JP2014098762A - Aspherical optical element, image reader, and method for manufacturing aspherical optical element - Google Patents

Aspherical optical element, image reader, and method for manufacturing aspherical optical element Download PDF

Info

Publication number
JP2014098762A
JP2014098762A JP2012249558A JP2012249558A JP2014098762A JP 2014098762 A JP2014098762 A JP 2014098762A JP 2012249558 A JP2012249558 A JP 2012249558A JP 2012249558 A JP2012249558 A JP 2012249558A JP 2014098762 A JP2014098762 A JP 2014098762A
Authority
JP
Japan
Prior art keywords
optical element
aspherical
effective surface
portions
optically effective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012249558A
Other languages
Japanese (ja)
Inventor
Ikutaro Mitsutake
郁太郎 光武
Tadao Hayashide
匡生 林出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012249558A priority Critical patent/JP2014098762A/en
Publication of JP2014098762A publication Critical patent/JP2014098762A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aspherical optical element capable of highly accurately measuring the position of an optical effective surface having a non-rotationally symmetrical aspherical shape, in a rotational direction, with a simple configuration.SOLUTION: An aspherical optical element 100 includes an optical effective surface 101 formed of a non-rotationally symmetrical aspherical surface and a plurality of projecting parts or a plurality of recessed parts 102 and 103 provided in the front surface of the optical effective surface 101. In the optical effective surface 101, other parts except a part in which the plurality of projecting parts or the plurality of recessed parts 102 and 103 are provided are shaped to be continuous.

Description

本発明は非球面光学素子に関し、例えば、画像読取装置が備える結像光学系に好適なものである。   The present invention relates to an aspherical optical element, and is suitable for, for example, an imaging optical system provided in an image reading apparatus.

非球面光学素子においては、光学有効面の形状(非球面量)や偏心量、非球面光学素子を他部材に組み込んだ時の光学有効面の位置などを計測することが求められている。特許文献1には、回折面の中心部に突起部を設けた透過型回折光学素子が開示されており、その突起部を光学素子の中心部の位置合わせや計測の基準位置として使用している。また、特許文献2には、反射型光学素子の裏面(反射面とは反対側の面)に鏡面を設け、その鏡面を面形状の計測に用いる技術が開示されている。   In the aspherical optical element, it is required to measure the shape (aspherical amount) and decentering amount of the optically effective surface, the position of the optically effective surface when the aspherical optical element is incorporated in another member, and the like. Patent Document 1 discloses a transmissive diffractive optical element in which a protrusion is provided at the center of a diffractive surface, and the protrusion is used as a reference position for alignment and measurement of the center of the optical element. . Patent Document 2 discloses a technique in which a mirror surface is provided on the back surface (surface opposite to the reflection surface) of the reflective optical element, and the mirror surface is used for measuring the surface shape.

特開平10−274705号公報Japanese Patent Laid-Open No. 10-274705 特開2009−271351号公報JP 2009-271351 A

ここで、非球面光学素子の光学有効面が非回転対称な非球面である場合は、非球面の形状だけでなく、非球面光学素子における光学有効面の回転方向や、他部材に対する非球面光学素子の回転方向の位置を精密に計測する必要がある。なお、ここでの回転方向とは、面法線を軸とする回転方向(アジマス方向)のことを示している。   Here, when the optically effective surface of the aspherical optical element is a non-rotationally symmetric aspherical surface, not only the shape of the aspherical surface but also the rotational direction of the optically effective surface in the aspherical optical element and the aspherical optical for other members It is necessary to precisely measure the position of the element in the rotational direction. In addition, the rotation direction here has shown the rotation direction (azimuth direction) centering on a surface normal.

しかし、特許文献1に記載の光学素子は、その中心部に1つの突起部を有するのみの構成であるため、この構成を非回転対称な非球面を有する非球面光学素子に適用したとしても、その非球面の回転方向の位置の測定において十分な精度を出すことができない。また、特許文献2においては、光学有効面としての反射面の裏面を計測に用いているため、光学有効面を成形するための金型と裏面を成形するための金型との位置誤差等の影響により、光学有効面の形状や位置の測定における精度が出しにくいという課題がある。   However, since the optical element described in Patent Document 1 has only one protrusion at the center, even if this structure is applied to an aspheric optical element having a non-rotationally symmetric aspherical surface, Sufficient accuracy cannot be obtained in measuring the position of the aspheric surface in the rotational direction. Moreover, in patent document 2, since the back surface of the reflective surface as an optical effective surface is used for measurement, position errors between a mold for forming the optical effective surface and a mold for forming the back surface, etc. Due to the influence, there is a problem that accuracy in measuring the shape and position of the optically effective surface is difficult to obtain.

そこで、本発明は、非回転対称な非球面形状を有する光学有効面の回転方向の位置を、簡単な構成で高精度に計測することができる非球面光学素子を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an aspheric optical element that can measure the position in the rotational direction of an optically effective surface having a non-rotationally symmetric aspheric shape with a simple configuration with high accuracy.

上記目的を達成するための、本発明の一側面としての非球面光学素子は、非回転対称な非球面で形成された光学有効面と、該光学有効面の表面に設けられた複数の凸部又は複数の凹部と、を有し、前記光学有効面において、前記複数の凸部又は複数の凹部が設けられた部分以外は連続した形状であることを特徴とする。   To achieve the above object, an aspherical optical element according to one aspect of the present invention includes an optically effective surface formed of a non-rotationally symmetric aspherical surface and a plurality of convex portions provided on the surface of the optically effective surface. Or a plurality of concave portions, and the optically effective surface has a continuous shape except for the portions provided with the plurality of convex portions or the plurality of concave portions.

本発明の更なる目的又はその他の特徴は、以下、添付の図面を参照して説明される好ましい実施形態によって明らかにされる。   Further objects and other features of the present invention will become apparent from the preferred embodiments described below with reference to the accompanying drawings.

本発明によれば、非回転対称な非球面形状を有する光学有効面の回転方向の位置を、簡単な構成で高精度に計測することができる非球面光学素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the aspherical optical element which can measure the position of the rotation direction of the optical effective surface which has a non-rotationally symmetric aspherical shape with a simple structure with high precision can be provided.

実施例1に係る非球面光学素子の要部概略図である。1 is a schematic view of a main part of an aspheric optical element according to Example 1. FIG. 実施例1に係る非球面光学素子を備える結像光学系の概要図である。1 is a schematic diagram of an imaging optical system including an aspheric optical element according to Example 1. FIG. 実施例1に係る非球面光学素子による付加波面形状を説明する図である。It is a figure explaining the additional wave-front shape by the aspherical optical element which concerns on Example 1. FIG. 実施例1に係る非球面光学素子の製造方法を示すフローチャート。3 is a flowchart showing a method for manufacturing the aspheric optical element according to the first embodiment. 実施例2に係る非球面光学素子の要部概略図である。FIG. 6 is a schematic diagram of a main part of an aspheric optical element according to Example 2. 実施例2に係る非球面光学素子の製造方法を示すフローチャート。9 is a flowchart showing a method for manufacturing an aspheric optical element according to Example 2.

以下に、本発明の好ましい実施の形態を図面に基づいて詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

(実施例1)
図1は、実施例1に係る非球面光学素子100の要部概略図である。非球面光学素子100は、非回転対称な反射非球面で形成された光学有効面101と、光学有効面101の表面に設けられた不連続部102及び103と、突き当て部104a,104b,105,106a,106b及び106cと、を備えている。なお、本実施例において、「非球面」とは「非球面作用を有する面」のことを示している。
Example 1
FIG. 1 is a schematic diagram of a main part of an aspheric optical element 100 according to the first embodiment. The aspherical optical element 100 includes an optically effective surface 101 formed of a non-rotationally symmetric reflective aspherical surface, discontinuous portions 102 and 103 provided on the surface of the optically effective surface 101, and abutting portions 104a, 104b, and 105. , 106a, 106b and 106c. In this embodiment, “aspherical surface” indicates “a surface having an aspherical effect”.

光学有効面101において、不連続部102及び103が設けられた部分以外は連続した形状となっている。不連続部102及び103の夫々は、光学有効面101の表面の中心部(面頂点)及び周辺部に1つずつ設けられており、光学有効面101の面形状の計測時に検出可能なように、Z方向に突出した突起形状(凸部)となっている。突き当て部104a〜106bは、非球面光学素子100を結像光学系等に組み込む際の位置決めの基準となる部分である。   The optically effective surface 101 has a continuous shape except for the portions where the discontinuous portions 102 and 103 are provided. Each of the discontinuous portions 102 and 103 is provided at the center portion (surface vertex) and the peripheral portion of the surface of the optical effective surface 101 so that it can be detected when measuring the surface shape of the optical effective surface 101. The protrusion shape (convex portion) protrudes in the Z direction. The abutting portions 104a to 106b are portions serving as positioning references when the aspherical optical element 100 is incorporated into an imaging optical system or the like.

図2は、本実施例に係る非球面光学素子100をオフアキシャル結像光学系に組み込んだ時の構成を示したものである。オフアキシャル結像光学系は、物点201からの光線を、反射結像素子202の第一反射面202a、非球面光学素子100の光学有効面101、反射結像素子202の第二反射面202b、の順に反射させて像点203に集光する。   FIG. 2 shows a configuration when the aspherical optical element 100 according to the present embodiment is incorporated in an off-axial imaging optical system. The off-axial imaging optical system converts light rays from the object point 201 into the first reflecting surface 202a of the reflective imaging element 202, the optical effective surface 101 of the aspherical optical element 100, and the second reflecting surface 202b of the reflective imaging element 202. , And are condensed on the image point 203.

ここで、オフアキシャル結像光学系における非球面光学素子100は、パワー(屈折力)が略0(略ノンパワー)の絞りとして機能しており、画角の違いやピントずれが結像性能に与える影響を抑制するように、光束の波面を変化させている。図3は、本実施例に係る非球面光学素子100が、光学有効面101で反射した光束に対して付加する波面形状を、干渉計により計測したものを示しており、この波面形状は光学有効面101の非球面形状に対応している。なお、図3においては、不連続部102及び103による波面形状の変化は省略している。   Here, the aspherical optical element 100 in the off-axial imaging optical system functions as a diaphragm having a power (refractive power) of substantially 0 (substantially non-power), and the difference in the angle of view and the focus shift contribute to the imaging performance. The wavefront of the luminous flux is changed so as to suppress the influence exerted. FIG. 3 shows a wavefront shape added to the light beam reflected by the optical effective surface 101 by the aspherical optical element 100 according to the present embodiment measured by an interferometer. This wavefront shape is optically effective. This corresponds to the aspherical shape of the surface 101. In FIG. 3, changes in the wavefront shape due to the discontinuous portions 102 and 103 are omitted.

本実施例に係る非球面光学素子100の光学有効面101及びそれが付加する波面形状は、面法線を軸として36°回転させる毎に自らと重なる(10回対称)形状である。また、波面の中心部(面頂点)に対する径方向(Y方向)に稜線及び谷部を有し、周辺部では光軸方向(Z方向)に約±500nmの凹凸を有している。なお、本実施例における光学有効面101のように、面法線を軸とした自然数回対称性を持つ面も、非回転対称な面であるとしている。すなわち、「非回転対称な面」とは、「面法線を軸としてどのような角度で回転させても自らと重なる回転対称性を持たない面」のことを示している。   The optically effective surface 101 of the aspherical optical element 100 according to the present embodiment and the wavefront shape added by the aspherical optical element 100 are shapes that overlap with each other (10-fold symmetry) every time they are rotated 36 ° about the surface normal. Further, it has a ridge line and a valley part in the radial direction (Y direction) with respect to the center part (surface apex) of the wavefront, and has an unevenness of about ± 500 nm in the optical axis direction (Z direction) in the peripheral part. It should be noted that a surface having natural number of times symmetry with the surface normal as an axis, such as the optically effective surface 101 in this embodiment, is also a non-rotationally symmetric surface. That is, “a non-rotationally symmetric surface” indicates “a surface that does not have rotational symmetry that overlaps itself even when rotated at any angle about the surface normal.”

本実施例に係る非球面光学素子100は、量産性に優れる射出成形によって製造される場合を想定している。具体的な製造方法について、図4に示すフローチャートに基づいて説明する。まず、工程S401では、駒に対して非回転対称な非球面(鏡面)を形成し、さらにその非球面上に凹部を複数形成することにより、金型(鏡面駒)を製作する。そして、工程S402において、その金型を用いることにより、光学有効面101と不連続部102及び103とを同時に射出成形することができる。   The aspherical optical element 100 according to the present embodiment is assumed to be manufactured by injection molding having excellent mass productivity. A specific manufacturing method will be described based on the flowchart shown in FIG. First, in step S401, an aspherical surface (mirror surface) that is non-rotationally symmetric with respect to the piece is formed, and a plurality of recesses are formed on the aspherical surface, thereby producing a mold (mirror surface piece). In step S402, by using the mold, the optically effective surface 101 and the discontinuous portions 102 and 103 can be injection-molded simultaneously.

ここで、工程S401において金型を製作する際には、凹部を複数形成する部分以外が連続した形状となるように非球面を形成している。また、複数の凹部は、不連続部102及び103が干渉計等で明瞭に検出可能な突起形状となるように形成することが望ましい。具体的には、不連続部102及び103の突起の高さが、非球面光学素子100の光学有効面101に対して、計測において一般的に用いられる波長の5倍程度以上(本実施例では3μm程度)となるように凹部を形成している。これにより、干渉計等の計測器によって各不連続部を明瞭に検出することができる(詳細は後述)。   Here, when the mold is manufactured in step S401, the aspherical surface is formed so as to have a continuous shape except for a portion where a plurality of recesses are formed. In addition, it is desirable to form the plurality of concave portions so that the discontinuous portions 102 and 103 have a protrusion shape that can be clearly detected by an interferometer or the like. Specifically, the height of the protrusions of the discontinuous portions 102 and 103 is at least about five times the wavelength generally used in measurement with respect to the optically effective surface 101 of the aspherical optical element 100 (in this embodiment, A recess is formed so as to be about 3 μm. Accordingly, each discontinuous portion can be clearly detected by a measuring instrument such as an interferometer (details will be described later).

なお、本実施例では、突起形状(凸形状)である不連続部(凸部)を光学有効面上に複数備えた構成としたが、凹形状の不連続部(凹部)を複数備える構成としてもよい。この場合、不連続部が干渉計などで明瞭に検出可能な凹形状となるように、工程S401において、駒における非球面が形成される領域に対して凸部を形成すればよい。   In this embodiment, a plurality of discontinuous portions (convex portions) having a protrusion shape (convex shape) are provided on the optically effective surface, but a configuration having a plurality of concave discontinuous portions (concave portions) is provided. Also good. In this case, a convex portion may be formed in the region where the aspherical surface of the piece is formed in step S401 so that the discontinuous portion has a concave shape that can be clearly detected by an interferometer or the like.

さらに、非球面光学素子100の光学有効面101の形状(非球面量)及び位置の計測、すなわち、光学有効面101の非球面形状の設計値に対する誤差や、非球面光学素子100における光学有効面101の偏心量の計測について説明する。   Further, measurement of the shape (aspheric amount) and position of the optically effective surface 101 of the aspherical optical element 100, that is, an error with respect to the design value of the aspherical shape of the optically effective surface 101, and the optically effective surface of the aspherical optical element 100. The measurement of the amount of eccentricity 101 will be described.

光学有効面101の非球面形状は、干渉計を用いて干渉縞を観測することにより計測することができ、この方法が最も簡便な方法の一つである。また、干渉計を用いる場合、干渉計から出射する光束のスポット径を光学有効面101の有効径サイズに合わせることにより、非球面光学素子100における光学有効面101の位置を計測する方法が考えられる。しかし、この方法においては、非球面光学素子毎に光束のスポット径を変えるために、干渉計の開口を変換するマスクやレンズが必要となる。   The aspherical shape of the optically effective surface 101 can be measured by observing interference fringes using an interferometer, and this method is one of the simplest methods. When using an interferometer, a method of measuring the position of the optically effective surface 101 in the aspherical optical element 100 by adjusting the spot diameter of the light beam emitted from the interferometer to the effective diameter size of the optically effective surface 101 can be considered. . However, in this method, a mask or a lens for converting the aperture of the interferometer is required in order to change the spot diameter of the light beam for each aspherical optical element.

そこで、本実施例では、図4に示したように、非球面光学素子100に設けた不連続部102及び103を用いて光学有効面101の位置を計測している。具体的には、工程S403において、干渉計で得られた波面形状において、不連続部102による波面の変化箇所に基づいて光学有効面101の面頂点を判別する。そして、工程S404において、不連続部102と不連続部103との位置関係、すなわち不連続部102よる波面の変化箇所と不連続部103よる波面の変化箇所との距離に基づいて、光学有効面101内の長さを計測している。これにより、計測した面頂点の位置や面内の長さに基づいて、光学有効面101の偏心量などを求めることができる。このように、光学有効面101上に不連続部102及び103を設けることにより、干渉計に対してマスクやレンズを設けることなく、容易に光学有効面101の位置を計測することができる。   Therefore, in this embodiment, as shown in FIG. 4, the position of the optical effective surface 101 is measured using the discontinuous portions 102 and 103 provided in the aspherical optical element 100. Specifically, in step S403, in the wavefront shape obtained by the interferometer, the surface vertex of the optically effective surface 101 is determined based on the location of the wavefront changed by the discontinuous portion 102. Then, in step S404, based on the positional relationship between the discontinuous portion 102 and the discontinuous portion 103, that is, the distance between the wavefront change location due to the discontinuity portion 102 and the wavefront change location due to the discontinuity portion 103, the optical effective surface The length in 101 is measured. Thereby, the amount of eccentricity of the optically effective surface 101 can be obtained based on the measured position of the surface vertex and the length in the surface. Thus, by providing the discontinuous portions 102 and 103 on the optical effective surface 101, the position of the optical effective surface 101 can be easily measured without providing a mask or a lens for the interferometer.

また、本実施例に係る非球面光学素子100の光学有効面101のように、非回転対称な非球面においては、その回転方向(アジマス方向)の位置を高精度に計測する必要がある。そこで、工程S405において、不連続部102と不連続部103との位置関係に基づいて、光学有効面101の回転方向の位置を計測している。具体的には、不連続部102と不連続部103を結ぶ直線を基準とすることにより、光学有効面101の回転方向の位置を計測している。このように、本実施例の構成によれば、非球面光学素子100を結像光学系等に組み込んだ後でも、干渉計等を用いて波面を計測することで、容易に非球面光学素子100の光軸方向を軸とした回転方向の位置ずれを検出することができる。   In addition, like the optically effective surface 101 of the aspherical optical element 100 according to the present embodiment, it is necessary to measure the position in the rotational direction (azimuth direction) with high accuracy in an aspherical surface that is not rotationally symmetric. Therefore, in step S405, the position of the optically effective surface 101 in the rotational direction is measured based on the positional relationship between the discontinuous portion 102 and the discontinuous portion 103. Specifically, the position of the optically effective surface 101 in the rotational direction is measured by using a straight line connecting the discontinuous portion 102 and the discontinuous portion 103 as a reference. Thus, according to the configuration of the present embodiment, even after the aspherical optical element 100 is incorporated into the imaging optical system or the like, the aspherical optical element 100 can be easily measured by measuring the wavefront using an interferometer or the like. It is possible to detect a positional deviation in the rotational direction about the optical axis direction of.

(実施例2)
以下、本発明の実施例2について説明するが、実施例1と同一または同等の構成部分については同一の符号を付し、その説明を簡略もしくは省略する。
(Example 2)
Hereinafter, a second embodiment of the present invention will be described. The same or equivalent components as those of the first embodiment are denoted by the same reference numerals, and the description thereof will be simplified or omitted.

図5は、実施例2に係る非球面光学素子500の要部概略図である。本実施例に係る非球面光学素子500は、光学有効面501上の不連続部502及び503と、突き当て部504a,504b,505,506a,506b及び506cと、を有している。ここで、不連続部502及び503と、光学有効面501側の、突き当て部506a〜506cと、は同一の駒で形成されており、突き当て部506a〜506cが凸形状を有している。本実施例に係る非球面光学素子500によれば、実施例1で説明した計測だけでなく、突き当て部506a〜506cを用いた計測により、非球面光学素子500における光学有効面501の位置を求めることができる。   FIG. 5 is a schematic diagram of a main part of an aspheric optical element 500 according to the second embodiment. The aspherical optical element 500 according to the present embodiment includes discontinuous portions 502 and 503 on the optical effective surface 501 and abutting portions 504a, 504b, 505, 506a, 506b and 506c. Here, the discontinuous portions 502 and 503 and the abutting portions 506a to 506c on the optical effective surface 501 side are formed of the same piece, and the abutting portions 506a to 506c have a convex shape. . According to the aspherical optical element 500 according to the present embodiment, the position of the optical effective surface 501 in the aspherical optical element 500 is determined not only by the measurement described in the first embodiment but also by using the abutting portions 506a to 506c. Can be sought.

本実施例に係る非球面光学素子500の具体的な製造方法について、図6に示すフローチャートに基づいて説明する。   A specific method for manufacturing the aspherical optical element 500 according to the present embodiment will be described based on the flowchart shown in FIG.

まず、工程S601では、実施例1における工程S401と同様に、駒に対して非回転対称な非球面(鏡面)を形成し、その非球面上に凹部を複数形成することにより、金型(鏡面駒)を製作する。さらに、本実施例では、駒における同一の面で且つ非球面(鏡面)が形成される領域以外の部分に凹部を形成している。この金型を用いることにより、工程S602において、光学有効面501と不連続部502及び503と突き当て部504a〜506cとの夫々を一体成形しているため、夫々を別の駒で成形する時の型組みによる誤差等の発生を抑制することができる。なお、本実施例では、突き当て部を凸形状として形成したが、突き当て部を凹形状として形成してもよい。すなわち、工程S601において、駒における同一の面で且つ非球面が形成される領域以外の部分に凸部を形成してもよい。   First, in step S601, similarly to step S401 in the first embodiment, an aspherical surface (mirror surface) that is non-rotationally symmetric with respect to the piece is formed, and a plurality of concave portions are formed on the aspherical surface, thereby obtaining a mold (mirror surface). ). Further, in the present embodiment, the concave portion is formed in a portion other than the region where the aspherical surface (mirror surface) is formed on the same surface of the piece. By using this die, the optically effective surface 501, the discontinuous portions 502 and 503, and the abutting portions 504 a to 506 c are integrally formed in step S <b> 602. It is possible to suppress the occurrence of errors due to the mold assembly. In this embodiment, the abutting portion is formed in a convex shape, but the abutting portion may be formed in a concave shape. That is, in step S601, a convex portion may be formed on a portion other than the region where the aspherical surface is formed on the same surface of the piece.

次に、図5(a)に示した不連続部502と突き当て部505との距離dXを計測することにより、非球面光学素子500における光学有効面501の面頂点の偏心量を求めることができる。また、図5(b)に示した、不連続部502近傍における光学有効面501に対する突き当て部506a〜506cの高さdZを計測することにより、光学有効面501と突き当て部506a〜506cとの光軸(面法線)方向の相対位置を求めることができる。   Next, by measuring the distance dX between the discontinuous portion 502 and the abutting portion 505 shown in FIG. 5A, the amount of eccentricity of the surface apex of the optical effective surface 501 in the aspherical optical element 500 can be obtained. it can. Further, by measuring the height dZ of the abutting portions 506a to 506c with respect to the optical effective surface 501 in the vicinity of the discontinuous portion 502 shown in FIG. 5B, the optical effective surface 501 and the abutting portions 506a to 506c The relative position in the optical axis (surface normal) direction can be obtained.

このように、本実施例に係る非球面光学素子500によれば、不連続部502と突き当て部506a〜506cとの位置関係に基づいて、光学有効面501の偏心量や光軸方向の高さなどの位置を簡単な構成で高精度に計測することができる。なお、実施例1における工程S403〜S405と同様に、不連続部502及び503のみを用いた計測(工程S604〜S606)をさらに行なってもよい。   Thus, according to the aspherical optical element 500 according to the present embodiment, the amount of eccentricity of the optical effective surface 501 and the height in the optical axis direction are determined based on the positional relationship between the discontinuous portion 502 and the abutting portions 506a to 506c. It is possible to measure a position such as a high accuracy with a simple configuration. Note that, similarly to steps S403 to S405 in the first embodiment, measurement using only the discontinuous portions 502 and 503 (steps S604 to S606) may be further performed.

また、非球面光学素子500を結像光学系に組み込んだ際に、不連続部502及び503が光束の結像性能に影響を与えてフレアの発生や開口効率の低下等を引き起こすことを抑制するために、各不連続部のXY断面内での面積を極力小さく設計することが好ましい。具体的には、XY断面内において、不連続部502及び503の面積が、光学有効面501の面積の1%以下となるように設計することが好ましい。本実施例に係る光学有効面501は、XY断面内においては直径5.4mmの円形状であり、その面積は22.9mmである。対して、不連続部502及び503のXY断面内における面積は、光学有効面501の面積の約1%である0.2mmとなっており、各不連続部は直径250μm程度の円錐形状となる。 Further, when the aspherical optical element 500 is incorporated in the imaging optical system, the discontinuous portions 502 and 503 are prevented from affecting the imaging performance of the light flux and causing the occurrence of flare, the reduction in aperture efficiency, and the like. Therefore, it is preferable to design the area of each discontinuous portion in the XY cross section as small as possible. Specifically, it is preferable to design so that the areas of the discontinuous portions 502 and 503 are 1% or less of the area of the optical effective surface 501 in the XY cross section. The optically effective surface 501 according to the present embodiment has a circular shape with a diameter of 5.4 mm in the XY cross section, and its area is 22.9 mm 2 . On the other hand, the area of the discontinuous portions 502 and 503 in the XY cross section is 0.2 mm 2 which is about 1% of the area of the optically effective surface 501 and each discontinuous portion has a conical shape with a diameter of about 250 μm. Become.

(変形例)
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。
(Modification)
As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

例えば、上述した各実施例における計測においては、干渉計の代わりに接触式の3次元計測器等を用いてもよい。その際の不連続部の夫々は、実施例1と同様に3μm程度の高さがあれば計測可能であるが、接触式の計測器により適した構成として、各不連続部の高さを10μm以上とすることが望ましい。   For example, in the measurement in each of the embodiments described above, a contact-type three-dimensional measuring instrument or the like may be used instead of the interferometer. Each of the discontinuous portions at that time can be measured if it has a height of about 3 μm as in the first embodiment. However, as a configuration suitable for a contact-type measuring instrument, the height of each discontinuous portion is 10 μm. It is desirable to set it above.

また、上述した各実施例においては、光学有効面の中心部及び周辺部に不連続部が1つずつ設けられている構成について説明したが、不連続部の数やそれを設ける位置はこの構成に限定さない。すなわち、光学有効面上の少なくとも2箇所に不連続部を有する構成であれば、非球面光学素子における光学有効面の回転方向の位置を計測することが可能である。   Further, in each of the above-described embodiments, the configuration in which one discontinuous portion is provided in the central portion and the peripheral portion of the optically effective surface has been described. However, the number of discontinuous portions and the positions where the discontinuous portions are provided are in this configuration. It is not limited to. In other words, if the configuration has discontinuous portions at at least two locations on the optical effective surface, it is possible to measure the position of the optical effective surface in the rotational direction of the aspherical optical element.

また、図4及び図6に示した工程S401及びS601において、光学有効面と不連続部と突き当て部とを成形するための駒の加工ステップの夫々は、順番を入れ替えて行なってもよい。さらに、工程S402及びS602において非球面光学素子を射出成形した後、計測工程の夫々(工程S403〜S405及び工程S603〜S606)に関しても、順番を入れ替えて行なってもよい。   In addition, in steps S401 and S601 shown in FIGS. 4 and 6, each of the piece processing steps for forming the optically effective surface, the discontinuous portion, and the abutting portion may be performed in a reversed order. Furthermore, after an aspherical optical element is injection-molded in steps S402 and S602, the order of the measurement steps (steps S403 to S405 and steps S603 to S606) may be changed.

なお、上述した各実施例に係る非球面光学素子は、反射面である光学有効面を有する反射型の光学素子であるが、これに限らず、透過型の非球面光学素子に対して本発明を適用してもよい。すなわち、透過面(屈折面)としての非球面である光学有効面を有する非球面光学素子において、その光学有効面上に不連続部を複数設けることにより、上述した各実施例と同様の方法で光学有効面の形状や位置を計測することができる。   The aspherical optical element according to each of the embodiments described above is a reflective optical element having an optically effective surface that is a reflective surface. However, the present invention is not limited to this, and the present invention is applied to a transmissive aspherical optical element. May be applied. In other words, in an aspherical optical element having an optically effective surface that is an aspherical surface as a transmitting surface (refractive surface), a plurality of discontinuous portions are provided on the optically effective surface, whereby the same method as in the above-described embodiments. The shape and position of the optically effective surface can be measured.

[画像読取装置]
上述した各実施例に係る非球面光学素子を、画像読取装置が備える結像光学系に適用してもよい。すなわち、前述した非球面光学素子を有する結像光学系と、複数の受光部とを備える画像読取装置を構成することができる。ここで、非球面光学素子を結像光学系に組み込む際に、上述したような方法で光学有効面の位置を計測することで、高精度な位置決めを行うことができる。複数の受光部としては、例えばCCDセンサやCMOSセンサ等のラインセンサを用いることができる。この構成においては、光源を含む照明手段により原稿を照射し、その原稿からの複数の光束(反射光又は透過光)を結像光学系により集光し、複数の受光部のセンサ面により受光することができる。そして、駆動部によって原稿と結像光学系との相対的位置を移動させることにより、原稿を順次読み取ることができる。
[Image reading device]
The aspherical optical elements according to the above-described embodiments may be applied to an imaging optical system provided in the image reading apparatus. That is, it is possible to configure an image reading apparatus including the imaging optical system having the aspherical optical element described above and a plurality of light receiving units. Here, when the aspherical optical element is incorporated into the imaging optical system, the position of the optically effective surface is measured by the method as described above, whereby highly accurate positioning can be performed. For example, a line sensor such as a CCD sensor or a CMOS sensor can be used as the plurality of light receiving units. In this configuration, the document is irradiated by illumination means including a light source, a plurality of light beams (reflected light or transmitted light) from the document are condensed by the imaging optical system, and received by the sensor surfaces of the plurality of light receiving units. be able to. Then, the original can be sequentially read by moving the relative position between the original and the imaging optical system by the driving unit.

100 非球面光学素子
101 光学有効面
102、103 不連続部
100 Aspherical optical element 101 Optical effective surface 102, 103 Discontinuous portion

Claims (12)

非回転対称な非球面で形成された光学有効面と、該光学有効面の表面に設けられた複数の凸部又は複数の凹部と、を有し、
前記光学有効面において、前記複数の凸部又は複数の凹部が設けられた部分以外は連続した形状であることを特徴とする非球面光学素子。
An optically effective surface formed of a non-rotationally symmetric aspherical surface, and a plurality of convex portions or a plurality of concave portions provided on the surface of the optically effective surface,
An aspherical optical element characterized in that the optically effective surface has a continuous shape except for the portions provided with the plurality of convex portions or the plurality of concave portions.
前記複数の凸部又は複数の凹部のうちの1つは、前記光学有効面の中心部に設けられていることを特徴とする請求項1に記載の非球面光学素子。   The aspherical optical element according to claim 1, wherein one of the plurality of convex portions or the plurality of concave portions is provided at a central portion of the optically effective surface. 前記非球面光学素子の位置決めを行うための突き当て部を備えることを特徴とする請求項1又は2に記載の非球面光学素子。   The aspherical optical element according to claim 1, further comprising a butting portion for positioning the aspherical optical element. 前記複数の凸部又は複数の凹部の夫々の面積は、前記光学有効面の面積の1%以下であることを特徴とする請求項1乃至3のいずれか1項に記載の非球面光学素子。   4. The aspherical optical element according to claim 1, wherein an area of each of the plurality of convex portions or the plurality of concave portions is 1% or less of an area of the optical effective surface. 5. 請求項1乃至4のいずれか1項に記載の非球面光学素子を有する結像光学系と、原稿を照射する照明手段と、該結像光学系により集光された該原稿からの光束を受光する複数の受光部と、該結像光学系と該原稿との相対的位置を移動させる駆動部と、を有することを特徴とする画像読取装置。   5. An imaging optical system having the aspherical optical element according to claim 1, illumination means for irradiating a document, and a light beam from the document collected by the imaging optical system is received. An image reading apparatus comprising: a plurality of light receiving units configured to move; and a driving unit configured to move a relative position between the imaging optical system and the document. 駒に対して非回転対称な非球面を形成するステップと、該駒における該非球面が形成される領域に凹部又は凸部を複数形成するステップと、を含み、金型を製作する第1の工程と、
前記金型により、前記非球面で形成される光学有効面と、前記光学有効面の表面に設けられる複数の凸部又は複数の凹部と、を有する非球面光学素子を射出成形する第2の工程と、を有し、
前記第1の工程において、前記凹部又は凸部を複数形成する部分以外が連続した形状となるように、前記非球面を形成していることを特徴とする非球面光学素子の製造方法。
A first step of manufacturing a mold, comprising: forming a non-rotationally symmetric aspherical surface with respect to a piece; and forming a plurality of concave or convex portions in a region of the piece where the aspherical surface is formed. When,
Second step of injection-molding an aspherical optical element having an optically effective surface formed of the aspherical surface and a plurality of convex portions or a plurality of concave portions provided on the surface of the optically effective surface by the mold. And having
In the first step, the aspherical surface is formed so that a portion other than a portion where the plurality of concave portions or convex portions are formed has a continuous shape.
前記複数の凸部又は複数の凹部の夫々の位置関係に基づいて、前記非球面光学素子又は前記光学有効面の光軸方向を軸とした回転方向の位置を計測する第3の工程を有することを特徴とする請求項6に記載の非球面光学素子の製造方法。   A third step of measuring the position of the aspherical optical element or the optically effective surface in the rotational direction about the optical axis direction based on the positional relationship between the plurality of convex portions or the plurality of concave portions. The method for manufacturing an aspherical optical element according to claim 6. 前記第1の工程において、前記駒に形成する前記複数の凹部又は複数の凸部のうちの1つを、前記駒における前記非球面が形成される領域の中心部に形成し、
前記第2の工程において、前記光学有効面の中心部に設けられる1つの凸部又は凹部を射出成形することを特徴とする請求項6又は7に記載の非球面光学素子の製造方法。
In the first step, one of the plurality of concave portions or the plurality of convex portions to be formed on the piece is formed at a central portion of a region where the aspheric surface of the piece is formed,
The method for manufacturing an aspherical optical element according to claim 6 or 7, wherein, in the second step, one convex portion or concave portion provided at a central portion of the optically effective surface is injection-molded.
前記光学有効面の中心部に設けられる1つの凸部又は凹部に基づいて、前記光学有効面の面頂点を判別する第4の工程を有することを特徴とする請求項8に記載の非球面光学素子の製造方法。   The aspherical optical system according to claim 8, further comprising a fourth step of determining a surface vertex of the optical effective surface based on one convex portion or a concave portion provided at a central portion of the optical effective surface. Device manufacturing method. 前記複数の凸部又は複数の凹部のうち、前記光学有効面の中心部に設けられる1つの凸部又は凹部と、それ以外の凸部又は凹部との位置関係に基づいて、前記光学有効面の長さ又は偏心量を計測する第5の工程を有することを特徴とする請求項9に記載の非球面光学素子の製造方法。   Of the plurality of convex portions or the plurality of concave portions, based on the positional relationship between one convex portion or the concave portion provided at the center of the optical effective surface and the other convex portion or the concave portion, The method for manufacturing an aspherical optical element according to claim 9, further comprising a fifth step of measuring the length or the amount of eccentricity. 前記第1の工程は、前記駒における同一の面で且つ前記非球面が形成される領域以外の部分に凹部又は凸部を形成するステップを含み、
前記第2の工程において、前記非球面光学素子の位置決めを行うための突き当て部を射出成形することを特徴とする請求項6乃至10のいずれか1項に記載の非球面光学素子の製造方法。
The first step includes a step of forming a concave portion or a convex portion in a portion other than a region where the aspherical surface is formed on the same surface of the piece,
11. The method for manufacturing an aspheric optical element according to claim 6, wherein, in the second step, an abutting portion for positioning the aspheric optical element is injection-molded. 11. .
前記複数の凸部又は複数の凹部と前記突き当て部との位置関係に基づいて、前記光学有効面の偏心量を計測する第6の工程を有することを特徴とする請求項11に記載の非球面光学素子の製造方法。   The method according to claim 11, further comprising a sixth step of measuring an amount of eccentricity of the optically effective surface based on a positional relationship between the plurality of convex portions or a plurality of concave portions and the abutting portion. Manufacturing method of spherical optical element.
JP2012249558A 2012-11-13 2012-11-13 Aspherical optical element, image reader, and method for manufacturing aspherical optical element Pending JP2014098762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012249558A JP2014098762A (en) 2012-11-13 2012-11-13 Aspherical optical element, image reader, and method for manufacturing aspherical optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012249558A JP2014098762A (en) 2012-11-13 2012-11-13 Aspherical optical element, image reader, and method for manufacturing aspherical optical element

Publications (1)

Publication Number Publication Date
JP2014098762A true JP2014098762A (en) 2014-05-29

Family

ID=50940822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012249558A Pending JP2014098762A (en) 2012-11-13 2012-11-13 Aspherical optical element, image reader, and method for manufacturing aspherical optical element

Country Status (1)

Country Link
JP (1) JP2014098762A (en)

Similar Documents

Publication Publication Date Title
US7268956B2 (en) Solid catadioptric lens with two viewpoints
JP5884309B2 (en) Measuring device, shape measuring device, shape measuring method, and structure manufacturing method
US8947676B2 (en) Aspheric surface measuring method, aspheric surface measuring apparatus, optical element producing apparatus and optical element
US9279667B2 (en) Aspheric surface measuring method, aspheric surface measuring apparatus, optical element producing apparatus and optical element
JP4195292B2 (en) Imaging system using catadioptric system and catadioptric system
JP5582188B2 (en) Eccentricity measurement method
US9557241B2 (en) Wavefront aberration measuring method, wavefront aberration measuring apparatus and optical element manufacturing method
JP2010281792A (en) Method and apparatus for measuring aspherical surface object
US8947675B2 (en) Aspheric surface measuring method, aspheric surface measuring apparatus, optical element producing apparatus and optical element
JP5540614B2 (en) Optical element eccentricity adjustment method, eccentricity measurement method, and lens processing method using an autocollimator
JP4232983B2 (en) Optical system alignment system and method using high accuracy and simple operation
JP2002250622A (en) Shape-measuring method and device for optical element, and its type
CN108759713B (en) Surface shape three-dimensional measurement system based on ray tracing
CN103278105A (en) Axicon surface shape and cone angle detection method
JP2003050109A (en) Surface shape measuring device and measuring method
JP2014098762A (en) Aspherical optical element, image reader, and method for manufacturing aspherical optical element
JP2016003900A (en) Measuring device, measuring method, optical element processing device, and optical element
JP7111598B2 (en) Optical Probes, Optical Displacement Gauges, and Surface Profilometers
JPS6212269Y2 (en)
JP6821407B2 (en) Measuring method, measuring device, manufacturing method of optical equipment and manufacturing equipment of optical equipment
US8416420B1 (en) Computer generated hologram (ICGH) null
KR101575026B1 (en) A null-correcting apparatus for testing the surface figure precision of an aspheric reflector
JP6445755B2 (en) Surface shape measuring device or wavefront aberration measuring device
JP2008292218A (en) Surface shape measuring device, surface shape measuring method, and microscopic objective optical system
CN101782373A (en) Method and device for measuring axial clearance of confocal lens group