JP2014098558A - Method for purifying contaminated water containing radioactive cesium - Google Patents

Method for purifying contaminated water containing radioactive cesium Download PDF

Info

Publication number
JP2014098558A
JP2014098558A JP2012248942A JP2012248942A JP2014098558A JP 2014098558 A JP2014098558 A JP 2014098558A JP 2012248942 A JP2012248942 A JP 2012248942A JP 2012248942 A JP2012248942 A JP 2012248942A JP 2014098558 A JP2014098558 A JP 2014098558A
Authority
JP
Japan
Prior art keywords
contaminated water
radioactive cesium
ferrocyanide
precipitant
precipitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012248942A
Other languages
Japanese (ja)
Inventor
Takeshi Yamashita
岳史 山下
Ryutaro Wada
隆太郎 和田
Tadamasa Fujimura
忠正 藤村
Shigeru Shiozaki
茂 塩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Vision Development Co Ltd
Original Assignee
Kobe Steel Ltd
Vision Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Vision Development Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2012248942A priority Critical patent/JP2014098558A/en
Publication of JP2014098558A publication Critical patent/JP2014098558A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for purifying contaminated water containing radioactive cesium that generates radioactive waste whose quantity is small after its treatment and that requires no time-consuming work during the treatment.SOLUTION: A method for purifying contaminated water containing radioactive cesium comprises: an adsorption step of mixing ferrocyanide with contaminated water to adsorb radioactive cesium on the ferrocyanide; a precipitation step of precipitating the ferrocyanide having adsorbed radioactive cesium by the use of a flocculation precipitant in the contaminated water; and a separation step of separating flocculated precipitate containing radioactive cesium from a supernatant solution in the contaminated water after the precipitation step. The flocculation precipitant contains silicon dioxide and alumina. Further, the flocculation precipitant preferably has an absolute value of zeta potential of 15 mV or more.

Description

本発明は、放射性物質を含む汚染水の浄化方法に関し、特に、放射性セシウムを含む汚染水から放射性セシウムを除去するための技術に関するものである。   The present invention relates to a method for purifying contaminated water containing radioactive substances, and more particularly to a technique for removing radioactive cesium from contaminated water containing radioactive cesium.

除染特別地域では家屋の壁面や樹木の表面に付着した放射性セシウム(主にCs134、Cs135、Cs137)を含む放射性汚染物質に対して、水洗による除去が進められているため、放射性セシウムを含む放射性物質含有汚染水(以下「放射性汚染水」という)が大量に発生している。   In the special decontamination area, radioactive contaminants containing radioactive cesium (mainly Cs134, Cs135, Cs137) adhering to the wall of the house or the surface of the tree are being removed by washing with water. Substance-containing contaminated water (hereinafter referred to as “radiated contaminated water”) is generated in large quantities.

放射性汚染水は、法律で定められた全ての放射性核種を、それぞれが放出基準値以下になるまで除去することにより環境へ放出することが許される。例えば、特許文献1には、有機物を含む放射性廃液を酸化処理し、吸着剤を添加した後濾過することにより、清浄な処理水を得る方法が開示されている。   Radioactive water is allowed to be released into the environment by removing all radionuclides stipulated by law until each is below the emission threshold. For example, Patent Document 1 discloses a method for obtaining clean treated water by oxidizing a radioactive liquid waste containing organic matter, adding an adsorbent and then filtering.

セシウム化合物は水への溶解度が非常に高く、水中でイオンの状態で存在する。この状態であれば、ゼオライト等の吸着剤や紺青等に吸着保持される。ここで紺青とは、フェロシアン化鉄を主成分とする青色顔料であり、フェロシアン化カリウムの溶液に硫酸鉄と酸化剤とを加えることにより生成することができる。   The cesium compound has a very high solubility in water and exists in an ionic state in water. In this state, it is adsorbed and held by an adsorbent such as zeolite or bitumen. Here, bitumen is a blue pigment mainly composed of ferric ferrocyanide and can be produced by adding iron sulfate and an oxidizing agent to a solution of potassium ferrocyanide.

一方特許文献2には、重原油、スラッジ類等の油分、COD成分、窒素成分を含有する排水を処理する排水処理方法が開示されている。   On the other hand, Patent Document 2 discloses a wastewater treatment method for treating wastewater containing oil such as heavy crude oil and sludge, COD components, and nitrogen components.

特開平7−260997号公報JP-A-7-260997 特開2004−275884号公報Japanese Patent Application Laid-Open No. 2004-275484

ゼオライトにより放射性セシウムを除去する場合には、ゼオライトを充填した吸着塔が必要となる。また、ゼオライトは単位体積あたりのセシウムの吸着量が低いため、大量のゼオライトが必要となるとともに、処理後に大量の放射性廃棄物が発生するという問題がある。   When removing radioactive cesium with zeolite, an adsorption tower packed with zeolite is required. In addition, since zeolite has a low amount of adsorption of cesium per unit volume, a large amount of zeolite is required, and a large amount of radioactive waste is generated after treatment.

一方微粉末の紺青により放射性セシウムを除去する場合には、微粉末の紺青の単位体積あたりのセシウムの吸着量が高いので、放射性廃棄物の量が少ないという利点があるものの、微粉末であるが故に液相に分散しているため凝集沈殿に時間を要する。したがって、大量の放射性汚染水を処理する際には多大な時間を要するという問題がある。   On the other hand, when removing radioactive cesium by fine powder bitumen, the amount of radioactive waste is small because the amount of cesium adsorbed per unit volume of fine powder bitumen is high, but it is fine powder. Therefore, since it is dispersed in the liquid phase, it takes time for aggregation and precipitation. Therefore, there is a problem that it takes a lot of time to process a large amount of radioactively contaminated water.

また、放射性セシウムを吸着した微粉末の紺青をフィルタを用いて分離除去する場合には、紺青の粒径が非常に小さいことから分離に時間を要するとともに、加圧操作が必要となることから装置が複雑となるという問題がある。   When fine bitumen adsorbed with radioactive cesium is separated and removed using a filter, since the bitumen has a very small particle size, it takes time for separation and a pressure operation is required. There is a problem that becomes complicated.

また、紺青を粒状に加工した材料や、多孔性の単体に紺青を担持させた材料を用いて放射性セシウムを除去する場合には、これらの材料は単位体積あたりのセシウムの吸着量が低くなるので、放射性汚染水の浄化が高コスト化するとともに、発生する放射性廃棄物量が増大するという問題もある。   In addition, when removing radioactive cesium using a material obtained by processing bitumen into a granular form or a material in which a bitumen is supported on a porous single body, these materials have a low cesium adsorption amount per unit volume. Further, there is a problem that the purification of radioactive contaminated water increases in cost and the amount of radioactive waste generated increases.

本発明は、放射性セシウムを含む汚染水の浄化方法であって、前記汚染水に、フェロシアン化物を混合し、放射性セシウムを該フェロシアン化物に吸着させる吸着ステップと、前記汚染水において、凝集沈殿剤を用いて、放射性セシウムを吸着した前記フェロシアン化物を沈殿させる沈殿ステップと、前記沈殿ステップの後に、前記汚染水において、放射性セシウムを含む凝集沈殿物と、上澄み液とを分離する分離ステップとを含み、前記凝集沈殿剤は、二酸化ケイ素及びアルミナを含む。   The present invention is a method for purifying contaminated water containing radioactive cesium, an adsorption step in which ferrocyanide is mixed with the contaminated water, and the radioactive cesium is adsorbed on the ferrocyanide; A precipitation step for precipitating the ferrocyanide adsorbed with radioactive cesium using an agent; and a separation step for separating the aggregated precipitate containing radioactive cesium and the supernatant in the contaminated water after the precipitation step; And the coagulating precipitant comprises silicon dioxide and alumina.

また、前記凝集沈殿剤は、ゼータ電位の絶対値が15mV以上であることが好ましい。   Moreover, it is preferable that the absolute value of a zeta potential is 15 mV or more as for the said aggregation precipitation agent.

また、前記沈殿ステップにおいて、前記汚染水に対し、前記凝集沈殿剤を質量比で1/1,000,000〜1/10の割合で混合して凝集沈殿を促進させることが好ましい。   Further, in the precipitation step, it is preferable to promote the coagulation precipitation by mixing the coagulating precipitant at a mass ratio of 1 / 1,000,000 to 1/10 with respect to the contaminated water.

また、前記沈殿ステップにおいて、前記汚染水に対し、前記凝集沈殿剤を混合して撹拌することにより、濾過、プレス、遠心分離等の脱水処理を行わずに前記凝集沈殿物と前記上澄み液とに分離可能にすることが好ましい。   Further, in the precipitation step, the aggregated precipitate and the supernatant liquid are mixed without stirring and dewatering treatment such as filtration, pressing, and centrifugation by mixing the aggregated precipitant with the contaminated water and stirring. It is preferable to make it separable.

また、前記沈殿ステップにおいて、さらに、消泡剤を混合して、気泡の生成を抑制し凝集沈殿を促進させることが好ましい。   In the precipitation step, it is preferable to further mix an antifoaming agent to suppress the generation of bubbles and promote coagulation precipitation.

また、前記凝集沈殿剤は、ゼータ電位の絶対値が30mV以上であることが好ましい。   Moreover, it is preferable that the aggregating precipitation agent has an absolute value of zeta potential of 30 mV or more.

本発明の放射性セシウムを含む汚染水の浄化方法は、紺青に代表されるフェロシアン化物を用いて放射性セシウムを吸着するので、処理後に発生する放射性廃棄物の量を従来よりも少なくでき、且つ、二酸化ケイ素及びアルミナを含む凝集沈殿剤を用いて、放射性セシウムが吸着された該フェロシアン化物を迅速に凝集沈殿させることができる。   The method for purifying contaminated water containing radioactive cesium of the present invention adsorbs radioactive cesium using a ferrocyanide typified by bitumen, so that the amount of radioactive waste generated after treatment can be reduced as compared with the prior art, and By using a coagulating precipitation agent containing silicon dioxide and alumina, the ferrocyanide adsorbed with radioactive cesium can be rapidly coagulated and precipitated.

本発明に係る放射性汚染水の浄化システムの概略図である。It is the schematic of the purification system of radioactive polluted water which concerns on this invention.

本発明者らは、放射性セシウムを吸着したフェロシアン化物を短時間で沈殿させるために、様々な凝集沈殿剤を用いて数々の試験を行ってきたが、なかなかうまくいかなかった。しかし、凝集沈殿剤に様々な工夫を加えて種々の試験を行っているうちに、特定の凝集沈殿剤を用い、フェロシアン化物の沈殿が予想外に早く進むことを突き止め、本発明を完成した。   In order to precipitate ferrocyanide adsorbed with radioactive cesium in a short time, the present inventors have conducted a number of tests using various aggregating precipitants. However, while conducting various tests with various devices added to the coagulating precipitant, using a specific coagulating precipitant, it was determined that the precipitation of ferrocyanide proceeded unexpectedly quickly, and the present invention was completed. .

図1に示す放射性汚染水の浄化システムは、吸着ステップ10、沈殿ステップ20、及び分離ステップ30を含み、放射性汚染水から放射性セシウムを除去することができる。   The purification system for radioactive contaminated water shown in FIG. 1 includes an adsorption step 10, a precipitation step 20, and a separation step 30, and can remove radioactive cesium from the radioactive contaminated water.

吸着ステップ10では、放射性汚染水にフェロシアン化物を混合し、放射性セシウムを該フェロシアン化物に吸着させる。ここでフェロシアン化物は、フェロシアン化カリウムと金属塩との反応により生成することができる。ここで該金属塩には、Ni(ニッケル)、Co(コバルト)、Fe(鉄)、Zn(亜鉛)、等の様々な金属の塩を用いることができる。また代表的なフェロシアン化物の組成式は、Fe(III)[Fe(II)(CN)(紺青)等である。なお現在比較的入手が容易なフェロシアン化物には、例えばフェロシアン化第二鉄、フェロシアン化銅、及びフェロシアン化コバルト等があり、これらはいずれも主に顔料として用いられている。 In the adsorption step 10, ferrocyanide is mixed with radioactively contaminated water, and radioactive cesium is adsorbed on the ferrocyanide. Here, the ferrocyanide can be produced by a reaction between potassium ferrocyanide and a metal salt. Here, various metal salts such as Ni (nickel), Co (cobalt), Fe (iron), and Zn (zinc) can be used as the metal salt. A typical ferrocyanide composition formula is Fe (III) 4 [Fe (II) (CN) 6 ] 3 (bitumen) and the like. Examples of ferrocyanides that are relatively easily available at present include ferric ferrocyanide, copper ferrocyanide, and cobalt ferrocyanide, and these are mainly used as pigments.

沈殿ステップ20では、吸着ステップ10の後に、放射性汚染水において、凝集沈殿剤を用いて、放射性セシウムを吸着したフェロシアン化物を沈殿させる。ここで凝集沈殿剤は、二酸化ケイ素及びアルミナを含み、ゼータ電位の絶対値が15mV以上である。凝集沈殿剤のゼータ電位は、15mV以上有れば汚染水中で凝集沈殿剤の粒子間の反発力により凝集沈殿剤の粒子同士が凝集することがなくなり、フェロシアン化物と反応しやすくなるので、フェロシアン化物を迅速に凝集沈殿させることができる。ここで、二酸化ケイ素及びアルミナの含有量を調整することによりゼータ電位の値を調整することができる。   In the precipitation step 20, after the adsorption step 10, ferrocyanide having adsorbed radioactive cesium is precipitated in the radioactively contaminated water using an aggregating precipitant. Here, the coagulating precipitant contains silicon dioxide and alumina, and the absolute value of the zeta potential is 15 mV or more. If the zeta potential of the coagulating precipitant is 15 mV or more, the particles of the coagulating precipitant will not aggregate due to the repulsive force between the particles of the coagulating precipitant in the contaminated water, and it becomes easier to react with the ferrocyanide. It is possible to rapidly agglomerate and precipitate Russian compounds. Here, the value of the zeta potential can be adjusted by adjusting the contents of silicon dioxide and alumina.

なお、凝集沈殿剤のゼータ電位は、ある程度の大きさまでは基本的に大きい程好ましい。具体的には凝集沈殿剤のゼータ電位は、15mV以上有れば顕著な効果が得られるが、好ましくは20mV以上、より好ましくは25mV以上、さらに好ましくは30mV以上である。また、凝集沈殿剤のゼータ電位が極端に大きすぎると逆に効力が下がるので、凝集沈殿剤のゼータ電位の上限を35mVとすることが好ましい。   It should be noted that the zeta potential of the coagulating precipitant is basically preferably as large as possible. Specifically, if the zeta potential of the coagulating precipitant is 15 mV or more, a remarkable effect can be obtained, but it is preferably 20 mV or more, more preferably 25 mV or more, and further preferably 30 mV or more. On the other hand, if the zeta potential of the coagulating precipitant is excessively large, the effect is reduced. Therefore, the upper limit of the zeta potential of the coagulating precipitant is preferably 35 mV.

凝集沈殿剤の粒径は、平均粒径50μm〜350μmが好ましく、より好ましくは75μm〜150μmである。平均粒径が50μm未満では、比較的大きな粒径の粒子を粉砕して微細な粒径にしなければならず生産コストが割高になり、平均粒径が350μmを超えると、体積あたりの凝集量が低くなり多量の凝集沈殿剤を混合する必要が生じるので好ましくない。また、凝集物の沈降速度を速めて処理時間を短縮するために、凝集沈殿剤の比重が1.5以上であることが好ましい。   The particle size of the coagulating precipitant is preferably an average particle size of 50 μm to 350 μm, more preferably 75 μm to 150 μm. If the average particle size is less than 50 μm, particles having a relatively large particle size must be pulverized to a fine particle size, resulting in higher production costs. If the average particle size exceeds 350 μm, the amount of aggregation per volume is increased. This is not preferable because it becomes low and a large amount of the coagulating precipitant needs to be mixed. Further, in order to increase the sedimentation rate of the aggregate and shorten the treatment time, it is preferable that the specific gravity of the aggregated precipitant is 1.5 or more.

ここでゼータ電位とは、分散された粒子の分散安定性の指標として用いるために定義された実測可能な値であり、電気泳動光散乱測定法を用いて測定することができる。   Here, the zeta potential is a measurable value defined for use as an index of dispersion stability of dispersed particles, and can be measured using an electrophoretic light scattering measurement method.

ここで電気泳動光散乱測定法とは、帯電した粒子が分散している系に電場をかけ、電場内を移動する粒子にレーザー光を照射し、光のドップラー効果を利用して散乱光の周波数のシフト量を測定することにより粒子の速度を得るものである。電気泳動光散乱測定法により得られた粒子の速度と、かけた電場の強さとから、以下の演算によりゼータ電位を算出することができる。   Here, the electrophoretic light scattering measurement method refers to applying an electric field to a system in which charged particles are dispersed, irradiating particles moving in the electric field with laser light, and using the Doppler effect of the light, the frequency of the scattered light. The speed of the particles is obtained by measuring the shift amount. From the velocity of the particles obtained by the electrophoretic light scattering measurement method and the strength of the applied electric field, the zeta potential can be calculated by the following calculation.

屈折率nの溶媒に分散した試料に、波長λのレーザー光を照射して、散乱角θにて散乱光を検出する場合に、泳動速度Vとドップラーシフト量Δvの関係は、(式1)により表される。
Δv={2Vnsin(θ/2)}/λ ・・・(式1)
ここでnは溶媒の屈折率、θは検出角度(散乱角)である。
式1で得られた泳動速度Vと電場Eから、(式2)により電気移動度Uを求める。
U=V/E ・・・(式2)
電気移動度Uから(式3)によりゼータ電位ζを求める。
ζ=4πηU/ε ・・・(式3)
ここでηは溶媒の粘度、εは溶媒の誘電率である。
When a sample dispersed in a solvent having a refractive index n is irradiated with laser light having a wavelength λ and the scattered light is detected at a scattering angle θ, the relationship between the migration velocity V and the Doppler shift amount Δv is expressed by (Equation 1). It is represented by
Δv = {2Vnsin (θ / 2)} / λ (Formula 1)
Here, n is the refractive index of the solvent, and θ is the detection angle (scattering angle).
From the migration velocity V and the electric field E obtained by Equation 1, the electric mobility U is obtained by Equation (2).
U = V / E (Formula 2)
The zeta potential ζ is obtained from the electric mobility U by (Equation 3).
ζ = 4πηU / ε (Formula 3)
Here, η is the viscosity of the solvent, and ε is the dielectric constant of the solvent.

分離ステップ30では、沈殿ステップ20の後に、シックナー等の沈降濃縮装置を用いて、放射性汚染水において、放射性セシウムを含む凝集沈殿物と、放射性セシウムが除去されて浄化された上澄み液とを分離する。例えばシックナーに放射性汚染水を供給し、シックナーの底部中央の取り出し口から放射性セシウムを含む凝集沈殿物を泥漿として取り出し、シックナー上部の外周からあふれ出す上澄み液を排出する。   In the separation step 30, after the precipitation step 20, the aggregated precipitate containing radioactive cesium and the supernatant liquid purified by removing the radioactive cesium are separated from the radioactive contaminated water using a sedimentation concentration device such as thickener. . For example, radioactive contaminated water is supplied to the thickener, aggregated sediment containing radioactive cesium is taken out as a slurry from the outlet at the center of the bottom of the thickener, and the supernatant liquid overflowing from the outer periphery of the upper portion of the thickener is discharged.

なお、沈殿ステップ20において、放射性汚染水に対し、凝集沈殿剤を質量比で1/1,000,000〜1/10の割合で混合して凝集沈殿を促進させることが好ましい。   In addition, in the precipitation step 20, it is preferable to promote the aggregation precipitation by mixing the aggregation precipitation agent in a mass ratio of 1 / 1,000,000 to 1/10 with respect to the radioactive polluted water.

また、分離ステップ30において、濾過、プレス、遠心分離等の脱水処理を行っても良い。   Further, in the separation step 30, a dehydration process such as filtration, pressing, and centrifugation may be performed.

また沈殿ステップ20において、放射性汚染水に対し、凝集沈殿剤を混合して撹拌することにより、分離ステップ30において、濾過、プレス、遠心分離等の脱水処理を行わずに一定時間放置してデカンテーションするだけで凝集沈殿物と上澄み液とに分離してもよい。   In the precipitation step 20, the aggregated precipitant is mixed and stirred in the radioactively contaminated water, and in the separation step 30, it is allowed to stand for a certain period of time without performing dehydration such as filtration, pressing, and centrifugation, and decantation. It is also possible to separate the aggregated precipitate and the supernatant liquid simply by doing so.

さらに、沈殿ステップ20において、消泡剤を混合させて気泡の生成を抑制し凝集沈殿を促進させることもできる。   Furthermore, in the precipitation step 20, an antifoaming agent can be mixed to suppress the generation of bubbles and promote aggregation precipitation.

また、本発明は放射性Sr(ストロンチウム)等の除染にも効果がある。   The present invention is also effective for decontamination of radioactive Sr (strontium) and the like.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

(実施例1)
吸着ステップ10において、フェロシアン化物(紺青の一種であるフェロシアン化第二鉄:Fe(III)[Fe(II)(CN))を放射性汚染水1Lに対し250mgの割合で混合し、放射性セシウムを該フェロシアン化物に吸着させ、濃青色の放射能汚染懸濁水を得た。
Example 1
In the adsorption step 10, ferrocyanide (ferric ferrocyanide, which is a kind of bitumen: Fe (III) 4 [Fe (II) (CN) 6 ] 3 ) is mixed at a rate of 250 mg to 1 L of radioactive polluted water. Then, radioactive cesium was adsorbed on the ferrocyanide to obtain dark blue radioactively contaminated suspended water.

沈殿ステップ20において、吸着ステップ後の放射能汚染懸濁水80mL(100Bq/kg)を取り、二酸化ケイ素及びアルミナを主成分とするゼータ電位の絶対値が約32mVの凝集沈殿剤の粉末を該放射能汚染懸濁水1Lに対し2gの割合で加え、30秒間程度強く撹拌した。直ちに凝集沈殿が強く起こり、およそ1分後上澄み液は無色透明となった。   In the precipitation step 20, 80 mL (100 Bq / kg) of radioactively contaminated suspended water after the adsorption step is taken, and a powder of the aggregated precipitant having an absolute value of zeta potential of about 32 mV mainly composed of silicon dioxide and alumina is added to the radioactivity. It was added at a rate of 2 g with respect to 1 L of contaminated suspended water and stirred vigorously for about 30 seconds. Immediately, aggregation and precipitation occurred strongly, and after about 1 minute, the supernatant liquid became colorless and transparent.

分離ステップ30において、該上澄み液をデカンテーションにより採取した。該上澄み液の放射線量を測定すると検出限界以下(6Bq/kg以下)であった。   In the separation step 30, the supernatant was collected by decantation. When the radiation dose of the supernatant was measured, it was below the detection limit (6 Bq / kg or less).

上澄み液をICP−AES(ICP発光分光分析法、試料溶液を霧状にしてArプラズマに導入し、励起された元素が基底状態に戻る際に放出する光を分光して、その波長から元素を特定し、強度から定量を行うもの)により測定したところ、紺青由来のFeが検出限界以下であり(7ppb以下)、Cu、Pb、Cd、及びZnも検出限界以下であった。   The supernatant is ICP-AES (ICP emission spectroscopy, the sample solution is atomized and introduced into Ar plasma, and the light emitted when the excited element returns to the ground state is spectroscopically analyzed. As a result, the Fe from bitumen was below the detection limit (7 ppb or less), and Cu, Pb, Cd, and Zn were also below the detection limit.

(比較例1)
一方上記の実施例1と同様の要領で、実施例1で用いた二酸化ケイ素及びアルミナを主成分とするゼータ電位の絶対値が約32mVの凝集沈殿剤の粉末の代わりに、汎用凝集剤として一般的に用いられるPAC−250A(ポリ塩化アルミニウムの液体品、一般式[Al(OH)Cl6−n)を使用した。
(Comparative Example 1)
On the other hand, in the same manner as in Example 1 above, instead of the powder of coagulating precipitant having an absolute value of zeta potential of about 32 mV mainly composed of silicon dioxide and alumina used in Example 1, general-purpose coagulant is generally used. PAC-250A (polyaluminum chloride liquid products, the general formula [Al 2 (OH) n Cl 6-n] m) used in manner was used.

汎用凝集剤としてPAC−250Aを、吸着ステップ後の放射能汚染懸濁水1Lに対し2gの割合で使用した。   PAC-250A was used as a general flocculant at a rate of 2 g with respect to 1 L of radioactively contaminated suspended water after the adsorption step.

吸着ステップ及び沈殿ステップの後、30分が経過しても上澄み液は濃青色のままであり、フェロシアン化物の沈殿は認められず、放射能汚染懸濁水は懸濁したままであったので、分離ステップ30において上澄み液を採取することはできなかった。   Since 30 minutes after the adsorption step and the precipitation step, the supernatant liquid remained dark blue, no ferrocyanide precipitation was observed, and the radioactively contaminated suspended water remained suspended. In the separation step 30, the supernatant liquid could not be collected.

(実施例2)
吸着ステップ10において、質量比5%の放射能汚染土壌を含む懸濁水(500Bq/kg)を試料として80gとり、これに実施例1で用いたフェロシアン化物を該懸濁水1Lに対し250mgの割合で加えて振り混ぜた。
(Example 2)
In the adsorption step 10, 80 g of suspended water (500 Bq / kg) containing radioactively contaminated soil with a mass ratio of 5% is taken as a sample, and the ferrocyanide used in Example 1 is in a ratio of 250 mg to 1 L of the suspended water. Added and shaken.

沈殿ステップ20において、二酸化ケイ素及びアルミナを主成分とするゼータ電位の絶対値が約32mVの凝集沈殿剤の粉末を、吸着ステップ後の懸濁水1Lに対し100mgの割合で加え、30秒間程度強く撹拌した。直ちに凝集沈殿が起こり、およそ2分後上澄み液は無色透明となった。   In the precipitation step 20, a powder of a coagulating precipitant having an absolute value of zeta potential of about 32 mV mainly composed of silicon dioxide and alumina is added at a rate of 100 mg to 1 L of suspended water after the adsorption step, and stirred vigorously for about 30 seconds. did. Aggregation precipitation immediately occurred, and after about 2 minutes, the supernatant became colorless and transparent.

分離ステップ30において、該上澄み液をデカンテーションにより採取した。該上澄み液の放射線量を測定すると検出限界以下であった。上澄み液をICP−AESで測定したところ、紺青由来のFeが検出限界以下であり、Cu、Pb、Cd、及びZnも検出限界以下であった。   In the separation step 30, the supernatant was collected by decantation. When the radiation dose of the supernatant was measured, it was below the detection limit. When the supernatant was measured by ICP-AES, Fe derived from bitumen was below the detection limit, and Cu, Pb, Cd, and Zn were also below the detection limit.

実施例1、2からわかるように、本発明の放射性セシウムを含む汚染水の浄化方法によれば、フェロシアン化物を用いて放射性セシウムを吸着するので、処理後に発生する放射性廃棄物の量を少なくでき、且つ、二酸化ケイ素及びアルミナを主成分とする凝集沈殿剤を用いて、放射性セシウムが吸着された該化合物を迅速に凝集沈殿させることができる。   As can be seen from Examples 1 and 2, according to the method for purifying contaminated water containing radioactive cesium of the present invention, since radioactive cesium is adsorbed using ferrocyanide, the amount of radioactive waste generated after treatment is reduced. In addition, the coagulating and precipitating agent mainly composed of silicon dioxide and alumina can be used to rapidly coagulate and precipitate the compound adsorbed with radioactive cesium.

1 放射性汚染水の浄化システム
10 吸着ステップ
20 沈殿ステップ
30 分離ステップ
1 Purification system of radioactive contaminated water 10 Adsorption step 20 Precipitation step 30 Separation step

Claims (6)

放射性セシウムを含む汚染水の浄化方法であって、
前記汚染水に、フェロシアン化物を混合し、放射性セシウムを該フェロシアン化物に吸着させる吸着ステップと、
前記汚染水において、凝集沈殿剤を用いて、放射性セシウムを吸着した前記フェロシアン化物を沈殿させる沈殿ステップと、
前記沈殿ステップの後に、前記汚染水において、放射性セシウムを含む凝集沈殿物と、上澄み液とを分離する分離ステップとを含み、
前記凝集沈殿剤は、二酸化ケイ素及びアルミナを含むことを特徴とする浄化方法。
A method for purifying contaminated water containing radioactive cesium,
An adsorption step of mixing ferrocyanide with the contaminated water and adsorbing radioactive cesium to the ferrocyanide;
In the contaminated water, a precipitation step of precipitating the ferrocyanide adsorbed with radioactive cesium using a coagulating precipitant;
A separation step of separating the aggregated precipitate containing radioactive cesium and the supernatant in the contaminated water after the precipitation step;
The said coagulating precipitation agent contains a silicon dioxide and an alumina, The purification method characterized by the above-mentioned.
前記凝集沈殿剤は、ゼータ電位の絶対値が15mV以上である請求項1に記載の浄化方法。   The purification method according to claim 1, wherein the coagulating precipitant has an absolute value of zeta potential of 15 mV or more. 前記沈殿ステップにおいて、
前記汚染水に対し、前記凝集沈殿剤を質量比で1/1,000,000〜1/10の割合で混合する請求項1又は2に記載の浄化方法。
In the precipitation step,
The purification method according to claim 1 or 2, wherein the aggregated precipitant is mixed with the contaminated water at a mass ratio of 1 / 1,000,000 to 1/10.
前記沈殿ステップにおいて、
前記汚染水に対し、前記凝集沈殿剤を混合して撹拌する請求項1〜3のいずれか1項に記載の浄化方法。
In the precipitation step,
The purification method according to any one of claims 1 to 3, wherein the aggregated precipitant is mixed and stirred with respect to the contaminated water.
前記沈殿ステップにおいて、さらに、
消泡剤を混合する請求項1〜4のいずれか1項に記載の浄化方法。
In the precipitation step,
The purification method according to any one of claims 1 to 4, wherein an antifoaming agent is mixed.
前記凝集沈殿剤は、ゼータ電位の絶対値が30mV以上である請求項1〜5のいずれか1項に記載の浄化方法。   The purification method according to any one of claims 1 to 5, wherein the coagulating precipitant has an absolute value of zeta potential of 30 mV or more.
JP2012248942A 2012-11-13 2012-11-13 Method for purifying contaminated water containing radioactive cesium Pending JP2014098558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012248942A JP2014098558A (en) 2012-11-13 2012-11-13 Method for purifying contaminated water containing radioactive cesium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012248942A JP2014098558A (en) 2012-11-13 2012-11-13 Method for purifying contaminated water containing radioactive cesium

Publications (1)

Publication Number Publication Date
JP2014098558A true JP2014098558A (en) 2014-05-29

Family

ID=50940689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012248942A Pending JP2014098558A (en) 2012-11-13 2012-11-13 Method for purifying contaminated water containing radioactive cesium

Country Status (1)

Country Link
JP (1) JP2014098558A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016061784A (en) * 2014-09-16 2016-04-25 コリア アトミック エナジー リサーチ インスティテュートKorea Atomic Energy Research Institute Method for treating radioactive waste liquid generated in serious accident of atomic power plant
CN116282834A (en) * 2023-03-30 2023-06-23 腾达建设集团股份有限公司 Sludge flocculation and sedimentation treatment method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255121A (en) * 1984-05-30 1985-12-16 Toray Eng Co Ltd Treatment by flocculation in water supply treatment
JPH10118408A (en) * 1996-10-22 1998-05-12 Tomen Constr Kk Powder flocculant composition and water treatment
JP2003075405A (en) * 2001-09-06 2003-03-12 Toshiba Corp Detector for aggregation-state
JP2009142761A (en) * 2007-12-14 2009-07-02 Kurita Water Ind Ltd Water treatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255121A (en) * 1984-05-30 1985-12-16 Toray Eng Co Ltd Treatment by flocculation in water supply treatment
JPH10118408A (en) * 1996-10-22 1998-05-12 Tomen Constr Kk Powder flocculant composition and water treatment
JP2003075405A (en) * 2001-09-06 2003-03-12 Toshiba Corp Detector for aggregation-state
JP2009142761A (en) * 2007-12-14 2009-07-02 Kurita Water Ind Ltd Water treatment method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016003839; 竹下健二,尾形剛志: '福島原発事故で発生した汚染水処理へのイオン交換技術の適用' 日本イオン交換学会誌 Vol.23,No.1, 20120202, p.2-p.4, 日本イオン交換学会 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016061784A (en) * 2014-09-16 2016-04-25 コリア アトミック エナジー リサーチ インスティテュートKorea Atomic Energy Research Institute Method for treating radioactive waste liquid generated in serious accident of atomic power plant
CN116282834A (en) * 2023-03-30 2023-06-23 腾达建设集团股份有限公司 Sludge flocculation and sedimentation treatment method

Similar Documents

Publication Publication Date Title
Song et al. Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite
Wei et al. Phosphorus removal by acid mine drainage sludge from secondary effluents of municipal wastewater treatment plants
JP5950562B2 (en) Volume reduction method for cesium-containing soil using powder treatment agent and volume reduction treatment system for cesium-containing soil
Xu et al. The impact of recycling alum-humic-floc (AHF) on the removal of natural organic materials (NOM): Behavior of coagulation and adsorption
Kadouche et al. Enhancement of sedimentation velocity of heavy metals loaded hydroxyapatite using chitosan extracted from shrimp waste
JP2013088278A (en) Radiation contamination wastewater treatment method, treatment system and mobile processor
Košak et al. Lead (II) complexation with 3-mercaptopropyl-groups in the surface layer of silica nanoparticles: Sorption, kinetics and EXAFS/XANES study
JP6138085B2 (en) Radioactive cesium-containing wastewater treatment agent
Hughes et al. Adsorption of Pb and Zn from binary metal solutions and in the presence of dissolved organic carbon by DTPA-functionalised, silica-coated magnetic nanoparticles
US20150315053A1 (en) Method for removing cesium ions in aqueous solution employing magnetic particles
JP2023044341A (en) Contaminated soil purification method
Kadouche et al. Metal ion binding on hydroxyapatite (Hap) and study of the velocity of sedimentation
Brum et al. Removal of humic acid from water by precipitate flotation using cationic surfactants
Tabatabaei et al. Semicontinuous enhanced electroreduction of Cr (VI) in wastewater by cathode constructed of copper rods coated with palladium nanoparticles followed by adsorption
Li et al. Removal of F− and organic matter from coking wastewater by coupling dosing FeCl3 and AlCl3
A Saad et al. Industrial wastewater remediation using Hematite@ Chitosan nanocomposite
Skoczko et al. Removal of heavy metal ions by filtration on activated alumina-assisted magnetic field
JP5550459B2 (en) Recovery phosphorus and recovery method
Ramli et al. Use of ferric chloride and chitosan as coagulant to remove turbidity and color from landfill leachate
Lee et al. Efficient separation performance of suspended soil and strontium from aqueous solution using magnetic flocculant
JP2013057599A (en) Method for processing radioactive contaminated water
JP2014098558A (en) Method for purifying contaminated water containing radioactive cesium
JP6850634B2 (en) How to purify mercury-contaminated soil
Pourzamani et al. Nitrate removal from aqueous solutions by magnetic nanoparticle
US11339075B2 (en) Titania-based treatment solution and method of promoting precipitation and removal of heavy metals from an aqueous source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150803

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161004