JP2014100639A - Dehumidification drier - Google Patents

Dehumidification drier Download PDF

Info

Publication number
JP2014100639A
JP2014100639A JP2012252958A JP2012252958A JP2014100639A JP 2014100639 A JP2014100639 A JP 2014100639A JP 2012252958 A JP2012252958 A JP 2012252958A JP 2012252958 A JP2012252958 A JP 2012252958A JP 2014100639 A JP2014100639 A JP 2014100639A
Authority
JP
Japan
Prior art keywords
air
moisture
heat
temperature
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012252958A
Other languages
Japanese (ja)
Inventor
Yu Sakamoto
悠 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012252958A priority Critical patent/JP2014100639A/en
Publication of JP2014100639A publication Critical patent/JP2014100639A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Drying Of Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dehumidification drier capable of performing dehumidification more efficiently by correcting temperature influence to a moisture absorption body by considering not only temperature of a heat radiation part but also temperature of outside air and air flow in a dehumidification drier using refrigeration cycle and zeolite.SOLUTION: In a dehumidification drier body 3 using a moisture absorption body 10, which are refrigeration cycle 4 and zeolite and so on, temperature detection means 23 is provided on a heat radiation part 6. Based on air flow and operating time, air flowing into the dehumidification drier body is calculated, and according to heat received from the heat radiation part 6, output of heating means 15 is controlled so as to perform efficient dehumidification.

Description

本発明は、一般家庭や事務所等で使用される除湿乾燥機に関するものである。   The present invention relates to a dehumidifying dryer used in general households and offices.

従来、この種の除湿乾燥機は、ゼオライト等で構成される吸湿体に送風ファンにより部屋の空気を流入することで除湿していた。ただし、このままだと吸湿体中の吸湿容量が飽和してしまうと除湿効果がなくなるため、吸湿容量回復のため、加熱手段を設け、この熱により吸湿体に吸着した水分を分離し、その後気化した水分を室温にて結露させタンクにためる方法があった。しかし、この方法だと、加熱手段の出力により消費電力が高くなってしまうこと、低温高湿時での除湿能力は高いが、高温高湿の環境下では、圧縮機の吸熱器により結露させる方法より除湿効率が悪いという課題があった。これを解消するために、吸気口と吐出口を有する本体ケースと、この本体ケース内に設けられた冷凍サイクルとを備え、前記冷凍サイクルは、圧縮機と、圧縮機の下流に順次設けた放熱器、膨張手段、吸熱器とにより形成し、前記吸気口から本体ケース内に吸気した空気を放熱器、吸熱器を順次介して吐出口へと送風する送風手段を設けると共に、この送風手段の風路であって、放熱器と吸熱器の間に吸湿体を設けていた。この吸湿体は除湿ロータと除湿ロータ駆動手段を備え、放熱器と吸熱器の間に除湿ロータの放湿部を設け、この除湿ロータの吸湿部は吸熱器と吐出口の間に設け、前記放熱器と前記除湿ロータの放湿部との間の風路には加熱手段を設けた構成となっている。すなわち、従来の物においては、放熱器と、更に加熱手段で室内空気を加熱し、その加熱空気を除湿ロータの放湿部に送風することにより、除湿ロータの水分を加熱空気に放出させ、除湿ロータを再生する。そして、その水分を含んだ加熱空気を、まず吸熱器で結露させ、除湿を行い、その除湿した空気を、除湿ロータの吸湿部に送風することにより、更に除湿を行うことで年間を通しての除湿能力と高い除湿効率が得られる。   Conventionally, this type of dehumidifying dryer has been dehumidified by flowing room air into a hygroscopic body made of zeolite or the like by a blower fan. However, if the moisture absorption capacity in the moisture absorbent body is saturated as it is, the dehumidifying effect is lost, so a heating means is provided to recover the moisture absorption capacity, and the moisture adsorbed on the moisture absorbent body is separated by this heat, and then vaporized. There was a method in which moisture was condensed at room temperature and accumulated in a tank. However, with this method, the power consumption increases due to the output of the heating means, and the dehumidification ability at low temperature and high humidity is high, but in a high temperature and high humidity environment, condensation is performed by the heat sink of the compressor. There was a problem that the dehumidification efficiency was worse. In order to solve this problem, a main body case having an intake port and a discharge port and a refrigeration cycle provided in the main body case are provided. The refrigeration cycle includes a compressor and heat dissipation sequentially provided downstream of the compressor. A blower means for blowing the air sucked into the main body case from the intake port into the discharge port through the heat sink and the heat sink in order, It was a path, and a moisture absorber was provided between the radiator and the heat absorber. The moisture absorber includes a dehumidification rotor and a dehumidification rotor driving means, and a moisture release portion of the dehumidification rotor is provided between the radiator and the heat absorber, and the moisture absorption portion of the dehumidification rotor is provided between the heat absorber and the discharge port, The air path between the chamber and the moisture release part of the dehumidifying rotor is provided with heating means. That is, in the conventional product, the indoor air is heated by the radiator and the heating means, and the heated air is blown to the moisture release portion of the dehumidification rotor, so that the moisture of the dehumidification rotor is released to the heated air and the dehumidification is performed. Play the rotor. And the dehumidification ability through the year by dehumidifying the heated air containing moisture first with a heat absorber, dehumidifying it, and blowing the dehumidified air to the moisture absorption part of the dehumidification rotor. High dehumidification efficiency can be obtained.

さらに、この構成に対し、消費電力を抑えるために、放熱器の温度を検知する温度センサと除湿ロータを加熱する加熱手段の出力調節する加熱量制御手段を設けることで放熱器の温度に応じて加熱手段の出力を変動し効率を上げるものがある(例えば特許文献1)。   Furthermore, in order to suppress power consumption, the temperature sensor for detecting the temperature of the radiator and the heating amount control means for adjusting the output of the heating means for heating the dehumidifying rotor are provided for this configuration in accordance with the temperature of the radiator. There are some which increase the efficiency by changing the output of the heating means (for example, Patent Document 1).

特開2006−214708号公報JP 2006-214708 A

このような従来の除湿乾燥機では、外気温度の影響による放熱部や加熱部への影響や、除湿乾燥機本体に流入する外部空気の流入量による吸湿体への影響などを加味していないため実際の加熱手段の温度が除湿ロータからの水分分離に必要な温度に達していなかったり、逆に風量が少ないときに加熱しすぎてしまい不要な電力を消耗してしまう可能性があった。   In such a conventional dehumidifying dryer, it does not take into consideration the influence on the heat radiating part and the heating part due to the influence of the outside air temperature, the influence on the hygroscopic body due to the inflow of external air flowing into the dehumidifying dryer main body, etc. There is a possibility that the actual temperature of the heating means does not reach the temperature necessary for water separation from the dehumidifying rotor, or conversely, when the air volume is small, the heating is excessive and the unnecessary power is consumed.

本発明は、放熱部温度だけでなく、外気温度や風量を加味することで吸湿体への温度影響を補正し、より効率的に除湿を行うことができる除湿乾燥機の提供を目的としている。   An object of the present invention is to provide a dehumidifying dryer capable of performing dehumidification more efficiently by correcting the temperature influence on the hygroscopic body by taking into consideration not only the temperature of the heat radiating section but also the outside air temperature and the air volume.

本発明は、吸気口と吐出口を設けてある本体ケースの中に、前記吸気口から吸い込んだ空気を通過させて湿気を吸収する吸湿部と加熱した空気を通過させて吸収した湿気を放出させる放湿部を有する回転式の吸湿体と、前記放湿部に通過させる空気を加熱する放熱部と前記放湿部が放湿した空気から吸熱をする吸熱部を有する冷凍サイクルと前記吸気口から吸い込んで前記吐出口から空気を送風する送風手段を備え、前記吸気口から吐出口への風路は、前記吸気口から吸気した空気を前記放熱部と前記放熱部の下流側に配置した加熱手段と前記放湿部とへ通過させて、前記吸湿体の乾燥を行なう再生風路と、前記放湿部を通過した空気を前記吸熱部と吸湿部とへ通過させて除湿を行なう除湿風路を直列にして備えて前記吐出口から除湿した空気を吹出す風路と、前記吸気口から吸気した空気を放熱部へ通過させて前記吐出口から温風を吹出す温風風路を形成した除湿乾燥機において、前記吸気口の付近に配置して部屋の温湿度を検知する温湿度検知手段と、前記放熱部に配置して温度を検知する放熱温度検知手段を設け、さらに、前記加熱手段の出力を制御する加熱出力制御手段と、前記送風手段の風量を制御する送風制御手段と、前記放熱部の温度検知結果から空気中に放熱された熱量を演算する演算手段と、前記風量とその送風時間を記憶する風量時間記憶手段から構成される制御部を備えたものであり、前記制御部は、前記温湿度検知手段の検知した部屋の温湿度と前記風量時間記憶手段の記憶した風量と送風時間から除湿乾燥機の吸湿体に流入する空気量を求め、放熱熱量演算手段にて算出された熱量を加味した上で、前記放湿部に流入する空気を一定の温度に調整するように前記加熱手段の出力を制御して前記吸湿体を乾燥することを特徴としたものである。これにより、所期の目的を達成するものである。   In the main body case provided with the intake port and the discharge port, the present invention allows the air sucked from the intake port to pass through and absorbs moisture and the heated air to pass through and releases the absorbed moisture. From the refrigerating cycle having the rotary type moisture absorber having the moisture releasing portion, the heat radiating portion for heating the air passing through the moisture releasing portion, the heat absorbing portion for absorbing heat from the air released by the moisture releasing portion, and the intake port A heating unit that includes a blowing unit that sucks and blows air from the discharge port, and the air path from the intake port to the discharge port includes air that is sucked from the intake port disposed on the downstream side of the heat radiating unit and the heat radiating unit. And a dehumidifying air passage for dehumidifying by passing the air that has passed through the moisture releasing portion to the heat absorbing portion and the moisture absorbing portion. The air prepared in series and dehumidified from the outlet In a dehumidifying dryer that forms a hot air passage that blows warm air from the discharge port by passing air sucked from the intake port to the heat radiating section and is arranged near the intake port. Temperature / humidity detecting means for detecting the temperature and humidity of the room, heat radiation temperature detecting means for detecting the temperature by arranging in the heat radiating section, heating output control means for controlling the output of the heating means, and the air blowing The air flow control means for controlling the air volume of the means, the calculation means for calculating the amount of heat radiated into the air from the temperature detection result of the heat radiating section, and the air volume time storage means for storing the air volume and the air blowing time. The controller includes a controller, and the controller flows into the moisture absorber of the dehumidifying dryer from the temperature and humidity of the room detected by the temperature and humidity detector, the air volume stored in the air volume time storage unit, and the blowing time. Calculate the amount of heat released In consideration of the amount of heat calculated by the calculation means, the moisture absorbent is dried by controlling the output of the heating means so as to adjust the air flowing into the moisture release section to a constant temperature. It is a thing. This achieves the intended purpose.

本発明によれば、外気温度や風量・放熱部の温度を加味して吸湿体の温度を演算するため、吸湿体の再生に必要な消費電力を抑えつつ、加熱部回りを加熱しすぎて不安全になることを防止する効果がある。   According to the present invention, the temperature of the hygroscopic body is calculated in consideration of the outside air temperature, the air volume, and the temperature of the heat radiating section. Therefore, the heating section is heated too much while suppressing the power consumption necessary for the regeneration of the hygroscopic body. It has the effect of preventing safety.

本発明の実施の形態1の除湿乾燥機の構成図The block diagram of the dehumidification dryer of Embodiment 1 of this invention 本発明の実施の形態1の除湿乾燥機の除湿風路の構成図The block diagram of the dehumidification air path of the dehumidification dryer of Embodiment 1 of this invention 本発明の実施の形態1の各素子をつなぐブロック図The block diagram which connects each element of Embodiment 1 of this invention 本発明の実施の形態1の熱関係を表す図The figure showing the thermal relationship of Embodiment 1 of this invention 本発明の実施の形態1の除湿乾燥機の制御ブロック図Control block diagram of dehumidifying dryer according to Embodiment 1 of the present invention

本発明の請求項1記載の除湿乾燥機は、吸気口と吐出口を設けてある本体ケースの中に、前記吸気口から吸い込んだ空気を通過させて湿気を吸収する吸湿部と加熱した空気を通過させて吸収した湿気を放出させる放湿部を有する回転式の吸湿体と、前記放湿部に通過させる空気を加熱する放熱部と前記放湿部が放湿した空気から吸熱をする吸熱部を有する冷凍サイクルと前記吸気口から吸い込んで前記吐出口から空気を送風する送風手段を備え、前記吸気口から吐出口への風路は、前記吸気口から吸気した空気を前記放熱部と前記放熱部の下流側に配置した加熱手段と前記放湿部とへ通過させて、前記吸湿体の乾燥を行なう再生風路と、前記放湿部を通過した空気を前記吸熱部と吸湿部とへ通過させて除湿を行なう除湿風路を直列にして備えて前記吐出口から除湿した空気を吹出す風路と、前記吸気口から吸気した空気を放熱部へ通過させて前記吐出口から温風を吹出す温風風路を形成した除湿乾燥機において、前記吸気口の付近に配置して部屋の温湿度を検知する温湿度検知手段と、前記放熱部に配置して温度を検知する放熱温度検知手段を設け、さらに、前記加熱手段の出力を制御する加熱出力制御手段と、前記送風手段の風量を制御する送風制御手段と、前記放熱部の温度検知結果から空気中に放熱された熱量を演算する演算手段と、前記風量とその送風時間を記憶する風量時間記憶手段から構成される制御部を備えたものであり、前記制御部は、前記温湿度検知手段の検知した部屋の温湿度と前記風量時間記憶手段の記憶した風量と送風時間から除湿乾燥機の吸湿体に流入する空気量を求め、放熱熱量演算手段にて算出された熱量を加味した上で、前記放湿部に流入する空気を一定の温度に調整するように前記加熱手段の出力を制御して前記吸湿体を乾燥するものである。   In the dehumidifying dryer according to claim 1 of the present invention, in the main body case provided with the intake port and the discharge port, the air sucked from the intake port is allowed to pass through and the moisture absorption part that absorbs moisture and the heated air are Rotating moisture absorber having a moisture release part for releasing moisture absorbed by passing through, heat release part for heating air to be passed through the moisture release part, and heat absorption part for absorbing heat from the air released by the moisture release part A refrigeration cycle having a refrigeration cycle and air blowing means for sucking in air from the air inlet and blowing air from the air outlet, and an air path from the air inlet to the air outlet is configured to radiate air sucked from the air inlet and the heat radiating unit. A regenerative air passage for drying the hygroscopic body and passing the air that has passed through the dehumidifying section to the heat absorbing section and the hygroscopic section. A dehumidifying air passage that performs dehumidification is provided in series. In a dehumidifying dryer that forms a hot air passage that blows out dehumidified air from the discharge port, and a hot air passage that blows hot air from the discharge port by passing air sucked from the intake port to a heat radiating unit, A heating / humidity detecting means for detecting the temperature / humidity of the room disposed near the air inlet and a heat radiating temperature detecting means for detecting the temperature disposed in the heat radiating section are provided, and heating for controlling the output of the heating means is further provided. Output control means, air blowing control means for controlling the air volume of the air blowing means, computing means for calculating the amount of heat radiated into the air from the temperature detection result of the heat radiating section, and air volume for storing the air volume and its blowing time A controller comprising a time storage means, wherein the controller is configured to dehumidify the dryer from the temperature and humidity of the room detected by the temperature and humidity detection means, the air volume stored in the air volume time storage means and the blowing time; Flows into the moisture absorber The amount of air to be obtained, taking into account the amount of heat calculated by the heat dissipation heat amount calculation means, and controlling the output of the heating means so as to adjust the air flowing into the moisture release section to a constant temperature, thereby the moisture absorption It is intended to dry the body.

これにより、制御部は、除湿機本体が部屋の温湿度と風量から、内部の吸湿体へ流入する空気量を演算することで、放熱器の温度上昇のバックデータと実際の放熱器の温度を比較し、その温度差から放熱器から吸湿体に流入する熱量を演算し、加熱出力制御手段によって加熱手段の出力調整をするので、効率的に吸湿体を再生できるという効果が得られる。   As a result, the control unit calculates the amount of air flowing into the internal hygroscopic body from the temperature and humidity of the room and the air volume, so that the back temperature of the radiator and the actual temperature of the radiator can be calculated. In comparison, the amount of heat flowing from the radiator to the hygroscopic body is calculated from the temperature difference, and the output of the heating means is adjusted by the heating output control means, so that the effect of efficiently regenerating the hygroscopic body is obtained.

また、請求項2記載の除湿乾燥機は、前記加熱手段の出力をより正確に制御するために、加熱手段付近に加熱部温度検知手段を設け、その検知結果を元に加熱手段を制御する制御部を設けたものである。   Further, in the dehumidifying dryer according to claim 2, in order to more accurately control the output of the heating unit, a heating unit temperature detection unit is provided in the vicinity of the heating unit, and the heating unit is controlled based on the detection result. A part is provided.

これにより、加熱手段の温度を正確に把握することができるため、加熱手段の出力精度を上げることができるため、より効率的な運転ができる効果が得られる。   Thereby, since the temperature of a heating means can be grasped | ascertained correctly, since the output precision of a heating means can be raised, the effect which can operate more efficiently is acquired.

(実施の形態1)
実施の形態1の構成について図を用いて説明する。
(Embodiment 1)
The configuration of the first embodiment will be described with reference to the drawings.

図1において除湿乾燥機本体3に吸気口1と吐出口2を設ける。   In FIG. 1, an intake port 1 and a discharge port 2 are provided in a dehumidifying dryer body 3.

除湿乾燥機本体3内部には、冷媒を圧縮する圧縮機5とその冷媒の通り道に冷媒を圧縮した際に、発生する熱を放熱する放熱部6を設け、その後、圧縮された冷媒を膨張させる膨張手段7と膨張された冷媒が廻りから吸熱する部分である吸熱部8を通したあと圧縮機5に戻す冷凍サイクル4を備えている。   Inside the dehumidifying dryer main body 3, a compressor 5 for compressing the refrigerant and a heat dissipating section 6 for radiating the generated heat when the refrigerant is compressed in the passage of the refrigerant are provided, and then the compressed refrigerant is expanded. An expansion means 7 and a refrigeration cycle 4 that returns to the compressor 5 after passing through a heat absorbing portion 8 that is a portion that absorbs heat from the surroundings are provided.

この冷凍サイクル4の放熱部6は吸気口1のすぐ下流側に設けられ、その後の風路は洗濯した衣類を乾かすために温まった風を送風するための温風風路21と、除湿風路17の2つに分けられている。   The heat radiating section 6 of the refrigeration cycle 4 is provided immediately downstream of the air inlet 1, and the subsequent air passage is a hot air air passage 21 for blowing warm air to dry the washed clothes, and a dehumidifying air passage. 17 is divided into two.

これらの風路のうち温風風路21は放熱部6で暖められ空気を直接外部に出すように、送風手段9を通り、その後吐出口2から排出するように構成されている。   Of these air passages, the warm air air passage 21 is configured to be exhausted from the discharge port 2 after passing through the air blowing means 9 so as to be warmed by the heat radiating portion 6 and to directly release the air to the outside.

また、除湿風路17は、図2に示すように、放熱部6の後、ゼオライトやシリカゲル等から構成される円盤型の除湿体10中の一部を通過するが、除湿体10の上流に設けられた加熱手段15により空気は温められ、外部の空気は通過する。   Further, as shown in FIG. 2, the dehumidifying air passage 17 passes through a part of the disk-type dehumidifying body 10 made of zeolite, silica gel, or the like after the heat radiating section 6, but upstream of the dehumidifying body 10. The air is warmed by the heating means 15 provided, and external air passes therethrough.

さらに除湿体10に含まれている水分を同時に分離し、下流にある吸熱部8を通過する際にこれらの水分を結露させタンク22に回収し、その後、再度除湿体10の別の部分を通過し、送風手段9を介して外部に放出される構成である。   Further, the moisture contained in the dehumidifying body 10 is separated at the same time, and when passing through the downstream endothermic portion 8, these moisture is condensed and collected in the tank 22, and then again passes through another part of the dehumidifying body 10. In this configuration, the air is discharged to the outside through the air blowing means 9.

ここで、除湿体10は円盤型であり、ステッピングモータ等で構成される除湿体駆動手段12により、除湿体10は回転する構成になっている。   Here, the dehumidifying body 10 is a disk type, and the dehumidifying body 10 is configured to rotate by the dehumidifying body driving means 12 configured by a stepping motor or the like.

尚、吸熱部8を通った後に、再度除湿体10に通す理由は、吸熱部8に結露した水分のうち一部が、再度気化し湿度が上がってしまうため、除湿体10を通すことで外部に放出される空気を乾燥したものとなる。また、温風風路21を設けたのも、外部に放出される空気温度を高めることで、衣類乾燥の効率を上げるためである。   In addition, after passing through the heat absorbing part 8, the reason why it passes again through the dehumidifying body 10 is that some of the moisture condensed on the heat absorbing part 8 is vaporized again and the humidity rises. The air released in the air is dried. The reason why the warm air passage 21 is provided is to increase the efficiency of drying clothes by increasing the temperature of the air discharged to the outside.

また、以後、除湿体10中の加熱手段15に面する領域を放湿部11とし、吸湿部14下流の部分を吸湿部14とする。   Further, hereinafter, a region facing the heating means 15 in the dehumidifying body 10 is referred to as a moisture releasing portion 11, and a portion downstream of the moisture absorbing portion 14 is referred to as a moisture absorbing portion 14.

そして今回の発明では、現行のこの除湿乾燥機の構成に対し、冷凍サイクル4の放熱部6と吸熱部8中にそれぞれ放熱器温度検知手段19と吸熱器温度検知手段20を設ける。   And in this invention, with respect to the structure of this present dehumidification dryer, the radiator temperature detection means 19 and the heat absorber temperature detection means 20 are provided in the heat radiation part 6 and the heat absorption part 8 of the refrigerating cycle 4, respectively.

さらに、送風手段9の影響を受けない場所に部屋の温度を検出する温度検知手段23と部屋の湿度を検出する湿度検知手段24を設け、除湿乾燥機本体3中に温度検知手段23と湿度検知手段24から検知結果を読み込む制御部16を設ける。   Further, a temperature detecting means 23 for detecting the temperature of the room and a humidity detecting means 24 for detecting the humidity of the room are provided in a place not affected by the blowing means 9, and the temperature detecting means 23 and the humidity detection are provided in the dehumidifying dryer body 3. A control unit 16 for reading the detection result from the means 24 is provided.

次に、制御部16の構成についてブロック図にて図3に示す。   Next, the configuration of the control unit 16 is shown in a block diagram in FIG.

制御部16は、室内や放熱部6の温度を読み取り、制御に必要なパラメータを演算し、圧縮機5と除湿体駆動手段12のON/OFFの制御と加熱手段15と送風手段9の出力を制御する演算・出力部25と今回の制御に必要な事前データを記憶しておくための記憶手段27と電源ラインから運転時間の計測に必要となってくるゼロクロス検知部26、そして送風制御手段13と加熱制御手段18とで構成されている。尚、請求項記載の風量時間記憶手段はある風量での運転時間をゼロクロス検知部26から測定し、記憶手段27へ記憶する構成となっている。   The control unit 16 reads the temperature of the room or the heat radiating unit 6, calculates parameters necessary for the control, controls the ON / OFF of the compressor 5 and the dehumidifying body driving unit 12, and outputs the heating unit 15 and the blowing unit 9. The calculation / output unit 25 to be controlled, the storage means 27 for storing the advance data necessary for the current control, the zero cross detection unit 26 required for measuring the operation time from the power line, and the air blow control means 13 And the heating control means 18. The air volume time storage means described in the claims is configured to measure the operation time at a certain air volume from the zero cross detector 26 and store it in the storage means 27.

送風制御手段は、トライアックとコンデンサの組み合わせを複数個用意しACモータにつなげONするトライアックを切替える方法や、PWM式のDCモータにて風量を制御する方法が挙げられる。   Examples of the air blow control means include a method of preparing a plurality of combinations of triacs and capacitors and switching the triacs that are connected to an AC motor to turn on, and a method of controlling the air volume with a PWM DC motor.

また、加熱制御手段についても、トライアックとニクロム抵抗による加熱装置を位相制御により印加する電流を変動させる構成があげられる。   Also, the heating control means may be configured to vary the current applied by the phase control of the heating device using the triac and nichrome resistance.

次に、本発明における演算方法について説明する。   Next, the calculation method in the present invention will be described.

今回の発明での各素子から発生する熱量との関係図を図4に示す。放熱部6から発生し除湿風路に流入する熱量をQ11とし、加熱手段15から流入する熱量をQmとする。   FIG. 4 shows a relationship diagram with the amount of heat generated from each element in the present invention. The amount of heat generated from the heat radiating section 6 and flowing into the dehumidifying air passage is defined as Q11, and the amount of heat flowing from the heating means 15 is defined as Qm.

このとき、放湿部11に流入する空気が必要とする熱量をQaとしたとき、下記式が成り立つ。   At this time, when the amount of heat required by the air flowing into the moisture release section 11 is Qa, the following equation is established.

Qa=Qm+Q11・・・・・(1)
上記熱量の内、放熱部6から発生し除湿風路に流入する熱量Q11の演算方法について説明する。
Qa = Qm + Q11 (1)
A method for calculating the amount of heat Q11 generated from the heat radiating portion 6 and flowing into the dehumidifying air passage will be described.

放熱部6から発生し除湿風路に流入する熱量Q11を求めるためには、記憶手段27にベースとなるパラメータを記憶しておく必要がある。例えば、冷凍サイクル4出力は、リレーなどによりON/OFFしかできないものであるので、出力は入力周波数により変動してしまうため、放熱部6の温度上昇結果を各電源周波数の温湿度毎の無風状態のものを記憶しておく。そして、電源ON時に運転時間の計測のためのゼロクロス信号と室内の温湿度を検知し、その後放熱部の温度上昇値を読み込む。   In order to obtain the amount of heat Q11 generated from the heat radiating section 6 and flowing into the dehumidifying air passage, it is necessary to store the base parameter in the storage means 27. For example, since the output of the refrigeration cycle 4 can only be turned on / off by a relay or the like, the output fluctuates depending on the input frequency. Remember things. Then, when the power is turned on, the zero cross signal for measuring the operation time and the indoor temperature and humidity are detected, and then the temperature rise value of the heat radiating unit is read.

例えば、AC100V50HzにてONしておいて、部屋の温湿度25℃50%、無風状態での単位時間ΔT1時間経過した放熱器の温度上昇がK1であるなどの情報を制御部16は、読み込む。   For example, the control unit 16 reads information such that the temperature rise of the room is 25 ° C. and 50% and the temperature rise of the radiator after the unit time ΔT1 has elapsed in the no wind state is K1 when the AC is turned on at 100V50Hz.

ここで、除湿乾燥機本体3の冷凍サイクル4と送風手段9をONした後の、単位時間ΔT1での温度上昇がK2だった場合、〔K1−K2〕分が風の流れにより奪われたことになる。   Here, when the temperature rise in the unit time ΔT1 after turning on the refrigeration cycle 4 and the air blowing means 9 of the dehumidifying dryer main body 3 was K2, [K1-K2] was taken away by the flow of wind. become.

尚、実際のエネルギー量は放熱部6の熱容量と質量の積Gに依存されるため、風量により奪われたエネルギーは〔G・(K1−K2)〕となる。エネルギーは後風路に伝わるが、2つの風路があるため、風の流れる割合を考慮しなくてはならない。   Since the actual energy amount depends on the product G of the heat capacity and mass of the heat radiating section 6, the energy taken away by the air volume is [G · (K1-K2)]. Energy is transferred to the rear wind path, but since there are two wind paths, the rate of wind flow must be taken into account.

たとえば、一部の温風風路21を抜け、残りは除湿風路17を通る。このとき、その割合は、本体の構成により変化するが、それぞれ、N21、N18とする。そして、除湿体10のへ向かう熱の比率もこの割合に比例するので、除湿体10の放湿部11へ向かう熱量Q11下記のように表せる。 For example, some hot air passages 21 pass through, and the rest passes through the dehumidifying air passage 17. At this time, the ratio varies depending on the configuration of the main body, but is N 21 and N 18 , respectively. And since the ratio of the heat which goes to the dehumidification body 10 is also proportional to this ratio, calorie | heat amount Q11 which goes to the moisture release part 11 of the dehumidification body 10 can be expressed as follows.

11=G・(K1−K2)・N18/( N21 +N18) ・・・・(2)
この熱量Q11に加熱手段15で発生させた熱量を加えた熱量が、放湿部11での水の分離に使用される。
Q 11 = G · (K1- K2) · N 18 / (N 21 + N 18) ···· (2)
The amount of heat obtained by adding the amount of heat generated by the heating means 15 to the amount of heat Q 11 is used for separating water in the moisture release section 11.

次に、放湿部11に流入する空気が必要とする熱量Qaの演算方法について説明する。   Next, a method for calculating the amount of heat Qa required by the air flowing into the moisture release unit 11 will be described.

まず、除湿体10に含まれる水分量が飽和していた場合、その水分の分離に必要な空気の温度をKとし、そのときの室温をKaとする。除湿体10から、水分を分離させるために放熱部6と加熱手段15は空気温度を〔K−Ka〕上昇させなければならないが、空気の量は送風手段9の風量に依存される。   First, when the amount of water contained in the dehumidifying body 10 is saturated, the temperature of air necessary for separation of the water is K, and the room temperature at that time is Ka. In order to separate moisture from the dehumidifying body 10, the heat dissipating unit 6 and the heating unit 15 have to raise the air temperature [K−Ka], but the amount of air depends on the air volume of the blowing unit 9.

そこで、送風手段9が段階的に切替え可能であるときは、風速を確認し、記憶手段27に記憶しておく。   Therefore, when the air blowing means 9 can be switched in stages, the wind speed is confirmed and stored in the storage means 27.

例えば、ある風量に設定したときの吸気口1付近での風速が、〔V(m/s)〕であった場合、この風速での運転時間ΔT1、除湿体10の面積をSとしたとき、除湿風路17を通過した空気量は、〔V・ΔT1・N18・S〕となる。空気の単位体積あたりの熱容量aであるため、放湿部11に流入する空気が必要とする熱量Qaは、下記のように表せる。 For example, when the wind speed in the vicinity of the air inlet 1 when set to a certain air volume is [V (m / s)], when the operating time ΔT1 at this wind speed and the area of the dehumidifier 10 is S, The amount of air that has passed through the dehumidifying air passage 17 is [V · ΔT 1 · N 18 · S]. Since it is the heat capacity a per unit volume of air, the amount of heat Qa required by the air flowing into the moisture release section 11 can be expressed as follows.

Qa=ΔT1・N18・V・S・a・(K−Ka)・・・・(3)
次に、加熱手段15から流入する熱量Qmの演算方法について説明する。
Qa = ΔT1 · N 18 · V · S · a · (K-Ka) ···· (3)
Next, a method for calculating the amount of heat Qm flowing from the heating means 15 will be described.

加熱手段15の温度制御値をKmとし、Kmに制御したとき、加熱手段15に流れる空気により冷却された後の加熱手段15の温度をK15とする。加熱手段15の熱容量と質量の積をFとした場合、加熱手段15から流入する熱量Qmは下記のように表せる。 Temperature control value of the heating means 15 and K m, when controlling the K m, the temperature of the heating means 15 after being cooled by the air flowing through the heating means 15 and K 15. When the product of the heat capacity and mass of the heating means 15 is F, the amount of heat Qm flowing from the heating means 15 can be expressed as follows.

Qm=F・(Km−K15)・・・・(4)
mは無風時の温度上昇値であり、K15は風の影響により変動するが加熱手段15の消費電力をPmとしたときの、それぞれ
m=Cm・Pm・・・・・(5)
15=C15・Pm・・・・・・(6)
とあらわせる。このとき、Cm及びC15はそれぞれ無風時および送風時の熱抵抗を表している。C15は、変数であり風量により変動するため、送風手段9の風量設定ごとに測定して記憶手段に記憶しておく必要がある。
Qm = F · (K m −K 15 ) (4)
K m is the temperature rise value when there is no wind, and K 15 fluctuates due to the influence of the wind, but when the power consumption of the heating means 15 is Pm, K m = Cm · Pm (5)
K 15 = C 15 · Pm (6)
It shows. At this time, Cm and C 15 represent respective thermal resistance when no wind and during blowing. C 15 in order to vary by and air volume variable, it is necessary to store the measuring and storing means for each air volume setting of the blowing means 9.

ここで、本発明では、加熱手段15を制御するため、制御に必要なパラメータはPmである。(1)〜(6)の式から求めるKmの値は下記のように示すことができる。
Pm={ V・ΔT1・N18・S・a・(K−Ka)− G・(K1−K2)・N18/( N21 +N18)}/ F・(Cm−C15)・・・・・・・(7)
尚、加熱手段15の消費電力Pm以外の各パラメータについては、構造や材質により変化するものであるため、事前に実機で測定し、記憶手段27に記憶しておく必要がある。尚、上記式(7)の内、S、a、G、Cmは定数であり、その他は、風量によって値が変わる変数となる。
Here, in the present invention, in order to control the heating means 15, the parameter required for the control is Pm. The value of K m obtained from the equations (1) to (6) can be shown as follows.
Pm = {V · ΔT1 · N 18 · S · a · (K−Ka) −G · (K1−K2) · N 18 / (N 21 + N 18 )} / F · (Cm−C 15 ). (7)
Since each parameter other than the power consumption Pm of the heating means 15 varies depending on the structure and material, it needs to be measured in advance with an actual machine and stored in the storage means 27. In the above equation (7), S, a, G, and Cm are constants, and the others are variables whose values change depending on the air volume.

次に、本発明の除湿乾燥機の動作及び制御方法について図5をもとに説明する。はじめに除湿乾燥機本体3の電源がONしたときに、温度検知手段23が室温Kaを確認した上で制御部16内の演算・出力部25は記憶手段27から上記式(7)のパラメータの内、水分の分離に必要な空気の温度をKとしたときの室温Kaの環境下での放熱器温度検知手段19がK1を読み込んだ後、冷凍サイクル4や送風手段9、そして加熱手段15をONし、除湿運転を始める。このとき、制御部16内の演算・出力部25はゼロクロス検知部26でもって送風手段9による風量の運転時間の測定を開始する(ここまでの動作をSTEP1とする)。尚、このとき加熱手段15は所定の温度に設定しておく。この温度に関しては、室温ごとのバックデータを取って置き、実験的に効率がよい温度に設定しておくのが好ましい。その後、所定の風量での運転時間がΔT1経過したか判定する。この動作をSTEP2とする。このとき、同じ風量で運転時間がΔT1経過したときは、次のSTEPに移行するが、運転時間ΔT1経過前に使用者が風量を変化させた場合は、それまでの運転時間をリセットしSTEP2を繰り返す。次にSTEP2よりΔT1経過したものと判定した場合は、放熱器温度検知手段19が放熱部6の温度上昇値K2を計測し、制御部16内の演算・出力部25は記憶手段27と通信し、温度検知手段23にて測定した現状の温度Kaの状況下での現在の風量での上記式(7)のパラメータ(N18、V、N21、C15)を読み込み、上記式(7)に代入することでPmをもとめ、加熱制御手段18により加熱手段15の出力を制御する。その後、電源OFFするまでΔT1周期でSTEP2〜四の制御を繰り返す。このような制御を行うことで、除湿体10の再生において無駄な電力を消費することなく運転することが可能となる。 Next, the operation and control method of the dehumidifying dryer of the present invention will be described with reference to FIG. First, when the power supply of the dehumidifying dryer main body 3 is turned on, the temperature detection means 23 confirms the room temperature Ka, and the calculation / output part 25 in the control unit 16 receives from the storage means 27 the parameters of the above equation (7). After the K1 is read by the radiator temperature detecting means 19 in the room temperature Ka environment where the temperature of the air necessary for water separation is K, the refrigeration cycle 4, the air blowing means 9 and the heating means 15 are turned on. And start dehumidifying operation. At this time, the calculation / output unit 25 in the control unit 16 starts the measurement of the operation time of the air volume by the blowing means 9 by the zero cross detection unit 26 (the operation so far is referred to as STEP 1). At this time, the heating means 15 is set to a predetermined temperature. Regarding this temperature, it is preferable to collect back data for each room temperature and set it to an experimentally efficient temperature. Thereafter, it is determined whether or not ΔT1 has elapsed with a predetermined air volume. This operation is referred to as STEP2. At this time, when the operation time ΔT1 has elapsed with the same air volume, the process proceeds to the next STEP. However, if the user changes the air volume before the operation time ΔT1 has elapsed, the previous operation time is reset and STEP 2 is changed. repeat. Next, if it is determined that ΔT1 has elapsed since STEP 2, the radiator temperature detecting means 19 measures the temperature rise value K2 of the heat radiating section 6, and the calculation / output section 25 in the control section 16 communicates with the storage means 27. Then, the parameters (N 18 , V, N 21 , C 15 ) of the above equation (7) at the current air volume measured under the current temperature Ka measured by the temperature detecting means 23 are read, and the above equation (7) Pm is obtained by substituting into, and the output of the heating means 15 is controlled by the heating control means 18. Thereafter, the control of STEP2 to STEP4 is repeated at a cycle of ΔT1 until the power is turned off. By performing such control, it becomes possible to operate without consuming wasteful power in the regeneration of the dehumidifying body 10.

尚、加熱手段15の制御に関し、今回求めたPmの出力になるよう電力を制御する。なお、この電流制御の例としては、トライアックの位相制御により加熱手段15に流れる電流を変動させる方式が上げられる。尚、本実施の形態の加熱手段15の制御に関しては、加熱手段15の近傍にサーミスタなどの温度検知手段を設けることで、サーミスタが目標温度になるように位相制御できるため、より正確に制御できる。   In addition, regarding control of the heating means 15, electric power is controlled so that it may become the output of Pm calculated | required this time. As an example of this current control, there is a method of changing the current flowing through the heating means 15 by the phase control of the triac. Incidentally, the control of the heating means 15 of the present embodiment can be controlled more accurately because the temperature control means such as the thermistor is provided in the vicinity of the heating means 15 so that the thermistor can be phase controlled so as to reach the target temperature. .

本発明は、冷凍サイクルとデシカントを用いた除湿乾燥機に適応できるものである。   The present invention can be applied to a dehumidifying dryer using a refrigeration cycle and a desiccant.

1 吸気口
2 吐出口
3 除湿乾燥機本体
4 冷凍サイクル
5 圧縮機
6 放熱部
7 膨張手段
8 吸熱部
9 送風手段
10 除湿体
11 放湿部
12 除湿体駆動手段
13 送風制御手段
14 吸湿部
15 加熱手段
16 制御部
17 除湿風路
18 加熱制御手段
19 放熱器温度検知手段
21 温風風路
22 タンク
23 温度検知手段
24 湿度検知手段
25 演算・出力部
26 ゼロクロス検知部
27 記憶手段
DESCRIPTION OF SYMBOLS 1 Intake port 2 Discharge port 3 Dehumidification dryer main body 4 Refrigeration cycle 5 Compressor 6 Heat radiation part 7 Expansion means 8 Heat absorption part 9 Air blower 10 Dehumidification body 11 Moisture release part 12 Dehumidification body drive means 13 Air blow control means 14 Humidity absorption part 15 Heating Means 16 Control part 17 Dehumidification air path 18 Heating control means 19 Radiator temperature detection means 21 Hot air air path 22 Tank 23 Temperature detection means 24 Humidity detection means 25 Calculation / output part 26 Zero cross detection part 27 Storage means

Claims (2)

吸気口と吐出口を設けてある本体ケースの中に、前記吸気口から吸い込んだ空気を通過させて湿気を吸収する吸湿部と加熱した空気を通過させて吸収した湿気を放出させる放湿部を有する回転式の吸湿体と、前記放湿部に通過させる空気を加熱する放熱部と前記放湿部が放湿した空気から吸熱をする吸熱部を有する冷凍サイクルと前記吸気口から吸い込んで前記吐出口から空気を送風する送風手段を備え、前記吸気口から吐出口への風路は、前記吸気口から吸気した空気を前記放熱部と前記放熱部の下流側に配置した加熱手段と前記放湿部とへ通過させて、前記吸湿体の乾燥を行なう再生風路と、前記放湿部を通過した空気を前記吸熱部と吸湿部とへ通過させて除湿を行なう除湿風路を直列にして備えて前記吐出口から除湿した空気を吹出す風路と、前記吸気口から吸気した空気を放熱部へ通過させて前記吐出口から温風を吹出す温風風路を形成した除湿乾燥機において、前記吸気口の付近に配置して部屋の温湿度を検知する温湿度検知手段と、前記放熱部に配置して温度を検知する放熱温度検知手段を設け、さらに、前記加熱手段の出力を制御する加熱出力制御手段と、前記送風手段の風量を制御する送風制御手段と、前記放熱部の温度検知結果から空気中に放熱された熱量を演算する演算手段と、前記風量とその送風時間を記憶する風量時間記憶手段から構成される制御部を備えたものであり、前記制御部は、前記温湿度検知手段の検知した部屋の温湿度と前記風量時間記憶手段の記憶した風量と送風時間から除湿乾燥機の吸湿体に流入する空気量を求め、放熱熱量演算手段にて算出された熱量を加味した上で、前記放湿部に流入する空気を一定の温度に調整するように前記加熱手段の出力を制御して前記吸湿体を乾燥する除湿乾燥機。 In the main body case provided with an intake port and a discharge port, a moisture absorption unit that passes the air sucked from the intake port and absorbs moisture and a moisture release unit that discharges the absorbed moisture by passing heated air are provided. A rotary moisture absorber, a refrigeration cycle having a heat radiating portion that heats air passing through the moisture wicking portion, and a heat absorbing portion that absorbs heat from the air that the moisture wicking portion has dehumidified; The air passage from the air inlet to the outlet has air blowing means for blowing air from the outlet, and the air that has been sucked from the air inlet is disposed on the downstream side of the heat radiating portion and the heat radiating portion, and the moisture release And a dehumidifying air passage that dehumidifies the air by passing the air passing through the moisture-releasing portion through the heat-absorbing portion and the moisture-absorbing portion. To blow out dehumidified air from the outlet. And a dehumidifying dryer that forms a hot air passage that passes air sucked from the air inlet to the heat radiating section and blows hot air from the outlet. A temperature / humidity detection means for detecting humidity, a heat radiation temperature detection means for detecting the temperature by being arranged in the heat radiating section, a heating output control means for controlling the output of the heating means, and an air volume of the blower means are provided. A control unit comprising: a blowing control unit for controlling; a calculation unit for calculating the amount of heat radiated into the air from a temperature detection result of the heat radiation unit; and an air volume time storage unit for storing the air volume and the blowing time. The control unit obtains the amount of air flowing into the moisture absorbent body of the dehumidifying dryer from the temperature and humidity of the room detected by the temperature and humidity detection means, the air volume stored in the air volume time storage means and the blowing time, For heat dissipation calorie calculation means Upon adding the calculated amount of heat, dehumidifying dryer for drying the moisture absorber to control the output of said heating means so as to adjust the air flowing into the moisture releasing section at a constant temperature. 前記加熱手段の出力をより正確に制御するために、加熱部付近に加熱部温度検知手段を設け、その検知結果を元に加熱手段を制御する制御部を設けた請求項1記載の除湿乾燥機。 The dehumidifying dryer according to claim 1, further comprising a heating unit temperature detection unit provided in the vicinity of the heating unit and a control unit for controlling the heating unit based on the detection result in order to control the output of the heating unit more accurately. .
JP2012252958A 2012-11-19 2012-11-19 Dehumidification drier Pending JP2014100639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012252958A JP2014100639A (en) 2012-11-19 2012-11-19 Dehumidification drier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012252958A JP2014100639A (en) 2012-11-19 2012-11-19 Dehumidification drier

Publications (1)

Publication Number Publication Date
JP2014100639A true JP2014100639A (en) 2014-06-05

Family

ID=51023682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012252958A Pending JP2014100639A (en) 2012-11-19 2012-11-19 Dehumidification drier

Country Status (1)

Country Link
JP (1) JP2014100639A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104170688A (en) * 2014-09-01 2014-12-03 湖南省烟草公司衡阳市公司 Heat insulation dehumidifier for seedling growing greenhouse
KR20210068805A (en) 2019-12-02 2021-06-10 한국화학연구원 Dehumidifier having nanoporous hybrid material and dehumidification system thereof
KR20210068806A (en) 2019-12-02 2021-06-10 한국화학연구원 Dehumidifier having nanoporous hybrid material and dehumidification system for electronics thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104170688A (en) * 2014-09-01 2014-12-03 湖南省烟草公司衡阳市公司 Heat insulation dehumidifier for seedling growing greenhouse
KR20210068805A (en) 2019-12-02 2021-06-10 한국화학연구원 Dehumidifier having nanoporous hybrid material and dehumidification system thereof
KR20210068806A (en) 2019-12-02 2021-06-10 한국화학연구원 Dehumidifier having nanoporous hybrid material and dehumidification system for electronics thereof

Similar Documents

Publication Publication Date Title
JP6243336B2 (en) Control device and method for solid desiccant dehumidifier
JP4457932B2 (en) Dehumidifier
JP2012101169A (en) Dehumidifier
WO2012120786A1 (en) Air conditioner
CN106573195A (en) Dehumidifying device
JP6182083B2 (en) Dehumidifier
JP2014184368A (en) Dehumidifier dryer
JP2005291569A (en) Air conditioner and its control method
JP2014100639A (en) Dehumidification drier
JP6433752B2 (en) Dehumidifier
JP2006266607A (en) Bathroom dryer
JPH11169644A (en) Dehumidifying device
JP2015085266A (en) Dehumidifier
CN103911826A (en) Heat pump type energy-saving clothes drying device with temperature adjustment function
JP5476606B2 (en) Dehumidifier
JP6231418B2 (en) Cooling dehumidification system
JP5919471B2 (en) Dehumidifier
TW201930787A (en) Dehumidifying device
TWM557811U (en) Dehumidifying air conditioning device
JP5289171B2 (en) Dehumidifying dryer
JP5932439B2 (en) Dehumidification system
JP6372517B2 (en) Humidity control device
JP2014163546A (en) Dehumidifier
JP2011185536A (en) Dehumidifier
JP7178283B2 (en) dehumidifier

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150312