JP2014095619A - Air flow rate measuring device - Google Patents

Air flow rate measuring device Download PDF

Info

Publication number
JP2014095619A
JP2014095619A JP2012247179A JP2012247179A JP2014095619A JP 2014095619 A JP2014095619 A JP 2014095619A JP 2012247179 A JP2012247179 A JP 2012247179A JP 2012247179 A JP2012247179 A JP 2012247179A JP 2014095619 A JP2014095619 A JP 2014095619A
Authority
JP
Japan
Prior art keywords
flow path
flow
air
channel
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012247179A
Other languages
Japanese (ja)
Other versions
JP5949472B2 (en
Inventor
Kengo Ito
健悟 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012247179A priority Critical patent/JP5949472B2/en
Publication of JP2014095619A publication Critical patent/JP2014095619A/en
Application granted granted Critical
Publication of JP5949472B2 publication Critical patent/JP5949472B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an air flow rate measuring device 1 small in size with an inexpensive configuration and excellent in versatility, capable of reducing pressure loss in an air duct 2, and suitable for measuring an amount of intake air in an internal combustion engine 4.SOLUTION: In an air flow rate measuring device 1, a device body 10 is detachably assembled to an air duct 2, and provided with first and second flow paths 11 and 12 for forming bypass flows B and C of a main flow path 2a and a third flow path 13 for connecting both the flow paths. Then, a throttle 14 enables formation of an air flow B1 reaching the main flow path 2a through the second flow path 12, the third flow path 13, and the first flow path 11. An air flow rate flowing through the third flow path 13 is measured by using a flow sensor 5. Consequently, in the air duct 2, there is no special requirement for processing and a structure (throttle) in accordance with air flow rate characteristics, while accomplishing enhancement of versatility of the air duct 2 and further, reduction of pressure loss in the air duct 2.

Description

本発明は、例えば、内燃機関に吸入される吸入空気の流量(以下、吸気量ともいう。)を測定するのに好適な空気流量測定装置に関する。   The present invention relates to an air flow rate measuring apparatus suitable for measuring, for example, a flow rate of intake air sucked into an internal combustion engine (hereinafter also referred to as intake air amount).

〔従来の技術〕
従来から、この種の空気流量測定装置としては、種々の構成のものが提案され、実用に供されているが、空気ダクト内に配置されて空気流量を測定するものであるため、空気中に含まれる塵埃等のダストやバックファイヤ等による逆流の影響を受けないように工夫した空気流量測定装置が知られている(例えば、特許文献1参照)。
[Conventional technology]
Conventionally, various types of air flow measuring devices of this type have been proposed and put to practical use. However, since they are arranged in an air duct and measure the air flow, There is known an air flow rate measuring device devised so as not to be affected by backflow caused by dust such as dust or backfire (for example, see Patent Document 1).

特許文献1に記載された従来の空気流量測定装置は、図6に示すごとき構造を有するもので、空気ダクト100を中枢機能部品として具備する全体構成になっている。
つまり、空気ダクト100自体に絞り部101を設けると共に、この絞り部101直近の上流側に卵型の流量計本体102を配置し、かかる流量計本体102には中心に軸方向に貫通する空気通路103とこの通路103から外径方向に分岐する測定通路104とを設け、測定通路104に流量センサ105を配設している。
これにより、空気ダクト100内を流れる主流A(実線の矢印)は、絞り部101および流量計本体102によって絞られ、この絞り効果によって測定通路104に矢印Sのごときバイパス流れを形成し、空気流量を測定するものである。
上記構成によれば、空気通路103に侵入してくるダストは、その慣性によりこの通路103を突き抜けるため、測定通路104へ侵入するのを抑止することができ、また、バックファイヤ等による逆流D(破線の矢印)も、真っ直ぐな空気通路103を優先して流れ、測定通路104に煤等のダストが侵入するのを抑止することができる。
The conventional air flow rate measuring device described in Patent Document 1 has a structure as shown in FIG. 6 and has an overall configuration including an air duct 100 as a central functional component.
In other words, the air duct 100 itself is provided with a throttle 101, and an egg-shaped flow meter body 102 is disposed on the upstream side in the immediate vicinity of the throttle 101, and an air passage penetrating in the axial direction around the flow meter main body 102. 103 and a measurement passage 104 branched from the passage 103 in the outer diameter direction, and a flow rate sensor 105 is provided in the measurement passage 104.
As a result, the main flow A (solid arrow) flowing in the air duct 100 is throttled by the throttle portion 101 and the flow meter main body 102, and by this throttle effect, a bypass flow as shown by the arrow S is formed in the measurement passage 104, and the air flow rate Is to measure.
According to the above configuration, the dust entering the air passage 103 penetrates the passage 103 due to its inertia, so that it can be prevented from entering the measurement passage 104, and the backflow D ( A broken line arrow) also flows preferentially through the straight air passage 103, and dust such as soot can be prevented from entering the measurement passage 104.

〔従来技術の問題点〕
しかしながら、上記構成の空気流量測定装置は、空気ダクト100自体に絞り部101を設けているために、空気ダクト100を流れる主流Aの圧力損失が大きく、流量特性をそれだけ犠牲にせざるを得なく、しかも、空気ダクト100を含めた全体で装置が完成される構成であるために、流量特性に応じて空気ダクト100を変更せねばならず、汎用性に乏しい。とりわけ、内燃機関の吸気量を測定する場合には、内燃機関の流量特性が多岐にわたるため、多種の装置が必要となり、しかも、内燃機関の周りの搭載スペースも非常に厳しくなっているため、体格面で搭載上に制限が生じる恐れがあった。
[Problems of the prior art]
However, since the air flow rate measuring apparatus having the above configuration is provided with the throttle portion 101 in the air duct 100 itself, the pressure loss of the main flow A flowing through the air duct 100 is large, and the flow rate characteristic must be sacrificed accordingly. And since it is the structure by which the apparatus is completed as a whole including the air duct 100, the air duct 100 must be changed according to the flow rate characteristics, and the versatility is poor. In particular, when measuring the intake air amount of an internal combustion engine, the flow characteristics of the internal combustion engine are diverse, so a variety of devices are required, and the mounting space around the internal combustion engine is very strict, so the physique There was a risk that there would be restrictions on mounting.

米国特許第4776213号明細書US Pat. No. 4,776,213

本発明は、上記の事情に鑑みてなされたものであって、その目的は、小型、安価な構成で汎用性に優れ、空気ダクトにおける圧力損失を軽減することができる空気流量測定装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an air flow measuring device that is excellent in versatility with a small, inexpensive configuration and can reduce pressure loss in an air duct. There is.

〔請求項1の手段〕
請求項1に記載の発明(空気流量測定装置)は、測定対象の空気が流れる主流路を有する空気ダクトと、この空気ダクトに対しその外部から主流路を横切るように組付けられ、第1流路、第2流路および第3流路を有する流路形成部材と、第3流路に配設され、この第3流路を流れる空気の流量を測定する流量センサとを備えている。
そして、第1流路および第2流路は、主流路を流れる空気(主流)の一部を取り込んでバイパス流として流すバイパス流路をなすと共に、第1流路は、上流側に位置し流路断面積が大きい第1大流路と下流側に位置し流路断面積が小さい第1小流路とで構成され、第1小流路が第2流路を流れるバイパス流より流速が大きくなるバイパス流を流すバイパス流路を形成しており、第1流路の第1小流路と第2流路とを第3流路にて連通させることで、主流路から第2流路、第3流路、第1流路を経て主流路に至る順方向のバイパス流を形成していることを特徴としている。
[Means of Claim 1]
The invention according to claim 1 (air flow rate measuring device) is assembled with an air duct having a main flow path through which air to be measured flows, and the air duct crossing the main flow path from the outside to the first flow. A flow path forming member having a path, a second flow path, and a third flow path, and a flow rate sensor that is disposed in the third flow path and measures a flow rate of air flowing through the third flow path.
The first flow path and the second flow path form a bypass flow path that takes in part of the air (main flow) flowing through the main flow path and flows as a bypass flow, and the first flow path is located upstream and flows. The first large channel having a large channel cross-sectional area and the first small channel positioned on the downstream side and having a small channel cross-sectional area are configured, and the first small channel has a larger flow velocity than the bypass flow flowing through the second channel. A bypass flow channel for flowing a bypass flow is formed, and the first small flow channel and the second flow channel of the first flow channel are communicated with each other through the third flow channel, so that the main flow channel is connected to the second flow channel, A forward bypass flow that reaches the main flow path through the third flow path and the first flow path is formed.

上記構成を有する請求項1の発明によれば、流路形成部材および流量センサで空気流量測定機能を完結することができるため、小型、安価な構成であり、しかも装置の中枢機能部品をなす流路形成部材および流量センサを空気ダクトに着脱自在に組み込むことができるため、空気ダクトには空気流量特性に応じた加工、構造(絞り)を特別に要しなく、空気ダクトの汎用性を高めることができる。
また、空気ダクト自体を絞り構造にしないため、空気ダクトでの圧力損失も軽減することができる。
したがって、小型、安価な構成で、汎用性に優れ、空気ダクトにおける圧力損失をも軽減することができ、内燃機関のような厳しい環境下で使用される装置として好適な空気流量測定装置を提供することができる。
According to the invention of claim 1 having the above-described configuration, since the air flow rate measurement function can be completed by the flow path forming member and the flow rate sensor, the flow rate forming the central functional component is small and inexpensive. Since the path forming member and the flow sensor can be detachably incorporated in the air duct, the air duct does not require special processing and structure (throttle) according to the air flow characteristics, and the versatility of the air duct is improved. Can do.
Further, since the air duct itself does not have a throttle structure, pressure loss in the air duct can be reduced.
Therefore, an air flow rate measuring device suitable for a device that is used in a severe environment such as an internal combustion engine is provided with a small and inexpensive configuration, excellent versatility, and can reduce pressure loss in an air duct. be able to.

本発明の空気流量測定装置の代表例として内燃機関用吸気量測定装置の全体構成の説明に供する模式的断面図である(実施例1)。BRIEF DESCRIPTION OF THE DRAWINGS It is typical sectional drawing with which it uses for description of the whole structure of the intake air amount measuring apparatus for internal combustion engines as a representative example of the air flow measuring apparatus of this invention (Example 1). 空気流量測定装置の中枢機能部の斜視図である(実施例1)。(Example 1) which is a perspective view of the central function part of an air flow measuring device. 空気流量測定装置の中枢機能部の断面図である(実施例2)。(Example 2) which is sectional drawing of the center function part of an air flow measuring device. 空気流量測定装置の中枢機能部の断面図である(実施例3)。(Example 3) which is sectional drawing of the central function part of an air flow measuring device. 空気流量測定装置の中枢機能部の断面図である(実施例4)。(Example 4) which is sectional drawing of the center function part of an air flow measuring device. 従来の空気流量測定装置の断面図である(従来例)。It is sectional drawing of the conventional air flow measuring device (conventional example).

以下、本発明を実施するための最良の形態を、図面に示す4つの実施例にしたがって詳細に説明する。
なお、各実施例は、本発明の空気流量測定装置の代表例として、内燃機関の吸入空気の流量(吸気量)を測定するための空気流量測定装置(内燃機関用吸気量測定装置)への適用例を示している。
Hereinafter, the best mode for carrying out the present invention will be described in detail according to four embodiments shown in the drawings.
Each of the embodiments is a representative example of an air flow rate measuring device according to the present invention, and is applied to an air flow rate measuring device (intake air amount measuring device for an internal combustion engine) for measuring an intake air flow rate (intake air amount) of an internal combustion engine. An application example is shown.

以下の説明では、まず、本発明の各実施例における特徴点および本発明の基本的機能について順次説明し、最後に本発明の特徴点毎の作用効果を要約列挙する。
なお、各実施例において、同一または均等部分には、同一符号を付し、重複説明を省略することとする。
In the following description, first, feature points in each embodiment of the present invention and basic functions of the present invention will be described in order, and finally, effects of each feature point of the present invention will be summarized and listed.
In each embodiment, the same or equivalent parts are denoted by the same reference numerals, and redundant description is omitted.

[実施例1]
まず、本発明の空気流量測定装置の全体的な構成および機能について、図1および図2に基づいて説明する。
[Example 1]
First, the overall configuration and function of the air flow measuring device of the present invention will be described with reference to FIGS. 1 and 2.

〔構成〕
空気流量測定装置1は、空気ダクト2に配置され、エアクリーナ等の空気取入口3から内燃機関4に吸入される吸入空気の流量(吸気量)を測定するためのものであって、吸気量を測定する流量センサ5を内蔵している。そして、流量センサ5からの吸気量信号を、内燃機関4の運転状態を制御する電子装置(ECU)6に対して入力信号の1つとして供給することにより、内燃機関4の運転状態が適正に制御されるようにしている点では、従来周知の装置と同じである。
〔Constitution〕
The air flow rate measuring device 1 is disposed in an air duct 2 and measures the flow rate (intake amount) of intake air taken into the internal combustion engine 4 from an air intake 3 such as an air cleaner. A flow sensor 5 for measurement is built in. Then, the intake air amount signal from the flow sensor 5 is supplied as one of the input signals to an electronic device (ECU) 6 that controls the operation state of the internal combustion engine 4, so that the operation state of the internal combustion engine 4 is appropriately set. It is the same as a conventionally known apparatus in that it is controlled.

空気ダクト2は、エアクリーナ等の空気取入口3と内燃機関4のインテークマニホールドとを連接するもので、測定対象の空気(吸入空気)が主流A(実線の矢印)として流れる主流路2aを有している。
なお、以下の説明では、空気ダクト2(主流路2a)を流れる空気について、空気取入口3側から内燃機関4側へ向かう流れ(実線の矢印)を、「順方向の流れ」もしくは「順流」と称し、その反対方向の流れ(破線の矢印)を、「逆方向の流れ」もしくは「逆流」と称する。ただし、「上流側」、「下流側」の用語は、常に順流を基準としての呼称であって、例えば、図1においては左端(空気取入口3側)が上流側、右端(内燃機関4側)が下流側を意味している。
The air duct 2 connects an air intake 3 such as an air cleaner and an intake manifold of the internal combustion engine 4 and has a main flow path 2a through which air to be measured (intake air) flows as a main flow A (solid arrow). ing.
In the following description, regarding the air flowing through the air duct 2 (main flow path 2a), the flow from the air intake 3 side toward the internal combustion engine 4 side (solid arrow) is referred to as “forward flow” or “forward flow”. The flow in the opposite direction (broken arrow) is referred to as “reverse flow” or “reverse flow”. However, the terms “upstream” and “downstream” are always names based on forward flow. For example, in FIG. 1, the left end (air intake 3 side) is the upstream side and the right end (internal combustion engine 4 side). ) Means the downstream side.

本発明では、空気流量測定装置1が、この空気ダクト2に対し外部から主流路2aを横切るように着脱自在に組付けられることを特徴の1つとしている。
そして、空気流量測定装置1は、上記の流量センサ5の配置構造を含め、以下のような具体的構成を有している。
The present invention is characterized in that the air flow rate measuring device 1 is detachably assembled to the air duct 2 so as to cross the main flow path 2a from the outside.
The air flow rate measuring device 1 has the following specific configuration including the arrangement structure of the flow rate sensor 5 described above.

装置本体10は、一般的な耐熱樹脂、例えばPBT(ポリブチレンテレフタレート樹脂)によって形成されており、空気ダクト2に気密的に装着される鍔部10aと、この鍔部10aから垂下し空気ダクト2内に突き出される流路形成部(流路形成部材)10bとから構成されている。また、装置本体10は、鍔部10aが円盤形状を呈しているのに対し、流路形成部10bが横断面長方形の角柱形状を呈している。
この装置本体10は、空気ダクト2に対し、流路形成部10bの長辺側が主流Aと平行になるように主流路2a内に配置される。
The apparatus main body 10 is formed of a general heat-resistant resin, for example, PBT (polybutylene terephthalate resin). It is comprised from the flow-path formation part (flow-path formation member) 10b protruded inside. Further, in the apparatus main body 10, the flange portion 10a has a disk shape, whereas the flow path forming portion 10b has a rectangular column shape having a rectangular cross section.
The apparatus main body 10 is arranged in the main flow path 2 a so that the long side of the flow path forming portion 10 b is parallel to the main flow A with respect to the air duct 2.

流路形成部10bには、横断面円形状を呈する第1流路11、第2流路12および第3流路13の3つの流路が形成されている。
第1流路11および第2流路12は、長辺側に沿って上下に離隔して配置されており、それぞれ流路形成部10bを貫通している。したがって、第1流路11および第2流路12は、主流路2aを流れる空気(主流A)の一部を取り込んでバイパス流B、Cとして流すバイパス流路をなしている。
The flow path forming portion 10b is formed with three flow paths, a first flow path 11, a second flow path 12 and a third flow path 13 having a circular cross section.
The 1st flow path 11 and the 2nd flow path 12 are spaced apart up and down along the long side, and each penetrates the flow path formation part 10b. Therefore, the first flow path 11 and the second flow path 12 form a bypass flow path that takes in part of the air (main flow A) flowing through the main flow path 2a and flows it as bypass flows B and C.

特に、第1流路11は、テーパ状の絞り14によって、上流側に位置し流路断面積が大きい第1大流路11aと下流側に位置し流路断面積が小さい第1小流路11bとに区分されている。したがって、下流側の第1小流路11bには、絞り14による絞り効果によって第2流路12を流れるバイパス流Cより流速が大きくなるバイパス流Bが流れるようになっている。
なお、第2流路12は全長にわたって同一径で同一の流路断面積を有しており、第1流路11は第1小流路11bのみが第2流路12と同一径で同じ流路断面積を有している。
In particular, the first flow path 11 includes a first large flow path 11a located on the upstream side and having a large flow cross-sectional area and a first small flow path located on the downstream side and having a small flow cross-sectional area by the tapered throttle 14. 11b. Accordingly, a bypass flow B having a flow velocity larger than that of the bypass flow C flowing through the second flow path 12 due to the narrowing effect of the throttle 14 flows through the first small flow path 11b on the downstream side.
The second channel 12 has the same diameter and the same channel cross-sectional area over the entire length, and only the first small channel 11b has the same diameter and the same flow as the second channel 12 in the first channel 11. It has a road cross-sectional area.

第3流路13は、第1流路11および第2流路12と直交するように配置されており、一端が第1流路11の第1小流路11bに、他端が第2流路12にそれぞれ開口し、第1小流路11bと第2流路12とを連通している。
そして、第3流路13には、ここを通過する空気の流量(吸気量)を計測する流量センサ5が配設されている。流量センサ5は、計測した吸気量信号に所定の処理を施す信号処理部(図示せず)を介して電子装置(ECU)6に電気的接続される。
The third flow path 13 is arranged so as to be orthogonal to the first flow path 11 and the second flow path 12, one end being the first small flow path 11 b of the first flow path 11 and the other end being the second flow. The first small flow path 11b and the second flow path 12 are communicated with each other, and open to the path 12 respectively.
The third flow path 13 is provided with a flow rate sensor 5 that measures the flow rate (intake amount) of air passing therethrough. The flow sensor 5 is electrically connected to an electronic device (ECU) 6 via a signal processing unit (not shown) that performs a predetermined process on the measured intake air amount signal.

〔作用・効果〕
次に、上記構成の空気流量測定装置1の作用・効果について説明する。
[Action / Effect]
Next, the operation and effect of the air flow rate measuring apparatus 1 having the above configuration will be described.

内燃機関4の通常運転時には、空気ダクト2内を順流が流れている。空気取入口3から導入され、主流路2aを流れる主流Aは、その一部が空気流量測定装置1の第1流路11および第2流路12に取り込まれてバイパス流B、Cとなり、内燃機関4に供給される。
ここで、第1流路11の第1小流路11bと第2流路12とは、同一径で同じ流路断面積であるが、絞り14による絞り効果によって第1小流路11bのバイパス流Bの方が第2流路12を流れるバイパス流Cよりも流速が大きくなる。
これにより、空気ダクト2の主流路2aから第2流路12、第3流路13、第1流路11の第1小流路11bを経て主流路2aに至る順方向のバイパス流B1が形成される。
このバイパス流B1は主流Aよりも空気の流れが安定しているため、流量センサ5によって吸気量を正確に計測することができる。
During normal operation of the internal combustion engine 4, a forward flow flows in the air duct 2. A part of the main flow A introduced from the air intake 3 and flowing through the main flow path 2a is taken into the first flow path 11 and the second flow path 12 of the air flow rate measuring device 1 to become the bypass flows B and C. Supplied to the engine 4.
Here, the first small channel 11b and the second channel 12 of the first channel 11 have the same diameter and the same channel cross-sectional area. However, the first small channel 11b is bypassed by the throttling effect of the throttle 14. The flow rate of the flow B is larger than that of the bypass flow C that flows through the second flow path 12.
As a result, a forward bypass flow B1 from the main flow path 2a of the air duct 2 to the main flow path 2a through the second flow path 12, the third flow path 13, and the first small flow path 11b of the first flow path 11 is formed. Is done.
Since the bypass flow B1 has a more stable air flow than the main flow A, the flow rate sensor 5 can accurately measure the intake air amount.

なお、第1流路11および第2流路12は主流Aに平行な直進路であるのに対し、第3流路13は、それらの流路11、12と直交しているため、第1流路11(第1大流路11a)および第2流路12に侵入した粉塵等のダストは、その慣性力で、第3流路13、流量センサ5に向かうことなく、第1流路11(第1小流路11b)および第2流路12を突き抜け、主流路2aに戻る。
また、内燃機関4にバックファイヤ等が発生し、逆流Dが生じた場合には、逆流Dの一部が第1流路(第1小流路11b)および第2流路12に侵入するが、この逆流Dに含まれる煤等のダストは、慣性力で第3流路13、流量センサ5に向かうことなく、第1流路11(第1大流路11a)および第2流路12を突き抜けて、主流路2aに戻る。
Since the first flow path 11 and the second flow path 12 are straight paths parallel to the main flow A, the third flow path 13 is orthogonal to the flow paths 11 and 12, so Dust such as dust that has entered the flow path 11 (first large flow path 11a) and the second flow path 12 does not move toward the third flow path 13 and the flow sensor 5 due to its inertial force. It penetrates through the (first small flow path 11b) and the second flow path 12, and returns to the main flow path 2a.
Further, when backfire or the like is generated in the internal combustion engine 4 and the backflow D is generated, a part of the backflow D enters the first flow path (first small flow path 11b) and the second flow path 12. The dust such as soot contained in the backflow D passes through the first flow path 11 (first large flow path 11a) and the second flow path 12 without being directed toward the third flow path 13 and the flow rate sensor 5 by inertia force. It penetrates and returns to the main flow path 2a.

したがって、流量センサ5に対し、ダストによる汚損・破損等により機能障害が生じるのを防ぐことができる。
また、空気流量測定装置1は、装置本体10(流路形成部10bおよび流量センサ5)で空気流量測定機能を完結することができ、しかもこの当該装置1の中枢部品をなす装置本体10を空気ダクト2に着脱自在に組み込むことができるため、空気ダクト2には空気流量特性に応じた加工、構造(絞り)を特別に要しなく、空気ダクト2の汎用性を高めることができる。
しかも、空気ダクト2自体を絞り構造にしないため、空気ダクト2での圧力損失も軽減することができる。
Accordingly, it is possible to prevent the flow rate sensor 5 from being damaged due to dirt or damage due to dust.
In addition, the air flow rate measuring device 1 can complete the air flow rate measuring function with the device main body 10 (the flow path forming unit 10b and the flow rate sensor 5), and the device main body 10 forming the central part of the device 1 is air-conditioned. Since the air duct 2 can be detachably incorporated into the duct 2, the air duct 2 does not require any special processing or structure (throttle) according to the air flow characteristics, and the versatility of the air duct 2 can be enhanced.
Moreover, since the air duct 2 itself does not have a throttle structure, pressure loss in the air duct 2 can be reduced.

[実施例2]
次に、本発明の実施例2について、上述の実施例1との相違点を中心に図3に基づいて説明する。
[Example 2]
Next, a second embodiment of the present invention will be described based on FIG. 3 with a focus on differences from the first embodiment.

実施例2の空気流量測定装置1は、逆流Dが生じた際に、その空気流の一部が第3流路13にも積極的に流れるようにしたもので、具体的には第2通路12を工夫したものである。   The air flow rate measuring device 1 according to the second embodiment is configured such that, when the backflow D is generated, a part of the airflow also actively flows into the third flow path 13. 12 is devised.

第2流路12には、下流側に向かって拡径する逆テーパ状の絞り15が設けられている。この絞り15によって、第2流路12は、上流側に位置し流路断面積が小さい第2小流路12aと下流側に位置し流路断面積が大きい第2大流路12bとに区分されている。
そして、この第2小流路12aおよび第2大流路12bは、第1流路11の第1小流路11bおよび第1大流路11aとそれぞれ同一径で同じ流路断面積を有しているが、逆流Dがそれぞれの流路に侵入するときには、絞り15による絞り効果によって、第2流路12の第2小流路12aを流れる空気流D1の方が、第1流路11の第1小流路11bを流れる空気流D2より流速が大きくなる。
The second flow path 12 is provided with a reverse-tapered throttle 15 that increases in diameter toward the downstream side. By this restriction 15, the second flow path 12 is divided into a second small flow path 12a located on the upstream side and having a small cross-sectional area and a second large flow path 12b located on the downstream side and having a large cross-sectional area. Has been.
The second small flow path 12a and the second large flow path 12b have the same diameter and the same cross-sectional area as the first small flow path 11b and the first large flow path 11a of the first flow path 11, respectively. However, when the reverse flow D enters the respective flow paths, the air flow D1 flowing through the second small flow path 12a of the second flow path 12 is caused to flow in the first flow path 11 by the throttling effect by the restriction 15. The flow velocity becomes larger than the air flow D2 flowing through the first small flow path 11b.

また、第3流路13は、第1流路11の第1小流路11bと第2流路12の第2小流路12aとを連通している。したがって、主流Aが流れる順流時には、実施例1と同様に、第2流路12(第2小流路12a)から第3流路13を経て第1流路11の第1小流路11bへと流れる順方向のバイパス流B1が発生し、逆流Dが生じた際には、第1流路11の第1小流路11bから第3流路13を経て第2流路12の第2小流路12aに流れる逆方向のバイパス流D3が発生する。
そして、第3流路13には、流量センサとして、逆流検知機能(手段)を有する流量センサ5Aを配設している。
なお、順流と逆流とを区別して検知する流量センサとしては、例えば、半導体式チップセンサが知られており、かかる周知のセンサを、逆流検知機能(手段)付き流量センサ5Aとして活用することができる。
Further, the third flow path 13 communicates the first small flow path 11 b of the first flow path 11 and the second small flow path 12 a of the second flow path 12. Therefore, during forward flow in which the main flow A flows, as in the first embodiment, the second flow path 12 (second small flow path 12a) passes through the third flow path 13 to the first small flow path 11b of the first flow path 11. When a reverse flow B1 flowing in the forward direction is generated and a reverse flow D is generated, the second small flow of the second flow path 12 is passed from the first small flow path 11b of the first flow path 11 to the third flow path 13. A reverse flow D3 in the reverse direction flowing in the flow path 12a is generated.
The third flow path 13 is provided with a flow sensor 5A having a backflow detection function (means) as a flow sensor.
For example, a semiconductor chip sensor is known as a flow rate sensor that detects forward flow and reverse flow separately, and such a known sensor can be used as a flow rate sensor 5A with a reverse flow detection function (means). .

上記構成によれば、空気ダクト2内に逆流Dが生じると、その一部が第1流路11から第3流路13を経て第2流路12に流れる逆方向のバイパス流D3が発生し、第3流路13内を順流時とは逆向きに空気が流れるため、流量センサ5Aによって逆流が生じたことを検知することができる。
なお、逆流Dの発生時にバイパス流D2、D1と共に第1流路11および第2流路12へ侵入してくる煤等のダストは、慣性力で、第3流路13、流量センサ5Aに向かうことなく、第1流路11および第2流路12を突き抜け、主流路2aに戻るため、流量センサ5Aにはダストにより悪影響が及ぶことはない。
したがって、この実施例2においても、実施例1と同様の作用・効果を得ることができることは勿論である。
According to the above configuration, when the reverse flow D is generated in the air duct 2, a reverse bypass flow D <b> 3 that partially flows from the first flow path 11 through the third flow path 13 to the second flow path 12 is generated. Since the air flows in the third channel 13 in the opposite direction to the forward flow, the flow sensor 5A can detect that the reverse flow has occurred.
Note that dust such as soot entering the first flow path 11 and the second flow path 12 together with the bypass flows D2 and D1 when the reverse flow D is generated is directed toward the third flow path 13 and the flow sensor 5A by inertial force. Without passing through the first flow path 11 and the second flow path 12 and returning to the main flow path 2a, the flow rate sensor 5A is not adversely affected by dust.
Therefore, it is needless to say that the same operation and effect as in the first embodiment can be obtained also in the second embodiment.

[実施例3]
次に、本発明の実施例3について、前述の実施例1との相違点を中心に図4に基づいて説明する。
[Example 3]
Next, a third embodiment of the present invention will be described based on FIG. 4 with a focus on differences from the first embodiment.

実施例3の空気流量測定装置1は、順流時におけるダストが、第3流路13に対してより一層侵入しないようにしたものである。   The air flow rate measuring device 1 according to the third embodiment is configured such that dust during forward flow does not further enter the third flow path 13.

具体的には、第1流路11の第1小流路11bおよび第2流路12において、第3流路13との連結部に、第1小流路11bおよび第2流路12よりも流路断面積が若干大きくなる中流路部分11c、12cを設けている。これにより、第3流路13の両端開口部(順流時における入口13aおよび出口13b)は、第1流路11および第2流路12に対して下流側に指向するように開口している。   Specifically, in the first small flow path 11 b and the second flow path 12 of the first flow path 11, the connecting portion with the third flow path 13 is more than the first small flow path 11 b and the second flow path 12. Middle flow path portions 11c and 12c having a slightly larger flow path cross-sectional area are provided. As a result, both end openings of the third flow path 13 (inlet 13a and outlet 13b during forward flow) are opened so as to be directed downstream with respect to the first flow path 11 and the second flow path 12.

上記構成によれば、空気ダクト2の主流路2aに主流Aが流れる順流時において、第1流路11および第2流路12へ侵入してくるダストは、第3流路13の両端開口部(入口13aおよび出口13b)が、第1流路11および第2流路12に対して下流側に指向しているため、その慣性力で勢いよく、かつ、円滑に第1流路11および第2流路12を突き抜けていく。
したがって、第3流路13にはダストがより一層侵入しにくくなり、流量センサ5をダストからより確実に保護することができる。
なお、この実施例3においても、空気流量測定装置1の所期の作用・効果について、実施例1と同様の作用・効果を得ることができる。
According to the above configuration, when the main flow A flows through the main flow path 2 a of the air duct 2, dust entering the first flow path 11 and the second flow path 12 is open at both ends of the third flow path 13. Since (the inlet 13a and the outlet 13b) are directed downstream with respect to the first flow path 11 and the second flow path 12, the first flow path 11 and the first flow path can be vigorously and smoothly by the inertia force. The two flow paths 12 are penetrated.
Therefore, dust is less likely to enter the third flow path 13, and the flow sensor 5 can be more reliably protected from dust.
In the third embodiment, the same actions and effects as those of the first embodiment can be obtained with respect to the expected actions and effects of the air flow measuring device 1.

[実施例4]
次に、本発明の実施例4について、前述の実施例1との相違点を中心に図5に基づいて説明する。
[Example 4]
Next, a fourth embodiment of the present invention will be described based on FIG. 5 with a focus on differences from the first embodiment.

実施例4の空気流量測定装置1は、空気ダクト2の主通路2aに、実施例1における第2流路12の機能を兼務させるようにしたものである。   The air flow rate measuring apparatus 1 according to the fourth embodiment causes the main passage 2a of the air duct 2 to function as the second flow path 12 according to the first embodiment.

具体的には、第1流路11として、実施例1と同様の、テーパ状絞り14によって第1大流路11aと第1小流路11bとに区分された流路を用いると共に、絞り14の下流側における第1小流路11bと空気ダクト2の主流路2aとを第3流路13にて直接連通させている。   Specifically, as the first flow path 11, a flow path that is divided into a first large flow path 11 a and a first small flow path 11 b by a tapered restriction 14 as in the first embodiment is used. The first small flow path 11b and the main flow path 2a of the air duct 2 on the downstream side of the air duct 2 are in direct communication with each other through the third flow path 13.

上記構成によれば、空気ダクト2の主流路2aに主流Aが流れる順流時においては、第1流路11の第1小流路11bに対し、絞り14による絞り効果によって空気ダクト2の主流路2aより流速が大きくなるバイパス流Bを形成することができるため、主流路2aから第3流路13、第1流路11の第1小流路11bを経て主流路2aに至る順方向の安定した空気流A1を形成することができる。   According to the above configuration, during the forward flow in which the main flow A flows through the main flow path 2 a of the air duct 2, the main flow path of the air duct 2 is reduced by the throttling effect of the restriction 14 with respect to the first small flow path 11 b of the first flow path 11. Since a bypass flow B having a flow velocity larger than that of 2a can be formed, forward stability from the main flow path 2a to the main flow path 2a via the third flow path 13 and the first small flow path 11b of the first flow path 11 is achieved. Air flow A1 can be formed.

この実施例4によれば、空気流量測定装置1は、流路形成部(流路形成部材)10bに、第1流路11と第3流路13との2つの流路を設けるだけでよく、全体として極めて小型・簡潔な構造で、実施例1と同様な作用・効果を得ることができる。   According to the fourth embodiment, the air flow rate measuring device 1 only needs to provide two flow paths of the first flow path 11 and the third flow path 13 in the flow path forming portion (flow path forming member) 10b. As a whole, it is possible to obtain the same operations and effects as those of the first embodiment with an extremely small and simple structure.

〔変形例〕
以上、本発明の実施形態を4つの実施例について説明したが、本発明装置の中枢機能を司る、例えば、第1流路11、第2流路12、第3流路13などの態様は、上述した実施例に限定されることなく、本発明の精神を逸脱しない範囲で種々変形することが可能である。
[Modification]
As described above, the embodiment of the present invention has been described with respect to four examples. For example, aspects such as the first flow path 11, the second flow path 12, and the third flow path 13 that control the central function of the apparatus of the present invention are as follows. The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

その変形例を例示すると、
(1)装置本体10は、流路部分を半割り形状にした一対の樹脂成型品を張り合わせるようにして作製するため、各流路11、12、13の横断面形状を円形以外の例えば矩形状にしても、製作面で何ら支障を生じることなく、各流路11、12、13を形成することができる。
(2)第1流路11と第2流路12とに流速差を生じさせる絞り手段として、整流効果を期待できるテーパ状の絞り14、15を採用したが、流路断面積を大小に区分する手段であることが肝要であって、例えば大径の流路部分と小径の流路部分とを単に連接する段差手段を当該絞り手段として採用することもできる。
(3)実施例2においては、順流と逆流とを区別して検知することができる逆流検知機能(手段)付き流量センサ5Aを用いたが、逆流検知手段として逆流検知専用のセンサを流量センサ5と併用するようにしても良い。
(4)実施例3における順流時のダスト対策は、順流時における第3流路13の空気流れを考慮し、第3流路13の入口13a側のみに中流路部分12cを設けることによっても所望の効果を得ることができる。
(5)第3流路13を、第1流路11と第2流路12もしくは主流路2aに対し直交するように配設したが、所望する流量測定機能やダスト対策機能に応じて、例えば、第3流路13を下流側に傾けて配設(図6参照)したり、逆に上流側に傾けて配設しても良い。
As an example of the modification,
(1) Since the apparatus main body 10 is manufactured by pasting together a pair of resin molded products whose channel portions are halved, the cross-sectional shape of each of the channels 11, 12, 13 is other than circular, for example rectangular Even if it forms, each flow path 11, 12, 13 can be formed, without producing a trouble on a manufacture surface.
(2) As the throttle means for generating the flow velocity difference between the first flow path 11 and the second flow path 12, the tapered throttles 14 and 15 that can expect a rectifying effect are adopted. For example, a step means that simply connects a large-diameter channel portion and a small-diameter channel portion may be employed as the throttle means.
(3) In the second embodiment, the flow rate sensor 5A with a backflow detection function (means) capable of distinguishing and detecting the forward flow and the backflow is used. You may make it use together.
(4) The dust countermeasure at the time of forward flow in Example 3 is also desired by providing the middle flow path portion 12c only on the inlet 13a side of the third flow path 13 in consideration of the air flow of the third flow path 13 at the time of forward flow. The effect of can be obtained.
(5) Although the third flow path 13 is disposed so as to be orthogonal to the first flow path 11 and the second flow path 12 or the main flow path 2a, depending on the desired flow measurement function and dust countermeasure function, for example, Alternatively, the third flow path 13 may be disposed inclined to the downstream side (see FIG. 6), or conversely, inclined to the upstream side.

以上詳述してきた本発明の空気流量測定装置1の特徴点および特記すべき作用効果を、特許請求の範囲に記載の各請求項(特に請求項2〜請求項4)の手段にしたがって要約列挙すれば、次の通りである。   The above-described features of the air flow rate measuring device 1 according to the present invention and the functions and effects to be mentioned are summarized and enumerated according to the means described in the claims (especially claims 2 to 4). Then, it is as follows.

(特徴点1=請求項2の手段)
請求項1に記載の空気流量測定装置1において、
第2通路12は、上流側に位置し流路断面積が小さい第2小流路12aと下流側に位置し流路断面積が大きい第2大流路12bとで構成されており、第3流路13で、第1流路11の第1小流路11bと第2流路12の第2小流路12aとを連通して、下流側から上流側に向かって流れる逆方向の空気流が、第2流路12から第3流路13を経て第1流路11に流れるようにすると共に、第3流路13には、逆流検知機能付き流量センサ5A(逆流検知手段)を配設していることを特徴としている(例えば実施例2)。
上記手段によれば、流量センサ5Aによって逆流が生じたことを検知することができ、この逆流検知信号を内燃機関4の制御に有効活用することができる。
(Feature 1 = Means of claim 2)
In the air flow rate measuring device 1 according to claim 1,
The second passage 12 is composed of a second small channel 12a having a small channel cross-sectional area located on the upstream side and a second large channel 12b located on the downstream side and having a large channel cross-sectional area. In the flow path 13, the first small flow path 11b of the first flow path 11 and the second small flow path 12a of the second flow path 12 communicate with each other, and the air flow in the reverse direction flows from the downstream side toward the upstream side. However, the flow path 5A (backflow detection means) with a backflow detection function is provided in the third flow path 13 so as to flow from the second flow path 12 to the first flow path 11 via the third flow path 13. (For example, Example 2).
According to the above means, it is possible to detect the occurrence of the backflow by the flow sensor 5A, and this backflow detection signal can be effectively used for the control of the internal combustion engine 4.

(特徴点2=請求項3の手段)
請求項1または請求項2に記載の空気流量測定装置1において、
第3流路13の両端開口部(入口13aおよび出口13b)は、第1流路11および第2流路12に対して下流側に指向して開口していることを特徴としている(例えば実施例3)。
上記手段によれば、順流時におけるダストから流量センサ5をより確実に保護することができる。
(Feature point 2 = Means of claim 3)
In the air flow rate measuring device 1 according to claim 1 or 2,
Both end openings (inlet 13a and outlet 13b) of the third channel 13 are characterized by opening toward the downstream side with respect to the first channel 11 and the second channel 12 (for example, implementation) Example 3).
According to the above means, the flow sensor 5 can be more reliably protected from dust during forward flow.

(特徴点3=請求項4の手段)
空気流量測定装置1は、測定対象の空気が流れる主流路2aを有する空気ダクト2と、この空気ダクト2に対しその外部から主流路2aを横切るように組付けられ、第1流路11および第3流路13を有する流路形成部(流路形成部材)10bと、第3流路13に配設され、この第3流路13を流れる空気の流量を測定する流量センサ5とを備えるものであって、第1流路11は、主流路2aを流れる主流Aの一部を取り込むと共に、上流側に位置し流路断面積が大きい第1大流路11aと下流側に位置し流路断面積が小さい第1小流路11bとで構成され、第1小流路11bが主流路2aを流れる主流Aより流速が大きくなるバイパス流Bを流すバイパス流路を形成している。そして、第1流路11の第1小流路11bと主流路2aとを第3流路13にて直接連通することで、主流路2aから第3流路13、第1流路11を経て主流路2aに至る順方向のバイパス流を形成していることを特徴としている(例えば実施例4)。
上記手段によれば、流路形成部10bには第1流路11と第3流路13との2つの流路を設けるだけでよく、極めて小型・簡潔な構造の空気流量測定装置1とすることができる。
(Feature point 3 = Means of claim 4)
The air flow rate measuring device 1 is assembled with an air duct 2 having a main flow path 2a through which air to be measured flows, and the air duct 2 so as to cross the main flow path 2a from the outside. A flow path forming portion (flow path forming member) 10b having three flow paths 13 and a flow rate sensor 5 disposed in the third flow path 13 and measuring the flow rate of air flowing through the third flow path 13 The first flow channel 11 takes in a part of the main flow A flowing through the main flow channel 2a, and is located on the upstream side and has a large flow channel cross-sectional area, and is positioned on the downstream side and the first large flow channel 11a. The first small flow path 11b has a small cross-sectional area, and the first small flow path 11b forms a bypass flow path for flowing a bypass flow B having a flow velocity larger than that of the main flow A flowing through the main flow path 2a. Then, the first small flow path 11b of the first flow path 11 and the main flow path 2a are directly communicated with each other through the third flow path 13, so that the main flow path 2a passes through the third flow path 13 and the first flow path 11. A forward bypass flow reaching the main flow path 2a is formed (for example, Example 4).
According to the above means, it is only necessary to provide the flow path forming portion 10b with two flow paths, ie, the first flow path 11 and the third flow path 13, and the air flow rate measuring device 1 having an extremely small and simple structure is obtained. be able to.

本発明の空気流量測定装置1は、上述した実施例の適用例(内燃機関用吸気量測定装置)に限定されることなく、空気ダクト2の主流路2aを流れる測定対象の空気流量を測定する様々な用途に適用することができることは勿論である。   The air flow rate measuring device 1 of the present invention is not limited to the application example (intake air amount measuring device for an internal combustion engine) of the above-described embodiment, and measures the air flow rate of the measurement target flowing through the main flow path 2a of the air duct 2. Of course, it can be applied to various uses.

1…空気流量測定装置、2…空気ダクト、2a…主流路、5…流量センサ、10…装置本体、10b…流路形成部(流路形成部材)、11…第1流路、11a…第1大流路、11b…第1小流路、12…第2流路、13…第3流路、A…主流、A1、B、B1、C…バイパス流。   DESCRIPTION OF SYMBOLS 1 ... Air flow measuring device, 2 ... Air duct, 2a ... Main flow path, 5 ... Flow rate sensor, 10 ... Apparatus main body, 10b ... Flow path formation part (flow path formation member), 11 ... 1st flow path, 11a ... 1st 1 large flow path, 11b ... 1st small flow path, 12 ... 2nd flow path, 13 ... 3rd flow path, A ... mainstream, A1, B, B1, C ... bypass flow.

Claims (4)

測定対象の空気が流れる主流路(2a)を有する空気ダクト(2)と、
この空気ダクト(2)に対しその外部から前記主流路(2a)を横切るように組付けられ、第1流路(11)、第2流路(12)および第3流路(13)を有する流路形成部材(10b)と、
前記第3流路(13)に配設され、この第3流路(13)を流れる空気の流量を測定する流量センサ(5)と
を備える空気流量測定装置(1)であって、
前記第1流路(11)および前記第2流路(12)は、前記主流路(2a)を流れる主流(A)の一部を取り込んでバイパス流(B、C)として流すバイパス流路をなすと共に、
前記第1流路(11)は、上流側に位置し流路断面積が大きい第1大流路(11a)と下流側に位置し流路断面積が小さい第1小流路(11b)とで構成され、前記第1小流路(11b)が前記第2流路(12)を流れる前記バイパス流(C)より流速が大きくなる前記バイパス流(B)を流すバイパス流路を形成しており、
前記第1流路(11)の前記第1小流路(11b)と前記第2流路(12)とを前記第3流路(13)にて連通させることで、前記主流路(2a)から前記第2流路(12)、前記第3流路(13)、前記第1流路(11)を経て前記主流路(2a)に至る順方向のバイパス流(B1)を形成していることを特徴とする空気流量測定装置(1)。
An air duct (2) having a main flow path (2a) through which air to be measured flows;
The air duct (2) is assembled from the outside so as to cross the main flow path (2a), and has a first flow path (11), a second flow path (12), and a third flow path (13). A flow path forming member (10b);
An air flow rate measuring device (1) comprising a flow rate sensor (5) disposed in the third flow path (13) and measuring a flow rate of air flowing through the third flow path (13),
The first flow path (11) and the second flow path (12) are bypass flow paths that take a part of the main flow (A) flowing through the main flow path (2a) and flow as a bypass flow (B, C). With eggplant,
The first flow path (11) is located on the upstream side and has a first large flow path (11a) having a large flow path cross-sectional area, and the first small flow path (11b) located on the downstream side and having a small flow path cross-sectional area. The first small flow path (11b) is formed of a bypass flow path for flowing the bypass flow (B) having a flow velocity larger than that of the bypass flow (C) flowing through the second flow path (12). And
By connecting the first small flow path (11b) and the second flow path (12) of the first flow path (11) through the third flow path (13), the main flow path (2a) A forward bypass flow (B1) is formed from the second flow path (12), the third flow path (13), and the first flow path (11) to the main flow path (2a). An air flow rate measuring device (1) characterized by the above.
請求項1に記載の空気流量測定装置(1)において、
前記第2通路(12)は、上流側に位置し流路断面積が小さい第2小流路(12a)と下流側に位置し流路断面積が大きい第2大流路(12b)とで構成されており、
前記第3流路(13)で、前記第1流路(11)の前記第1小流路(11b)と前記第2流路(12)の前記第2小流路(12a)とを連通して、下流側から上流側に向かって流れる逆方向の空気流(D)が、前記第2流路(12)から前記第3流路(13)を経て前記第1流路(11)に流れるようにすると共に、
前記第3流路(13)には、逆流検知手段(5A)を配設していることを特徴とする空気流量測定装置(1)。
In the air flow measuring device (1) according to claim 1,
The second passage (12) includes a second small flow path (12a) located on the upstream side and having a small flow path cross-sectional area, and a second large flow path (12b) located on the downstream side and having a large flow path cross-sectional area. Configured,
The third channel (13) communicates the first small channel (11b) of the first channel (11) and the second small channel (12a) of the second channel (12). Then, the reverse air flow (D) flowing from the downstream side toward the upstream side passes from the second flow path (12) through the third flow path (13) to the first flow path (11). And let it flow,
An air flow rate measuring device (1), wherein a backflow detecting means (5A) is disposed in the third flow path (13).
請求項1または請求項2に記載の空気流量測定装置(1)において、
前記第3流路(13)の両端開口部(13a、13b)は、前記第1流路(11)および前記第2流路(12)に対して下流側に指向して開口していることを特徴とする空気流量測定装置(1)。
In the air flow rate measuring device (1) according to claim 1 or 2,
Both end openings (13a, 13b) of the third channel (13) are open toward the downstream side with respect to the first channel (11) and the second channel (12). An air flow rate measuring device (1) characterized by
測定対象の空気が流れる主流路(2a)を有する空気ダクト(2)と、
この空気ダクト(2)に対しその外部から前記主流路(2a)を横切るように組付けられ、第1流路(11)および第3流路(13)を有する流路形成部材(10b)と、
前記第3流路(13)に配設され、この第3流路(13)を流れる空気の流量を測定する流量センサ(5)と
を備える空気流量測定装置(1)であって、
前記第1流路(11)は、前記主流路(2a)を流れる主流(A)の一部を取り込むと共に、上流側に位置し流路断面積が大きい第1大流路(11a)と下流側に位置し流路断面積が小さい第1小流路(11b)とで構成され、前記第1小流路(11b)が前記主流路(2a)を流れる主流(A)より流速が大きくなるバイパス流(B)を流すバイパス流路を形成しており、
前記第1流路(11)の前記第1小流路(11b)と前記主流路(2a)とを前記第3流路(13)にて連通することで、前記主流路(2a)から前記第3流路(13)、前記第1流路(11)を経て前記主流路(2a)に至る順方向のバイパス流(A1)を形成していることを特徴とする空気流量測定装置(1)。
An air duct (2) having a main flow path (2a) through which air to be measured flows;
A flow path forming member (10b) having a first flow path (11) and a third flow path (13) assembled to the air duct (2) so as to cross the main flow path (2a) from the outside; ,
An air flow rate measuring device (1) comprising a flow rate sensor (5) disposed in the third flow path (13) and measuring a flow rate of air flowing through the third flow path (13),
The first flow path (11) takes in a part of the main flow (A) flowing through the main flow path (2a), and is located downstream of the first large flow path (11a) having a large flow path cross-sectional area and the downstream. The first small channel (11b) is located on the side and has a small channel cross-sectional area, and the first small channel (11b) has a larger flow velocity than the main flow (A) flowing through the main channel (2a). A bypass flow path for flowing the bypass flow (B) is formed,
The first small channel (11b) and the main channel (2a) of the first channel (11) are communicated with each other by the third channel (13), so that the main channel (2a) An air flow rate measuring device (1) characterized by forming a forward bypass flow (A1) that reaches the main flow path (2a) through the third flow path (13) and the first flow path (11). ).
JP2012247179A 2012-11-09 2012-11-09 Air flow measurement device Active JP5949472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012247179A JP5949472B2 (en) 2012-11-09 2012-11-09 Air flow measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012247179A JP5949472B2 (en) 2012-11-09 2012-11-09 Air flow measurement device

Publications (2)

Publication Number Publication Date
JP2014095619A true JP2014095619A (en) 2014-05-22
JP5949472B2 JP5949472B2 (en) 2016-07-06

Family

ID=50938799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012247179A Active JP5949472B2 (en) 2012-11-09 2012-11-09 Air flow measurement device

Country Status (1)

Country Link
JP (1) JP5949472B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020024152A (en) * 2018-08-08 2020-02-13 株式会社Soken Flow measurement device
US20210199482A1 (en) * 2018-09-19 2021-07-01 Denso Corporation Flowmeter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108500A (en) * 1995-08-03 2001-04-20 Hitachi Ltd Heat generation resistance-type flow rate-measuring device
JP2006153734A (en) * 2004-11-30 2006-06-15 Omron Corp Flow velocity measuring instrument
JP2009145162A (en) * 2007-12-13 2009-07-02 Denso Corp Air flow meter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108500A (en) * 1995-08-03 2001-04-20 Hitachi Ltd Heat generation resistance-type flow rate-measuring device
JP2006153734A (en) * 2004-11-30 2006-06-15 Omron Corp Flow velocity measuring instrument
JP2009145162A (en) * 2007-12-13 2009-07-02 Denso Corp Air flow meter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020024152A (en) * 2018-08-08 2020-02-13 株式会社Soken Flow measurement device
WO2020031555A1 (en) * 2018-08-08 2020-02-13 株式会社デンソー Flowrate measurement device
US11391610B2 (en) 2018-08-08 2022-07-19 Denso Corporation Flow rate measurement device
US20210199482A1 (en) * 2018-09-19 2021-07-01 Denso Corporation Flowmeter

Also Published As

Publication number Publication date
JP5949472B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP5338864B2 (en) Air flow measurement device
JP5799682B2 (en) Air flow measurement device
JP6274021B2 (en) Humidity measuring device
JP5338870B2 (en) Air flow measurement device
JP2008309623A (en) Air flow rate measuring device
US10422676B2 (en) Flow rate meter
JP2008309614A (en) Air flow rate measuring device
JP4488030B2 (en) Air flow measurement device
US10859418B2 (en) Airflow measuring device
JP5949472B2 (en) Air flow measurement device
JP5003456B2 (en) Air flow meter
WO2015005231A1 (en) Temperature/humidity sensor
JP2017211221A (en) Air flow measurement device
US10598073B2 (en) Exhaust system of internal combustion engine
JP5454655B2 (en) Air flow measurement device
JP5542614B2 (en) Flow measuring device
JP2022153665A (en) Flow rate measurement device
JP5272801B2 (en) Air flow measurement device
WO2017064884A1 (en) Exhaust state detection device
JP5370114B2 (en) Air flow measurement device
WO2020066424A1 (en) Flow rate measurement device
JPS62159016A (en) Flow rate detector
JP2009215988A (en) Air cleaner device
JPWO2018142797A1 (en) Flow measurement device
JP2020106320A (en) Physical quantity measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R151 Written notification of patent or utility model registration

Ref document number: 5949472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250