JP2014095366A - Decompression device of axial flow compressor - Google Patents

Decompression device of axial flow compressor Download PDF

Info

Publication number
JP2014095366A
JP2014095366A JP2012248525A JP2012248525A JP2014095366A JP 2014095366 A JP2014095366 A JP 2014095366A JP 2012248525 A JP2012248525 A JP 2012248525A JP 2012248525 A JP2012248525 A JP 2012248525A JP 2014095366 A JP2014095366 A JP 2014095366A
Authority
JP
Japan
Prior art keywords
pressure
predetermined pressure
axial
valve
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012248525A
Other languages
Japanese (ja)
Inventor
Kunio Takahashi
邦雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012248525A priority Critical patent/JP2014095366A/en
Publication of JP2014095366A publication Critical patent/JP2014095366A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent generation of surge while suppressing influence on a normal operation of an axial flow compressor.SOLUTION: A decompression device is equipped to an axial flow compressor. The decompression device includes: a stationary blade (variable stationary blade 11) supported by a supporting shaft (rotary supporting shaft 12) penetrating through a casing 41 of the axial flow compressor, and formed with a hole 15 positioned on a face kept into contact with a gas flow channel 17 inside of the casing 41, of the stationary blade; and an internal passage 16 having a hollow structure penetrating through the inside of the stationary blade and the inside of the supporting shaft from the hole 15 to guide a gas in the gas flow channel 17 from the hole 15 to the external of the casing 41. Thus, generation of surge can be prevented while suppressing influence on a normal operation of the axial flow compressor.

Description

本発明は、軸流圧縮機の減圧装置に関する。   The present invention relates to a pressure reducing device for an axial compressor.

図6には可変静翼を有する軸流圧縮機の回転軸近傍の一例を概略図として表している。当該図を見ればわかるように、従来の軸流圧縮機は、動翼10、可変静翼11、回転支持軸12、気体流路17、ケーシング41及び回転軸42を有する。尚、最上流に設けられている可変静翼をIGV(インレットガイドバルブ)11a、最下流に設けられている可変静翼をOGV(アウトレットガイドバルブ)と呼称する。以下、単に「可変静翼11」と記載した場合はIGV11aとOGV11bも含めるものとする。   FIG. 6 schematically shows an example of the vicinity of the rotating shaft of an axial compressor having a variable vane. As can be seen from the drawing, the conventional axial compressor includes a moving blade 10, a variable stationary blade 11, a rotating support shaft 12, a gas flow path 17, a casing 41, and a rotating shaft 42. The variable stator blade provided on the most upstream side is referred to as IGV (inlet guide valve) 11a, and the variable stator blade provided on the most downstream side is referred to as OGV (outlet guide valve). Hereinafter, the simple description of “variable stationary blade 11” includes IGV 11a and OGV 11b.

上述の動翼10は回転軸42に固定される。また可変静翼11は、ケーシング41を貫通する回転支持軸12により、ケーシング41に対して回動制御可能に支持されることで、翼角変更操作が可能となるものである。   The above-described moving blade 10 is fixed to the rotating shaft 42. Further, the variable stator blade 11 is supported by the rotation support shaft 12 penetrating the casing 41 so as to be able to rotate and control with respect to the casing 41, thereby enabling the blade angle changing operation.

但し、図6中には特に記載していないが、実際には静翼の全てが可変静翼11であるとは限らず、ケーシング41に対して固定された静翼もある。可変静翼11を支持する回転支持軸12がケーシング41を貫通しているのに対して、固定された静翼の支持軸はケーシング41を貫通していない。   However, although not specifically described in FIG. 6, not all the stationary blades are actually the variable stationary blades 11, and some stationary blades are fixed to the casing 41. The rotating support shaft 12 that supports the variable stationary blade 11 passes through the casing 41, whereas the fixed stationary blade support shaft does not penetrate the casing 41.

また、軸流圧縮機の中でも、圧縮機とブロアとでは可変静翼11が静翼の全てを占めるか或いは一部かという違いがある。   Further, among the axial flow compressors, the difference between the compressor and the blower is that the variable stationary blade 11 occupies all or a part of the stationary blade.

通常、多段軸流圧縮機及びブロアを含めた軸流圧縮機全般は、風量と出口付近の圧力とを安全な運転域に制御しながら運転される。ちなみに、気体流路17の中でも出口付近の圧力を計測する理由は、出口付近の圧力が最も高くなるためである。   In general, the entire axial flow compressor including the multistage axial flow compressor and the blower is operated while controlling the air volume and the pressure near the outlet in a safe operating range. Incidentally, the reason for measuring the pressure in the vicinity of the outlet in the gas flow path 17 is that the pressure in the vicinity of the outlet is the highest.

ところが、長期間点検されないままで運用している場合や、腐食雰囲気の環境で長時間運転された場合では、気体流路17に配置された動翼10への不純物の堆積または腐食による減肉等により、翼形状が経時変化しているケースがある。   However, when operated without being inspected for a long period of time or when operated for a long time in an environment of corrosive atmosphere, accumulation of impurities on the rotor blade 10 disposed in the gas flow path 17 or thickness reduction due to corrosion, etc. Therefore, there is a case where the blade shape changes with time.

特開2002−97970号公報JP 2002-97970 A 特開2005−90300号公報JP-A-2005-90300

上述のような状況下では、従来安全だと想定していた運転域においてもサージが発生する場合がある。サージは出口側から入口側へ向けて高速で伝達する。   Under the circumstances as described above, a surge may occur even in an operation region that is conventionally assumed to be safe. Surge is transmitted at high speed from the outlet side to the inlet side.

サージが発生した場合、気体流路の高圧ガス(空気含む。以下同様。)の持つエネルギーが翼に作用し、溶解或いは破損といった深刻な損傷が生じる。   When a surge occurs, the energy of the high-pressure gas (including air; the same applies hereinafter) in the gas flow path acts on the blade, causing serious damage such as melting or breakage.

翼が損傷すると、操業休止に伴う利益損失或いは交換作業コスト等により、ユーザにとって非常に大きなデメリットとなる。   If the wings are damaged, there will be a great disadvantage for the user due to loss of profits due to the suspension of operation or replacement work costs.

上記特許文献1では、圧縮機に抽気用流路を設けて気体を抽気し、気体流路の圧力を低下させる技術が記載されているが、抽気用流路についての具体的な構成が開示されていない。   In the above-mentioned Patent Document 1, a technique is described in which a bleed flow passage is provided in a compressor to bleed gas and the pressure of the gas flow passage is reduced. However, a specific configuration of the bleed flow passage is disclosed. Not.

そこで本発明では、軸流圧縮機の通常運転への影響を抑えながらサージ発生を防止することを目的とする。   Accordingly, an object of the present invention is to prevent the occurrence of surge while suppressing the influence on the normal operation of the axial flow compressor.

上記課題を解決する第1の発明に係る軸流圧縮機の減圧装置は、
軸流圧縮機のケーシングを貫通する支持軸により支持される静翼を有する前記軸流圧縮機の減圧装置であって、
前記静翼の、前記ケーシング内部の気体流路と接する面に位置する孔と、
前記孔から前記静翼内部と前記支持軸内部とを貫通し、前記気体流路の気体を前記孔から前記ケーシング外部へ導く内部通路とを備えることを特徴とする。
A decompression device for an axial compressor according to the first invention for solving the above-mentioned problems is
A pressure reducing device for an axial flow compressor having a stationary blade supported by a support shaft passing through a casing of the axial flow compressor,
A hole located on a surface of the stationary blade in contact with the gas flow path inside the casing;
An internal passage that penetrates the inside of the stationary blade and the inside of the support shaft from the hole and guides the gas in the gas channel from the hole to the outside of the casing is provided.

上記課題を解決する第2の発明に係る軸流圧縮機の減圧装置は、
上記第1の発明に係る軸流圧縮機の減圧装置において、
前記内部通路の前記支持軸側出口に、前記気体流路の圧力がサージの発生しない範囲で設定された所定圧力以上で大気開放状態となり、当該所定圧力未満で気密状態となる圧力制御機構を備えることを特徴とする。
A decompression device for an axial-flow compressor according to a second invention for solving the above-described problems is
In the decompression device for an axial flow compressor according to the first invention,
Provided at the support shaft side outlet of the internal passage is a pressure control mechanism in which the pressure of the gas flow path is opened to the atmosphere above a predetermined pressure set in a range where no surge occurs and becomes airtight below the predetermined pressure. It is characterized by that.

上記課題を解決する第3の発明に係る軸流圧縮機の減圧装置は、
上記第2の発明に係る軸流圧縮機の減圧装置において、
前記圧力制御機構は、
前記所定圧力で破壊される膜により第1空間と第2空間とに区切られ、当該第2空間は開口部を有することで大気開放状態となっているチャンバと、
前記内部通路の前記支持軸側出口と前記第1空間とを連通する導管とを備えることを特徴とする。
A decompression device for an axial compressor according to a third aspect of the present invention for solving the above problem is as follows.
In the decompression device for an axial compressor according to the second aspect of the invention,
The pressure control mechanism includes:
A chamber that is divided into a first space and a second space by a film that is destroyed by the predetermined pressure, and the second space has an opening, and is in an open air state;
And a conduit that communicates the support shaft side outlet of the internal passage with the first space.

上記課題を解決する第4の発明に係る軸流圧縮機の減圧装置は、
上記第2の発明に係る軸流圧縮機の減圧装置において、
前記圧力制御機構は、
弁を開閉することで大気開放状態と気密状態とに切り替え自在なチャンバと、
前記気体流路が前記所定圧力以上であれば前記弁を開け、前記気体流路が当該所定圧力未満であれば前記弁を閉じる制御を行う制御部と、
前記内部通路の前記支持軸側出口と前記チャンバとを連通する導管とを備えることを特徴とする。
A decompression device for an axial compressor according to a fourth aspect of the invention for solving the above-described problem is
In the decompression device for an axial compressor according to the second aspect of the invention,
The pressure control mechanism includes:
A chamber that can be switched between an open state and an airtight state by opening and closing a valve;
A control unit that performs control to open the valve if the gas flow path is equal to or higher than the predetermined pressure, and to close the valve if the gas flow path is lower than the predetermined pressure;
And a conduit communicating with the support shaft side outlet of the internal passage and the chamber.

上記課題を解決する第5の発明に係る軸流圧縮機の減圧装置は、
上記第2の発明に係る軸流圧縮機の減圧装置において、
前記所定圧力には、第1所定圧力と当該第1所定圧力よりも高い値である第2所定圧力とがあり、
前記圧力制御機構は、
前記第2所定圧力で破壊される膜により第1空間と第2空間とに区切られ、当該第1空間は弁を開閉することで大気開放状態と気密状態とに切り替え自在であり、当該第2空間は開口部を有することで大気開放状態とされているチャンバと、
前記気体流路が前記第1所定圧力以上であれば前記弁を開け、前記気体流路が当該第1所定圧力未満であれば前記弁を閉じる制御を行う制御部と、
前記内部通路の前記支持軸側出口と前記第1空間とを連通する導管とを備えることを特徴とする。
A decompression device for an axial-flow compressor according to a fifth aspect of the present invention that solves the above problem is as follows.
In the decompression device for an axial compressor according to the second aspect of the invention,
The predetermined pressure includes a first predetermined pressure and a second predetermined pressure that is higher than the first predetermined pressure.
The pressure control mechanism includes:
The film is broken into a first space and a second space by the film destroyed by the second predetermined pressure, and the first space can be switched between an open state and an airtight state by opening and closing a valve. The space has a chamber that is open to the atmosphere by having an opening, and
A control unit that performs control to open the valve if the gas flow path is equal to or higher than the first predetermined pressure, and to close the valve if the gas flow path is less than the first predetermined pressure;
And a conduit that communicates the support shaft side outlet of the internal passage with the first space.

上記第1の発明に係る軸流圧縮機の減圧装置によれば、軸流圧縮機の通常運転への影響を抑えながらサージ発生を防止することができる。   According to the decompression device for an axial compressor according to the first aspect of the present invention, it is possible to prevent the occurrence of surge while suppressing the influence on the normal operation of the axial compressor.

上記第2の発明に係る軸流圧縮機の減圧装置によれば、軸流圧縮機の通常運転への影響をより抑えながらサージ発生を防止することができる。   According to the decompression device for an axial compressor according to the second aspect of the present invention, it is possible to prevent the occurrence of surge while further suppressing the influence on the normal operation of the axial compressor.

上記第3の発明に係る軸流圧縮機の減圧装置によれば、所定圧力以上になると膜が破壊されるようにすることで、大気開放状態とし、サージ発生を防止できる。   According to the pressure reducing device for an axial compressor according to the third aspect of the present invention, the membrane is destroyed when the pressure exceeds a predetermined pressure, so that the atmosphere is released and surge can be prevented.

上記第4の発明に係る軸流圧縮機の減圧装置によれば、所定圧力以上になると弁を開けることで、大気開放状態とし、サージ発生を防止できる。   According to the decompression device for an axial compressor according to the fourth aspect of the present invention, when the pressure becomes equal to or higher than a predetermined pressure, the valve is opened, so that the atmosphere is opened, and the occurrence of surge can be prevented.

上記第5の発明に係る軸流圧縮機の減圧装置によれば、第1所定圧力以上となると弁を開けて減圧し、第2所定圧力まで急激に上昇した場合は、膜が破壊されるようにすることで、大気開放状態とし、サージ発生を防止できる。   According to the pressure reducing device for an axial flow compressor according to the fifth aspect of the present invention, when the pressure exceeds the first predetermined pressure, the valve is opened to reduce the pressure, and when the pressure rapidly rises to the second predetermined pressure, the membrane is broken. By making it open to the atmosphere, surge can be prevented.

本発明の実施例1における可変静翼についての概略図である。It is the schematic about the variable stator blade in Example 1 of this invention. 本発明の実施例1における鍔部近傍の概略的拡大図である。It is a schematic enlarged view of the vicinity of the buttocks in Embodiment 1 of the present invention. 本発明の実施例1に係る軸流圧縮機の減圧装置についての概略図である。It is the schematic about the decompression apparatus of the axial flow compressor which concerns on Example 1 of this invention. 本発明の実施例2に係る軸流圧縮機の減圧装置についての概略図である。It is the schematic about the decompression apparatus of the axial flow compressor which concerns on Example 2 of this invention. 本発明の実施例3に係る軸流圧縮機の減圧装置についての概略図である。It is the schematic about the decompression apparatus of the axial flow compressor which concerns on Example 3 of this invention. 可変静翼を有する軸流圧縮機の回転軸近傍の概略図である。It is the schematic of the rotating shaft vicinity of the axial flow compressor which has a variable stationary blade.

以下、本発明に係る軸流圧縮機の減圧装置を実施例にて図面を用いて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a decompression device for an axial flow compressor according to the present invention will be described with reference to the drawings in an embodiment.

本発明の実施例1に係る軸流圧縮機の減圧装置について図3の概略図を用いて説明する。図3に示すように、本装置は、可変静翼11、回転支持軸12、内部通路16、圧力導管20及びダイヤフラム弁21を備える。   A decompression device for an axial compressor according to Embodiment 1 of the present invention will be described with reference to the schematic diagram of FIG. As shown in FIG. 3, the present apparatus includes a variable stationary blade 11, a rotation support shaft 12, an internal passage 16, a pressure conduit 20, and a diaphragm valve 21.

上述の可変静翼11は、図1の概略図に示すように、鍔部13、翼面14及び孔15を備え、ケーシング41を貫通する回転支持軸12により、ケーシング41に対して回動制御可能に支持される。   As shown in the schematic diagram of FIG. 1, the above-described variable stationary blade 11 includes a flange portion 13, a blade surface 14, and a hole 15, and is controlled to rotate with respect to the casing 41 by a rotation support shaft 12 that penetrates the casing 41. Supported as possible.

上述の翼面14は気体流路17に位置し、上述の鍔部13の一部も気体流路17に接している。   The above-described blade surface 14 is located in the gas flow path 17, and a part of the above-described collar part 13 is also in contact with the gas flow path 17.

図1では翼面14に孔15が設けられている状態を示しているが、孔15を翼面14に設ける場合、背側ではなく腹側に設けるようにする方が軸流圧縮機の構造上より好ましい。   Although FIG. 1 shows a state in which the hole 15 is provided in the blade surface 14, when the hole 15 is provided in the blade surface 14, it is preferable to provide the hole 15 on the ventral side instead of the back side. More preferred.

さらに言えば、孔15の位置は翼面14に限定されるものではなく、可変静翼11の、ケーシング41内部の気体流路17に接する面であればよい。例えば図2に示す鍔部13近傍の拡大図のように、鍔部13の気体流路17と接する部分に孔15を設けてもよい。このように翼面14以外の部分に孔15を設けることで、通常運転時に気体の流れに与える影響を最小限に抑えることが可能となる。   Furthermore, the position of the hole 15 is not limited to the blade surface 14, and may be a surface of the variable stationary blade 11 that is in contact with the gas flow path 17 inside the casing 41. For example, as shown in the enlarged view of the vicinity of the flange 13 shown in FIG. Thus, by providing the hole 15 in a portion other than the blade surface 14, it is possible to minimize the influence on the gas flow during the normal operation.

但し、翼面14に孔15を設けたとしても、気体の流れに与える影響は孔15周りの空気の乱れによる僅かなものであるため、軸流圧縮機全体としての性能劣化は微小なものとなる。   However, even if the hole 15 is provided in the blade surface 14, the influence on the gas flow is slight due to the turbulence of the air around the hole 15, so that the performance deterioration of the entire axial flow compressor is small. Become.

上述の内部通路16は、図1,2に示すように、可変静翼11の孔15から可変静翼11内部と回転支持軸12内部とを貫通する中空構造であり、気体流路17の気体を孔15からケーシング41外部へ導くものである。   As shown in FIGS. 1 and 2, the internal passage 16 has a hollow structure that penetrates the inside of the variable stationary blade 11 and the inside of the rotary support shaft 12 from the hole 15 of the variable stationary blade 11. From the hole 15 to the outside of the casing 41.

尚、本装置では、軸流圧縮機に備わる全てまたは一部の可変静翼11を上述の構造とする。   In this apparatus, all or some of the variable stationary blades 11 provided in the axial compressor have the above-described structure.

サージは気体流路17下流側から発生するため、OGV11bに孔15及び内部通路16を集中配置してもよい。   Since the surge is generated from the downstream side of the gas flow path 17, the holes 15 and the internal passages 16 may be centrally arranged in the OGV 11b.

上述のダイヤフラム弁21は、所定圧力で破壊されるダイヤフラム膜22によって2つの空間a室とb室に区切られており、b室は開口部23を有することで大気開放状態となっているチャンバである。また、ここでは膜としてダイヤフラム膜22を用いているが、実際は膜の材質は限定されない。   The above-described diaphragm valve 21 is divided into two spaces a and b by a diaphragm film 22 that is broken at a predetermined pressure, and the chamber b has an opening 23 to open the atmosphere. is there. Moreover, although the diaphragm film | membrane 22 is used as a film | membrane here, the material of a film | membrane is not limited in fact.

上述の圧力導管20は、内部通路16の回転支持軸12側出口とダイヤフラム弁21のa室とを連通するものである。これによりa室は気体流路17と同じ圧力がかかることとなる。   The pressure conduit 20 described above communicates the outlet of the internal passage 16 on the side of the rotation support shaft 12 and the chamber a of the diaphragm valve 21. As a result, the same pressure as that of the gas flow path 17 is applied to the a chamber.

そして上記所定圧力は、サージ発生直前の圧力の値に設定する。このようにして、ダイヤフラム弁21は、軸流圧縮機の通常運転時には気体流路17の気体の系外(大気圧)への漏出を防ぎ、気体流路17の圧力がサージ発生直前の所定圧力になるとダイヤフラム膜22が破壊され、図3の白抜き矢印のように大気開放状態となる。   The predetermined pressure is set to a pressure value immediately before the occurrence of a surge. In this way, the diaphragm valve 21 prevents the gas in the gas passage 17 from leaking out of the system (atmospheric pressure) during normal operation of the axial compressor, and the pressure in the gas passage 17 is a predetermined pressure just before the occurrence of the surge. Then, the diaphragm film 22 is destroyed, and the air is released into the atmosphere as indicated by the white arrow in FIG.

よって本装置では、軸流圧縮機における気体流路17の気体が、複数の可変静翼11の内部通路16に連通する各圧力導管20を通り、ダイヤフラム弁21のa室に集約されるようにし、サージ発生直前に発生する高圧ガスによりa室が上記所定圧力以上になると、ダイヤフラム膜22が破壊されるようにすることで、高圧ガスがb室側を通過して系外に放出され、気体流路17が減圧される。   Therefore, in this apparatus, the gas in the gas flow path 17 in the axial flow compressor passes through the pressure conduits 20 communicating with the internal passages 16 of the plurality of variable stationary blades 11 and is concentrated in the a chamber of the diaphragm valve 21. When the chamber a becomes equal to or higher than the predetermined pressure due to the high pressure gas generated immediately before the occurrence of the surge, the diaphragm film 22 is destroyed so that the high pressure gas passes through the chamber b side and is released to the outside of the system. The flow path 17 is decompressed.

本装置を用いた軸流圧縮機は、特殊加工を施す箇所が可変静翼11と回転支持軸12内部のみであり、その他の部分の組み立ては従来通りであるため、製造工程が複雑化されず、設計図面も一部の追加のみで済み、通常運転中の可変静翼11の角度変更においても特殊な追加操作は不要であるという利点がある。   In the axial flow compressor using this apparatus, the special processing is performed only inside the variable stationary blade 11 and the rotary support shaft 12, and the assembly of other parts is the same as before, so the manufacturing process is not complicated. In addition, there is an advantage that only a part of the design drawing is added, and a special additional operation is not necessary even in changing the angle of the variable stationary blade 11 during normal operation.

尚、本装置で静翼の中でも特に可変静翼11を用いた理由は、可変静翼11を支持する回転支持軸12が、固定された静翼の支持軸とは異なり、ケーシング41を貫通していることから、気体流路17の気体を孔15からケーシング41外部へ導く内部通路16を加工しやすいためであり、翼角変更操作可能であること自体は必須の構成要件ではない。   The reason for using the variable stator blade 11 among the stator blades in this apparatus is that the rotary support shaft 12 that supports the variable stator blade 11 penetrates the casing 41, unlike the support shaft of the fixed stator blade. Therefore, the internal passage 16 that guides the gas in the gas flow path 17 from the hole 15 to the outside of the casing 41 can be easily processed, and the fact that the blade angle changing operation is possible is not an essential component.

以上、本発明の実施例1に係る軸流圧縮機の減圧装置について説明したが、例えば、上記特許文献2では圧縮機の入口に弁を設けて圧縮機に入ってくるガス流量を減少させるのに対し、本装置は換言すれば、軸流圧縮機のケーシング41を貫通する支持軸(回転支持軸12)により支持される静翼(可変静翼11)を有する軸流圧縮機の減圧装置であって、静翼の、ケーシング41内部の気体流路17と接する面に位置する孔15と、孔15から静翼内部と支持軸内部とを貫通する中空構造であり、気体流路17の気体を孔15からケーシング41外部へ導く内部通路16とを備えるものである。   As mentioned above, although the decompression apparatus of the axial flow compressor which concerns on Example 1 of this invention was demonstrated, in the said patent document 2, the valve is provided in the inlet of a compressor, for example, and the gas flow rate which enters a compressor is reduced. On the other hand, this device is, in other words, a pressure reducing device for an axial flow compressor having a stationary blade (variable stationary blade 11) supported by a support shaft (rotating support shaft 12) that penetrates the casing 41 of the axial flow compressor. And a hole 15 located on a surface of the stationary blade that is in contact with the gas flow path 17 inside the casing 41, and a hollow structure that penetrates the inside of the stationary blade and the support shaft from the hole 15. And an internal passage 16 that guides the air from the hole 15 to the outside of the casing 41.

これにより、軸流圧縮機の通常運転への影響を抑えながらサージ発生を防止することができる。   Thereby, the occurrence of surge can be prevented while suppressing the influence on the normal operation of the axial compressor.

さらに本装置は、内部通路16の支持軸側出口に、気体流路17の圧力がサージの発生しない範囲で設定された所定圧力以上で大気開放状態となり、当該所定圧力未満で気密状態となる圧力制御機構を備えるものである。   Further, the present apparatus has a pressure at the outlet of the support shaft side of the internal passage 16 where the pressure of the gas flow path 17 is open to the atmosphere when the pressure is not less than a predetermined pressure set in a range where no surge occurs and becomes airtight when the pressure is less than the predetermined pressure. A control mechanism is provided.

これにより、軸流圧縮機の通常運転への影響をより抑えながらサージ発生を防止することができる。   Thereby, it is possible to prevent the occurrence of surge while further suppressing the influence on the normal operation of the axial compressor.

また上記圧力制御機構は、所定圧力で破壊される膜(ダイヤフラム膜22)により第1空間(a室)と第2空間(b室)とに区切られ、第2空間は開口部23を有することで大気開放状態となっているチャンバ(ダイヤフラム弁21)と、内部通路16の支持軸側出口と第1空間とを連通する導管(圧力導管20)とを備えるものである。   The pressure control mechanism is divided into a first space (a chamber) and a second space (b chamber) by a film (diaphragm film 22) that is broken at a predetermined pressure, and the second space has an opening 23. And a chamber (diaphragm valve 21) that is open to the atmosphere, and a conduit (pressure conduit 20) that communicates the support shaft side outlet of the internal passage 16 and the first space.

これにより、所定圧力以上になると膜が破壊されるようにすることで、大気開放状態とし、サージ発生を防止できる。   Thereby, when the pressure exceeds a predetermined pressure, the film is destroyed, so that the atmosphere is opened and surge can be prevented.

本発明の実施例2に係る軸流圧縮機の減圧装置は、実施例1に係る軸流圧縮機の減圧装置における圧力制御機構を変更したものである。   The decompression device for an axial compressor according to the second embodiment of the present invention is obtained by changing the pressure control mechanism in the decompression device for an axial compressor according to the first embodiment.

本発明の実施例2に係る軸流圧縮機の減圧装置について図4を用いて説明する。図4に示すように、本装置は、可変静翼11、回転支持軸12、内部通路16、圧力導管20、チャンバ31、モータ駆動弁32、圧力センサ33及び制御部34を備える。可変静翼11、回転支持軸12、内部通路16及び圧力導管20については、実施例1に係る軸流圧縮機の減圧装置と同様であるため、説明は省略する。   A decompression device for an axial compressor according to Embodiment 2 of the present invention will be described with reference to FIG. As shown in FIG. 4, the apparatus includes a variable stationary blade 11, a rotation support shaft 12, an internal passage 16, a pressure conduit 20, a chamber 31, a motor drive valve 32, a pressure sensor 33, and a control unit 34. Since the variable stationary blade 11, the rotation support shaft 12, the internal passage 16, and the pressure conduit 20 are the same as those in the pressure reducing device for an axial compressor according to the first embodiment, the description thereof is omitted.

上述のチャンバ31は、各圧力導管20により内部通路16の回転支持軸12側出口と連通し、各圧力導管20から導かれる気体流路17の気体が集約される。   The chamber 31 is communicated with the rotary support shaft 12 side outlet of the internal passage 16 by each pressure conduit 20, and the gas in the gas flow path 17 guided from each pressure conduit 20 is collected.

上述のモータ駆動弁32は、制御部34により開閉が制御されることで、チャンバ31を大気開放状態あるいは気密状態に切り替える弁である。   The motor-driven valve 32 described above is a valve that switches the chamber 31 to an open state or an airtight state by opening and closing being controlled by the control unit 34.

上述の圧力センサ33は、気体流路17の圧力を検出するセンサである。   The pressure sensor 33 described above is a sensor that detects the pressure in the gas flow path 17.

上述の制御部34は、圧力センサ33で検出した圧力を基に、モータ駆動弁32の開閉を制御するものである。例えばPC等を制御部34として用いてもよい。   The above-described control unit 34 controls the opening and closing of the motor drive valve 32 based on the pressure detected by the pressure sensor 33. For example, a PC or the like may be used as the control unit 34.

即ち制御部34は、圧力センサ33によって検出した気体流路17の圧力が、所定圧力未満(通常運転時)であればモータ駆動弁32を閉じることでチャンバ31を気密状態とし、気体流路17の気体の漏出を防ぎ、所定圧力以上であればモータ駆動弁32を開け図4の白抜き矢印のように大気開放状態とし、気体流路17が減圧する。減圧後はモータ駆動弁32を閉じ、通常運転を再開する。上記所定圧力は、サージ発生直前の圧力の値に設定する。尚、モータ駆動弁32の開閉制御には、例えば電気信号によるリレー回路等を用いてもよい。   That is, if the pressure of the gas flow path 17 detected by the pressure sensor 33 is less than a predetermined pressure (during normal operation), the control unit 34 closes the motor drive valve 32 to bring the chamber 31 into an airtight state. If the pressure is equal to or higher than the predetermined pressure, the motor drive valve 32 is opened to open the atmosphere as indicated by the white arrow in FIG. After decompression, the motor drive valve 32 is closed and normal operation is resumed. The predetermined pressure is set to a pressure value immediately before the occurrence of a surge. For opening / closing control of the motor driven valve 32, for example, a relay circuit using an electric signal may be used.

このようにして、軸流圧縮機における気体流路17の気体が、複数の可変静翼11の内部通路16に連通する各圧力導管20を通り、チャンバ31に集約され、同時に気体流路17圧力を圧力センサ33で常時監視する。サージ発生直前に発生する高圧ガスによりチャンバ31が所定圧力以上になると、モータ駆動弁32を開くことで高圧ガスを系外に放出し、気体流路17が減圧される。減圧後はモータ駆動弁32を閉じ、通常運転を再開する。   Thus, the gas in the gas flow path 17 in the axial compressor passes through the pressure conduits 20 communicating with the internal passages 16 of the plurality of variable stationary blades 11 and is collected in the chamber 31 and simultaneously the pressure in the gas flow path 17. Is constantly monitored by the pressure sensor 33. When the chamber 31 reaches a predetermined pressure or higher due to the high-pressure gas generated immediately before the occurrence of the surge, the high-pressure gas is released out of the system by opening the motor drive valve 32, and the gas flow path 17 is decompressed. After decompression, the motor drive valve 32 is closed and normal operation is resumed.

また、サージは気体流路17下流側から発生するため、圧力センサ33をOGV11b近傍に設置し、OGV11b近傍の検出値を制御に用いてもよい。   Further, since the surge is generated from the downstream side of the gas flow path 17, the pressure sensor 33 may be installed in the vicinity of the OGV 11b, and the detection value in the vicinity of the OGV 11b may be used for control.

以上、本発明の実施例2に係る軸流圧縮機の減圧装置について説明したが、換言すれば本装置は、実施例1に係る軸流圧縮機の減圧装置とは圧力制御機構が異なり、本装置の圧力制御機構は、弁(モータ駆動弁32)を開閉することで大気開放状態と気密状態とに切り替え自在なチャンバ31と、気体流路17が所定圧力以上であれば弁を開け、気体流路17が所定圧力未満であれば弁を閉じる制御を行う制御部34と、内部通路16の支持軸(回転支持軸12)側出口とチャンバ31とを連通する導管(圧力導管20)とを備えるものである。   As described above, the decompression device for the axial flow compressor according to the second embodiment of the present invention has been described. In other words, this device has a pressure control mechanism different from that of the decompression device for the axial flow compressor according to the first embodiment. The pressure control mechanism of the apparatus opens and closes the chamber 31 that can be switched between an open state and an airtight state by opening and closing a valve (motor-driven valve 32) and the gas flow path 17 is a predetermined pressure or higher. If the flow path 17 is less than a predetermined pressure, the control part 34 which performs control which closes a valve, and the conduit | pipe (pressure conduit | pipe 20) which connects the support shaft (rotary support shaft 12) side exit of the internal channel 16 and the chamber 31 are communicated. It is to be prepared.

これにより、所定圧力以上になると弁を開けることで、大気開放状態とし、サージ発生を防止できる。   Thus, when the pressure exceeds a predetermined pressure, the valve is opened to open the atmosphere, and surge can be prevented.

本発明の実施例3に係る軸流圧縮機の減圧装置は、実施例1に係る軸流圧縮機の減圧装置における圧力制御機構と実施例2に係る軸流圧縮機の減圧装置における圧縮制御機構とを組み合わせたものであり、所定圧力として、第1所定圧力と第1所定圧力よりも高い値である第2所定圧力とを設定する。また、第2所定圧力はサージ発生直前の圧力とする。   The decompression device for an axial compressor according to the third embodiment of the present invention includes a pressure control mechanism in the decompression device for the axial compressor according to the first embodiment and a compression control mechanism in the decompression device for the axial compressor according to the second embodiment. The first predetermined pressure and the second predetermined pressure that is higher than the first predetermined pressure are set as the predetermined pressure. The second predetermined pressure is the pressure immediately before the occurrence of the surge.

本発明の実施例3に係る軸流圧縮機の減圧装置について図5を用いて説明する。図5に示すように、本装置は、可変静翼11、回転支持軸12、内部通路16、圧力導管20、ダイヤフラム弁21、モータ駆動弁32、圧力センサ33及び制御部34を備える。可変静翼11、回転支持軸12、内部通路16、圧力導管20及び圧力センサ33は、実施例1,2に係る軸流圧縮機の減圧装置と同様のため、説明は省略する。   A decompression device for an axial compressor according to a third embodiment of the present invention will be described with reference to FIG. As shown in FIG. 5, the apparatus includes a variable stationary blade 11, a rotation support shaft 12, an internal passage 16, a pressure conduit 20, a diaphragm valve 21, a motor drive valve 32, a pressure sensor 33, and a control unit 34. Since the variable stationary blade 11, the rotation support shaft 12, the internal passage 16, the pressure conduit 20, and the pressure sensor 33 are the same as those of the decompression device of the axial flow compressor according to the first and second embodiments, the description thereof is omitted.

上述のダイヤフラム弁21は、第2所定圧力で破壊されるダイヤフラム膜22によって2つの空間a室とb室に区切られており、b室は開口部23を有することで大気開放状態となっているチャンバである。   The above-described diaphragm valve 21 is divided into two spaces a and b by a diaphragm film 22 that is broken at a second predetermined pressure, and the chamber b is open to the atmosphere by having an opening 23. Chamber.

上述のダイヤフラム弁21のa室には、モータ駆動弁32が設けられ、モータ駆動弁32を開閉することで大気開放状態と気密状態とに切り替え自在となっている。   A motor drive valve 32 is provided in the a chamber of the diaphragm valve 21 described above, and can be switched between an open state and an airtight state by opening and closing the motor drive valve 32.

上述の制御部34は、圧力センサ33によって検出した気体流路17の圧力が、第1所定圧力未満であればモータ駆動弁32を閉じることでダイヤフラム弁21のa室を気密状態とし、気体流路17の気体の漏出を防ぎ、第1所定圧力以上であればモータ駆動弁32を開けて大気開放状態とし、気体流路17が減圧する。減圧後はモータ駆動弁32を閉じ、通常運転を再開する。   If the pressure of the gas flow path 17 detected by the pressure sensor 33 is less than the first predetermined pressure, the control unit 34 closes the motor drive valve 32 to bring the chamber a of the diaphragm valve 21 into an airtight state. Gas leakage in the passage 17 is prevented, and if the pressure is equal to or higher than the first predetermined pressure, the motor drive valve 32 is opened to open the atmosphere, and the gas passage 17 is decompressed. After decompression, the motor drive valve 32 is closed and normal operation is resumed.

このようにして、軸流圧縮機の通常運転時には、モータ駆動弁32が閉じられることで気密状態とし、第1所定圧力以上となるとモータ駆動弁32を開けて減圧し、サージ発生直前の第2所定圧力まで急激に上昇した場合は、ダイヤフラム膜22が破壊されるようにすることで、大気開放状態とし、気体流路17を減圧する。   In this manner, during normal operation of the axial compressor, the motor drive valve 32 is closed to be in an airtight state, and when the pressure exceeds the first predetermined pressure, the motor drive valve 32 is opened to reduce the pressure, and the second immediately before the occurrence of the surge. When the pressure suddenly rises to a predetermined pressure, the diaphragm film 22 is broken so as to release the atmosphere, and the gas flow path 17 is decompressed.

以上、本発明の実施例3に係る軸流圧縮機の減圧装置について説明したが、換言すれば本装置は、実施例1,2に係る軸流圧縮機の減圧装置とは圧力制御機構が異なり、本装置においては、まず所定圧力に、第1所定圧力と第1所定圧力よりも高い値である第2所定圧力とがあり、圧力制御機構は、第2所定圧力で破壊される膜(ダイヤフラム膜22)により第1空間(a室)と第2空間(b室)とに区切られ、第1空間は弁(モータ駆動弁32)を開閉することで大気開放状態と気密状態とに切り替え自在であり、第2空間は開口部23を有することで大気開放状態とされているチャンバ(ダイヤフラム弁21)と、気体流路17が第1所定圧力以上であれば弁を開け、気体流路17が第1所定圧力未満であれば弁を閉じる制御を行う制御部34と、内部通路16の支持軸(回転支持軸12)側出口と第1空間とを連通する導管(圧力導管20)とを備えるものである。   As described above, the decompression device for the axial flow compressor according to the third embodiment of the present invention has been described. In other words, this device has a different pressure control mechanism from the decompression device for the axial flow compressor according to the first and second embodiments. In the present apparatus, first, the predetermined pressure includes a first predetermined pressure and a second predetermined pressure that is higher than the first predetermined pressure, and the pressure control mechanism detects a film (diaphragm) that is destroyed at the second predetermined pressure. The membrane 22) is divided into a first space (a chamber) and a second space (b chamber), and the first space can be switched between an open state and an airtight state by opening and closing a valve (motor-driven valve 32). The second space has an opening 23 to open the atmosphere (diaphragm valve 21), and if the gas flow path 17 is equal to or higher than the first predetermined pressure, the valve is opened and the gas flow path 17 Control to close the valve if the pressure is less than the first predetermined pressure 34, in which and a conduit (pressure line 20) which communicates the support shaft (rotation shaft 12) side outlet and the first space of the internal passage 16.

これにより、第1所定圧力以上となると弁を開けて減圧し、第2所定圧力まで急激に上昇した場合は、膜が破壊されるようにすることで、大気開放状態とし、サージ発生を防止できる。   As a result, when the pressure exceeds the first predetermined pressure, the valve is opened to reduce the pressure, and when the pressure rapidly rises to the second predetermined pressure, the film is destroyed, so that the air is released and surge can be prevented. .

本発明の実施例1〜3に係る軸流圧縮機の減圧装置は、軸流圧縮機に適用可能なものである。但し、ここでの軸流圧縮機とは多段軸流圧縮機及びブロアも含めるものである。   The decompression device for an axial flow compressor according to Embodiments 1 to 3 of the present invention is applicable to an axial flow compressor. However, the axial compressor here includes a multistage axial compressor and a blower.

本発明は、軸流圧縮機の減圧装置として好適である。   The present invention is suitable as a pressure reducing device for an axial compressor.

10 動翼
11 可変静翼
11a IGV
11b OGV
12 (可変静翼の)回転支持軸
13 鍔部
14 翼面
15 孔
16 内部通路
17 気体流路
20 圧力導管
21 ダイヤフラム弁
22 ダイヤフラム膜
23 開口部
31 チャンバ
32 モータ駆動弁
33 圧力センサ
34 制御部
41 ケーシング
42 (軸流圧縮機の)回転軸
10 Moving blade 11 Variable stator blade 11a IGV
11b OGV
12 Rotating Support Shaft 13 (Variable Stator Blade) 13 Ridge 14 Blade Surface 15 Hole 16 Internal Passage 17 Gas Flow Path 20 Pressure Conduit 21 Diaphragm Valve 22 Diaphragm Film 23 Opening 31 Chamber 32 Motor Drive Valve 33 Pressure Sensor 34 Control Unit 41 Casing 42 Rotating shaft (for axial compressor)

Claims (5)

軸流圧縮機のケーシングを貫通する支持軸により支持される静翼を有する前記軸流圧縮機の減圧装置であって、
前記静翼の、前記ケーシング内部の気体流路と接する面に位置する孔と、
前記孔から前記静翼内部と前記支持軸内部とを貫通し、前記気体流路の気体を前記孔から前記ケーシング外部へ導く内部通路とを備えることを特徴とする軸流圧縮機の減圧装置。
A pressure reducing device for an axial flow compressor having a stationary blade supported by a support shaft passing through a casing of the axial flow compressor,
A hole located on a surface of the stationary blade in contact with the gas flow path inside the casing;
A pressure reducing device for an axial flow compressor, comprising: an internal passage that penetrates the inside of the stationary blade and the inside of the support shaft from the hole and guides the gas in the gas passage from the hole to the outside of the casing.
前記内部通路の前記支持軸側出口に、前記気体流路の圧力がサージの発生しない範囲で設定された所定圧力以上で大気開放状態となり、当該所定圧力未満で気密状態となる圧力制御機構を備えることを特徴とする請求項1に記載の軸流圧縮機の減圧装置。   Provided at the support shaft side outlet of the internal passage is a pressure control mechanism in which the pressure of the gas flow path is opened to the atmosphere above a predetermined pressure set in a range where no surge occurs and becomes airtight below the predetermined pressure. The decompression device for an axial compressor according to claim 1. 前記圧力制御機構は、
前記所定圧力で破壊される膜により第1空間と第2空間とに区切られ、当該第2空間は開口部を有することで大気開放状態となっているチャンバと、
前記内部通路の前記支持軸側出口と前記第1空間とを連通する導管とを備えることを特徴とする請求項2に記載の軸流圧縮機の減圧装置。
The pressure control mechanism includes:
A chamber that is divided into a first space and a second space by a film that is destroyed by the predetermined pressure, and the second space has an opening, and is in an open air state;
The decompression device for an axial-flow compressor according to claim 2, further comprising a conduit that communicates the support shaft side outlet of the internal passage with the first space.
前記圧力制御機構は、
弁を開閉することで大気開放状態と気密状態とに切り替え自在なチャンバと、
前記気体流路が前記所定圧力以上であれば前記弁を開け、前記気体流路が当該所定圧力未満であれば前記弁を閉じる制御を行う制御部と、
前記内部通路の前記支持軸側出口と前記チャンバとを連通する導管とを備えることを特徴とする請求項2に記載の軸流圧縮機の減圧装置。
The pressure control mechanism includes:
A chamber that can be switched between an open state and an airtight state by opening and closing a valve;
A control unit that performs control to open the valve if the gas flow path is equal to or higher than the predetermined pressure, and to close the valve if the gas flow path is lower than the predetermined pressure;
The decompression device for an axial-flow compressor according to claim 2, further comprising a conduit that communicates the support shaft side outlet of the internal passage and the chamber.
前記所定圧力には、第1所定圧力と当該第1所定圧力よりも高い値である第2所定圧力とがあり、
前記圧力制御機構は、
前記第2所定圧力で破壊される膜により第1空間と第2空間とに区切られ、当該第1空間は弁を開閉することで大気開放状態と気密状態とに切り替え自在であり、当該第2空間は開口部を有することで大気開放状態とされているチャンバと、
前記気体流路が前記第1所定圧力以上であれば前記弁を開け、前記気体流路が当該第1所定圧力未満であれば前記弁を閉じる制御を行う制御部と、
前記内部通路の前記支持軸側出口と前記第1空間とを連通する導管とを備えることを特徴とする請求項2に記載の軸流圧縮機の減圧装置。
The predetermined pressure includes a first predetermined pressure and a second predetermined pressure that is higher than the first predetermined pressure.
The pressure control mechanism includes:
The film is broken into a first space and a second space by the film destroyed by the second predetermined pressure, and the first space can be switched between an open state and an airtight state by opening and closing a valve. The space has a chamber that is open to the atmosphere by having an opening, and
A control unit that performs control to open the valve if the gas flow path is equal to or higher than the first predetermined pressure, and to close the valve if the gas flow path is less than the first predetermined pressure;
The decompression device for an axial-flow compressor according to claim 2, further comprising a conduit that communicates the support shaft side outlet of the internal passage with the first space.
JP2012248525A 2012-11-12 2012-11-12 Decompression device of axial flow compressor Pending JP2014095366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012248525A JP2014095366A (en) 2012-11-12 2012-11-12 Decompression device of axial flow compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012248525A JP2014095366A (en) 2012-11-12 2012-11-12 Decompression device of axial flow compressor

Publications (1)

Publication Number Publication Date
JP2014095366A true JP2014095366A (en) 2014-05-22

Family

ID=50938625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012248525A Pending JP2014095366A (en) 2012-11-12 2012-11-12 Decompression device of axial flow compressor

Country Status (1)

Country Link
JP (1) JP2014095366A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016104972A (en) * 2014-12-01 2016-06-09 三菱日立パワーシステムズ株式会社 Axial-flow compressor
JP2021088978A (en) * 2019-12-05 2021-06-10 三菱重工業株式会社 Crude oil mining pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016104972A (en) * 2014-12-01 2016-06-09 三菱日立パワーシステムズ株式会社 Axial-flow compressor
JP2021088978A (en) * 2019-12-05 2021-06-10 三菱重工業株式会社 Crude oil mining pump
JP7267181B2 (en) 2019-12-05 2023-05-01 三菱重工業株式会社 oil drilling pump

Similar Documents

Publication Publication Date Title
US9151182B2 (en) System and method for removing heat from a turbomachine
JP4857766B2 (en) Centrifugal compressor and dry gas seal system used therefor
JP2021511645A (en) Turbo machines, fuel cell systems, how to operate turbo machines, and how to operate fuel cell systems, especially for fuel cell systems
JP4982476B2 (en) Radial flow type fluid machine
RU2016105709A (en) Fan cooled electric machine with axial load compensation
KR20190015554A (en) How gas turbines and gas turbines operate
JP6637434B2 (en) Method and system for operating a back-to-back compressor with sidestream
JP6643235B2 (en) Multistage centrifugal compressor
JP2008309123A (en) Centrifugal compressor casing
JP2008215107A (en) Compressor
JP2014095366A (en) Decompression device of axial flow compressor
JP6302484B2 (en) Method, turbine, and turbine engine for thrust balancing
JP7204524B2 (en) compressor
KR20030048885A (en) The structure for preventing the reverse - rotation of centrifugal compressor
JP2011214405A (en) Centrifugal compressor with thrust canceling mechanism
WO2018043072A1 (en) Vacuum pump and rotary cylindrical body installed in vacuum pump
JP3010529B1 (en) Vacuum pump and vacuum device
JP2005240573A (en) Two-shaft gas turbine and its cooling air admission method
KR20140135103A (en) Compression apparatus
JP2004308597A (en) High altitude performance testing device and pressure control method for the same
JP5881390B2 (en) Rotating machine
US20150322959A1 (en) Turbo machine and method for the operation thereof
JP2011099389A (en) Centrifugal compressor
JP2007247408A (en) Testing device for turbocharger
JP2006183465A (en) Centrifugal compressor