JP2014100725A - Tooth taking-out forging metal mold, manufacturing method thereof and manufacturing method of helical gear - Google Patents

Tooth taking-out forging metal mold, manufacturing method thereof and manufacturing method of helical gear Download PDF

Info

Publication number
JP2014100725A
JP2014100725A JP2012254146A JP2012254146A JP2014100725A JP 2014100725 A JP2014100725 A JP 2014100725A JP 2012254146 A JP2012254146 A JP 2012254146A JP 2012254146 A JP2012254146 A JP 2012254146A JP 2014100725 A JP2014100725 A JP 2014100725A
Authority
JP
Japan
Prior art keywords
forging
tooth
manufacturing
gear
helical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012254146A
Other languages
Japanese (ja)
Inventor
Masanao Fujiwara
正尚 藤原
Hiroaki Yoshida
広明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2012254146A priority Critical patent/JP2014100725A/en
Publication of JP2014100725A publication Critical patent/JP2014100725A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tooth taking-out forging metal mold, a manufacturing method thereof and a manufacturing method of a helical gear using such a tooth taking-out forging metal mold, which is inexpensive, short in a lead time, and high in accuracy.SOLUTION: The tooth taking-out forging metal mold is a metal mold used for tooth taking-out forging of the helical gear of an internal tooth or an external tooth, and is manufactured by forming a groove (a female helical tooth) for forming a tooth shape of the helical gear to a metal mold raw material 20 by a gear shaper 10. The tooth taking-out forging of the helical gear of the internal tooth or the external tooth is executed by using such a tooth taking-out forging metal mold.

Description

本発明は、歯出し鍛造用金型及びその製造方法、並びに、はす歯歯車の製造方法に関し、さらに詳しくは、はす歯歯車の歯形を鍛造により創成するための歯出し鍛造用金型及びその製造方法、並びに、このような歯出し鍛造用金型を用いたはす歯歯車の製造方法に関する。   The present invention relates to a die for forging forging, a method for producing the same, and a method for producing a helical gear, and more particularly, a die for forging forging for creating a tooth shape of a helical gear by forging, and The present invention relates to a manufacturing method thereof, and a manufacturing method of a helical gear using such a set-up forging die.

はす歯歯車(ヘリカルギア)とは、歯すじが螺旋状に傾斜している歯車をいう。はす歯歯車の創成は、一般に、切削加工(歯切り加工)、鍛造加工などにより行われている。切削加工方法としては、ホブ加工、ブローチ加工、ギアシェーパーによる加工(非特許文献1参照)などが知られている。切削加工を用いて歯車を創成すると、高い歯車精度は得られるが、生産効率は低い。そのため、生産効率が重視されるはす歯歯車の製造には、鍛造加工が用いられる場合がある。   A helical gear is a gear having helically inclined teeth. Creation of a helical gear is generally performed by cutting (tooth cutting), forging, or the like. Known cutting methods include hobbing, broaching, and processing with a gear shaper (see Non-Patent Document 1). When gears are created using cutting, high gear accuracy is obtained, but production efficiency is low. For this reason, forging may be used for manufacturing helical gears where production efficiency is important.

鍛造加工を用いてはす歯歯車の歯形を形成するためには、歯車素材に歯形を転写(歯出し鍛造)するための溝(雌はす歯)が形成された鍛造用金型が必要となる。歯出し鍛造によりはす歯歯車を製造する場合、はす歯歯車の精度(歯形精度、歯すじ精度、ピッチ精度、歯溝の振れ精度)は、鍛造用金型に形成された溝(雌はす歯)の精度より低くなる。すなわち、鍛造用金型には、製造される歯車よりも高い精度が求められる。そのため、歯出し鍛造用金型の溝(雌はす歯)の形成には、一般に、高精度加工が可能な放電加工が用いられている(例えば、特許文献1〜3参照)。   In order to form the tooth profile of a helical gear using forging, a forging die in which a groove (female helical tooth) is formed on the gear material for transferring the tooth profile (forging forging) is required. Become. When manufacturing helical gears by tooth forging, the accuracy of helical gears (tooth profile accuracy, tooth accuracy, pitch accuracy, tooth groove runout accuracy) is the groove formed in the forging die (female is The accuracy is lower than the accuracy of the teeth. That is, the forging die is required to have higher accuracy than the gear to be manufactured. Therefore, in general, electric discharge machining capable of high-precision machining is used for forming the groove (female helical tooth) of the die for forging forging (see, for example, Patent Documents 1 to 3).

放電加工を用いて、歯出し鍛造用金型の溝(雌はす歯)を形成するためには、金型の溝(雌はす歯)とかみ合うはす歯が表面に形成された電極(はす歯電極)が必要になる。放電加工を用いた溝(雌はす歯)の形成は、はす歯電極を素材の表面に近接させ、はす歯電極を歯すじ方向に往復運動させることにより行われる。
しかしながら、はす歯電極の作製には費用と時間が掛かる。そのため、放電加工法は、コストが高く、リードタイムが長いという問題があった。
In order to form a groove (female helical tooth) of a metal mold for forging and forging using electric discharge machining, an electrode (on which a helical tooth meshing with a groove (female helical tooth) of the mold is formed on the surface ( A helical electrode) is required. Grooves (female helical teeth) are formed by using electric discharge machining by bringing the helical electrode close to the surface of the material and reciprocating the helical electrode in the direction of the teeth.
However, the production of a helical electrode is expensive and time consuming. Therefore, the electric discharge machining method has a problem that the cost is high and the lead time is long.

また、内歯の金型を製造するためには、金型の内径にほぼ等しい直径を有するはす歯電極が必要になる。そのため、内歯の金型を製造する場合において、金型の内径が大きくなるほど、はす歯電極の外径も大きくなる。
しかしながら、はす歯電極が大型になるほど、はす歯電極の慣性が大きくなる。そのため、内径の大きい内歯の金型を製造する場合、放電加工時のはす歯電極の往復運動に際して歯すじ精度を出しにくくなり、精度維持が難しくなるという問題があった。
Further, in order to manufacture an internal tooth mold, a helical electrode having a diameter substantially equal to the inner diameter of the mold is required. Therefore, in the case of manufacturing an internal tooth mold, the outer diameter of the helical electrode increases as the inner diameter of the mold increases.
However, the larger the helical electrode, the greater the inertia of the helical electrode. For this reason, when manufacturing an internal tooth mold having a large inner diameter, there is a problem that it is difficult to obtain the tooth streak accuracy during the reciprocating motion of the helical electrode during electric discharge machining, and it is difficult to maintain the accuracy.

特開平04−152025号公報Japanese Patent Laid-Open No. 04-152025 特開平11−207529号公報Japanese Patent Laid-Open No. 11-207529 特開2009−178739号公報JP 2009-178739 A

興野 文人 他、三菱重工技法、VOL.34、No.2(1997−3)、p108−111Okuno Fumito et al., Mitsubishi Heavy Industries Technique, VOL.34, No.2 (1997-3), p108-111

本発明が解決しようとする課題は、低コストであり、リードタイムが短く、かつ、精度の高い歯出し鍛造用金型及びその製造方法を提供することにある。
また、本発明が解決しようとする他の課題は、このような方法により製造された歯出し鍛造用金型を用いた、はす歯歯車の製造方法を提供することにある。
The problem to be solved by the present invention is to provide a low-cost, short lead-time, high-precision tooth forging die and a method for manufacturing the same.
Another problem to be solved by the present invention is to provide a method for manufacturing a helical gear using a die for forging set manufactured by such a method.

上記課題を解決するために本発明に係る歯出し鍛造用金型の製造方法は、以下の構成を備えていることを要旨とする。
(1)前記歯出し鍛造用金型は、内歯又は外歯のはす歯歯車の歯出し鍛造に用いられる。
(2)前記歯出し鍛造用金型の製造方法は、金型素材に対し、前記はす歯歯車の歯形を形成するための溝(雌はす歯)をギアシェーパーにより形成する切削工程を備えている。
In order to solve the above-mentioned problems, the gist of a method for manufacturing a metal mold for forging according to the present invention is as follows.
(1) The above-described set forging forging is used for set forging of helical gears having internal teeth or external teeth.
(2) The manufacturing method of the die for forging forging includes a cutting step of forming a groove (female helical tooth) for forming a tooth profile of the helical gear with a gear shaper on a die material. ing.

また、本発明に係る歯出し鍛造用金型は、本発明に係る方法により得られるものからなる。
さらに、本発明に係るはす歯歯車の製造方法は、本発明に係る方法により得られる歯出し鍛造用金型を用いて、歯車素材に対し、内歯又は外歯のはす歯歯車の歯出し鍛造を行う鍛造工程を備えていることを要旨とする。
Moreover, the die for forging forging which concerns on this invention consists of what is obtained by the method which concerns on this invention.
Furthermore, the helical gear manufacturing method according to the present invention uses the tooth forging die obtained by the method according to the present invention, and the tooth of the helical gear with internal teeth or external teeth with respect to the gear material. The gist of the invention is that it includes a forging process for performing forging.

ギアシェーパーは、従来、はす歯歯車そのものを製造するために用いられていた。本発明は、このギアシェーパーを用いて歯出し鍛造用金型の溝(雌はす歯)の形成を行うことを特徴とする。切削加工で歯出し鍛造用金型の溝(雌はす歯)を形成すると、放電加工を用いた場合に比べて、金型を安価に、かつ、短時間で作製することができる。また、内歯又は外歯のいずれの金型を製造する場合であっても、あるいは、内径の大きい内歯の金型を製造する場合であっても、溝(雌はす歯)の精度が高い。さらに、切削加工条件を最適化すると、溝(雌はす歯)の精度は、放電加工とほぼ同等となる。   The gear shaper has been conventionally used for manufacturing a helical gear itself. The present invention is characterized in that the gear shaper is used to form a groove (female helical tooth) of a metal mold for forging forging. By forming a groove (female helical tooth) for a set-up forging die by cutting, the die can be manufactured at a lower cost and in a shorter time than when electric discharge machining is used. In addition, the accuracy of the groove (female helical teeth) can be ensured even when either an internal tooth or an external tooth mold is manufactured or when an internal tooth mold having a large inner diameter is manufactured. high. Furthermore, when the cutting process conditions are optimized, the accuracy of the grooves (female helical teeth) is almost equal to that of electric discharge machining.

図1(a)は、ピニオンカッタの正面図及び加工途中の金型素材の正面断面図である。図1(b)は、ピニオンカッタで加工している途中の金型素材の平面図である。FIG. 1A is a front view of a pinion cutter and a front sectional view of a mold material being processed. FIG. 1B is a plan view of a mold material being processed by a pinion cutter. 金型素材の硬さがHRC46であるときの、ストローク数と歯車精度との関係を示す図である。It is a figure which shows the relationship between the number of strokes and gear precision when the hardness of a metal mold | die material is HRC46. 金型素材の硬さがHRC46であるときの、ラジアル送り速度と歯車精度との関係を示す図である。It is a figure which shows the relationship between radial feed speed and gear precision when the hardness of a metal mold | die material is HRC46.

以下に、本発明の一実施の形態について詳細に説明する。
[1. 歯出し鍛造用金型及びその製造方法]
本発明に係る歯出し鍛造用金型は、本発明に係る方法により得られるものからなる。
また、本発明に係る歯出し鍛造用金型の製造方法は、以下の構成を備えている。
(1)前記歯出し鍛造用金型は、内歯又は外歯のはす歯歯車の歯出し鍛造に用いられる。
(2)前記歯出し鍛造用金型の製造方法は、金型素材に対し、前記はす歯歯車の歯形を形成するための溝(雌はす歯)をギアシェーパーにより形成する切削工程を備えている。
Hereinafter, an embodiment of the present invention will be described in detail.
[1. Mold for forging and forging method]
The mold for forging forging according to the present invention is obtained by the method according to the present invention.
Moreover, the manufacturing method of the die for forging forging which concerns on this invention is equipped with the following structures.
(1) The above-described set forging forging is used for set forging of helical gears having internal teeth or external teeth.
(2) The manufacturing method of the die for forging forging includes a cutting step of forming a groove (female helical tooth) for forming a tooth profile of the helical gear with a gear shaper on a die material. ing.

[1.1. 用途]
本発明に係る歯出し鍛造用金型は、内歯又は外歯のはす歯歯車の歯出し鍛造に用いられる。外径の大きな外歯のはす歯歯車を鍛造により製造するためには、内径の大きな内歯の歯出し鍛造用金型が必要となる。本発明に係る方法は、内径の大きな内歯の歯出し鍛造用金型であっても、高い精度で製造することができる。
[1.1. Application]
The die for forging forging according to the present invention is used for tooth forging of a helical gear having internal teeth or external teeth. In order to manufacture a helical gear with an external tooth having a large outer diameter by forging, a die for forging and forging with an internal tooth having a large internal diameter is required. The method according to the present invention can be manufactured with high accuracy even for an internal teeth forging and forging die having a large inner diameter.

[1.2. 金型素材]
本発明において、金型素材は、特に限定されるものではなく、目的に応じて最適な材料を選択することができる。
一般に、金型素材の硬度が低くなるほど、切削加工は容易になるが、金型寿命が低下する。従って、金型素材の硬度は、HRC42以上が好ましい。金型素材の硬度は、さらに好ましくは、HRC44以上である。
金型素材の硬度が高くなるほど、金型寿命は長くなる。しかしながら、金型素材の硬度が高すぎると、切削加工が困難となり、溝(雌はす歯)の精度も低下する。従って、金型素材の硬度は、HRC50以下が好ましい。
[1.2. Mold material]
In the present invention, the mold material is not particularly limited, and an optimum material can be selected according to the purpose.
In general, the lower the hardness of the mold material, the easier the cutting process, but the shorter the mold life. Therefore, the hardness of the mold material is preferably HRC42 or more. The hardness of the mold material is more preferably HRC44 or higher.
The higher the hardness of the mold material, the longer the mold life. However, if the hardness of the mold material is too high, cutting becomes difficult and the accuracy of the grooves (female helical teeth) is also reduced. Therefore, the hardness of the mold material is preferably HRC 50 or less.

本発明に適した金型素材は、焼き入れ状態での直彫りが可能な材料(例えば、SKD61などの熱間ダイス鋼、SKT4などのプレハードン鋼など)である。   The mold material suitable for the present invention is a material that can be directly engraved in a quenched state (for example, hot die steel such as SKD61, prehardened steel such as SKT4).

[1.3. ギアシェーパーによる切削加工]
図1(a)に、ピニオンカッタ10の正面図及び加工途中の金型素材(ワーク)20の正面断面図を示す。図1(b)に、ピニオンカッタ10で加工している途中の金型素材20の平面図を示す。
「ギアシェーパー」とは、図1に示すように、ピニオンカッタ10を円周方向に回転させながら、ピニオンカッタ10を歯すじ方向に往復運動させる加工装置をいう。はす歯が形成されたピニオンカッタ10をラジアル方向及び円周方向に所定の送り速度で送りながら、ストローク方向に往復運動させると、金型素材20の表面に溝(雌はす歯)を形成することができる。ラジアル方向への送りは、連続的に(1ストロークの間に切り込み量を少しずつ増やしながら)行われる。一方、円周方向の送りは、同じ切り歯で削り続けないように、1ストローク毎に歯のピッチ(隣の歯までの間隔)に合わせて、間欠的に(切り歯が入れ替わるように)行われる。
なお、図1に示す例において、金型素材20に内歯を形成する状態が示されているが、外歯も同様の方法により形成することができる。
[1.3. Cutting with gear shaper]
FIG. 1A shows a front view of the pinion cutter 10 and a front sectional view of a mold material (workpiece) 20 being processed. FIG. 1B shows a plan view of the mold material 20 being processed by the pinion cutter 10.
As shown in FIG. 1, the “gear shaper” refers to a processing device that reciprocates the pinion cutter 10 in the tooth trace direction while rotating the pinion cutter 10 in the circumferential direction. When the pinion cutter 10 on which the helical teeth are formed is reciprocated in the stroke direction while being fed at a predetermined feed speed in the radial direction and the circumferential direction, grooves (female helical teeth) are formed on the surface of the mold material 20. can do. The feed in the radial direction is performed continuously (while increasing the cutting amount little by little during one stroke). On the other hand, the feed in the circumferential direction is performed intermittently (so that the incisor is replaced) in accordance with the tooth pitch (interval to the adjacent tooth) for each stroke so that the same incisor is not continuously cut. Is called.
In addition, in the example shown in FIG. 1, although the state which forms an internal tooth in the metal mold | die raw material 20 is shown, an external tooth can also be formed by the same method.

ギアシェーパーを用いて金型素材の表面に溝(雌はす歯)を切削加工する場合、切削条件は、特に限定されるものではなく、金型素材の組成や金型に求められる特性などに応じて最適な条件を選択するのが好ましい。   When cutting grooves (female helical teeth) on the surface of the mold material using a gear shaper, the cutting conditions are not particularly limited, and the composition of the mold material and the characteristics required for the mold It is preferable to select optimum conditions accordingly.

単位時間当たりのストローク数(以下、単に「ストローク数」ともいう)は、切削速度に比例する。一般に、ストローク数が少なくなるほど、工具の摩耗が抑えられ、溝(雌はす歯)の精度は高くなる。しかしながら、ストローク数が少なすぎると、加工能率が低下する。従って、ストローク数は、5str/min以上が好ましい。ストローク数は、さらに好ましくは、50str/min以上である。
一方、ストローク数が多くなりすぎると、ピニオンカッタ10の摩耗が著しくなり、溝(雌はす歯)の精度が低下する。従って、ストローク数は、54str/min以下が好ましい。
The number of strokes per unit time (hereinafter also simply referred to as “the number of strokes”) is proportional to the cutting speed. In general, as the number of strokes decreases, the wear of the tool is suppressed, and the accuracy of the grooves (female helical teeth) increases. However, if the number of strokes is too small, the machining efficiency is lowered. Therefore, the number of strokes is preferably 5 str / min or more. More preferably, the number of strokes is 50 str / min or more.
On the other hand, if the number of strokes is too large, the pinion cutter 10 is significantly worn, and the accuracy of the grooves (female helical teeth) decreases. Therefore, the number of strokes is preferably 54 str / min or less.

ラジアル方向への送り速度(ラジアル送り速度)が遅くなるほど、切削負荷が小さくなり、工具の変形や逃げが抑制されるため、溝(雌はす歯)の精度は高くなる。しかしながら、ラジアル送り速度が遅すぎると、加工能率が低下する。従って、ラジアル送り速度は、0.0005mm/str以上が好ましい。
一方、ラジアル送り速度が速くなりすぎると、切削負荷が大きくなり、工具の変形や逃げが大きくなるために、溝(雌はす歯)の精度が低下し、あるいは、ピニオンカッタの摩耗が著しくなる。従って、ラジアル送り速度は、0.001mm/str以下が好ましい。
As the feed rate in the radial direction (radial feed rate) decreases, the cutting load decreases and the deformation and escape of the tool are suppressed, so the accuracy of the groove (female helical teeth) increases. However, if the radial feed speed is too slow, the machining efficiency is lowered. Therefore, the radial feed speed is preferably 0.0005 mm / str or more.
On the other hand, if the radial feed rate is too high, the cutting load increases, and the deformation and escape of the tool increases, so the accuracy of the groove (female helical teeth) decreases or the pinion cutter wears significantly. . Accordingly, the radial feed speed is preferably 0.001 mm / str or less.

[2. はす歯歯車の製造方法]
本発明に係るはす歯歯車の製造方法は、本発明に係る方法により得られる歯出し鍛造用金型を用いて、歯車素材に対し、内歯又は外歯のはす歯歯車の歯出し鍛造を行う鍛造工程を備えている。
本発明は、ギアシェーパーを用いて製造された歯出し鍛造用金型を用いてはす歯歯車の歯出し鍛造を行うことを特徴とする。歯出し鍛造そのものは、従来と同様であるので、詳細な説明を省略する。
[2. Method of manufacturing helical gear]
The helical gear manufacturing method according to the present invention is a gear set forging of a helical gear of internal teeth or external teeth with respect to a gear material using a metal mold for gear set forging obtained by the method according to the present invention. A forging process is performed.
The present invention is characterized in that toothed forging of a helical gear is performed using a die for forging forging manufactured using a gear shaper. Since the forging itself is the same as the conventional one, detailed description is omitted.

[3. 作用]
ギアシェーパーは、従来、はす歯歯車そのものを製造するために用いられていた。本発明は、このギアシェーパーを用いて歯出し鍛造用金型の溝(雌はす歯)の形成を行うことを特徴とする。切削加工で歯出し鍛造用金型の溝(雌はす歯)を形成すると、放電加工を用いた場合に比べて、金型を安価に、かつ、短時間で作製することができる。また、内歯又は外歯のいずれの金型を製造する場合であっても、あるいは、内径の大きい内歯の金型を製造する場合であっても、溝(雌はす歯)の精度が高い。さらに、切削加工条件を最適化すると、溝(雌はす歯)の精度は、放電加工とほぼ同等となる。
[3. Action]
The gear shaper has been conventionally used for manufacturing a helical gear itself. The present invention is characterized in that the gear shaper is used to form a groove (female helical tooth) of a metal mold for forging and forging. By forming a groove (female helical tooth) for a set-up forging die by cutting, the die can be manufactured at a lower cost and in a shorter time than when electric discharge machining is used. In addition, the accuracy of the groove (female helical teeth) can be ensured even when either an internal tooth or an external tooth mold is manufactured or when an internal tooth mold having a large inner diameter is manufactured. high. Furthermore, when the cutting process conditions are optimized, the accuracy of the grooves (female helical teeth) is almost equal to that of electric discharge machining.

[1. 歯出し鍛造用金型の作製]
図1に示すギアシェーパーを用いて、外歯歯車を製造するための歯出し鍛造用金型を作製した。金型素材にはSKD61を用い、硬さがHRC42〜52となるように調質した。切削工具(ピニオンカッタ)には、粉末ハイスを用いた。
切削条件は、ストローク数:50〜600str/min、円周送り速度:0.40〜0.45mm/str、ラジアル送り速度:0.0005〜0.010mm/str、とした。
金型の歯車諸元は、モジュール:2.705、ねじれ角:29°、圧力角:9°、歯先円直径:φ211.1、歯元円直径:φ223.3、全歯丈:6.083とした。
[1. Production of mold for forging and forging]
Using the gear shaper shown in FIG. 1, a die for forging for producing an external gear was produced. SKD61 was used for the mold material, and it was tempered so that the hardness was HRC42-52. Powder high speed was used for the cutting tool (pinion cutter).
Cutting conditions were set to the number of strokes: 50 to 600 str / min, the circumferential feed rate: 0.40 to 0.45 mm / str, and the radial feed rate: 0.0005 to 0.010 mm / str.
The gear specifications of the mold are as follows: Module: 2.705, Twist angle: 29 °, Pressure angle: 9 °, Tip circle diameter: φ211.1, Root circle diameter: φ223.3, Total tooth length: 6. 083.

[2. 試験方法]
作製された金型の内表面に形成された溝の精度(雌はす歯の歯車精度)をJIS B1702−1に準拠して評価した。
[2. Test method]
The accuracy (groove gear accuracy of female helical teeth) of grooves formed on the inner surface of the produced mold was evaluated in accordance with JIS B1702-1.

[3. 結果]
図2に、金型素材の硬さがHRC46であるときの、ストローク数と歯車精度との関係を示す。図3に、金型素材の硬さがHRC46であるときの、ラジアル送り速度と歯車精度との関係を示す。さらに、表1に、金型素材の硬さと歯車精度の関係を示す。図2〜図3及び表1より、以下のことがわかる。
(1)ストローク数が少なくなるほど、歯車精度が高くなる。
(2)金型素材の硬度が低くなるほど、歯車精度が高くなる。
(3)JIS等級6以上の歯車精度を得るためには、ストローク数は、54str/min以下が好ましい。
(4)JIS等級6以上の歯車精度を得ることができ、かつ、工具の早期損傷を防ぐためには、金型素材の硬さは、HRC50以下が好ましい。
[3. result]
FIG. 2 shows the relationship between the number of strokes and the gear accuracy when the hardness of the mold material is HRC46. FIG. 3 shows the relationship between the radial feed speed and the gear accuracy when the hardness of the mold material is HRC46. Further, Table 1 shows the relationship between the hardness of the mold material and the gear accuracy. 2 to 3 and Table 1 show the following.
(1) The smaller the number of strokes, the higher the gear accuracy.
(2) The lower the hardness of the mold material, the higher the gear accuracy.
(3) In order to obtain gear accuracy of JIS grade 6 or higher, the number of strokes is preferably 54 str / min or less.
(4) In order to obtain gear accuracy of JIS grade 6 or higher and to prevent early damage of the tool, the hardness of the mold material is preferably HRC 50 or lower.

(5)ラジアル送り速度が遅くなるほど、歯車精度が高くなる。
(6)一般的に、HRC42〜50の硬度が必要とされる歯車用金型において、切削加工+放電加工を伴わずに、切削加工のみでの成型を行った場合には、被削性、熱変形、摩耗等の影響に起因して、仕上げ外観に影響が生じる。そのため、精密歯車形状等の加工には仕上げ精度の面で限界が生じていた。よって、最終工程として、放電加工を行う事が従来技術とされてきた。しかし、本発明のギアシェーパーを用いた切削条件での加工では、放電加工によるJIS規格の範囲と同等の精度であることが図2、図3及び表1より証明されている。以上により、放電加工を伴わずに切削加工のみで最終成形を行えることが本発明の最大の効果となる。
(5) The smaller the radial feed speed, the higher the gear accuracy.
(6) Generally, in a gear mold that requires a hardness of HRC 42 to 50, when molding is performed only by cutting without cutting + electric discharge, machinability, Due to the effects of thermal deformation, wear, etc., the finished appearance is affected. Therefore, there has been a limit in terms of finishing accuracy in processing precision gear shapes and the like. Therefore, it has been a conventional technique to perform electric discharge machining as a final process. However, it is proved from FIGS. 2 and 3 and Table 1 that the machining under the cutting conditions using the gear shaper of the present invention has the same accuracy as the range of the JIS standard by electric discharge machining. As described above, the final effect of the present invention is that the final forming can be performed only by cutting without electric discharge machining.

Figure 2014100725
Figure 2014100725

以上、本発明の実施の形態について詳細に説明したが、本発明は、上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。   The embodiment of the present invention has been described in detail above, but the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the present invention.

本発明に係る歯出し鍛造用金型は、内歯又は外歯のはす歯歯車の歯出し鍛造に用いることができる。   The die for forging forging according to the present invention can be used for tooth forging of a helical gear having internal teeth or external teeth.

10 ピニオンカッタ
20 金型素材(ワーク)
10 Pinion cutter 20 Mold material (work)

Claims (5)

以下の構成を備えた歯出し鍛造用金型の製造方法。
(1)前記歯出し鍛造用金型は、内歯又は外歯のはす歯歯車の歯出し鍛造に用いられる。
(2)前記歯出し鍛造用金型の製造方法は、金型素材に対し、前記はす歯歯車の歯形を形成するための溝(雌はす歯)をギアシェーパーにより形成する切削工程を備えている。
A method for manufacturing a metal mold for forging forging having the following configuration.
(1) The above-described set forging forging is used for set forging of helical gears having internal teeth or external teeth.
(2) The manufacturing method of the die for forging forging includes a cutting step of forming a groove (female helical tooth) for forming a tooth profile of the helical gear with a gear shaper on a die material. ing.
以下の構成をさらに備えた請求項1に記載の歯出し鍛造用金型の製造方法。
(3)前記金型素材の硬度は、HRC42以上50以下である。
The manufacturing method of the metal mold | die for a tooth extraction forging of Claim 1 further provided with the following structures.
(3) The hardness of the mold material is HRC42 or more and 50 or less.
以下の構成をさらに備えた請求項1又は2に記載の歯出し鍛造用金型の製造方法。
(4)前記切削工程は、前記ギアシェーパーを用いて、
ストローク数:5str/min以上54str/min以下、及び、
ラジアル送り速度:0.001mmstr以下
の条件下で前記溝を切削加工するものである。
The manufacturing method of the metal mold | die for tooth set forging of Claim 1 or 2 further provided with the following structures.
(4) The cutting step uses the gear shaper,
Number of strokes: 5 str / min to 54 str / min, and
Radial feed rate: The groove is cut under the condition of 0.001 mmstr or less.
請求項1から3までのいずれか1項に記載の方法により得られる歯出し鍛造用金型。   A die for forging forging obtained by the method according to any one of claims 1 to 3. 請求項1から3までのいずれか1項に記載の方法により得られる歯出し鍛造用金型を用いて、歯車素材に対し、内歯又は外歯のはす歯歯車の歯出し鍛造を行う鍛造工程を備えたはす歯歯車の製造方法。   Forging for performing geared forging of a helical gear of internal teeth or external teeth on a gear material using a mold for geared forging obtained by the method according to any one of claims 1 to 3. The manufacturing method of the helical gear provided with the process.
JP2012254146A 2012-11-20 2012-11-20 Tooth taking-out forging metal mold, manufacturing method thereof and manufacturing method of helical gear Pending JP2014100725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012254146A JP2014100725A (en) 2012-11-20 2012-11-20 Tooth taking-out forging metal mold, manufacturing method thereof and manufacturing method of helical gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012254146A JP2014100725A (en) 2012-11-20 2012-11-20 Tooth taking-out forging metal mold, manufacturing method thereof and manufacturing method of helical gear

Publications (1)

Publication Number Publication Date
JP2014100725A true JP2014100725A (en) 2014-06-05

Family

ID=51023750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012254146A Pending JP2014100725A (en) 2012-11-20 2012-11-20 Tooth taking-out forging metal mold, manufacturing method thereof and manufacturing method of helical gear

Country Status (1)

Country Link
JP (1) JP2014100725A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018138319A (en) * 2017-02-24 2018-09-06 トヨタ自動車株式会社 Gear member and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018138319A (en) * 2017-02-24 2018-09-06 トヨタ自動車株式会社 Gear member and method of manufacturing the same
US10914367B2 (en) 2017-02-24 2021-02-09 Toyota Jidosha Kabushiki Kaisha Gear member and method of manufacturing the same

Similar Documents

Publication Publication Date Title
CN201848593U (en) Cemented carbide internal spline molding broach
CN102489960B (en) Method for manufacturing harmonic reducer of robot
US10252361B2 (en) Cutter for skiving
CN102728646B (en) Control method for tooth shape size precision of cold forming straight bevel gear
CN103331493B (en) A kind of technique that can improve carburizing and quenching gear internal tooth tooth Profile Machining precision
CN102886413B (en) Precise blanking process for sprocket tooth shape
CN102581580A (en) Process used for machining inner gear ring with large module and deep tooth space
CN104070333A (en) Small-module straight bevel gear forming method numerical control machining process
CN103447441A (en) Helical gear heading mold
JP2005254307A (en) Gear, method and apparatus for producing gear
CN103658213A (en) Novel extrusion method for efficiently machining straight spur gear
JP2014100725A (en) Tooth taking-out forging metal mold, manufacturing method thereof and manufacturing method of helical gear
CN205324588U (en) Mould is forged to subdivision formula of bucket tooth
EP2363228A3 (en) Tool and method for manufacturing a shaft
CN105458136B (en) The dissection type forging method and its mould of a kind of bucket tooth
JP5281020B2 (en) Workpiece provided to manufacture gear and method for manufacturing the same
CN205085488U (en) Pinion cutter before grinding
CN103302459A (en) Machining method of automobile clutch damping shaft sleeve
CN103737020A (en) Turning method of outer circle of turbine main steam regulating valve stem made of high temperature alloy GH901
CN112264674A (en) Manufacturing method of blind hole internal spline
JP2011218455A (en) Tooth flank generating tool of hourglass worm and method for manufacturing hourglass worm by using the same
CN205289919U (en) Circular arc combined broach
CN205587774U (en) Hobbing cutter of processing hypodontia gear
CN204818256U (en) Three surface broachs
RU153263U1 (en) ELBOR GRINDING CIRCLE