JP2014098201A - Nitrogen-containing tantalum powder and method for producing the same - Google Patents

Nitrogen-containing tantalum powder and method for producing the same Download PDF

Info

Publication number
JP2014098201A
JP2014098201A JP2012251554A JP2012251554A JP2014098201A JP 2014098201 A JP2014098201 A JP 2014098201A JP 2012251554 A JP2012251554 A JP 2012251554A JP 2012251554 A JP2012251554 A JP 2012251554A JP 2014098201 A JP2014098201 A JP 2014098201A
Authority
JP
Japan
Prior art keywords
nitrogen
tantalum powder
tantalum
containing tantalum
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012251554A
Other languages
Japanese (ja)
Other versions
JP6077274B2 (en
Inventor
Osamu Kubota
治 久保田
Yoshitomo Noguchi
佳知 野口
Kazuo Izumi
和夫 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Global Advanced Metals Japan KK
Original Assignee
Global Advanced Metals Japan KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Global Advanced Metals Japan KK filed Critical Global Advanced Metals Japan KK
Priority to JP2012251554A priority Critical patent/JP6077274B2/en
Publication of JP2014098201A publication Critical patent/JP2014098201A/en
Application granted granted Critical
Publication of JP6077274B2 publication Critical patent/JP6077274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor having a high capacity, reduced in leak current and excellent in long-term reliability by obtaining a nitrogen-containing metal powder having a large specific surface area and uniformly containing an appropriate amount of nitrogen in metal in a high productivity.SOLUTION: In a method for forming tantalum by reducing a tantalum metal salt with a reductant in a molten diluting salt, a method for producing a nitrogen-containing tantalum powder is characterized in that tantalum containing nitrogen is formed by introducing a nitrogen-containing gas into a space brought into contact with a reaction melt containing the metal salt, the reductant, and the diluting salt, and that when reduction is performed by stirring the reaction melt with a stirring blade, the number of revolution of the stirring blade is reduced on the way of the reduction.

Description

本発明は、固体電解コンデンサのアノード電極原料に好適な、窒素含有タンタル粉末およびその製造方法ならびにそれを用いた多孔質焼結体および固体電解コンデンサに関する。   The present invention relates to a nitrogen-containing tantalum powder suitable for an anode electrode raw material of a solid electrolytic capacitor, a method for producing the same, a porous sintered body using the same, and a solid electrolytic capacitor.

電子機器の電子回路で使用されるコンデンサとして、低電圧駆動、高周波化、低ノイズ化を達成するために、低ESR(等価値直列抵抗)かつ高容量のタンタル電解コンデンサが知られている。   As a capacitor used in an electronic circuit of an electronic device, a tantalum electrolytic capacitor having a low ESR (equivalent series resistance) and a high capacity is known in order to achieve low voltage driving, high frequency, and low noise.

タンタル電解コンデンサは、タンタル粉末を化成処理することにより表面に誘電体膜を形成し、電解液や導電性ポリマー等からなる電解質層を介して誘電体膜にカソード電極を接続することにより製造される。   A tantalum electrolytic capacitor is manufactured by forming a dielectric film on the surface by chemical conversion treatment of tantalum powder, and connecting a cathode electrode to the dielectric film through an electrolyte layer made of an electrolytic solution or a conductive polymer. .

さらなる高容量化を実現するために、タンタル粉末の表面積を大きくする検討が引き続き行なわれている。しかしながら、タンタル粉末の表面積が大きくなると、表面に吸着した酸素量が増えるため、コンデンサ製造時において、誘電体膜の漏れ電流の原因になる結晶性酸化物の生成量が多くなることがある。また、高容量を実現するために、使用電圧に対して誘電体膜を薄くする傾向にあることから、漏れ電流が生じやすくなっている。したがって、コンデンサの高容量化を図ると、漏れ電流が大きくなり、信頼性が損なわれるおそれがある。   In order to realize further higher capacity, studies for increasing the surface area of the tantalum powder have been continued. However, when the surface area of the tantalum powder is increased, the amount of oxygen adsorbed on the surface increases, and thus the amount of crystalline oxide that causes leakage current of the dielectric film may be increased during capacitor production. In addition, in order to realize a high capacity, since the dielectric film tends to be thin with respect to the operating voltage, leakage current is likely to occur. Therefore, when the capacity of the capacitor is increased, the leakage current increases and the reliability may be impaired.

そこで、得られるタンタル粉末の表面積を大きくし、さらには酸素の影響を抑え、高容量コンデンサの信頼性を向上させるために、タンタル粉末に窒素を固溶させることが提案されている。窒素を含有するタンタル粉末を製造する方法としては、例えば、特許文献1に、溶融した希釈塩中にて、タンタルのフッ化カリウム塩を、還元剤を用いて還元させながら、溶融した希釈塩中に窒素含有ガスをバブリングにより導入する方法が開示されている。   Therefore, in order to increase the surface area of the obtained tantalum powder, further suppress the influence of oxygen, and improve the reliability of the high-capacitance capacitor, it has been proposed to dissolve nitrogen in the tantalum powder. As a method for producing a tantalum powder containing nitrogen, for example, in Patent Document 1, in a molten diluted salt, a potassium fluoride salt of tantalum is reduced using a reducing agent in a molten diluted salt. Discloses a method of introducing a nitrogen-containing gas by bubbling.

また、特許文献2には、溶融した希釈塩中にて、タンタルのフッ化カリウム塩のフッ化カリウム塩を、還元剤を用いて還元させながら、溶融した希釈塩の液面上に窒素含有ガスを流通する方法が開示されている。   Patent Document 2 discloses that a nitrogen-containing gas is formed on the surface of the molten diluted salt while reducing the potassium fluoride of potassium tantalum fluoride using a reducing agent in the molten diluted salt. Is disclosed.

タンタル粉末の製造においては、溶融した希釈塩中で還元して得た粉末をさらに熱処理して取り扱い易い凝集粒子に調製することが一般に行われている。そのために、特許文献1,2に記載の方法のように、熱処理の前にタンタル粉末に窒素を適度に固溶させると、熱処理の際の表面積の低下を抑制でき、コンデンサとした際の信頼性が向上するものと考えられる。   In the production of tantalum powder, it is a common practice to prepare agglomerated particles that are easy to handle by further heat-treating the powder obtained by reduction in molten diluted salt. Therefore, as in the methods described in Patent Documents 1 and 2, if nitrogen is appropriately dissolved in the tantalum powder before the heat treatment, the decrease in surface area during the heat treatment can be suppressed, and the reliability when a capacitor is obtained. Is thought to improve.

しかしながら、特許文献1,2に記載の製造方法では、制御可能な条件を完全に同一にして製造しても、窒素含有タンタル粉末中の窒素含有量が製造ごとに大きく異なることがある。窒素含有タンタル粉末の窒素含有量が一定しないと、窒素含有タンタル粉末の機械的物性や得られる電解コンデンサの性能が一定せず、品質低下を招くおそれがある。   However, in the production methods described in Patent Documents 1 and 2, even if production is performed with completely the same controllable conditions, the nitrogen content in the nitrogen-containing tantalum powder may vary greatly from production to production. If the nitrogen content of the nitrogen-containing tantalum powder is not constant, the mechanical properties of the nitrogen-containing tantalum powder and the performance of the electrolytic capacitor to be obtained may not be constant, and the quality may be deteriorated.

また、タンタルキャパシタ用のタンタル粉末は、比表面積や一次粒子径などの特性によって、必要とされる窒素含有量が異なるため、窒素含有量を所望量に容易に調整できる手段が求められている。しかし、特許文献1,2の記載の窒素供給方法では、得られる窒素含有タンタル粉末の窒素含有量が所望量から大きくずれることがある。   Further, tantalum powder for tantalum capacitors has a required nitrogen content depending on characteristics such as a specific surface area and a primary particle diameter. Therefore, means for easily adjusting the nitrogen content to a desired amount is required. However, in the nitrogen supply methods described in Patent Documents 1 and 2, the nitrogen content of the obtained nitrogen-containing tantalum powder may deviate significantly from the desired amount.

本発明者の知見によれば、特許文献1,2に記載の製造方法で窒素含有タンタル粉末の窒素含有量がばらつくのは、溶融した希釈塩に取り込まれる窒素ガス量が異なることに原因があると考えられる。すなわち、特許文献1,2に記載の製造方法では、微細で均一な一次粒子を得るために、充分に攪拌して希釈塩中に投入した原料を素早く均一に分散させているが、制御可能な条件を完全に同一にしても、金属塩と還元剤はそれぞれ分割し投入し、反応の進行に伴い内容量が増加していくため攪拌状態を一定に制御することは難しい。そのため、製造ごとに、希釈塩の窒素ガス取り込み量が過剰または不足になり、窒素含有タンタル粉末の窒素含有量が異なってしまうものと推測される。   According to the knowledge of the present inventors, the nitrogen content of the nitrogen-containing tantalum powder varies in the manufacturing methods described in Patent Documents 1 and 2 because the amount of nitrogen gas taken into the molten diluted salt is different. it is conceivable that. That is, in the production methods described in Patent Documents 1 and 2, in order to obtain fine and uniform primary particles, the raw materials put into the diluted salt are sufficiently stirred and dispersed quickly, but can be controlled. Even if the conditions are completely the same, it is difficult to control the stirring state to be constant because the metal salt and the reducing agent are added separately and the internal volume increases as the reaction proceeds. Therefore, it is presumed that the nitrogen gas intake amount of the diluted salt becomes excessive or insufficient for each production, and the nitrogen content of the nitrogen-containing tantalum powder is different.

特許第4049964号公報Japanese Patent No. 4049964 特許第4187953号公報Japanese Patent No. 4187533

本発明は、比表面積が大きく、かつ、金属内に適度な量の窒素を均一に含む窒素含有金属粉末を生産性よく得て、高容量で漏れ電流が少なく長期の信頼性に優れた固体電解コンデンサを提供することを目的とする。   The present invention provides a solid electrolyte having a large specific surface area and a high yield of nitrogen-containing metal powder that uniformly contains an appropriate amount of nitrogen in the metal, with high capacity, low leakage current, and excellent long-term reliability. The object is to provide a capacitor.

本発明は上記の問題を解決するために、以下の発明を提供するものである。
(1)タンタル金属塩を、溶融した希釈塩中で還元剤により還元してタンタルを生成させる方法において、前記金属塩と前記還元剤と前記希釈塩とを含む反応融液に接する空間に、窒素含有ガスを導入して、窒素を含有するタンタルを生成させること、ならびに
前記反応融液を攪拌翼により攪拌して還元を行なう際に、攪拌翼の回転数を還元途中で減少させること、を特徴とする窒素含有タンタル粉末の製造方法。
(2)金属塩がタンタルのフッ化カリウム塩であり、還元剤がナトリウムである上記(1)に記載の窒素含有タンタル粉末の製造方法。
(3)還元剤と金属塩がそれぞれ連続的または分割して希釈塩に添加される上記(1)または(2)に記載の窒素含有タンタル粉末の製造方法。
(4)攪拌翼の回転数が100〜200回転/分から選ばれる上記(1)〜(3)のいずれかに記載の窒素含有タンタル粉末の製造方法。
(5)攪拌翼の回転数が140〜170回転/分である上記(4)に記載の窒素含有タンタル粉末の製造方法。
(6)攪拌翼の回転数の減少が、全タンタル金属塩の1/2が還元に供されるまでに行なわれる上記(1)〜(5)のいずれかに記載の窒素含有タンタル粉末の製造方法。
(7)攪拌翼の回転数の減少割合が2〜10%、または攪拌翼の回転数の減少幅が3〜10回転/分である上記(1)〜(6)のいずれかに記載の窒素含有タンタル粉末の製造方法。
(8)反応融液にホウ素含有化合物を存在させる上記(1)〜(7)のいずれかに記載の窒素含有タンタル粉末の製造方法。
(9)還元終了後に、反応融液を冷却、洗浄して得られる窒素含有タンタル粉末を、さらに熱凝集、脱酸素および徐酸化安定化処理を含む前処理を行なう上記(1)〜(8)のいずれかに記載の窒素含有タンタル粉末の製造方法。
(10)上記(9)に記載の前処理された窒素含有タンタル粉末を焼結させて窒素含有タンタル多孔質焼結体を得る多孔質焼結体の製造方法。
(11)窒素含有量500〜3000ppm、ホウ素含有量2〜50ppm、および酸素含有量9000 〜21000ppmである窒素含有タンタル粉末であり、真空焼結炉で1150℃、20分間の条件で加熱して多孔質焼結体を得、得られた多孔質焼結体を0.1質量%リン酸水溶液中で、化成電圧10V、温度60℃、保持時間120分間で化成酸化したときに、比漏れ電流DLC/CV値が5(nA/μFV)以下、および電気容量CV値が20万〜40万μFV/gである、窒素含有タンタル粉末。
(12)鉄含有量20ppm以下、クロム含有量20ppm以下およびニッケル含有量20ppm以下であり、ならびにこれらの金属の合計含有量が40ppm以下である上記(11)に記載の窒素含有タンタル粉末。
(13)カリウム含有量が30ppm以下である上記(11)または(12)に記載の窒素含有タンタル粉末。
(14)上記(10)に記載の方法で得られた多孔質焼結体。
(15)上記(14)に記載の多孔質焼結体からなるアノード電極を備えてなる固体電解コンデンサ。
The present invention provides the following inventions in order to solve the above problems.
(1) In the method of producing tantalum by reducing a tantalum metal salt with a reducing agent in a molten diluted salt, nitrogen is introduced into a space in contact with the reaction melt containing the metal salt, the reducing agent, and the diluted salt. Introducing a contained gas to produce tantalum containing nitrogen, and reducing the number of revolutions of the stirring blade during reduction while stirring the reaction melt with the stirring blade. A method for producing nitrogen-containing tantalum powder.
(2) The method for producing a nitrogen-containing tantalum powder according to (1), wherein the metal salt is potassium fluoride of tantalum and the reducing agent is sodium.
(3) The method for producing a nitrogen-containing tantalum powder according to the above (1) or (2), wherein the reducing agent and the metal salt are added to the diluted salt in a continuous or divided manner.
(4) The method for producing a nitrogen-containing tantalum powder according to any one of (1) to (3), wherein the rotation speed of the stirring blade is selected from 100 to 200 rotations / minute.
(5) The method for producing a nitrogen-containing tantalum powder according to (4), wherein the rotation speed of the stirring blade is 140 to 170 rotations / minute.
(6) Production of nitrogen-containing tantalum powder according to any one of (1) to (5), wherein the rotation speed of the stirring blade is reduced until 1/2 of the total tantalum metal salt is subjected to reduction. Method.
(7) Nitrogen according to any one of the above (1) to (6), wherein the reduction rate of the rotation speed of the stirring blade is 2 to 10%, or the reduction width of the rotation speed of the stirring blade is 3 to 10 rotations / minute Production method of tantalum powder containing.
(8) The method for producing a nitrogen-containing tantalum powder according to any one of (1) to (7), wherein a boron-containing compound is present in the reaction melt.
(9) The above-described (1) to (8), wherein after the reduction, the nitrogen-containing tantalum powder obtained by cooling and washing the reaction melt is further subjected to pretreatment including thermal aggregation, deoxygenation and slow oxidation stabilization treatment. The manufacturing method of the nitrogen-containing tantalum powder in any one of.
(10) A method for producing a porous sintered body obtained by sintering the pretreated nitrogen-containing tantalum powder according to (9) to obtain a nitrogen-containing tantalum porous sintered body.
(11) Nitrogen-containing tantalum powder having a nitrogen content of 500 to 3000 ppm, a boron content of 2 to 50 ppm, and an oxygen content of 9000 to 21000 ppm. When the obtained porous sintered body is subjected to conversion oxidation in a 0.1% by mass phosphoric acid aqueous solution at a conversion voltage of 10 V, a temperature of 60 ° C. and a holding time of 120 minutes, the specific leakage current DLC Nitrogen-containing tantalum powder having a / CV value of 5 (nA / μFV) or less and a capacitance CV value of 200,000 to 400,000 μFV / g.
(12) The nitrogen-containing tantalum powder according to (11), which has an iron content of 20 ppm or less, a chromium content of 20 ppm or less and a nickel content of 20 ppm or less, and a total content of these metals of 40 ppm or less.
(13) The nitrogen-containing tantalum powder according to (11) or (12), wherein the potassium content is 30 ppm or less.
(14) A porous sintered body obtained by the method described in (10) above.
(15) A solid electrolytic capacitor comprising an anode electrode comprising the porous sintered body according to (14).

本発明によれば、比表面積が大きく、かつ、金属内に適度な量の窒素を均一に含む窒素含有金属粉末を生産性良く得て、高容量で漏れ電流が少なく長期の信頼性に優れた固体電解コンデンサを提供し得る。   According to the present invention, a nitrogen-containing metal powder having a large specific surface area and uniformly containing an appropriate amount of nitrogen in the metal can be obtained with high productivity, high capacity, low leakage current, and excellent long-term reliability. A solid electrolytic capacitor may be provided.

本発明の窒素含有タンタル粉末の製造方法においては、タンタル金属塩を、溶融した希釈塩中で還元剤により還元してタンタルを生成させる。ここでは、金属塩と還元剤と希釈塩とを含む反応融液に接する空間に、窒素含有ガスを導入して、窒素を含有するタンタルを生成させる。そして反応融液を攪拌翼により攪拌して還元を行なう際に、攪拌翼の回転数を還元途中で減少させることを含む。   In the method for producing nitrogen-containing tantalum powder of the present invention, tantalum metal salt is reduced with a reducing agent in molten diluted salt to produce tantalum. Here, a nitrogen-containing gas is introduced into a space in contact with the reaction melt containing the metal salt, the reducing agent, and the diluted salt to generate tantalum containing nitrogen. Then, when the reaction melt is reduced by stirring with a stirring blade, the rotational speed of the stirring blade is reduced during the reduction.

金属塩としてはフッ化カリウム塩(K2TaF)を使用するのが好ましい。フッ化カリウム塩を使用すると、アノード電極として使用する多孔質焼結体の製造に適した、連鎖状粒子を製造することができる。その他の金属塩としては、五塩化タンタル、低級塩化タンタル等の塩化物、ヨウ化物、臭化物等のハロゲン化物が挙げられる。 As the metal salt, potassium fluoride salt (K 2 TaF 7 ) is preferably used. When potassium fluoride salt is used, chain-like particles suitable for producing a porous sintered body used as an anode electrode can be produced. Examples of other metal salts include chlorides such as tantalum pentachloride and lower tantalum chloride, and halides such as iodide and bromide.

還元剤としては、ナトリウム、マグネシウム、カルシウム等のアルカリ金属もしくはアルカリ土類金属、これらの水素化物、すなわち水素化マグネシウム、水素化カルシウムが挙げられるが、これらのなかではナトリウムが好ましい。金属塩としてフッ化カリウム塩を使用した場合に、還元剤としてナトリウムを使用すると、フッ化カリウム塩中のフッ素とナトリウムとが反応して、ナトリウムのフッ化物が生成するが、このフッ化物は水溶性であるため、後の工程で容易に除去可能である。   Examples of the reducing agent include alkali metals or alkaline earth metals such as sodium, magnesium and calcium, and hydrides thereof, that is, magnesium hydride and calcium hydride. Among these, sodium is preferable. When potassium fluoride is used as the metal salt and sodium is used as the reducing agent, fluorine in the potassium fluoride salt reacts with sodium to produce sodium fluoride. This fluoride is water-soluble. Therefore, it can be easily removed in a later process.

また、希釈塩としては、KCl、NaCl、KF、またはこれらの共晶塩が好適である。本発明方法において、タンタルの金属塩を、溶融した希釈塩中で還元剤により還元してタンタルを生成させる。   Further, as the diluted salt, KCl, NaCl, KF, or an eutectic salt thereof is suitable. In the method of the present invention, tantalum metal salt is reduced with a reducing agent in molten diluted salt to produce tantalum.

本発明方法において、還元剤と金属塩はそれぞれ分割して、または任意の添加速度で、希釈塩に添加されるのが好適である。このように分割して、または連続的に金属塩と還元剤とを添加すると、一括して添加する方法に比べて、反応熱による急激な温度上昇が見られず、微細でかつ均一な粒度分布の窒素含有タンタル粉末が得られる。   In the method of the present invention, the reducing agent and the metal salt are preferably added to the diluted salt separately or at an arbitrary addition rate. When the metal salt and the reducing agent are added in such a divided manner or continuously, a rapid temperature increase due to reaction heat is not seen and a fine and uniform particle size distribution as compared to the method of adding them all at once. Of nitrogen-containing tantalum powder.

さらに、ここでは、金属塩と還元剤と希釈塩とを含む反応融液に接する空間に、窒素含有ガスを導入して、反応系内の気相部分を窒素含有ガス雰囲気とすることにより窒素を含有するタンタルを製造できる。   Further, here, nitrogen is introduced by introducing a nitrogen-containing gas into a space in contact with the reaction melt containing the metal salt, the reducing agent, and the diluted salt, and the gas phase portion in the reaction system is changed to a nitrogen-containing gas atmosphere. The tantalum contained can be manufactured.

窒素含有ガスとしては、窒素ガスを含有するガスや、加熱により窒素ガスを発生するアンモニア、尿素等の窒素発生ガスが挙げられ、還元反応系内を窒素含有ガス雰囲気にできるものであればよい。しかしながら、効率的に窒素をタンタル中に含有させるためには、窒素含有ガス雰囲気中の窒素ガスの濃度を50vol%以上に維持することが好ましく、窒素濃度が約100%の純窒素ガスやこれをアルゴンガスなどで適宜希釈したものを使用することが好ましい。窒素含有ガス雰囲気における窒素ガス濃度が10vol%未満では、タンタル金属中に窒素を十分に含有させることができない場合がある。   Examples of the nitrogen-containing gas include a gas containing nitrogen gas, and a nitrogen-generating gas such as ammonia and urea that generate nitrogen gas by heating. However, in order to efficiently contain nitrogen in tantalum, it is preferable to maintain the concentration of nitrogen gas in the nitrogen-containing gas atmosphere at 50 vol% or more, and pure nitrogen gas having a nitrogen concentration of about 100% or It is preferable to use one diluted appropriately with argon gas or the like. If the nitrogen gas concentration in the nitrogen-containing gas atmosphere is less than 10 vol%, the tantalum metal may not be sufficiently contained with nitrogen.

次に窒素含有タンタル金属粉末を製造する具体的な一例について説明する。反応器としては、たとえば、原料投入口と窒素含有ガス導入管と窒素含有ガス排出管とを備えた、ニッケルとインコネルのクラッド材からなる反応器が好適に使用される。原料投入口は金属塩投入口と還元剤投入口を有している。また、反応器は攪拌翼を備えている。まず、この反応器に希釈塩を投入する。ついで、窒素含有ガスを、窒素含有ガス導入管から導入し窒素含有ガス排出管から排出させて、反応器内に流通させる。こうして反応器内を窒素含有ガス雰囲気に保ちながら希釈塩を650〜900℃に加熱して溶融し、この中に、原料であるタンタルのフッ化カリウム塩の一部を金属塩投入口から添加する。ついで、還元剤であるナトリウムを、先に投入したフッ化カリウム塩の還元に必要な量論の量、還元剤投入口から投入する。このようにして、反応器中で下記式(1)で表される反応を行う。また、この間、攪拌翼を作動させて、反応融液を攪拌する。   Next, a specific example of producing the nitrogen-containing tantalum metal powder will be described. As the reactor, for example, a reactor made of a clad material of nickel and Inconel, which is provided with a raw material inlet, a nitrogen-containing gas introduction pipe, and a nitrogen-containing gas discharge pipe is preferably used. The raw material inlet has a metal salt inlet and a reducing agent inlet. The reactor is equipped with a stirring blade. First, dilute salt is charged into the reactor. Next, the nitrogen-containing gas is introduced from the nitrogen-containing gas introduction pipe, discharged from the nitrogen-containing gas discharge pipe, and circulated in the reactor. In this way, the dilute salt is heated to 650 to 900 ° C. and melted while keeping the inside of the reactor in a nitrogen-containing gas atmosphere, and a part of the potassium fluoride salt of tantalum as a raw material is added to this from the metal salt inlet. . Next, sodium as a reducing agent is introduced from the reducing agent inlet in a stoichiometric amount necessary for the reduction of the potassium fluoride salt previously introduced. In this way, the reaction represented by the following formula (1) is performed in the reactor. During this time, the stirring blade is operated to stir the reaction melt.

2TaF7+5Na→2KF+5NaF+Ta・・・(1)
ここで、反応器においては、窒素含有ガス導入管が反応融液中に浸漬しないように配置されており、窒素含有ガスが反応融液中にバブリングによって導入されることなく、反応融液の上方のみに導入される。
K 2 TaF 7 + 5Na → 2KF + 5NaF + Ta (1)
Here, in the reactor, the nitrogen-containing gas introduction tube is arranged so as not to be immersed in the reaction melt, and the nitrogen-containing gas is not introduced into the reaction melt by bubbling, and the upper part of the reaction melt Only introduced.

希釈塩の量は、フッ化カリウム塩とナトリウムの合計質量に対して、4〜15倍程度、好ましくは8〜12倍の質量となるように設定することが好ましい。希釈塩の質量が4倍未満では、原料のフッ化カリウム塩の濃度が高いために反応速度が速く、生成する金属粉末の1次粒径が大きくなりすぎる場合がある。一方、希釈塩の質量が15倍を超えると反応速度が低下し、生産性が低下する。また、希釈塩の量を多くすると、得られる窒素含有金属粉末の比表面積は大きくなるが、タンタル粉末内のニッケル等の不純物量も多くなり好ましくない。   The amount of the diluted salt is preferably set to be about 4 to 15 times, preferably 8 to 12 times the mass of the total mass of potassium fluoride salt and sodium. If the weight of the diluted salt is less than 4 times, the reaction rate is fast because the concentration of the raw material potassium fluoride salt is high, and the primary particle size of the resulting metal powder may become too large. On the other hand, when the mass of the diluted salt exceeds 15 times, the reaction rate decreases and the productivity decreases. Further, when the amount of the diluted salt is increased, the specific surface area of the obtained nitrogen-containing metal powder is increased, but the amount of impurities such as nickel in the tantalum powder is also increased, which is not preferable.

ついで、投入したフッ化カリウム塩とナトリウムの反応がほぼ終了した時点で、窒素含有ガスの流通を続けながら、さらにフッ化カリウム塩の一部とナトリウムの一部を投入する。このように、原料のフッ化カリウム塩とナトリウムとを、少量ずつ分割して反応させることを繰り返し、タンタルのフッ化カリウム塩の還元反応を終了させる。   Next, when the reaction between the added potassium fluoride salt and sodium is almost completed, a part of the potassium fluoride salt and a part of sodium are further added while continuing the circulation of the nitrogen-containing gas. In this way, the raw material potassium fluoride salt and sodium are divided and reacted in small portions to complete the reduction reaction of the potassium fluoride fluoride of tantalum.

このように反応器を使用して、金属塩と還元剤と希釈塩とを含む反応融液に接する空間、ここでは反応融液の上方に、窒素含有ガスを導入して金属塩の還元反応を行うと、金属塩は、還元剤によって還元されるとともに反応融液と窒素含有ガスとの界面において窒素含有ガスと接触する。この反応場において、生成したタンタル粒子表面に速やかに、かつ効率的に窒素が添加されることで、粒子の表面エネルギーが低下され、粒子の成長が抑制される。このように、金属塩の還元反応と、還元反応で得られたタンタルへの窒素の導入とが連続的に進行することにより微細粒子を維持できる。そして、還元され窒素が添加されたタンタルは、その比重が希釈塩よりも大きいために反応融液を沈降していくことになる。   In this way, the reactor is used to introduce a nitrogen-containing gas into the space in contact with the reaction melt containing the metal salt, the reducing agent, and the diluted salt, here, the reaction melt, to reduce the metal salt. When performed, the metal salt is reduced by the reducing agent and contacts the nitrogen-containing gas at the interface between the reaction melt and the nitrogen-containing gas. In this reaction field, nitrogen is quickly and efficiently added to the surface of the generated tantalum particles, so that the surface energy of the particles is reduced and the growth of the particles is suppressed. Thus, the fine particles can be maintained by the continuous progress of the reduction reaction of the metal salt and the introduction of nitrogen into the tantalum obtained by the reduction reaction. The reduced tantalum to which nitrogen is added has a higher specific gravity than the diluted salt, so that the reaction melt is precipitated.

このような方法によれば、反応融液と窒素含有ガスとはこれらの界面でしか接触しないため、例えば、反応融液中に窒素含有ガス導入管を浸漬して、窒素含有ガスをバブリングする方法などに比べて、タンタルと窒素との接触の程度を低く抑えることができる。また、還元され、すでに窒素が添加されたタンタルは反応融液中を沈降してこの界面から離れていくため、タンタルが再度窒素と接触することもない。すなわち、タンタルへの窒素の導入が、還元された直後のタンタルにほぼ限定されるとともに、その程度も制御されるため、窒素が粉末中に過剰に取り込まれることなく、また、取り込まれる窒素量も粒子間で均一となる。その結果、比表面積が大きいタンタル粉末には必要最小量の窒素を添加して、窒素含有量500〜3000ppmとする窒素含有タンタル粉末を安定して生成させることができる。   According to such a method, since the reaction melt and the nitrogen-containing gas are in contact only at the interface between them, for example, a method of bubbling the nitrogen-containing gas by immersing the nitrogen-containing gas introduction tube in the reaction melt As compared with the above, the degree of contact between tantalum and nitrogen can be kept low. In addition, tantalum that has been reduced and already added with nitrogen settles in the reaction melt and moves away from the interface, so that tantalum does not come into contact with nitrogen again. That is, the introduction of nitrogen into tantalum is almost limited to tantalum immediately after reduction, and the degree thereof is controlled, so that nitrogen is not excessively incorporated into the powder, and the amount of nitrogen incorporated is also reduced. Uniform among particles. As a result, it is possible to stably generate nitrogen-containing tantalum powder having a nitrogen content of 500 to 3000 ppm by adding a minimum amount of nitrogen to tantalum powder having a large specific surface area.

本発明の好適な態様において、たとえば上記のような分割添加により金属塩および還元剤は、次のように添加される。すなわち、還元剤、好ましくはナトリウムは、金属塩、好ましくはタンタルのフッ化カリウム塩、の添加した量に対し、1秒当たり1/30〜1/20の量を、タンタルのフッ化カリウム塩の分割添加後(たとえば30秒後)に毎回添加される。このようにナトリウムの添加量を調整することにより、高表面積のタンタル粉末を安定して、生産性よく、得ることができる。   In a preferred embodiment of the present invention, the metal salt and the reducing agent are added as follows, for example, by divided addition as described above. That is, the reducing agent, preferably sodium, is added in an amount of 1/30 to 1/20 per second of the added amount of metal salt, preferably potassium fluoride of tantalum, of potassium fluoride of tantalum. It is added every time after divided addition (for example, after 30 seconds). Thus, by adjusting the addition amount of sodium, a high surface area tantalum powder can be stably obtained with high productivity.

上記還元反応において、反応融液は攪拌翼により攪拌されるが、攪拌翼の回転数は好ましくは100〜200回転/分、さらに好ましくは140〜170回転/分から選ばれる。撹拌翼の形式は、特に制限されず、パドル形、プロペラ形、リボン形またはタービン形等が用いられるが、たとえば低速域の撹拌に用いられているピッチドパドル(2〜4枚羽根)等が好適である。たとえば、水平方向に対する角度θが30〜90°で傾斜した2枚羽根ピッチドパドル翼で攪拌すると、翼から反応器の内周面に向かう流れである吐出流が多く、上下方向で内容物を循環させる流れである循環流(軸流)が少なくなる。このような攪拌状態では、生成した窒素含有金属粉末を反応器の下部に沈降させて、新たに投入される金属原料との反応を抑制できるため、得られる窒素含有金属粉末の粗大粒子化を防止できるので好ましい。   In the reduction reaction, the reaction melt is stirred by a stirring blade, and the rotation speed of the stirring blade is preferably selected from 100 to 200 rotations / minute, more preferably from 140 to 170 rotations / minute. The type of the stirring blade is not particularly limited, and a paddle shape, a propeller shape, a ribbon shape, a turbine shape, or the like is used. For example, a pitched paddle (2 to 4 blades) used for low speed stirring is suitable. is there. For example, when stirring is performed with a two-blade pitched paddle blade inclined at an angle θ of 30 to 90 ° with respect to the horizontal direction, there are many discharge flows that flow from the blade toward the inner peripheral surface of the reactor, and the contents are circulated in the vertical direction. The circulating flow (axial flow) that is the flow is reduced. In such a stirring state, the generated nitrogen-containing metal powder is allowed to settle in the lower part of the reactor, and the reaction with the newly added metal raw material can be suppressed, thus preventing the resulting nitrogen-containing metal powder from becoming coarse particles It is preferable because it is possible.

本発明方法においては、還元工程の途中で攪拌翼の回転数を減少させる。攪拌翼の回転数の減少は、全タンタル金属塩の1/2、好ましくは1/3、が還元に供されるまでに行なわれる。攪拌翼の回転数の減少幅は3〜10回転/分、または攪拌翼の回転数の減少割合が2〜10%程度であるのが好適である。たとえば、還元反応開始時には160回転/分の回転数で撹拌し、全タンタル金属塩の1/2が添加されるまでに150回転/分の回転数に減少される。減少は、段階的であってもよい。これにより、得られる窒素含有タンタル粉末の表面積が増大し、窒素の導入の制御も容易となる。すなわち、反応初期段階での撹拌は、希釈塩へのタンタル金属塩の溶解を促進し、かつ、タンタル粉末生成時への窒素の効率的な添加を行う必要がある。一方で、反応中盤以降、すなわち全タンタル金属塩の1/2が添加された時点で、反応初期段階と比較し、反応器内には、生成したタンタルによる撹拌抵抗が生じ、より大きな撹拌効果が生じている。このことが、過剰な窒素がタンタル粉末へ含有されるだけでなく、反応融液の大きな液面上昇による反応容器内面のニッケルの剥離または腐食によるタンタル粉末内のニッケル混入量の増加を引き起こすことになる。   In the method of the present invention, the rotational speed of the stirring blade is decreased during the reduction process. The rotation speed of the stirring blade is reduced until 1/2 of the total tantalum metal salt, preferably 1/3, is subjected to reduction. It is preferable that the reduction speed of the rotation speed of the stirring blade is 3 to 10 rotations / minute, or the reduction ratio of the rotation speed of the stirring blade is about 2 to 10%. For example, at the start of the reduction reaction, stirring is performed at 160 rpm, and the rotational speed is reduced to 150 rpm until 1/2 of the total tantalum metal salt is added. The decrease may be gradual. Thereby, the surface area of the obtained nitrogen-containing tantalum powder is increased, and control of nitrogen introduction is facilitated. That is, stirring in the initial stage of the reaction needs to promote dissolution of the tantalum metal salt in the diluted salt and to efficiently add nitrogen when producing the tantalum powder. On the other hand, after the middle of the reaction, that is, when 1/2 of the total tantalum metal salt is added, compared to the initial stage of the reaction, stirring resistance due to the generated tantalum is generated in the reactor, and a larger stirring effect is obtained. Has occurred. This not only causes excessive nitrogen to be contained in the tantalum powder, but also causes an increase in the amount of nickel mixed in the tantalum powder due to peeling or corrosion of nickel on the inner surface of the reaction vessel due to a large rise in the reaction melt level. Become.

さらに、本発明方法においては、たとえば希釈塩または反応融液にK2SO等のイオウ含有化合物を反応初期に添加することにより、反応融液にイオウを存在させることができる。そのイオウの量は希釈塩総量に対し10〜50ppm程度が好適であり、これにより、イオウ成分は、希釈塩の粘性改質効果および、初期核として作用する。しかしながら、このイオウ成分は、本発明が対象とする領域では微細化効果が限定的であり、かつ反応容器内面のニッケルの腐食を促進し、タンタル粉末内のニッケル混入量の増加を引き起こすため、その添加量と、特に希釈塩を含め反応系内の水分量は少なく、管理される必要がある。 Furthermore, in the method of the present invention, sulfur can be present in the reaction melt by adding a sulfur-containing compound such as K 2 SO 4 to the diluted salt or the reaction melt at the beginning of the reaction. The amount of the sulfur is preferably about 10 to 50 ppm with respect to the total amount of the diluted salt, whereby the sulfur component acts as a viscosity modifying effect of the diluted salt and an initial nucleus. However, this sulfur component has a limited refinement effect in the region targeted by the present invention, promotes nickel corrosion on the inner surface of the reaction vessel, and causes an increase in nickel contamination in the tantalum powder. The amount added and the amount of water in the reaction system, especially including the diluted salt, are small and need to be managed.

さらに、本発明方法においては、たとえば希釈塩または反応融液に、KBF等のホウ素含有化合物を添加することにより、反応融液にホウ素含有化合物を存在させることができる。そのホウ素の量は、タンタル金属塩量に対し好ましくは10〜300ppm程度、さらに好ましくは20〜100ppm程度であり、これにより、一次粒子の微細化を促進するだけでなく、希釈塩内に添加されているイオウ成分が引き起こす反応容器内面のニッケルの腐食を抑制する効果を有する。さらに後述する熱凝集において、一次粒子の融合成長を抑え、高表面積を維持し得る。 Furthermore, in the method of the present invention, for example, a boron-containing compound can be present in the reaction melt by adding a boron-containing compound such as KBF 4 to the diluted salt or the reaction melt. The amount of boron is preferably about 10 to 300 ppm, more preferably about 20 to 100 ppm, based on the amount of tantalum metal salt, which not only promotes refinement of primary particles but also is added to the diluted salt. It has the effect of suppressing nickel corrosion on the inner surface of the reaction vessel caused by the sulfur component. Furthermore, in the thermal aggregation described later, it is possible to suppress the fusion growth of primary particles and maintain a high surface area.

還元終了後に、反応融液を冷却、洗浄して得られる窒素含有タンタル粉末を、さらに熱凝集、脱酸素および徐酸化安定化処理を含む前処理を行なうことができる。たとえば、還元反応終了後、反応融液を冷却し、得られた集塊を水、弱酸性水溶液等で繰り返し洗浄して、希釈塩を除去することにより、窒素含有タンタル粉末が得られる。この場合、必要に応じて、遠心分離、濾過等の分離操作を組み合わせても、フッ酸と過酸化水素が溶解している溶液等で粒子を洗浄し、精製してもよい。   After the reduction, the nitrogen-containing tantalum powder obtained by cooling and washing the reaction melt can be further subjected to pretreatment including thermal aggregation, deoxygenation and slow oxidation stabilization treatment. For example, after completion of the reduction reaction, the reaction melt is cooled, and the resulting agglomerates are washed repeatedly with water, a weakly acidic aqueous solution or the like, and the diluted salt is removed to obtain a nitrogen-containing tantalum powder. In this case, the particles may be purified by washing with a solution or the like in which hydrofluoric acid and hydrogen peroxide are dissolved, if necessary, by combining separation operations such as centrifugation and filtration.

このようにして得られた窒素含有タンタル粉末に対して、熱凝集、脱酸素、徐酸化安定化処理等の前処理を行った後、この粉末を成形、焼結して多孔質焼結体を製造する。熱凝集は、窒素含有タンタル粉末を真空中で加熱して凝集させて、所望の粒子径を有する2次粒子とするために行う。比較的大きな二次粒子を成形、焼結して得られた多孔質焼結体は、極微細な粒子から得られた多孔質焼結体よりも大きな空孔を有するため、アノード電極として使用する場合に、電解質溶液が多孔質焼結体の内部まで浸透し、高容量化をはかることができる。また、真空中で加熱することによって、窒素含有タンタル粉末中に含まれる、希釈塩由来のナトリウム、カリウム等の不純物を除去することができる。熱凝集は、通常、窒素含有タンタル粉末を真空中で800〜1400℃で、0.5〜2時間加熱して行う。熱凝集の前には、予備凝集を行うことが好ましい。例えば、窒素含有タンタル粉末に水を添加し、懸濁化した後、乾燥させる。この予備凝集を行うことによって、より強固な凝集体を得ることができ、さらに、水の添加量にて凝集密度を制御することができる。この場合、熱凝集後、不活性ガス中にて所望の粒度まで解砕される。さらに、特開2009−102680号公報に記載されるように、造粒装置により予備凝集して所望の粒径分布を得ることもできる。また、これらの予備凝集の際には、リンを添加することが好ましい。この場合、リンは、リン酸、六フッ化リン酸アンモニウムなどにより添加される。リンは、タンタル粉末の焼結抑止効果があるため、高容量化に寄与するが、一方で漏れ電流の増大を引き起こすので、その量は、最終的に100〜500ppmのリンが窒素含有タンタル粉末に含有されることが好ましい。   The nitrogen-containing tantalum powder thus obtained is subjected to pretreatments such as thermal aggregation, deoxygenation, and slow oxidation stabilization treatment, and then this powder is molded and sintered to form a porous sintered body. To manufacture. Thermal agglomeration is performed to heat and aggregate the nitrogen-containing tantalum powder in vacuum to obtain secondary particles having a desired particle size. Since the porous sintered body obtained by molding and sintering relatively large secondary particles has larger pores than the porous sintered body obtained from ultrafine particles, it is used as an anode electrode. In some cases, the electrolyte solution penetrates into the porous sintered body, and the capacity can be increased. Moreover, impurities, such as sodium and potassium derived from a diluted salt, contained in the nitrogen-containing tantalum powder can be removed by heating in vacuum. Thermal aggregation is usually performed by heating the nitrogen-containing tantalum powder at 800 to 1400 ° C. in a vacuum for 0.5 to 2 hours. Prior to thermal aggregation, preaggregation is preferably performed. For example, water is added to nitrogen-containing tantalum powder, suspended, and then dried. By performing this preliminary aggregation, a stronger aggregate can be obtained, and the aggregation density can be controlled by the amount of water added. In this case, after thermal aggregation, it is crushed to a desired particle size in an inert gas. Furthermore, as described in JP-A-2009-102680, a desired particle size distribution can be obtained by pre-aggregation with a granulator. Moreover, it is preferable to add phosphorus in the case of these preliminary aggregation. In this case, phosphorus is added by phosphoric acid, ammonium hexafluorophosphate, or the like. Phosphorus has an effect of suppressing sintering of tantalum powder, and thus contributes to an increase in capacity. On the other hand, it causes an increase in leakage current, so that the amount of phosphorus finally becomes 100 to 500 ppm of phosphorus in the nitrogen-containing tantalum powder. It is preferable to contain.

ついで、熱凝集で得られた粉末、または、必要であれば不活性ガス中で解砕した後、マグネシウム等の還元剤を加え、粒子中の酸素と還元剤を反応させ、脱酸素を行う。脱酸素はアルゴン等の不活性ガス雰囲気中で好ましくは50torr〜300torrで減圧した後、還元剤の融点以上、沸点以下の温度で、たとえば1〜5時間程度行う。そして、その後の冷却中に空気を導入して窒素含有タンタル粉末の徐酸化安定化処理を行った後、粉末中に残留しているマグネシウム、酸化マグネシウム等の還元剤由来の物質を酸洗浄して除去する。   Next, after pulverizing in a powder obtained by thermal aggregation or, if necessary, in an inert gas, a reducing agent such as magnesium is added to react oxygen in the particles with the reducing agent to perform deoxygenation. Deoxygenation is preferably carried out at a temperature not lower than the melting point of the reducing agent and not higher than the boiling point, for example, for about 1 to 5 hours after reducing the pressure in an inert gas atmosphere such as argon, preferably at 50 torr to 300 torr. Then, after introducing air during the subsequent cooling and performing the slow oxidation stabilization treatment of the nitrogen-containing tantalum powder, the substances derived from the reducing agent such as magnesium and magnesium oxide remaining in the powder are washed with an acid. Remove.

このようにして熱凝集、脱酸素、徐酸化安定化処理を行った窒素含有タンタル粉末に、バインダーとして2〜5質量%程度のショウノウ等を加えて成形圧約5g/ccでプレス成形し、ついで、1000〜1400℃で0.3〜1時間程度加熱して焼結し、0〜10%の範囲で収縮させた多孔質焼結体を製造する。なお、焼結温度は、金属の種類や粉末の比表面積に応じて適宜設定できる。この多孔質焼結体をアノード電極として使用する場合には、窒素含有金属粉末をプレス成形する前に、この粉末中にリード線を埋め込んでプレス成形し、焼結して、リード線を一体化させる。そして、これを例えば温度30〜90℃、濃度0.1質量%程度のリン酸、硝酸等の電解溶液中で、40〜120mA/gの電流密度で8〜30Vまで昇圧して1〜3時間処理し、化成酸化を行って、固体電解コンデンサ用のアノード電極に使用する。さらに、公知の方法で二酸化マンガン、酸化鉛や導電性高分子等の固体電解質層、グラファイト層、銀ペースト層を多孔質焼結体上に順次形成し、ついでその上に陰極端子をハンダ付けなどで接続した後、樹脂外被を形成することにより固体電解コンデンサが得られる。   To the nitrogen-containing tantalum powder subjected to thermal aggregation, deoxygenation, and slow oxidation stabilization treatment in this manner, about 2 to 5% by weight of camphor or the like is added as a binder and press-molded at a molding pressure of about 5 g / cc. A porous sintered body is produced by heating and sintering at 1000 to 1400 ° C. for about 0.3 to 1 hour and shrinking in the range of 0 to 10%. The sintering temperature can be appropriately set according to the type of metal and the specific surface area of the powder. When using this porous sintered body as an anode electrode, before press-molding the nitrogen-containing metal powder, the lead wire is embedded in the powder, press-molded, sintered, and the lead wire is integrated. Let Then, the pressure is increased to 8 to 30 V at a current density of 40 to 120 mA / g in an electrolytic solution such as phosphoric acid and nitric acid having a temperature of 30 to 90 ° C. and a concentration of about 0.1% by mass for 1 to 3 hours. It is processed, subjected to chemical oxidation, and used as an anode electrode for a solid electrolytic capacitor. Furthermore, a solid electrolyte layer such as manganese dioxide, lead oxide or conductive polymer, a graphite layer, and a silver paste layer are sequentially formed on the porous sintered body by a known method, and then a cathode terminal is soldered thereon. Then, a solid electrolytic capacitor is obtained by forming a resin jacket.

このような窒素含有タンタル粉末は、窒素含有タンタル粉末中の窒素量W[ppm]と、窒素含有タンタル粉末のBET法により測定された比表面積S[m/g]との比W/Sが、好適には100〜2000であるので、比表面積Sの大きさにかかわらず、適量の窒素を有し、粒子中に過剰の窒素を含有しない。よって、窒素量が過剰な場合に生成しやすい結晶性窒化物をほとんど有することなく、金属に含有した状態で窒素を含有できる。よって、このような窒素含有タンタル粉末をアノード電極原料とすることによって、高容量で、漏れ電流が少なく、長期の信頼性に優れた固体電解コンデンサを得ることができる。また、このような結晶性窒化物をほとんど含有しない窒素含有タンタル粉末は、アノード電極を製造する際のプレス成形において、金型を傷めることもない。 Such a nitrogen-containing tantalum powder has a ratio W / S of the nitrogen amount W [ppm] in the nitrogen-containing tantalum powder and the specific surface area S [m 2 / g] measured by the BET method of the nitrogen-containing tantalum powder. Since it is preferably 100 to 2000, it has an appropriate amount of nitrogen regardless of the size of the specific surface area S, and does not contain excessive nitrogen in the particles. Therefore, nitrogen can be contained in a state of being contained in the metal with almost no crystalline nitride that is easily generated when the amount of nitrogen is excessive. Therefore, by using such a nitrogen-containing tantalum powder as the anode electrode raw material, it is possible to obtain a solid electrolytic capacitor having high capacity, low leakage current, and excellent long-term reliability. Further, such a nitrogen-containing tantalum powder containing almost no crystalline nitride does not damage the mold during press molding when manufacturing the anode electrode.

上記の熱凝集、脱酸素、徐酸化安定化処理を含む前処理を行った窒素含有タンタル粉
末は、好適には窒素含有量500〜3000ppm、ホウ素含有量2〜50ppm、好ましくは5〜20ppm、および酸素含有量9000〜21000ppmである。
The nitrogen-containing tantalum powder that has been subjected to the pretreatment including the thermal aggregation, deoxygenation, and slow oxidation stabilization treatment is suitably a nitrogen content of 500 to 3000 ppm, a boron content of 2 to 50 ppm, preferably 5 to 20 ppm, and The oxygen content is 9000-21000 ppm.

窒素含有タンタル粉末の窒素含有量が500ppm以上であれば、窒素含有タンタル粉末を焼結する際に適度に焼結速度を抑制でき、コンデンサに適した空孔を形成することができる。一方、窒素の含有量が3000ppm以下であれば、窒素含有金属粉末中の窒素の分布を均一にでき、窒化物結晶の増加を抑制でき、コンデンサの漏れ電流を小さくできる。窒素を含有することにより、酸素の影響が抑えられ、漏れ電流がより抑制される。特に、高容量化のためにタンタル粉末の表面積を大きくすると、表面に吸着する酸素量も増え、漏れ電流が増加する傾向があるが、窒素を含有させることで、漏れ電流の増加を抑制し、電解コンデンサの信頼性を向上させることができる。   When the nitrogen content of the nitrogen-containing tantalum powder is 500 ppm or more, the sintering rate can be moderately suppressed when the nitrogen-containing tantalum powder is sintered, and pores suitable for the capacitor can be formed. On the other hand, if the nitrogen content is 3000 ppm or less, the distribution of nitrogen in the nitrogen-containing metal powder can be made uniform, an increase in nitride crystals can be suppressed, and the leakage current of the capacitor can be reduced. By containing nitrogen, the influence of oxygen is suppressed and the leakage current is further suppressed. In particular, when the surface area of the tantalum powder is increased to increase the capacity, the amount of oxygen adsorbed on the surface also increases and the leakage current tends to increase, but by containing nitrogen, the increase in leakage current is suppressed, The reliability of the electrolytic capacitor can be improved.

タンタル粉末の窒素含量は、市販の酸素/窒素分析計(たとえば堀場製作所EMGA520)を使用して、ヘリウムガス中、試料をインパルス融解加熱し、発生ガスをTCD(熱伝導度法)で定量する方法(JIS H1685)により測定できる。   The nitrogen content of the tantalum powder is determined by impulse melting heating of a sample in helium gas using a commercially available oxygen / nitrogen analyzer (for example, Horiba EMGA520), and the generated gas is quantified by TCD (thermal conductivity method). (JIS H1865).

窒素含有タンタル粉末のBET法により測定された比表面積は、より高容量のコンデンサが得られることから、4.0〜10.0m/gであることが好ましい。 The specific surface area of the nitrogen-containing tantalum powder measured by the BET method is preferably 4.0 to 10.0 m 2 / g because a capacitor having a higher capacity can be obtained.

また、窒素含有タンタル粉末は、モード径(最大頻度径)が30〜250μmであることが好ましい。ここで、粒子径は、窒素含有タンタル粉末が、比表面積に対応する微細な一次粒子の凝集による多孔質粉末となっている場合に、その多孔質粉末を、レーザー回折・散乱法により測定した体積基準の粒子径である。窒素含有金属粉末のモード径が前記範囲にあれば、取り扱いが良好で、よりコンデンサに適したものとなる。   The nitrogen-containing tantalum powder preferably has a mode diameter (maximum frequency diameter) of 30 to 250 μm. Here, when the nitrogen-containing tantalum powder is a porous powder by agglomeration of fine primary particles corresponding to the specific surface area, the particle diameter is a volume measured by a laser diffraction / scattering method. The standard particle size. When the mode diameter of the nitrogen-containing metal powder is within the above range, the handling is good and the capacitor is more suitable for the capacitor.

本発明のタンタル粉末は、酸素含量が21000ppm以下であることが好ましく、17500ppm以下であることがより好ましく、11500ppm以下であることがさらに好ましい。酸素含量が低いほど、漏れ電流を抑制できる。また、酸素含量は、本発明に適したBET法比表面積およびCV値の大きなタンタル粉末を大気中で安定して取り扱うために必要とされる酸化膜を形成すため、9000ppm以上であるのが好ましい。タンタル粉末の酸素含量は、JIS H1695(タンタル中の酸素定量方法)により測定できる。   The tantalum powder of the present invention preferably has an oxygen content of 21000 ppm or less, more preferably 17500 ppm or less, and even more preferably 11500 ppm or less. As the oxygen content is lower, the leakage current can be suppressed. Further, the oxygen content is preferably 9000 ppm or more in order to form an oxide film required for stably handling tantalum powder having a BET specific surface area suitable for the present invention and a large CV value in the atmosphere. . The oxygen content of the tantalum powder can be measured by JIS H1695 (method for determining oxygen in tantalum).

また、本発明のタンタル粉末は、酸素含量と、タンタル等粉末が用いられる電解コンデンサのCV値との比{酸素含量(ppm)/[CV値×10−4](μFV/g)}が、400〜600であることが好ましく、450〜550であることがより好ましい。この比が400以上であると本出願に適したBET法比表面積およびCV値の大きなタンタル粉末を大気中で安定して取り扱うために必要とされる酸化膜が充分に形成され、600以下であると漏れ電流を抑制できる。 In addition, the tantalum powder of the present invention has a ratio of oxygen content and CV value of an electrolytic capacitor in which powder of tantalum or the like is used {oxygen content (ppm) / [CV value × 10 −4 ] (μFV / g)}. It is preferable that it is 400-600, and it is more preferable that it is 450-550. When this ratio is 400 or more, an oxide film necessary for stably handling a tantalum powder having a BET specific surface area and a large CV value suitable for the present application in the atmosphere is sufficiently formed and is 600 or less. And leakage current can be suppressed.

本発明のタンタル粉末は、真空焼結炉で、たとえば1150℃、20分間の条件で、加熱して0〜10%収縮させた加熱して多孔質焼結体を得、得られた多孔質焼結体を0.1質量%リン酸水溶液中で、化成電圧10V、温度60℃、保持時間120分間で化成酸化したときに、比漏れ電流DLC/CV値が5(nA/μFV)以下、およびCV値が20万〜40万μFV/gである。   The tantalum powder of the present invention is heated in a vacuum sintering furnace at, for example, 1150 ° C. for 20 minutes to obtain a porous sintered body by heating and shrinking by 0 to 10%. The specific leakage current DLC / CV value is 5 (nA / μFV) or less when the bonded body is subjected to chemical oxidation in a 0.1 mass% phosphoric acid aqueous solution at a chemical conversion voltage of 10 V, a temperature of 60 ° C. and a holding time of 120 minutes, and The CV value is 200,000 to 400,000 μFV / g.

本発明のタンタル粉末は、特に、CV値が17万μFV/g以上の電解コンデンサ用である場合の有用性が高い。CV値は、18万μFV/g以上がより好ましく、19μFV/g万以上がさらに好ましく、20万μFV/g以上が特に好ましい。CV値は、高いほど本発明の有用性が高いためその上限は特に限定されないが、製造しやすさ、現状で求められる陰極物質の含浸性、等の点から、40万μFV/g以下が好ましい。   The tantalum powder of the present invention is particularly useful when used for an electrolytic capacitor having a CV value of 170,000 μFV / g or more. The CV value is more preferably 180,000 μFV / g or more, further preferably 19 μFV / g or more, and particularly preferably 200,000 μFV / g or more. The upper limit of the CV value is not particularly limited because the usefulness of the present invention is higher as the CV value is higher, but is preferably 400,000 μFV / g or less from the viewpoint of ease of production, impregnation of the cathode material currently required, and the like. .

タンタル粉末が、どのようなCV値の電解コンデンサ用であるかは、主にタンタル粉末の比表面積によって決定されるので、本発明のタンタル粉末のBET法比表面積は3.3m/g以上が好ましく、3.6m/g以上がより好ましく、3.8m/g以上がさらに好ましく、4.0m/g以上が特に好ましい。BET法比表面積は、10.0m/g以下(CV値40万μFV/g以下に対応)が好ましい。 The CV value of the tantalum powder used for an electrolytic capacitor is mainly determined by the specific surface area of the tantalum powder. Therefore, the BET specific surface area of the tantalum powder of the present invention is 3.3 m 2 / g or more. preferably, more preferably at least 3.6 m 2 / g, more preferably not less than 3.8m 2 / g, 4.0m 2 / g or more is particularly preferable. The BET method specific surface area is preferably 10.0 m 2 / g or less (corresponding to a CV value of 400,000 μFV / g or less).

生産性を向上させるために還元反応の際に撹拌を強く行なうと、タンタル粉末中の窒素が増加し過ぎ、また前記のようにイオウ分を添加すると反応容器由来の鉄、ニッケルおよびクロム含有量が増加することになるが、本発明方法によれば、このような増加を抑制することができる。さらに、タンタル粉末の表面積を増加させるために還元温度を低下させると、原料由来のカリウム含有量が増加しすぎるが、本発明方法によれば、このような増加も抑制することができる。   If stirring is carried out strongly during the reduction reaction in order to improve productivity, the nitrogen in the tantalum powder will increase excessively, and if sulfur is added as described above, the contents of iron, nickel and chromium derived from the reaction vessel will be reduced. However, according to the method of the present invention, such an increase can be suppressed. Furthermore, when the reduction temperature is lowered in order to increase the surface area of the tantalum powder, the potassium content derived from the raw material increases too much, but according to the method of the present invention, such an increase can also be suppressed.

以下、本発明を実施例により本発明をさらに詳細に説明する。
なお、実施例において、タンタル粉末の各種測定は、次の方法によった。
<酸素の定量>
JIS H1695に準拠して測定した。
<炭素の定量>
JIS H1681に準拠して測定した。
<窒素の定量>
JIS H1685に準拠して測定した。
<水素の定量>
JIS H1696に準拠して測定した。
<鉄、ニッケル、クロム、マグネシウムの定量>
JIS H1699に準拠して測定した。
<ナトリウム、カリウムの定量>
JIS H1683に準拠して原子吸光分析法により測定した。
<リン、ケイ素、ホウ素の定量>
JIS H1699に準拠してICP発光分光分析法により測定した。
<SSA>
(株)島津製作所製粉体比表面積測定装置SS−100形を用いて空気透過式比表面積(SSA)を測定した。
実施例1
反応器(容量800L)にフッ化カリウムと塩化カリウムを計550kg投入し、同時にイオウを全溶融塩に対し25ppm分となるように硫酸カリウムを添加し、ホウ素をタンタル金属塩量に対し43ppm分になるようにKBFを添加した。900℃で溶融し、攪拌翼を用いて50回転/分で攪拌して、フッ化カリウムおよび塩化カリウムの溶融塩を得た。
Hereinafter, the present invention will be described in more detail by way of examples.
In the examples, various measurements of tantalum powder were performed by the following methods.
<Quantitative determination of oxygen>
The measurement was performed according to JIS H1695.
<Quantitative determination of carbon>
It measured based on JISH1681.
<Quantitative determination of nitrogen>
Measurement was performed in accordance with JIS H1865.
<Quantification of hydrogen>
It measured based on JIS H1696.
<Quantitative determination of iron, nickel, chromium and magnesium>
It measured based on JIS H1699.
<Quantification of sodium and potassium>
Measurement was performed by atomic absorption spectrometry in accordance with JIS H1683.
<Quantitative determination of phosphorus, silicon and boron>
It was measured by ICP emission spectroscopic analysis according to JIS H1699.
<SSA>
The air permeation specific surface area (SSA) was measured using a powder specific surface area measuring device SS-100 manufactured by Shimadzu Corporation.
Example 1
A total of 550 kg of potassium fluoride and potassium chloride is charged into the reactor (capacity 800 L), and at the same time, potassium sulfate is added so that sulfur becomes 25 ppm relative to the total molten salt, and boron is increased to 43 ppm relative to the amount of tantalum metal salt. KBF 4 was added so that The mixture was melted at 900 ° C. and stirred at 50 rpm with a stirring blade to obtain a molten salt of potassium fluoride and potassium chloride.

次いで、800℃に安定させてから攪拌翼の回転数を160回転/分とし、窒素ガスを雰囲気ガス供給口から連続的に溶融塩の液面上に導入しながら、反応器内にフッ化タンタルカリウムの投入と、ナトリウムの投入とを交互に繰り返し行った。1回あたりフッ化タンタルカリウム1.8kgを添加し(初回のみ2kg、最終回のみ1.2kg添加)、30秒後、溶解したナトリウムを還元剤投入口から540g添加し、60秒間反応させた。この操作を28回繰り返した。ここで、9回目の添加後に攪拌翼の回転数を150回転/分に減少させた(すなわち、全フッ化タンタルカリウムの1/3が還元に供された時点で減少させた。)。還元反応の終了後に、100℃以下まで冷却し、反応器内の沈降物を回収して水洗し、濃度5質量%のフッ酸水溶液を用いて酸洗し、70℃で20時間真空乾燥して、酸素含量 14700ppmの第一の粉末を得た。この第一の粉末(還元粉末)の物性値を表1に示す。   Next, after stabilizing at 800 ° C., the rotation speed of the stirring blade was set to 160 rpm, and tantalum fluoride was introduced into the reactor while continuously introducing nitrogen gas from the atmosphere gas supply port onto the surface of the molten salt. Potassium charging and sodium charging were alternately repeated. 1.8 kg of potassium tantalum fluoride was added per time (only 2 kg for the first time and 1.2 kg for the last time). After 30 seconds, 540 g of dissolved sodium was added from the reducing agent inlet and allowed to react for 60 seconds. This operation was repeated 28 times. Here, after the ninth addition, the rotation speed of the stirring blade was reduced to 150 rotations / minute (that is, when 1/3 of the total tantalum potassium fluoride was subjected to reduction). After completion of the reduction reaction, the reaction mixture is cooled to 100 ° C. or lower, and the precipitate in the reactor is recovered and washed with water, pickled with a 5% by mass hydrofluoric acid aqueous solution, and vacuum dried at 70 ° C. for 20 hours. A first powder with an oxygen content of 14700 ppm was obtained. Table 1 shows physical property values of the first powder (reduced powder).

次いで、この第一の粉末を950℃で30分間熱処理して凝集粉とした。この予備凝集させる際に、リンがタンタル粉末に250ppm添加されるようにリン酸水溶液を添加した後、乾燥した。この凝集粉をチョッパーミルにより予備粉砕し、得られた粉砕粉を、全長100mmの差動ロールを3段備えたロールグラニュレータで解砕した。このとき、各差動ロールは、一段目のロール間の間隔を0.6mm、二段目のロール間の間隔を0.3mm、三段目のロール間の間隔を0.2mmとした。また、それぞれ一方のロールの周速度が他方のロールの周速度より30%速くなるように設定した。   Next, this first powder was heat-treated at 950 ° C. for 30 minutes to obtain an agglomerated powder. When pre-aggregating, an aqueous phosphoric acid solution was added so that 250 ppm of phosphorus was added to the tantalum powder, followed by drying. The agglomerated powder was preliminarily pulverized by a chopper mill, and the obtained pulverized powder was pulverized by a roll granulator equipped with three stages of differential rolls having a total length of 100 mm. At this time, in each differential roll, the distance between the first-stage rolls was 0.6 mm, the distance between the second-stage rolls was 0.3 mm, and the distance between the third-stage rolls was 0.2 mm. The peripheral speed of one roll was set to be 30% faster than the peripheral speed of the other roll.

次いで、得られた解砕粉に対し、以下の手順で脱酸素処理を行った。解砕粉(100質量%)に対して5質量%のマグネシウムチップを添加、混合して混合物を得た。トレーに、前記混合物を、充填し、蓋をして加熱炉内に収納し、減圧とした後に200torrのアルゴン雰囲気下で、720℃で5時間加熱することにより脱酸素を行った。その後の冷却中に空気を導入して窒素含有タンタル粉末の徐酸化安定化処理を行った後、過酸化水素と硝酸を用いて酸洗し、水洗し、70℃で14時間真空乾燥した。この脱酸素処理は、2回繰り返された。このようにして、熱凝集、脱酸素、徐酸化安定化処理を含む前処理を行った窒素含有タンタル粉末を得た。得られた窒素含有タンタル粉末の物性値を表2示す。
実施例2
実施例1において、全フッ化タンタルカリウムの1/2が還元に供された時点で攪拌
翼の回転数を150回転/分に減少させ、反応温度を780℃とした以外は、実施例1と同様にして第一の粉末を得た。得られた酸素含量16510ppmの第一の粉末の物性値を表1に示す。
実施例3
実施例1において、当初の攪拌翼の回転数を155回転/分とした以外は、実施例1と同様にして第一の粉末を得た。得られた酸素含量13900ppmの第一の粉末の物性値を表1に示す。
比較例1
イオウを全溶融塩に対し65ppm分となるように硫酸カリウムを添加し、実施例1において、攪拌翼の回転数を160回転/分としたまま、窒素ガスを雰囲気ガス供給口から連続的に溶融塩の液面上に導入しながら、反応器内にフッ化タンタルカリウムの投入と、ナトリウムの投入とを交互に繰り返し行った以外は、実施例1と同様にして窒素含有タンタル粉末を得た。得られた酸素含量19810ppmの第一の粉末の物性値を表1に示す。鉄およびニッケルの含有量が多すぎて、コンデンサには適さないことが明らかである。
比較例2
実施例1において、攪拌翼の回転数を150回転/分としたまま、窒素ガスを雰囲気
ガス供給口から連続的に溶融塩の液面上に導入しながら、反応器内にフッ化タンタルカリウムの投入と、ナトリウムの投入とを交互に繰り返し行ったこと、ならびにホウ素を添加しなかったこと以外は、実施例1と同様にして窒素含有タンタル粉末を得た。得られた酸素含量11280ppmの第一の粉末の物性値を表1に示す。また、得られた窒素含有タンタル粉末の物性値を表2に示す。表1および2において、不純物含有量の単位はppmである。
Next, the obtained crushed powder was deoxygenated by the following procedure. 5% by mass of magnesium chips was added to and mixed with the crushed powder (100% by mass) to obtain a mixture. The mixture was filled in the tray, covered, and stored in a heating furnace, and after depressurization, deoxygenation was performed by heating at 720 ° C. for 5 hours in an argon atmosphere of 200 torr. Thereafter, air was introduced during cooling to perform a slow oxidation stabilization treatment of the nitrogen-containing tantalum powder, followed by pickling with hydrogen peroxide and nitric acid, washing with water, and vacuum drying at 70 ° C. for 14 hours. This deoxygenation treatment was repeated twice. In this way, a nitrogen-containing tantalum powder that had undergone pretreatment including thermal aggregation, deoxygenation, and slow oxidation stabilization treatment was obtained. Table 2 shows the physical property values of the obtained nitrogen-containing tantalum powder.
Example 2
In Example 1, when 1/2 of the total potassium tantalum fluoride was subjected to reduction, the rotational speed of the stirring blade was reduced to 150 revolutions / minute and the reaction temperature was 780 ° C. Similarly, a first powder was obtained. Table 1 shows the physical property values of the obtained first powder having an oxygen content of 16510 ppm.
Example 3
In Example 1, a first powder was obtained in the same manner as in Example 1 except that the initial number of revolutions of the stirring blade was 155 rpm. Table 1 shows the physical property values of the obtained first powder having an oxygen content of 13900 ppm.
Comparative Example 1
Potassium sulfate was added so that the sulfur content was 65 ppm with respect to the total molten salt, and in Example 1, nitrogen gas was continuously melted from the atmosphere gas supply port while the rotation speed of the stirring blade was 160 rpm. Nitrogen-containing tantalum powder was obtained in the same manner as in Example 1, except that the introduction of potassium tantalum fluoride and the addition of sodium were alternately repeated while introducing the solution onto the salt surface. Table 1 shows the physical property values of the obtained first powder having an oxygen content of 19810 ppm. It is clear that the iron and nickel contents are too high to be suitable for capacitors.
Comparative Example 2
In Example 1, while introducing nitrogen gas continuously from the atmospheric gas supply port onto the surface of the molten salt with the rotation speed of the stirring blade being 150 rpm, the tantalum potassium fluoride was introduced into the reactor. Nitrogen-containing tantalum powder was obtained in the same manner as in Example 1 except that charging and sodium charging were alternately repeated and boron was not added. Table 1 shows the physical property values of the obtained first powder having an oxygen content of 11280 ppm. In addition, Table 2 shows the physical property values of the obtained nitrogen-containing tantalum powder. In Tables 1 and 2, the unit of impurity content is ppm.

Figure 2014098201
Figure 2014098201

Figure 2014098201
Figure 2014098201

試験例1
実施例1で得られた窒素含有タンタル粉末について、BET、および不純物(O、C、N、H、Fe、Ni、Cr、Si、Na、K、Mg、P、B)含有量を測定した。また、この粉末を成形後、加熱して得られた多孔質焼結体を用いて、ウェット法による直流漏れ電流(DLC)、CV値を測定した。
(多孔質焼結体の作成)
タンタル粉末0.05gに、バインダーとしてショウノウ2質量%を添加、混合し、プレス成形して直径2mm、密度4.5g/cm の成形体を作成した。そして、この成形体を真空焼結炉で1150℃、20分間の条件で加熱して、焼結体密度4.73g/cm、収縮率5.1%の多孔質焼結体を製造した。
(化成酸化条件)
得られた多孔質焼結体を0.1質量%リン酸水溶液中で、化成電圧10V、温度60℃、保持時間120分間で化成酸化(陽極酸化)し、誘電体酸化膜を形成した。
(ウェット法電気特性測定)
誘電体酸化膜が形成された多孔質焼結体について、30.5vol%硫酸水溶液にて、バイアス電圧1.5V、周波数120Hzで電気容量(CV値)を測定した。
Test example 1
The nitrogen-containing tantalum powder obtained in Example 1 was measured for BET and impurities (O, C, N, H, Fe, Ni, Cr, Si, Na, K, Mg, P, B) contents. Moreover, the direct current leakage current (DLC) and CV value by the wet method were measured using the porous sintered body obtained by heating after molding this powder.
(Creation of porous sintered body)
2 mass% of camphor as a binder was added to 0.05 g of tantalum powder, mixed, and press-molded to form a molded body having a diameter of 2 mm and a density of 4.5 g / cm 3 . Then, this compact was heated in a vacuum sintering furnace at 1150 ° C. for 20 minutes to produce a porous sintered compact having a sintered compact density of 4.73 g / cm 3 and a shrinkage of 5.1%.
(Chemical oxidation conditions)
The obtained porous sintered body was subjected to chemical oxidation (anodic oxidation) in a 0.1% by mass phosphoric acid aqueous solution at a chemical conversion voltage of 10 V, a temperature of 60 ° C., and a holding time of 120 minutes to form a dielectric oxide film.
(Wet method electrical characteristics measurement)
With respect to the porous sintered body on which the dielectric oxide film was formed, the electric capacity (CV value) was measured with a 30.5 vol% sulfuric acid aqueous solution at a bias voltage of 1.5 V and a frequency of 120 Hz.

また、直流漏れ電流(DLC)は、10質量%リン酸水溶液で電圧7V、3分後の電流値である。   Further, the direct current leakage current (DLC) is a current value after 3 minutes of voltage 7V in a 10% by mass phosphoric acid aqueous solution.

測定結果は、CV値259740μFV/g、DLC値 736μA/gであり、比漏れ電流DLC/CV値は2.83(nA/μFV)であった。
試験例2
比較例2で得られた窒素含有タンタル粉末について、真空焼結炉で1150℃、20分間の条件で加熱して焼結密度4.62g/cm、収縮率2.7%の多孔質焼結体を作成した以外は、試験例1と同様にしてCV値176300μFV/g、DLC値650μA/g、およびDLC/CV値3.69(nA/μFV)を測定した。
The measurement results were a CV value of 259740 μFV / g, a DLC value of 736 μA / g, and a specific leakage current DLC / CV value of 2.83 (nA / μFV).
Test example 2
The nitrogen-containing tantalum powder obtained in Comparative Example 2 was heated in a vacuum sintering furnace at 1150 ° C. for 20 minutes, and sintered at a sintering density of 4.62 g / cm 3 and a shrinkage of 2.7%. A CV value of 176300 μFV / g, a DLC value of 650 μA / g, and a DLC / CV value of 3.69 (nA / μFV) were measured in the same manner as in Test Example 1 except that a body was prepared.

本発明によれば、比表面積が大きく、かつ、金属内に適度な量の窒素を均一に含む窒素含有金属粉末を生産性良く得て、高容量で漏れ電流が少なく、長期の信頼性に優れた固体電解コンデンサを提供し得る。   According to the present invention, a nitrogen-containing metal powder having a large specific surface area and uniformly containing an appropriate amount of nitrogen in the metal can be obtained with high productivity, high capacity, low leakage current, and excellent long-term reliability. A solid electrolytic capacitor can be provided.

Claims (15)

タンタル金属塩を、溶融した希釈塩中で還元剤により還元してタンタルを生成させる方法において、
前記金属塩と前記還元剤と前記希釈塩とを含む反応融液に接する空間に、窒素含有ガスを導入して、窒素を含有するタンタルを生成させること、ならびに
前記反応融液を攪拌翼により攪拌して還元を行なう際に、攪拌翼の回転数を還元途中で減少させること、を特徴とする窒素含有タンタル粉末の製造方法。
In a method of producing tantalum by reducing a tantalum metal salt with a reducing agent in a molten diluted salt,
Introducing nitrogen-containing gas into a space in contact with the reaction melt containing the metal salt, the reducing agent, and the diluted salt to produce tantalum containing nitrogen, and stirring the reaction melt with a stirring blade A method for producing a nitrogen-containing tantalum powder, characterized in that when the reduction is performed, the rotational speed of the stirring blade is reduced during the reduction.
金属塩がタンタルのフッ化カリウム塩であり、還元剤がナトリウムである請求項1に記載の窒素含有タンタル粉末の製造方法。   The method for producing a nitrogen-containing tantalum powder according to claim 1, wherein the metal salt is a potassium fluoride salt of tantalum and the reducing agent is sodium. 還元剤と金属塩がそれぞれ連続的または分割して希釈塩に添加される請求項1または2に記載の窒素含有タンタル粉末の製造方法。   The method for producing a nitrogen-containing tantalum powder according to claim 1 or 2, wherein the reducing agent and the metal salt are added to the diluted salt in a continuous or divided manner. 攪拌翼の回転数が100〜200回転/分から選ばれる請求項1〜3のいずれか1項に記載の窒素含有タンタル粉末の製造方法。   The method for producing a nitrogen-containing tantalum powder according to any one of claims 1 to 3, wherein the rotation speed of the stirring blade is selected from 100 to 200 rotations / minute. 攪拌翼の回転数が140〜170回転/分である請求項4に記載の窒素含有タンタル粉末の製造方法。   The method for producing a nitrogen-containing tantalum powder according to claim 4, wherein the rotation speed of the stirring blade is 140 to 170 rotations / minute. 攪拌翼の回転数の減少が、全タンタル金属塩の1/2が還元に供されるまでに行なわれる請求項1〜5のいずれか1項に記載の窒素含有タンタル粉末の製造方法。   The method for producing a nitrogen-containing tantalum powder according to any one of claims 1 to 5, wherein the rotation speed of the stirring blade is reduced until 1/2 of the total tantalum metal salt is subjected to reduction. 攪拌翼の回転数の減少割合が2〜10%、または攪拌翼の回転数の減少幅が3〜10回転/分である請求項1〜6のいずれか1項に記載の窒素含有タンタル粉末の製造方法。   The reduction rate of the rotation speed of the stirring blade is 2 to 10%, or the reduction width of the rotation speed of the stirring blade is 3 to 10 rotations / minute. The nitrogen-containing tantalum powder according to any one of claims 1 to 6 Production method. 反応融液にホウ素含有化合物を存在させる請求項1〜7のいずれか1項に記載の窒素含有タンタル粉末の製造方法。   The method for producing a nitrogen-containing tantalum powder according to any one of claims 1 to 7, wherein a boron-containing compound is present in the reaction melt. 還元終了後に、反応融液を冷却、洗浄して得られる窒素含有タンタル粉末を、さらに熱凝集、脱酸素および徐酸化安定化処理を含む前処理を行なう請求項1〜8のいずれか1項に記載の窒素含有タンタル粉末の製造方法。   9. The nitrogen-containing tantalum powder obtained by cooling and washing the reaction melt after completion of the reduction is further subjected to pretreatment including thermal aggregation, deoxygenation and slow oxidation stabilization treatment. The manufacturing method of nitrogen-containing tantalum powder of description. 請求項9に記載の前処理された窒素含有タンタル粉末を焼結させて窒素含有タンタル多孔質焼結体を得る多孔質焼結体の製造方法。   A method for producing a porous sintered body, wherein the pretreated nitrogen-containing tantalum powder according to claim 9 is sintered to obtain a nitrogen-containing tantalum porous sintered body. 窒素含有量500〜3000ppm、ホウ素含有量2〜50ppm、および酸素含有量9000 〜21000ppmである窒素含有タンタル粉末であり、真空焼結炉で1150℃、20分間の条件で加熱して多孔質焼結体を得、得られた多孔質焼結体を0.1質量%リン酸水溶液中で、化成電圧10V、温度60℃、保持時間120分間で化成酸化したときに、比漏れ電流DLC/CV値が5(nA/μFV)以下、および電気容量CV値が20万〜40万μFV/gである、窒素含有タンタル粉末。   Nitrogen-containing tantalum powder having a nitrogen content of 500 to 3000 ppm, a boron content of 2 to 50 ppm, and an oxygen content of 9000 to 21000 ppm, heated in a vacuum sintering furnace at 1150 ° C. for 20 minutes and porous sintered A specific leakage current DLC / CV value was obtained when the obtained porous sintered body was subjected to chemical oxidation in a 0.1 mass% phosphoric acid aqueous solution at a chemical conversion voltage of 10 V, a temperature of 60 ° C., and a holding time of 120 minutes. Is a tantalum-containing tantalum powder having an electric capacity CV value of 200,000 to 400,000 μFV / g. 鉄含有量20ppm以下、クロム含有量20ppm以下およびニッケル含有量20ppm以下であり、ならびにこれらの金属の合計含有量が40ppm以下である請求項11に記載の窒素含有タンタル粉末。   The nitrogen-containing tantalum powder according to claim 11, which has an iron content of 20 ppm or less, a chromium content of 20 ppm or less and a nickel content of 20 ppm or less, and a total content of these metals of 40 ppm or less. カリウム含有量が30ppm以下である請求項11または12に記載の窒素含有タンタル粉末。   The nitrogen-containing tantalum powder according to claim 11 or 12, wherein the potassium content is 30 ppm or less. 請求項10に記載の方法で得られた多孔質焼結体。   A porous sintered body obtained by the method according to claim 10. 請求項14に記載の多孔質焼結体からなるアノード電極を備えてなる固体電解コンデンサ。   A solid electrolytic capacitor comprising an anode electrode comprising the porous sintered body according to claim 14.
JP2012251554A 2012-11-15 2012-11-15 Nitrogen-containing tantalum powder and method for producing the same Active JP6077274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012251554A JP6077274B2 (en) 2012-11-15 2012-11-15 Nitrogen-containing tantalum powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012251554A JP6077274B2 (en) 2012-11-15 2012-11-15 Nitrogen-containing tantalum powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014098201A true JP2014098201A (en) 2014-05-29
JP6077274B2 JP6077274B2 (en) 2017-02-08

Family

ID=50940435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012251554A Active JP6077274B2 (en) 2012-11-15 2012-11-15 Nitrogen-containing tantalum powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP6077274B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020500260A (en) * 2016-10-21 2020-01-09 グローバル アドバンスト メタルズ ユー.エス.エー.,インコーポレイティド Tantalum powder, anode and capacitor containing the same, and methods for producing them
KR20200099596A (en) * 2017-12-28 2020-08-24 닝시아 오리엔트 탄탈럼 인더스트리 코포레이션 엘티디 Tantalum powder and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159373A (en) * 1978-06-06 1979-12-17 Fansteel Inc Productoon of metal powder group of tantalum and niobium
JP2003055702A (en) * 2001-08-15 2003-02-26 Cabot Supermetal Kk Nitrogen-containing metal powder, its manufacturing method, and porous sintered compact and solid electrolytic capacitor using the metal powder
WO2006062234A1 (en) * 2004-12-10 2006-06-15 Cabot Supermetals K.K. Method for manufacturing metal powder, method for manufacturing porous sintered body, metal powder, and capacitor
JP2008523241A (en) * 2004-12-09 2008-07-03 バイエル・ベタイリグングスフェアヴァルトゥング・ゴスラー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Manufacture of valve metal powder
JP2009510260A (en) * 2005-09-29 2009-03-12 ニンシア オリエント タンタル インダストリー カンパニー、 リミテッド Methods for granulating and agglomerating metal particles, metal particles prepared by these methods, and anodes produced from these metal particles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159373A (en) * 1978-06-06 1979-12-17 Fansteel Inc Productoon of metal powder group of tantalum and niobium
JP2003055702A (en) * 2001-08-15 2003-02-26 Cabot Supermetal Kk Nitrogen-containing metal powder, its manufacturing method, and porous sintered compact and solid electrolytic capacitor using the metal powder
JP2008523241A (en) * 2004-12-09 2008-07-03 バイエル・ベタイリグングスフェアヴァルトゥング・ゴスラー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Manufacture of valve metal powder
WO2006062234A1 (en) * 2004-12-10 2006-06-15 Cabot Supermetals K.K. Method for manufacturing metal powder, method for manufacturing porous sintered body, metal powder, and capacitor
JP2009510260A (en) * 2005-09-29 2009-03-12 ニンシア オリエント タンタル インダストリー カンパニー、 リミテッド Methods for granulating and agglomerating metal particles, metal particles prepared by these methods, and anodes produced from these metal particles

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020500260A (en) * 2016-10-21 2020-01-09 グローバル アドバンスト メタルズ ユー.エス.エー.,インコーポレイティド Tantalum powder, anode and capacitor containing the same, and methods for producing them
KR20200099596A (en) * 2017-12-28 2020-08-24 닝시아 오리엔트 탄탈럼 인더스트리 코포레이션 엘티디 Tantalum powder and its manufacturing method
CN111629845A (en) * 2017-12-28 2020-09-04 宁夏东方钽业股份有限公司 Tantalum powder and preparation method thereof
EP3733325A4 (en) * 2017-12-28 2021-07-21 Ningxia Orient Tantalum Industry Co., Ltd. Tantalum powder and preparation method therefor
KR102389283B1 (en) 2017-12-28 2022-04-21 닝시아 오리엔트 탄탈럼 인더스트리 코포레이션 엘티디 Tantalum powder and manufacturing method thereof
US11534830B2 (en) 2017-12-28 2022-12-27 Ningxia Orient Tantalum Industry Co., Ltd Tantalum powder and preparation method therefor
CN111629845B (en) * 2017-12-28 2023-06-02 宁夏东方钽业股份有限公司 Tantalum powder and preparation method thereof
EP4379763A3 (en) * 2017-12-28 2024-09-11 Ningxia Orient Tantalum Industry Co., Ltd. Tantalum powder and preparation method therefor
IL275630B1 (en) * 2017-12-28 2024-10-01 Ningxia Orient Tantalum Ind Co Ltd Tantalum powder and preparation method therefor

Also Published As

Publication number Publication date
JP6077274B2 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
KR102546515B1 (en) Anodes containing spherical powder and capacitors
JP4187953B2 (en) Method for producing nitrogen-containing metal powder
JP4137125B2 (en) Tantalum powder, process for its production, and sintered anode obtainable therefrom
WO2000049633A1 (en) Niobium powder, niobium sintered body, capacitor comprised of the sintered body, and method for manufacturing the capacitor
JP4049964B2 (en) Nitrogen-containing metal powder, production method thereof, porous sintered body and solid electrolytic capacitor using the same
JP4828016B2 (en) Tantalum powder manufacturing method, tantalum powder and tantalum electrolytic capacitor
WO2006062234A1 (en) Method for manufacturing metal powder, method for manufacturing porous sintered body, metal powder, and capacitor
JP5222438B1 (en) Method for producing tungsten fine powder
JP6077274B2 (en) Nitrogen-containing tantalum powder and method for producing the same
JP2002030301A (en) Nitrogen-containing metal powder, its production method porous sintered body using the same and solid electrolytic capacitor
JP5680866B2 (en) Method for producing nitrogen-containing metal powder
JP2019163542A (en) Tantalum powder and process for preparing the same, and sintered anode prepared from tantalum powder
JP2008095200A (en) Nitrogen-containing metal powder, its manufacturing method, and porous sintered compact and solid electrolytic capacitor using the metal powder
JP5898297B2 (en) Method for producing nitrogen-containing metal powder
JP2009275289A (en) Method for producing nitrogen-containing metal powder
JP2009007675A (en) Nitrogen-containing metal powder, porous sintered compact and solid electrolytic capacitor using metal powder
JP2016166422A (en) Method for producing nitrogen-containing metal powder
JP2014218748A (en) Method of producing nitrogen-containing metal powder
JP2004143477A (en) Niobium powder and production method therefor, and solid electrolytic capacitor obtained by using the same
JP5105879B2 (en) Method for producing metal powder and porous sintered body
JP2013136841A (en) Method for producing nitrogen-containing metal powder
TW201446360A (en) Chemical conversion body for niobium capacitor positive electrode, and production method therefor
RU2537338C1 (en) Method of fabrication of tantalum powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170112

R150 Certificate of patent or registration of utility model

Ref document number: 6077274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250