the growth degree g2 of the plants 2... 2 in the first region T1 and the second region T2. In this embodiment, average growth degree G (average value of growth degree g1 and growth degree g2) = 0.3 (see point p1 in FIG. 4A).

制御装置40は、上記ステップS102の処理を行った後、ステップS103に移行する。   After performing the process of step S102, the control device 40 proceeds to step S103.

ステップS103において、制御装置40は、第一領域T1及び第二領域T2において栽培されている植物2・2・・・が十分に成長したか否かを判定する。   In step S103, the control device 40 determines whether or not the plants 2... Cultivated in the first region T1 and the second region T2 have grown sufficiently.

具体的には、カメラ30によって撮影された植物2・2・・・の生育状況が、予め制御装置40に記憶されている十分に成長した状態の植物2・2・・・の生育状況に関する情報と同程度(当該「同程度」の範囲は、予め任意に設定することができる)であれば、当該植物2・2・・・は十分に成長していると判定することができる。   Specifically, the growth status of the plants 2, 2... Photographed by the camera 30 is stored in advance in the control device 40, and the information regarding the growth status of the sufficiently grown plants 2. (The “same level” range can be arbitrarily set in advance), it can be determined that the plant 2... Is sufficiently grown.

ここで、植物2・2・・・の生育状況は第一領域T1及び第二領域T2ごとに異なるため、判定し易いように第一領域T1及び第二領域T2の植物2・2・・・の生育状況を制御装置40がそれぞれ平均し、当該平均された生育状況を用いて判定する構成としても良い。   Here, since the growth conditions of the plants 2... Are different for each of the first region T 1 and the second region T 2, the plants 2. It is good also as a structure which the control apparatus 40 averages each growth condition, and determines using the said average growth condition.

制御装置40は、第一領域T1及び第二領域T2において栽培されている植物2・2・・・が十分に成長したと判定した場合、当該植物2・2・・・の栽培自体を終了するため、植物生育環境制御システム10による植物栽培室1内の照明の調節(制御)を終了する。
制御装置40は、第一領域T1及び第二領域T2において栽培されている植物2・2・・・が十分に成長していないと判定した場合、ステップS104に移行する。
When it is determined that the plants 2, 2... Cultivated in the first region T 1 and the second region T 2 have sufficiently grown, the control device 40 ends the cultivation of the plants 2. Therefore, the adjustment (control) of the lighting in the plant cultivation room 1 by the plant growth environment control system 10 is terminated.
When it is determined that the plants 2... Cultivated in the first region T1 and the second region T2 are not sufficiently grown, the control device 40 proceeds to step S104.

ステップS104において、制御装置40は、照明の変更が必要であるか否かを判定する。より具体的には、制御装置40は、ステップS102において算出された平均生育度Gが目標生育範囲内に入っているか否かを判定することで、照明の変更が必要であるか否かを判定する。   In step S104, the control device 40 determines whether or not it is necessary to change the illumination. More specifically, the control device 40 determines whether or not the illumination needs to be changed by determining whether or not the average growth degree G calculated in step S102 is within the target growth range. To do.

制御装置40は、平均生育度Gが目標生育範囲内に入っていると判定した場合、照明の変更が必要でないと判定し、ステップS101に移行する。すなわちこの場合、照明を変更することなく、再度一定期間の間植物2・2・・・を生育(ステップS101参照)させる。
制御装置40は、平均生育度Gが目標生育範囲内に入っていないと判定した場合、照明の変更が必要であると判定し、ステップS105に移行する。
When it is determined that the average growth degree G is within the target growth range, the control device 40 determines that it is not necessary to change the illumination, and proceeds to step S101. That is, in this case, the plants 2, 2... Are grown again for a certain period without changing the illumination (see step S 101).
When determining that the average growth degree G is not within the target growth range, the control device 40 determines that the lighting needs to be changed, and proceeds to step S105.

本実施形態においては、目標生育範囲はG>0.8であるものとする。上記ステップS102において算出された平均生育度Gは0.3であるため、当該平均生育度Gは目標生育範囲内に入っていない。このため、制御装置4は、ステップS105に移行する。   In the present embodiment, it is assumed that the target growth range is G> 0.8. Since the average growth degree G calculated in step S102 is 0.3, the average growth degree G is not within the target growth range. For this reason, the control apparatus 4 transfers to step S105.

ステップS105において、制御装置40は、照明を、第一領域T1及び第二領域T2において栽培されている植物2・2・・・の生育状況に応じた照明に変更する。より具体的には、制御装置40は、次に第一照明ユニット21及び第二照明ユニット22に付与すべき入力電圧x1と色(スペクトル)y1及び入力電圧x2と色(スペクトル)y2を、生体ゆらぎ理論を用いて決定し、当該決定された入力電圧x1と色(スペクトル)y1及び入力電圧x2と色(スペクトル)y2を、第一照明ユニット21及び第二照明ユニット22にそれぞれ付与する。
以下、このステップS105の処理について詳細に説明する。
In step S105, the control device 40 changes the illumination to illumination according to the growth status of the plants 2... Cultivated in the first region T1 and the second region T2. More specifically, the control device 40 determines the input voltage x1 and color (spectrum) y1 and the input voltage x2 and color (spectrum) y2 to be applied to the first lighting unit 21 and the second lighting unit 22 next to the living body. The input voltage x1 and the color (spectrum) y1 and the input voltage x2 and the color (spectrum) y2 determined by the fluctuation theory are applied to the first illumination unit 21 and the second illumination unit 22, respectively.
Hereinafter, the process of step S105 will be described in detail.

制御装置40は、以下の数2に基づいて、次に第一照明ユニット21及び第二照明ユニット22に付与すべき入力電圧xi(入力電圧x1及び入力電圧x2)及び照射させる色(スペクトル)yi(スペクトルy1及びスペクトルy2)をそれぞれ決定する。
なお、以下のステップS105の処理の説明では、便宜上、入力電圧xi及び色(スペクトル)yiのうち、入力電圧xiに主に着目して説明及び図示を行う。
Based on the following formula 2, the control device 40 then applies the input voltage xi (input voltage x1 and input voltage x2) to be applied to the first lighting unit 21 and the second lighting unit 22 and the color (spectrum) yi to be irradiated. (Spectrum y1 and Spectrum y2) are determined respectively.
In the following description of step S105, for the sake of convenience, the description and illustration will be given mainly focusing on the input voltage xi out of the input voltage xi and color (spectrum) yi.

Figure 2014103958
Figure 2014103958
Figure 2014103958
Figure 2014103958

なお、tは1から始まる自然数であり、制御装置40により図3におけるステップS101からステップS105までの処理(以下、この処理(制御)を単に「照明制御」と記す)が繰り返されるごとにtは1ずつ増加するものとする。すなわち、本実施形態においては、t=1の場合、入力電圧xi(入力電圧x1及び入力電圧x2)はそれぞれ初期値である50%、かつ色(スペクトル)yi(スペクトルy1及びスペクトルy2)はそれぞれ白色である。   Note that t is a natural number starting from 1. Each time the control device 40 repeats the processing from step S101 to step S105 in FIG. 3 (hereinafter, this processing (control) is simply referred to as “illumination control”), t is Increase by one. That is, in this embodiment, when t = 1, the input voltage xi (input voltage x1 and input voltage x2) is 50%, which is the initial value, and the color (spectrum) yi (spectrum y1 and spectrum y2) is respectively It is white.

ここで、上記数2のうち、以下の数3で示された項は、過去の入力電圧又は色(スペクトル)と重み係数から算出される、入力電圧又は色(スペクトル)の重み付き平均値である。   Here, among the above formula 2, the term represented by the following formula 3 is a weighted average value of the input voltage or color (spectrum) calculated from the past input voltage or color (spectrum) and the weighting factor. is there.

Figure 2014103958
Figure 2014103958

すなわち、上記数2は、前回の入力電圧又は色(スペクトル)と、過去の入力電圧又は色(スペクトル)から算出された入力電圧又は色(スペクトル)の重み付き平均値と、の内分点の近傍(より詳細には、当該内分点を基準とするノイズηiの範囲内)において、次の入力電圧又は色(スペクトル)を決定するものである。   That is, the above formula 2 is the inner dividing point between the previous input voltage or color (spectrum) and the weighted average value of the input voltage or color (spectrum) calculated from the past input voltage or color (spectrum). The next input voltage or color (spectrum) is determined in the vicinity (more specifically, within the range of the noise ηi with the internal dividing point as a reference).

ここで、重み係数wは、過去の入力電圧又は色(スペクトル)のうち平均生育度Gが高かったものから順に大きな値となるように設定される。重み係数wの値は、予め制御装置40に記憶される。   Here, the weighting coefficient w is set so as to increase in order from the highest average growth degree G in the past input voltage or color (spectrum). The value of the weight coefficient w is stored in the control device 40 in advance.

上記実施形態において、入力電圧xiについては、次の(すなわち、t=2における)入力電圧xi(2)を算出する場合、過去の入力電圧xi(t−j)はxi(1)=50%の1つしかないため、重み係数w=1.0とされ、その重み付き平均値も50%となる。   In the above embodiment, for the input voltage xi, when calculating the next input voltage xi (2) (that is, at t = 2), the past input voltage xi (t−j) is xi (1) = 50%. Therefore, the weighting coefficient w is set to 1.0, and the weighted average value is also 50%.

また、本実施形態においては、内分η=0.5であるものとする。すなわち、ノイズηiは、前回の入力電圧と、過去の入力電圧から算出された入力電圧の重み付き平均値と、の中点を基準に与えられる。   In the present embodiment, the internal content η = 0.5. That is, the noise ηi is given on the basis of the midpoint between the previous input voltage and the weighted average value of the input voltage calculated from the past input voltage.

上記ステップS105(t=2における入力電圧xi(2)を決定する場合)においては、前回の入力電圧xi(1)と、過去の入力電圧から算出された入力電圧の重み付き平均値は共に50%であるため、ノイズηiの基準は前回の入力電圧xi(1)と同じ点(図4(a)及び(b)の点p1)となる。   In step S105 (when determining the input voltage xi (2) at t = 2), the weighted average value of both the previous input voltage xi (1) and the input voltage calculated from the past input voltage is 50. Therefore, the reference of the noise ηi is the same point as the previous input voltage xi (1) (point p1 in FIGS. 4A and 4B).

制御装置40は、図4(b)の点p1を基準とするノイズηiの範囲内(図4(b)に二点鎖線で示した範囲内)から、次の入力電圧xi(2)を決定する。   The control device 40 determines the next input voltage xi (2) from the range of the noise ηi with reference to the point p1 in FIG. 4B (within the range indicated by the two-dot chain line in FIG. 4B). To do.

ここで、ノイズηiは、例えば以下の数4のような正規分布で設定することができる。   Here, the noise ηi can be set in a normal distribution such as the following Expression 4, for example.

Figure 2014103958
Figure 2014103958

上記数4における「分散」の項は、平均生育度Gが低いときほど大きくなり、広範囲なノイズηiを生成する。これによって、平均生育度Gが低いときは次の入力電圧xiを広範囲から探索することができ、平均生育度Gをより早く目標生育範囲内へと導くことができる。   The term “dispersion” in Equation 4 increases as the average growth degree G decreases, and generates a wide range of noise ηi. As a result, when the average growth degree G is low, the next input voltage xi can be searched from a wide range, and the average growth degree G can be quickly brought into the target growth range.

本実施形態においては、制御装置40は、次の入力電圧を、x1(2)=30%、x2(2)=20%とそれぞれ決定するものとする(図5(a)の点p2参照)。   In the present embodiment, the control device 40 determines the next input voltage as x1 (2) = 30% and x2 (2) = 20% (see point p2 in FIG. 5A). .

制御装置40は、上述の如く決定された次の入力電圧xi(入力電圧x1(2)及び入力電圧x2(2))を、第一照明ユニット21及び第二照明ユニット22にそれぞれ付与する。   The control device 40 applies the next input voltage xi (input voltage x1 (2) and input voltage x2 (2)) determined as described above to the first lighting unit 21 and the second lighting unit 22, respectively.

制御装置40は、上記ステップS105の処理を行った後、ステップS101に移行し、再び照明制御(ステップS101からステップS105までの処理)を開始する。   After performing the process of step S105, the control device 40 proceeds to step S101 and starts illumination control (the process from step S101 to step S105) again.

ステップS101において、制御装置40は、一定期間の間継続して、前回のステップS105において決定した入力電圧x1と色(スペクトル)y1及び入力電圧x2と色(スペクトル)y2を第一照明ユニット21及び第二照明ユニット22にそれぞれ付与し続ける。すなわち、制御装置40は、入力電圧xiについては、第一照明ユニット21には入力電圧x1(2)=30%を、第二照明ユニット22には入力電圧x2(2)=20%を、それぞれ付与する。
制御装置40は、上記処理を行った後、ステップS102に移行する。
In step S101, the control device 40 continues the input voltage x1, the color (spectrum) y1 and the input voltage x2, and the color (spectrum) y2 determined in the previous step S105 continuously for a certain period of time. Each of the second lighting units 22 is continuously given. That is, for the input voltage xi, the control device 40 applies the input voltage x1 (2) = 30% to the first lighting unit 21 and the input voltage x2 (2) = 20% to the second lighting unit 22, respectively. Give.
After performing the above processing, the control device 40 proceeds to step S102.

ステップS102において、制御装置40は、第一領域T1及び第二領域T2において栽培されている植物2・2・・・の生育状況を確認する。より具体的には、制御装置40は、平均生育度Gを算出する。
制御装置40は、前回のステップS102の場合と同様の方法で、平均生育度Gを算出する。
In step S102, the control apparatus 40 confirms the growth status of the plants 2... Cultivated in the first region T1 and the second region T2. More specifically, the control device 40 calculates the average growth degree G.
The control device 40 calculates the average growth degree G by the same method as in the previous step S102.

本実施形態においては、今回のステップS102において算出される平均生育度G=0.2であるものとする(図5(a)の点p2参照)。   In the present embodiment, it is assumed that the average growth degree G = 0.2 calculated in the current step S102 (see point p2 in FIG. 5A).

制御装置40は、上記ステップS102の処理を行った後、ステップS103に移行する。   After performing the process of step S102, the control device 40 proceeds to step S103.

ステップS103において、制御装置40は、第一領域T1及び第二領域T2において栽培されている植物2・2・・・が十分に成長したか否かを判定する。
制御装置40は、前回のステップS103の場合と同様の方法で、植物2・2・・・が十分に成長したか否かを判定する。
In step S103, the control device 40 determines whether or not the plants 2... Cultivated in the first region T1 and the second region T2 have grown sufficiently.
The control device 40 determines whether or not the plants 2... Have grown sufficiently by the same method as in the previous step S103.

制御装置40は、第一領域T1及び第二領域T2において栽培されている植物2・2・・・が十分に成長したと判定した場合、当該植物2・2・・・の栽培自体を終了するため、植物生育環境制御システム10による植物栽培室1内の照明の調節(制御)を終了する。
制御装置40は、第一領域T1及び第二領域T2において栽培されている植物2・2・・・が十分に成長していないと判定した場合、ステップS104に移行する。
When it is determined that the plants 2, 2... Cultivated in the first region T 1 and the second region T 2 have sufficiently grown, the control device 40 ends the cultivation of the plants 2. Therefore, the adjustment (control) of the lighting in the plant cultivation room 1 by the plant growth environment control system 10 is terminated.
When it is determined that the plants 2... Cultivated in the first region T1 and the second region T2 are not sufficiently grown, the control device 40 proceeds to step S104.

ステップS104において、制御装置40は、照明の変更が必要であるか否かを判定する。より具体的には、制御装置40は、ステップS102において算出された平均生育度Gが目標生育範囲内に入っているか否かを判定することで、照明の変更が必要であるか否かを判定する。   In step S104, the control device 40 determines whether or not it is necessary to change the illumination. More specifically, the control device 40 determines whether or not the illumination needs to be changed by determining whether or not the average growth degree G calculated in step S102 is within the target growth range. To do.

制御装置40は、平均生育度Gが目標生育範囲内に入っていると判定した場合、照明の変更が必要でないと判定し、ステップS101に移行する。すなわちこの場合、照明を変更することなく、再度一定期間の間植物2・2・・・を生育(ステップS101参照)させる。
制御装置40は、平均生育度Gが目標生育範囲内に入っていないと判定した場合、照明の変更が必要であると判定し、ステップS105に移行する。
When it is determined that the average growth degree G is within the target growth range, the control device 40 determines that it is not necessary to change the illumination, and proceeds to step S101. That is, in this case, the plants 2, 2... Are grown again for a certain period without changing the illumination (see step S 101).
When determining that the average growth degree G is not within the target growth range, the control device 40 determines that the lighting needs to be changed, and proceeds to step S105.

本実施形態においては、目標生育範囲はG>0.8であり、上記ステップS102において算出された平均生育度Gは0.2であるため、当該平均生育度Gは目標生育範囲内に入っていない。このため、制御装置40は、ステップS105に移行する。   In the present embodiment, the target growth range is G> 0.8, and the average growth degree G calculated in step S102 is 0.2. Therefore, the average growth degree G is within the target growth range. Absent. For this reason, the control apparatus 40 transfers to step S105.

ステップS105において、制御装置40は、照明を、第一領域T1及び第二領域T2において栽培されている植物2・2・・・の生育状況に応じた照明に変更する。より具体的には、制御装置40は、次に第一照明ユニット21及び第二照明ユニット22に付与すべき入力電圧x1と色(スペクトル)y1及び入力電圧x2と色(スペクトル)y2を、生体ゆらぎ理論を用いて決定し、当該決定された入力電圧x1と色(スペクトル)y1及び入力電圧x2と色(スペクトル)y2を、第一照明ユニット21及び第二照明ユニット22にそれぞれ付与する。
以下、このステップS105の処理について詳細に説明する。
なお、以下のステップS105の処理の説明では、便宜上、入力電圧xi及び色(スペクトル)yiのうち、入力電圧xiに主に着目して説明及び図示を行う。
In step S105, the control device 40 changes the illumination to illumination according to the growth status of the plants 2... Cultivated in the first region T1 and the second region T2. More specifically, the control device 40 determines the input voltage x1 and color (spectrum) y1 and the input voltage x2 and color (spectrum) y2 that are to be applied to the first lighting unit 21 and the second lighting unit 22 next. The input voltage x1 and the color (spectrum) y1 and the input voltage x2 and the color (spectrum) y2 determined by the fluctuation theory are applied to the first illumination unit 21 and the second illumination unit 22, respectively.
Hereinafter, the process of step S105 will be described in detail.
In the following description of step S105, for the sake of convenience, the description and illustration will be given mainly focusing on the input voltage xi out of the input voltage xi and color (spectrum) yi.

制御装置40は、前述の数2に基づいて、次に第一照明ユニット21及び第二照明ユニット22に付与すべき入力電圧xi(入力電圧x1及び入力電圧x2)及び色(スペクトル)yi(スペクトルy1及びスペクトルy2)をそれぞれ決定する。   Based on Equation 2, the control device 40 then applies the input voltage xi (input voltage x1 and input voltage x2) and color (spectrum) yi (spectrum) to be applied to the first lighting unit 21 and the second lighting unit 22 next. y1 and spectrum y2) are determined respectively.

ここで、数2のうち、前述の数3で示された項は、過去の入力電圧(すなわち、t=1における入力電圧xi(1)、及びt=2における入力電圧xi(2))と重み係数から算出される、入力電圧の重み付き平均値である。   Here, in the equation 2, the term shown in the above equation 3 is the past input voltage (that is, the input voltage xi (1) at t = 1 and the input voltage xi (2) at t = 2). It is a weighted average value of the input voltage calculated from the weighting coefficient.

上記実施形態において、次の(すなわち、t=3における)入力電圧xi(3)を算出する場合、過去の入力電圧xi(3−j)としては、xi(1)及びxi(2)(図5(b)における点p1及び点p2)の2つの入力電圧があり、それぞれの平均生育度Gは0.3及び0.2である。よって、例えば平均生育度Gが高いxi(1)(図5(b)における点p1)に対応する重み係数wを0.7、平均生育度Gが低いxi(2)(図5(b)における点p2)に対応する重み係数wを0.3とする。この場合、過去の入力電圧xi(3−j)の重み付き平均値は、図5(b)の点r2となるものとする。   In the above embodiment, when calculating the next input voltage xi (3) (that is, at t = 3), as the past input voltage xi (3-j), xi (1) and xi (2) (FIG. There are two input voltages at point p1 and point p2) in 5 (b), and the average growth degree G is 0.3 and 0.2, respectively. Therefore, for example, the weight coefficient w corresponding to xi (1) having a high average growth degree G (point p1 in FIG. 5B) is 0.7, and xi (2) having a low average growth degree G (FIG. 5B). The weighting factor w corresponding to the point p2) is 0.3. In this case, the weighted average value of the past input voltage xi (3-j) is assumed to be a point r2 in FIG.

また、本実施形態においては、内分η=0.5であるものとしたので、ノイズηiの基準は、前回の入力電圧xi(2)(すなわち、図5(b)及び図6における点p2)と、過去の入力電圧から算出された入力電圧の重み付き平均値(すなわち、図5(b)及び図6における点r2)と、の中点M2となる(図6参照)。   In the present embodiment, since the internal component η = 0.5, the reference of the noise ηi is the previous input voltage xi (2) (that is, the point p2 in FIGS. 5B and 6). ), The weighted average value of the input voltage calculated from the past input voltage (that is, the point r2 in FIGS. 5B and 6), and the midpoint M2 (see FIG. 6).

制御装置40は、図7(a)の中点M2を基準とするノイズηiの範囲内(図7(a)に二点鎖線で示した範囲内)から、次の入力電圧xi(3)を決定する。本実施形態においては、制御装置40は、次の入力電圧を、x1(3)=80%、x2(3)=40%とそれぞれ決定するものとする(図7(a)の点p3参照)。   The control device 40 determines the next input voltage xi (3) from the range of the noise ηi with reference to the middle point M2 in FIG. 7A (within the range indicated by the two-dot chain line in FIG. 7A). decide. In the present embodiment, the control device 40 determines the next input voltages as x1 (3) = 80% and x2 (3) = 40% (see point p3 in FIG. 7A). .

制御装置40は、上述の如く決定された次の入力電圧xi(入力電圧x1(3)及び入力電圧x2(3))を、第一照明ユニット21及び第二照明ユニット22にそれぞれ付与する。   The control device 40 applies the next input voltage xi (input voltage x1 (3) and input voltage x2 (3)) determined as described above to the first lighting unit 21 and the second lighting unit 22, respectively.

制御装置40は、上記ステップS105の処理を行った後、ステップS101に移行し、再び照明制御(ステップS101からステップS105までの処理)を開始する。   After performing the process of step S105, the control device 40 proceeds to step S101 and starts illumination control (the process from step S101 to step S105) again.

ステップS101において、制御装置40は、一定期間の間継続して、前回のステップS105において決定した入力電圧x1と色(スペクトル)y1及び入力電圧x2と色(スペクトル)y2を第一照明ユニット21及び第二照明ユニット22にそれぞれ付与し続ける。すなわち、制御装置40は、入力電圧xiについては、第一照明ユニット21には入力電圧x1(3)=80%を、第二照明ユニット22には入力電圧x2(3)=40%を、それぞれ付与する。
制御装置40は、上記処理を行った後、ステップS102に移行する。
In step S101, the control device 40 continues the input voltage x1, the color (spectrum) y1 and the input voltage x2, and the color (spectrum) y2 determined in the previous step S105 continuously for a certain period of time. Each of the second lighting units 22 is continuously given. That is, for the input voltage xi, the control device 40 sets the input voltage x1 (3) = 80% for the first lighting unit 21 and the input voltage x2 (3) = 40% for the second lighting unit 22, respectively. Give.
After performing the above processing, the control device 40 proceeds to step S102.

ステップS102において、制御装置40は、第一領域T1及び第二領域T2において栽培されている植物2・2・・・の生育状況を確認する。より具体的には、制御装置40は、平均生育度Gを算出する。
制御装置40は、前回のステップS102の場合と同様の方法で、平均生育度Gを算出する。
In step S102, the control apparatus 40 confirms the growth status of the plants 2... Cultivated in the first region T1 and the second region T2. More specifically, the control device 40 calculates the average growth degree G.
The control device 40 calculates the average growth degree G by the same method as in the previous step S102.

本実施形態においては、今回のステップS102において算出される平均生育度G=0.7であるものとする(図7(a)の点p3参照)。   In the present embodiment, it is assumed that the average growth degree G = 0.7 calculated in the current step S102 (see point p3 in FIG. 7A).

制御装置40は、上記ステップS102の処理を行った後、ステップS103に移行する。   After performing the process of step S102, the control device 40 proceeds to step S103.

ステップS103において、制御装置40は、第一領域T1及び第二領域T2において栽培されている植物2・2・・・が十分に成長したか否かを判定する。
制御装置40は、前回のステップS103の場合と同様の方法で、植物2・2・・・が十分に成長したか否かを判定する。
In step S103, the control device 40 determines whether or not the plants 2... Cultivated in the first region T1 and the second region T2 have grown sufficiently.
The control device 40 determines whether or not the plants 2... Have grown sufficiently by the same method as in the previous step S103.

制御装置40は、第一領域T1及び第二領域T2において栽培されている植物2・2・・・が十分に成長したと判定した場合、当該植物2・2・・・の栽培自体を終了するため、植物生育環境制御システム10による植物栽培室1内の照明の調節(制御)を終了する。
制御装置40は、第一領域T1及び第二領域T2において栽培されている植物2・2・・・が十分に成長していないと判定した場合、ステップS104に移行する。
When it is determined that the plants 2, 2... Cultivated in the first region T 1 and the second region T 2 have sufficiently grown, the control device 40 ends the cultivation of the plants 2. Therefore, the adjustment (control) of the lighting in the plant cultivation room 1 by the plant growth environment control system 10 is terminated.
When it is determined that the plants 2... Cultivated in the first region T1 and the second region T2 are not sufficiently grown, the control device 40 proceeds to step S104.

ステップS104において、制御装置40は、照明の変更が必要であるか否かを判定する。より具体的には、制御装置40は、ステップS102において算出された平均生育度Gが目標生育範囲内に入っているか否かを判定することで、照明の変更が必要であるか否かを判定する。   In step S104, the control device 40 determines whether or not it is necessary to change the illumination. More specifically, the control device 40 determines whether or not the illumination needs to be changed by determining whether or not the average growth degree G calculated in step S102 is within the target growth range. To do.

制御装置40は、平均生育度Gが目標生育範囲内に入っていると判定した場合、照明の変更が必要でないと判定し、ステップS101に移行する。すなわちこの場合、照明を変更することなく、再度一定期間の間植物2・2・・・を生育(ステップS101参照)させる。
制御装置40は、平均生育度Gが目標生育範囲内に入っていないと判定した場合、照明の変更が必要であると判定し、ステップS105に移行する。
When it is determined that the average growth degree G is within the target growth range, the control device 40 determines that it is not necessary to change the illumination, and proceeds to step S101. That is, in this case, the plants 2, 2... Are grown again for a certain period without changing the illumination (see step S 101).
When determining that the average growth degree G is not within the target growth range, the control device 40 determines that the lighting needs to be changed, and proceeds to step S105.

本実施形態においては、目標生育範囲はG>0.8であり、上記ステップS102において算出された平均生育度Gは0.7であるため、当該平均生育度Gは目標生育範囲内に入っていない。このため、制御装置40は、ステップS105に移行する。   In the present embodiment, the target growth range is G> 0.8, and the average growth degree G calculated in step S102 is 0.7. Therefore, the average growth degree G is within the target growth range. Absent. For this reason, the control apparatus 40 transfers to step S105.

ステップS105において、制御装置40は、照明を、第一領域T1及び第二領域T2において栽培されている植物2・2・・・の生育状況に応じた照明に変更する。より具体的には、制御装置40は、次に第一照明ユニット21及び第二照明ユニット22に付与すべき入力電圧x1と色(スペクトル)y1及び入力電圧x2と色(スペクトル)y2を、生体ゆらぎ理論を用いて決定し、当該決定された入力電圧x1と色(スペクトル)y1及び入力電圧x2と色(スペクトル)y2を、第一照明ユニット21及び第二照明ユニット22にそれぞれ付与する。
以下、このステップS105の処理について詳細に説明する。
なお、以下のステップS105の処理の説明では、便宜上、入力電圧xi及び色(スペクトル)yiのうち、入力電圧xiに主に着目して説明及び図示を行う。
In step S105, the control device 40 changes the illumination to illumination according to the growth status of the plants 2... Cultivated in the first region T1 and the second region T2. More specifically, the control device 40 determines the input voltage x1 and color (spectrum) y1 and the input voltage x2 and color (spectrum) y2 that are to be applied to the first lighting unit 21 and the second lighting unit 22 next. The input voltage x1 and the color (spectrum) y1 and the input voltage x2 and the color (spectrum) y2 determined by the fluctuation theory are applied to the first illumination unit 21 and the second illumination unit 22, respectively.
Hereinafter, the process of step S105 will be described in detail.
In the following description of step S105, for the sake of convenience, the description and illustration will be given mainly focusing on the input voltage xi out of the input voltage xi and color (spectrum) yi.

制御装置40は、前述の数2に基づいて、次に第一照明ユニット21及び第二照明ユニット22に付与すべき入力電圧xi(入力電圧x1及び入力電圧x2)及び色(スペクトル)yi(スペクトルy1及びスペクトルy2)をそれぞれ決定する。   Based on Equation 2, the control device 40 then applies the input voltage xi (input voltage x1 and input voltage x2) and color (spectrum) yi (spectrum) to be applied to the first lighting unit 21 and the second lighting unit 22 next. y1 and spectrum y2) are determined respectively.

ここで、数2のうち、前述の数3で示された項は、過去の入力電圧(すなわち、t=1における入力電圧xi(1)、t=2における入力電圧xi(2)、及びt=3における入力電圧xi(3))と重み係数から算出される、入力電圧の重み付き平均値である。   Here, in the equation 2, the term shown in the above equation 3 represents the past input voltage (that is, the input voltage xi (1) at t = 1, the input voltage xi (2) at t = 2, and t = Input voltage xi (3) at 3) and the weighted average value of the input voltage calculated from the weighting coefficient.

上記実施形態において、次の(すなわち、t=4における)入力電圧xi(4)を算出する場合、過去の入力電圧xi(4−j)としては、xi(1)、xi(2)及びxi(3)(図7(b)における点p1、点p2及び点p3)の3つの入力電圧があり、それぞれの平均生育度は0.3、0.2及び0.7である。よって、例えば平均生育度Gが最も高いxi(3)(図7(b)における点p3)に対応する重み係数wを0.6、平均生育度Gが二番目に高いxi(1)(図7(b)における点p1)に対応する重み係数wを0.3、平均生育度Gが最も低いxi(2)(図7(b)における点p2)に対応する重み係数wを0.1とする。この場合、過去の入力電圧xi(4−j)の重み付き平均値は、図7(b)の点r3となるものとする。   In the above embodiment, when calculating the next input voltage xi (4) (that is, at t = 4), as the past input voltage xi (4-j), xi (1), xi (2), and xi (3) There are three input voltages (point p1, point p2 and point p3 in FIG. 7 (b)), and the average growth degrees are 0.3, 0.2 and 0.7, respectively. Therefore, for example, the weight coefficient w corresponding to xi (3) having the highest average growth degree G (point p3 in FIG. 7B) is 0.6, and xi (1) having the second highest average growth degree G (FIG. The weighting factor w corresponding to point p1) in 7 (b) is 0.3, and the weighting factor w corresponding to xi (2) having the lowest average growth degree G (point p2 in FIG. 7B) is 0.1. And In this case, the weighted average value of the past input voltage xi (4-j) is assumed to be a point r3 in FIG.

また、本実施形態においては、内分η=0.5であるものとしたので、ノイズηiの基準は、前回の入力電圧xi(3)(すなわち、図7(b)及び図8における点p3)と、過去の入力電圧から算出された入力電圧の重み付き平均値(すなわち、図7(b)及び図6における点r3)と、の中点M3となる(図8参照)。   In the present embodiment, since the internal fraction η = 0.5, the reference of the noise ηi is the previous input voltage xi (3) (that is, the point p3 in FIGS. 7B and 8). ), The weighted average value of the input voltage calculated from the past input voltage (that is, the point r3 in FIGS. 7B and 6), and the midpoint M3 (see FIG. 8).

制御装置40は、図8の中点M3を基準とするノイズηiの範囲内から、次の入力電圧xi(4)を決定する。   The control device 40 determines the next input voltage xi (4) from the range of the noise ηi with reference to the middle point M3 in FIG.

制御装置40は、上述の如く決定された次の入力電圧xi(4)を、第一照明ユニット21及び第二照明ユニット22にそれぞれ付与する。   The control device 40 applies the next input voltage xi (4) determined as described above to the first lighting unit 21 and the second lighting unit 22, respectively.

制御装置40は、上記ステップS105の処理を行った後、ステップS101に移行し、再び照明制御(ステップS101からステップS105までの処理)を開始する。   After performing the process of step S105, the control device 40 proceeds to step S101 and starts illumination control (the process from step S101 to step S105) again.

上述の如く、制御装置40は、平均生育度Gが予め設定された目標範囲(G>0.8)内となるまで、照明制御(ステップS101からステップS105までの処理)を繰り返し行う。このようにして、制御装置40は、第一領域T1及び第二領域T2において栽培される植物2・2・・・の生育度g1及び生育度g2がいずれも高くなるように制御することができる。また、制御装置40は、植物栽培室1内の環境をどのように調節すれば植物2・2・・・の生育状況を改善することができるか予め分かっていない場合であっても、植物2・2・・・の生育状況をセンシングすることにより、植物2・2・・・が適切に生育するように当該植物栽培室1内の環境を調節することができる。さらに、植物2・2・・・を栽培している期間の途中で周囲の環境の変化(外乱)が生じた場合であっても、当該変化に応じて適切に照明を調節することができる。   As described above, the control device 40 repeatedly performs illumination control (processing from step S101 to step S105) until the average growth degree G falls within a preset target range (G> 0.8). In this way, the control device 40 can control the growth degree g1 and the growth degree g2 of the plants 2, 2... Cultivated in the first region T1 and the second region T2 to be both high. . Moreover, even if it is a case where it is not known beforehand how the control apparatus 40 can improve the growth condition of the plant 2 * 2 ... by adjusting the environment in the plant cultivation room 1, the plant 2 By sensing the growth situation of 2 ..., the environment in the plant cultivation room 1 can be adjusted so that the plants 2 ... 2 grow properly. Furthermore, even when a change (disturbance) in the surrounding environment occurs in the middle of the period in which the plants 2, 2... Are cultivated, the illumination can be adjusted appropriately according to the change.

なお、上記第三実施形態においては、平均生育度Gが目標生育範囲内に入っているか否か(ステップS104)で照明の変更(ステップS105)が必要であるか否かを判定した。これによって、植物2・2・・・全体を均一に生育させることができる。
しかし、各領域T・T・・・ごとに最適な生育環境(照明環境)となるように制御する場合には、平均生育度Gを用いず、各生育度(生育度g1及び生育度g2)の値に基づいて照明の変更(ステップS105)が必要であるか否かを判定することも可能である。
In the third embodiment, it is determined whether or not the illumination needs to be changed (step S105) based on whether the average growth degree G is within the target growth range (step S104). As a result, the entire plant 2... Can be grown uniformly.
However, when controlling so that it becomes the optimal growth environment (lighting environment) for each region T · T..., Each growth degree (growth degree g1 and growth degree g2) is not used. It is also possible to determine whether or not it is necessary to change the illumination (step S105) based on the value of.

また、上記第三実施形態においては、生体ゆらぎ理論を用いた植物生育環境制御システム10による照明の制御の様子(照明制御方法)を説明したが、本発明はこれに限るものではなく、例えば当該生体ゆらぎ理論に代えてSA(Simulated Annealing:焼きなまし法)を用いた照明の制御を行う構成とすることも可能である。   Moreover, in the said 3rd embodiment, although the mode (illumination control method) of the illumination control by the plant growth environment control system 10 using the biological fluctuation theory was demonstrated, this invention is not limited to this, For example, the said It is also possible to adopt a configuration in which illumination control using SA (Simulated Annealing) is used instead of the biological fluctuation theory.

また、上記第三実施形態において、図3のステップS105では、過去の入力電圧と重み係数から、入力電圧の重み付き平均値を算出しているが、この重み付き平均値を算出する際に過去の平均生育度を減少させるように構成することも可能である。以下、具体的に説明する。   In the third embodiment, in step S105 of FIG. 3, the weighted average value of the input voltage is calculated from the past input voltage and the weighting coefficient. It is also possible to configure so as to reduce the average growth degree of. This will be specifically described below.

例えば、t=2である場合のステップS105において、入力電圧xi(2)を算出する際に用いる過去の(t=1における)入力電圧xi(1)の平均生育度G=0.6であったとする。
この場合、入力電圧xi(1)の平均生育度G=0.6をそのまま用いて次の入力電圧xi(2)を算出するのではなく、当該入力電圧xi(1)の平均生育度G=0.6に1未満の所定の係数(以下、単に「忘却係数」と記す)を掛けた値を、入力電圧xi(2)を算出する際に用いる過去の平均生育度Gとする。忘却係数が例えば0.9であるとすると、入力電圧xi(2)を算出する際に用いる過去の平均生育度G=0.6×0.9=0.54となる。
For example, in step S105 when t = 2, the average growth degree G = 0.6 of the past input voltage xi (1) (at t = 1) used in calculating the input voltage xi (2). Suppose.
In this case, instead of using the average growth degree G = 0.6 of the input voltage xi (1) as it is, the next input voltage xi (2) is not calculated, but the average growth degree G = of the input voltage xi (1). A value obtained by multiplying 0.6 by a predetermined coefficient less than 1 (hereinafter simply referred to as “forgetting coefficient”) is defined as the past average growth degree G used when calculating the input voltage xi (2). If the forgetting factor is 0.9, for example, the past average growth degree G = 0.6 × 0.9 = 0.54 used when calculating the input voltage xi (2).

さらに、t=3である場合のステップS105において、入力電圧xi(3)を算出する際に用いる過去の(t=1における)入力電圧xi(1)の平均生育度Gとしては、さらに忘却係数を掛けた値、すなわち平均生育度G=0.54×0.9=0.49を用いる。   Further, in step S105 in the case of t = 3, the average growth degree G of the past input voltage xi (1) (at t = 1) used when calculating the input voltage xi (3) is further set as a forgetting factor. Multiplied by, that is, average growth degree G = 0.54 × 0.9 = 0.49.

このように、ステップS105処理を繰り返すにつれて過去の平均生育度Gに忘却係数を掛けて当該平均生育度Gを減少させることで、入力電圧の重み付き平均値を算出する際に、古いデータの重み係数を下げる方向に誘導することができる。これによって、周囲の環境の変化によって生育度が変化しているかもしれない古いデータが次の入力電圧を決定する際に与える影響を少なくし、現在に近いデータを重視しながら平均生育度Gが向上するように各照明ユニット20・20・・・の光度を制御することができる。   As described above, when the average growth degree G is reduced by multiplying the past average growth degree G by multiplying the past average growth degree G as the processing of step S105 is repeated, the weight of the old data is calculated when calculating the weighted average value of the input voltage. It is possible to induce the coefficient to decrease. This reduces the influence of old data, which may have changed in growth due to changes in the surrounding environment, on determining the next input voltage. It is possible to control the luminous intensity of each lighting unit 20.

次に、以下では、本発明の第四実施形態について説明する。
なお、本発明の第四実施形態は、前述の第二実施形態又は第三実施形態に係る制御(植物栽培室1内の環境(照明)の調節)(図3のフローチャート等を参照)を、植物2・2・・・に適した環境を探索する実験等に応用するものである。そのため、以下では当該植物2・2・・・に適した環境を探索する実験等の概要についてのみ説明し、具体的な制御については前述の第二実施形態又は第三実施形態と同様であるため説明を省略する。
Next, a fourth embodiment of the present invention will be described below.
In addition, 4th embodiment of this invention is the control (adjustment of the environment (illumination) in the plant cultivation room 1) (refer the flowchart of FIG. 3, etc.) which concerns on above-mentioned 2nd embodiment or 3rd embodiment, This is applied to experiments for searching for an environment suitable for plants 2. Therefore, only the outline of an experiment etc. for searching for an environment suitable for the plant 2... Will be described below, and the specific control is the same as in the second embodiment or the third embodiment described above. Description is omitted.

図9に示すように、第四実施形態においては、まずゆらぎ制御(生体ゆらぎ理論を取り入れた制御)を用いて、ある特定の種類の植物2・2・・・に適した照明環境(すなわち、照明ユニット20・20・・・に付与すべき入力電圧及び照射させる色(スペクトル))が探索され、当該照明条件が学習される(ステップS200)。   As shown in FIG. 9, in the fourth embodiment, first, using a fluctuation control (control incorporating biological fluctuation theory), an illumination environment suitable for a specific kind of plant 2. The input voltage to be applied to the lighting units 20, 20... And the color (spectrum) to be irradiated are searched, and the lighting conditions are learned (step S200).

具体的には、生育に適した照明環境(すなわち、照明ユニット20・20・・・に付与すべき入力電圧及び照射させる色(スペクトル))が分かっていないある特定の種類の植物2・2・・・が、前述の第二実施形態又は第三実施形態と同様に植物生育環境制御システム10を用いて栽培される(図3のフローチャート等を参照)。   Specifically, the lighting environment suitable for growth (that is, the input voltage to be applied to the lighting units 20, 20... And the color (spectrum) to be irradiated) is not known. .. Is cultivated using the plant growth environment control system 10 as in the second embodiment or the third embodiment (see the flowchart in FIG. 3).

このある特定の種類の植物2・2・・・の栽培は、あくまで当該植物2・2・・・に適した照明環境を探索及び学習するための実験であるため、実際に植物2・2・・・を栽培するための植物栽培室1ではなく、実験用の植物栽培室1(比較的小型で簡易な植物栽培室1等)を用いても良い。   This cultivation of a specific kind of plant 2... Is an experiment for searching and learning a lighting environment suitable for the plant 2. -You may use the experimental plant cultivation room 1 (relatively small and simple plant cultivation room 1 etc.) instead of the plant cultivation room 1 for cultivating.

植物生育環境制御システム10は、前述の第二実施形態又は第三実施形態と同様の照明制御(図3のステップS101からステップS105までの処理)を複数回行うことで、植物2・2・・・に適した照明環境(すなわち、照明ユニット20・20・・・に付与すべき入力電圧及び照射させる色(スペクトル))を探索する。   The plant growth environment control system 10 performs the same illumination control (processing from step S101 to step S105 in FIG. 3) as in the second embodiment or the third embodiment described above a plurality of times, so that the plants 2, 2,. Search for a suitable lighting environment (that is, an input voltage to be applied to the lighting units 20, 20... And a color (spectrum) to be irradiated).

当該照明制御は、例えば予め定められた回数や期間が経過するまで、若しくは第三実施形態で説明した平均生育度Gが目標生育範囲内に入るまで繰り返される。このようにして、植物生育環境制御システム10の制御装置40は、最終的に算出された当該ある特定の種類の植物2・2・・・に適していると考えられる入力電圧及び色(スペクトル)を学習する。   The lighting control is repeated until, for example, a predetermined number of times or a period has elapsed, or until the average growth degree G described in the third embodiment falls within the target growth range. In this way, the control device 40 of the plant growth environment control system 10 is adapted to the finally calculated input voltage and color (spectrum) considered to be suitable for the specific kind of plant 2. To learn.

次に、上記ステップS200で学習された入力電圧及び色(スペクトル)が照明ユニット20・20・・・にそれぞれ付与され、植物2・2・・・の実際の栽培が行われる(ステップS300)。   Next, the input voltage and the color (spectrum) learned in step S200 are respectively given to the lighting units 20, 20..., And actual cultivation of the plants 2.

具体的には、ステップS200において学習された入力電圧及び色(スペクトル)(植物2・2・・・に適した入力電圧及び色(スペクトル))が初期値(図3のステップS100参照)として照明ユニット20・20・・・にそれぞれ付与され、植物2・2・・・の栽培が開始される。   Specifically, the input voltage and color (spectrum) learned in step S200 (input voltage and color (spectrum) suitable for plants 2... 2) are illuminated as initial values (see step S100 in FIG. 3). .. Are given to the units 20, 20..., And cultivation of the plants 2.

この植物2・2・・・の栽培は上記ステップS200とは別途行われるものであり、上述の実験用の植物栽培室1ではなく、実際に商用として収穫される植物2・2・・・を栽培するための植物栽培室1(比較的大型の植物栽培室1)を用いて行われる。   The cultivation of the plants 2... Is performed separately from the above-described step S200. It is carried out using a plant cultivation room 1 (a relatively large plant cultivation room 1) for cultivation.

予め実験により学習された、当該植物2・2・・・の栽培に適した入力電圧及び色(スペクトル)が初期値として照明ユニット20・20・・・にそれぞれ付与されるため、当該植物2・2・・・を栽培開始時から良好な環境(照明環境)で栽培することができる。   Since the input voltage and the color (spectrum) suitable for cultivation of the plant 2 · 2 ··· previously learned by experiment are given to the lighting units 20 · 20 ··· as initial values, respectively, 2 ... can be cultivated in a favorable environment (lighting environment) from the beginning of cultivation.

また、植物生育環境制御システム10は、ステップS300においても、前述の第二実施形態又は第三実施形態と同様の照明制御(図3のステップS101からステップS105までの処理)を繰り返し行うことで、周囲の環境の変化(外乱)が生じても常に当該植物2・2・・・に適した照明環境となるように、照明ユニット20・20・・・を調節することができる。   In addition, the plant growth environment control system 10 also repeatedly performs the illumination control (the processing from step S101 to step S105 in FIG. 3) similar to that in the second embodiment or the third embodiment described above in step S300. The lighting units 20, 20... Can be adjusted so that the lighting environment is always suitable for the plants 2, 2... Even if the surrounding environment changes (disturbance).

上述の如く、植物生育環境制御システム10は、ある特定の種類の植物2・2・・・に適した照明環境を探索(学習)するための実験(研究)(ステップS200)に用いることも可能である。特に、植物生育環境制御システム10に生体ゆらぎ理論を取り入れることによって、植物2・2・・・が最適に生育する照明環境をより効率良く探索(学習)することができる。   As described above, the plant growth environment control system 10 can also be used for an experiment (research) (step S200) for searching (learning) a lighting environment suitable for a specific kind of plant 2. It is. In particular, by incorporating the biological fluctuation theory into the plant growth environment control system 10, it is possible to more efficiently search (learn) the lighting environment in which the plants 2, 2,... Grow optimally.

なお、上記各実施形態に係る植物生育環境制御システム10及び植物生育環境制御方法は、略直方体状の空間を形成する植物栽培室1に適用されるものとしたが、本発明の適用範囲はこれに限るものではなく、その他の形状の部屋、ベランダ、屋外に設置されたテント等にも広く適用することができる。
また、上記各実施形態に係る照明ユニット20・20・・・は、植物栽培室1の天井に設けられるものとしたが、本発明はこれに限るものではなく、例えば植物栽培室1の側壁に取り付けられるものや、植物栽培室1の床面(地面)に置かれるものであっても良い。
また、照明ユニット20・20・・・は、1つの照明ユニット20内に複数の照明器具を有する構成とし、当該各照明器具の入力電圧(光度)や色(スペクトル)をそれぞれ調節する構成とすることも可能である。
また、上記各実施形態においては、本発明に係る室内環境調節部の実施の一形態として照明ユニット20・20・・・を例示したが、本発明はこれに限るものではなく、例えば植物栽培室1内の温度や湿度を調節することが可能な空調機等を用いることも可能である。さらに、照明ユニット20・20・・・や前記空調機を両方用いることも可能である。
また、上記各実施形態においては、本発明に係る植物情報検知部の実施の一形態として1つのカメラ30を例示したが、2つ以上の複数のカメラを用いることも可能である。さらに、本発明に係る植物情報検知部の実施の一形態としては、カメラ30だけではなく、植物2・2・・・の生育状況(大きさ、色、形等)を検知することができるもの(例えば、植物2・2・・・に取り付けられた各種センサ等)を用いることも可能である。
また、上記各実施形態においては、制御装置40が、カメラ30が取得した1つの映像から、植物2・2・・・が栽培される領域を複数の領域T・T・・・に分割するものとしたが、例えば複数の領域T・T・・・の映像をそれぞれ撮影することができるように複数のカメラを設け、映像を取得する時点で複数の領域T・T・・・に分割される構成とすることも可能である。
また、上記各実施形態においては、領域Tは植物2・2・・・が前後方向に4株並べて配置された1列分の領域であるものとしたが、領域Tの形状はこれに限るものではない。例えば、2列分の領域とすることや、1株分の領域とすること等、任意に設定することも可能である。
また、上記各実施形態に係る照明ユニット20・20・・・及びカメラ30は、図1に示されるように配置したが、本発明はこれに限るものではなく、それぞれ任意の位置に配置することができる。
また、上記各実施形態における重み係数wや内分ηの値は一例であり、その値は任意に設定することができる。
Although the plant growth environment control system 10 and the plant growth environment control method according to each of the above embodiments are applied to the plant cultivation room 1 that forms a substantially rectangular parallelepiped space, the scope of application of the present invention is this. The present invention is not limited to this, and can be widely applied to rooms having other shapes, verandas, tents installed outdoors, and the like.
Moreover, although the lighting unit 20 * 20 ... which concerns on each said embodiment shall be provided in the ceiling of the plant cultivation room 1, this invention is not restricted to this, For example, on the side wall of the plant cultivation room 1 What is attached and what is put on the floor (ground) of the plant cultivation room 1 may be used.
The lighting units 20, 20... Have a plurality of lighting fixtures in one lighting unit 20 and adjust the input voltage (luminous intensity) and color (spectrum) of each lighting fixture. It is also possible.
Moreover, in each said embodiment, although lighting unit 20.20 ... was illustrated as one Embodiment of the indoor environment adjustment part which concerns on this invention, this invention is not limited to this, For example, a plant cultivation room It is also possible to use an air conditioner or the like that can adjust the temperature and humidity within 1. Further, it is possible to use both the lighting units 20, 20... And the air conditioner.
Moreover, in each said embodiment, although the one camera 30 was illustrated as one Embodiment of the plant information detection part which concerns on this invention, it is also possible to use two or more several cameras. Furthermore, as one embodiment of the plant information detection unit according to the present invention, not only the camera 30 but also the growth status (size, color, shape, etc.) of the plants 2. (For example, various sensors attached to the plants 2, 2...) Can also be used.
Moreover, in each said embodiment, the control apparatus 40 divides | segments the area | region where plant 2 * 2 ... is cultivated into several area | region T * T ... from one image | video which the camera 30 acquired. However, for example, a plurality of cameras are provided so that images of a plurality of regions T, T,... Can be respectively captured, and the images are divided into a plurality of regions T, T,. A configuration is also possible.
Moreover, in each said embodiment, although the area | region T shall be the area | region for 1 row by which four plants 2 * 2 ... was arrange | positioned in the front-back direction, the shape of the area | region T is restricted to this. is not. For example, it is possible to arbitrarily set an area for two rows, an area for one stock, or the like.
In addition, the lighting units 20, 20... And the camera 30 according to each of the above embodiments are arranged as shown in FIG. 1, but the present invention is not limited to this, and they are arranged at arbitrary positions. Can do.
Moreover, the values of the weighting coefficient w and the internal fraction η in the above embodiments are examples, and the values can be set arbitrarily.

1 植物栽培室
2 植物
10 植物生育環境制御システム
20 照明ユニット(室内環境調節部)
30 カメラ(植物情報検知部)
40 制御装置(制御部)
DESCRIPTION OF SYMBOLS 1 Plant cultivation room 2 Plant 10 Plant growth environment control system 20 Lighting unit (indoor environment control part)
30 camera (plant information detection part)
40 Control device (control unit)

Claims (6)

植物栽培室内の環境を調節することが可能な複数の室内環境調節部と、
前記植物栽培室内に配置されて栽培される植物の生育状況に関する情報を複数の領域ごと又は植物単体ごとに検知する植物情報検知部と、
前記植物情報検知部により検知される前記領域ごと又は植物単体ごとの植物の生育状況に基づいて、前記室内環境調節部を制御する制御部と、
を具備することを特徴とする、
植物生育環境制御システム。
A plurality of indoor environment control units capable of adjusting the environment in the plant cultivation room;
A plant information detection unit that detects information about the growth status of plants that are arranged and cultivated in the plant cultivation room for each of a plurality of regions or for each plant alone;
A control unit that controls the indoor environment adjustment unit based on the growth status of the plant for each region or each single plant detected by the plant information detection unit,
Characterized by comprising:
Plant growth environment control system.
前記制御部は、
前記領域ごと又は植物単体ごとの植物の生育状況が、適切になるように、前記室内環境調節部を制御することを特徴とする、
請求項1に記載の植物生育環境制御システム。
The controller is
The indoor environment control unit is controlled so that the growth status of the plant for each region or for each single plant is appropriate,
The plant growth environment control system according to claim 1.
前記制御部は、
前記室内環境調節部を制御する際に生体ゆらぎ理論を取り入れることを特徴とする、
請求項1又は請求項2に記載の植物生育環境制御システム。
The controller is
Incorporating biological fluctuation theory when controlling the indoor environment adjustment unit,
The plant growth environment control system according to claim 1 or 2.
植物栽培室内に配置されて栽培される植物の生育状況に関する情報を複数の領域ごと又は植物単体ごとに検知する植物情報検知工程と、
検知される前記領域ごと又は植物単体ごとの植物の生育状況に基づいて、前記植物栽培室内の環境を調節する制御工程と、
を具備することを特徴とする、
植物生育環境制御方法。
A plant information detection step of detecting information on the growth status of plants arranged and cultivated in a plant cultivation room for each of a plurality of regions or for each plant alone;
A control step of adjusting the environment in the plant cultivation room, based on the growth status of the plant for each of the areas or for each single plant detected,
Characterized by comprising:
Plant growth environment control method.
前記制御工程は、
前記領域ごと又は植物単体ごとの植物の生育状況が、適切になるように、前記植物栽培室内の環境を調節することを特徴とする、
請求項4に記載の植物生育環境制御方法。
The control step includes
Adjusting the environment in the plant cultivation room, so that the growth situation of the plant for each region or each single plant is appropriate,
The plant growth environment control method according to claim 4.
前記制御工程は、
前記植物栽培室内の環境を調節する際に生体ゆらぎ理論を取り入れることを特徴とする、
請求項4又は請求項5に記載の植物生育環境制御方法。
The control step includes
Incorporating biological fluctuation theory when adjusting the environment in the plant cultivation room,
The plant growth environment control method according to claim 4 or 5.
JP2012261757A 2012-11-29 2012-11-29 Plant growth environment control system and plant growth environment control method Active JP6147493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012261757A JP6147493B2 (en) 2012-11-29 2012-11-29 Plant growth environment control system and plant growth environment control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012261757A JP6147493B2 (en) 2012-11-29 2012-11-29 Plant growth environment control system and plant growth environment control method

Publications (2)

Publication Number Publication Date
JP2014103958A true JP2014103958A (en) 2014-06-09
JP6147493B2 JP6147493B2 (en) 2017-06-14

Family

ID=51025990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012261757A Active JP6147493B2 (en) 2012-11-29 2012-11-29 Plant growth environment control system and plant growth environment control method

Country Status (1)

Country Link
JP (1) JP6147493B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009752A1 (en) * 2014-07-16 2016-01-21 株式会社リコー Information processing device, method for generating control signal, information processing system, and program
JP2016052293A (en) * 2014-09-04 2016-04-14 国立研究開発法人農業・食品産業技術総合研究機構 Environment controlling system for plant cultivation
JP2017051134A (en) * 2015-09-09 2017-03-16 シャープ株式会社 Cultivation apparatus and cultivation method
JP2019193592A (en) * 2018-05-01 2019-11-07 株式会社クボタ Agriculture support system
JP2019534701A (en) * 2016-10-07 2019-12-05 マッセー、スコット Plant cultivation equipment and method
CN112400514A (en) * 2020-10-30 2021-02-26 苏州易云生物科技有限公司 Biological growth detection method based on light replacement
JP2021058136A (en) * 2019-10-07 2021-04-15 Ckd株式会社 Mixed cultivation system
JPWO2020026358A1 (en) * 2018-07-31 2021-08-26 株式会社オプティム Computer system, harvest time prediction method and program
JP2021126079A (en) * 2020-02-14 2021-09-02 株式会社馬渕工業所 Plant cultivation system
JP7368865B2 (en) 2018-07-23 2023-10-25 ヘリポニックス、エルエルシー automatic plant growth system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121033A (en) * 2002-09-30 2004-04-22 Hamamatsu Photonics Kk Plant cultivation apparatus and method
JP2011125274A (en) * 2009-12-18 2011-06-30 Howa Kasei Co Ltd Plant raising system
JP2012005468A (en) * 2010-06-28 2012-01-12 Nikon Corp Plant cultivation system, plant-cultivation plant, and method for cultivating plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121033A (en) * 2002-09-30 2004-04-22 Hamamatsu Photonics Kk Plant cultivation apparatus and method
JP2011125274A (en) * 2009-12-18 2011-06-30 Howa Kasei Co Ltd Plant raising system
JP2012005468A (en) * 2010-06-28 2012-01-12 Nikon Corp Plant cultivation system, plant-cultivation plant, and method for cultivating plant

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009752A1 (en) * 2014-07-16 2016-01-21 株式会社リコー Information processing device, method for generating control signal, information processing system, and program
JP2016052293A (en) * 2014-09-04 2016-04-14 国立研究開発法人農業・食品産業技術総合研究機構 Environment controlling system for plant cultivation
JP2017051134A (en) * 2015-09-09 2017-03-16 シャープ株式会社 Cultivation apparatus and cultivation method
JP2019534701A (en) * 2016-10-07 2019-12-05 マッセー、スコット Plant cultivation equipment and method
JP7386702B2 (en) 2016-10-07 2023-11-27 マッセー、スコット Plant cultivation equipment and methods
JP2019193592A (en) * 2018-05-01 2019-11-07 株式会社クボタ Agriculture support system
JP7433747B2 (en) 2018-05-01 2024-02-20 株式会社クボタ agricultural support system
JP7368865B2 (en) 2018-07-23 2023-10-25 ヘリポニックス、エルエルシー automatic plant growth system
JP6999223B2 (en) 2018-07-31 2022-01-18 株式会社オプティム Computer system, harvest time prediction method and program
JPWO2020026358A1 (en) * 2018-07-31 2021-08-26 株式会社オプティム Computer system, harvest time prediction method and program
JP7215984B2 (en) 2019-10-07 2023-01-31 Ckd株式会社 mixed cultivation system
JP2021058136A (en) * 2019-10-07 2021-04-15 Ckd株式会社 Mixed cultivation system
JP2021126079A (en) * 2020-02-14 2021-09-02 株式会社馬渕工業所 Plant cultivation system
JP7172006B2 (en) 2020-02-14 2022-11-16 株式会社馬渕工業所 plant cultivation system
CN112400514A (en) * 2020-10-30 2021-02-26 苏州易云生物科技有限公司 Biological growth detection method based on light replacement

Also Published As

Publication number Publication date
JP6147493B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
JP6147493B2 (en) Plant growth environment control system and plant growth environment control method
CN101485234B (en) Method of controlling a lighting system based on a target light distribution
WO2017106759A4 (en) Lighting optimized for melanopic vision
US9226454B2 (en) Apparatus and method for controlling lighting in plant factory
JP6038120B2 (en) Adaptive integrated daylight and light control using multiple sensors for controlled light distribution
US20110190945A1 (en) Air-conditioning control apparatus
CN104247573B (en) Light adjusting system and light-dimming method
KR100946202B1 (en) Sensitive illumination system
CN112119340B (en) Illumination of limited field of view in surgical microscopes
Jiang et al. Energy-efficient supplemental LED lighting control for a proof-of-concept greenhouse system
CN104254174A (en) Lighting system
JP6258947B2 (en) Calibration of light sensor
KR101534388B1 (en) Method for lighting control and lighting control system using the same
JP5941284B2 (en) Lighting control system and lighting control method
CN216905367U (en) Indoor dimming system
CN104080239A (en) Lighting control system and lighting control method
Mahdavi et al. Energy-efficient lighting systems control via sensing and simulations
Lin et al. A Coupling Control Model of Color Temperature and Illumination in Naturally Lighted Room Based on Evolutionary Algorithm.
JP2006012679A (en) Illumination control device of lighting equipment and its method
JP2020167112A (en) Lighting system
JP2020167109A (en) Lighting system
JP7159946B2 (en) lighting system
JP2015534238A (en) Method for self-calibrating a lighting device and lighting device for implementing said method
CN210958896U (en) Indoor LED lighting system based on distributed dimming control
Akita et al. Optimization of the height of height-adjustable luminaire for intelligent lighting system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170517

R150 Certificate of patent or registration of utility model

Ref document number: 6147493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250