JP2014095296A - Screw compressor - Google Patents

Screw compressor Download PDF

Info

Publication number
JP2014095296A
JP2014095296A JP2012245494A JP2012245494A JP2014095296A JP 2014095296 A JP2014095296 A JP 2014095296A JP 2012245494 A JP2012245494 A JP 2012245494A JP 2012245494 A JP2012245494 A JP 2012245494A JP 2014095296 A JP2014095296 A JP 2014095296A
Authority
JP
Japan
Prior art keywords
male
female
rotor
casing
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012245494A
Other languages
Japanese (ja)
Other versions
JP6088212B2 (en
Inventor
Kotaro Chiba
紘太郎 千葉
Masahiko Takano
正彦 高野
Tomoyuki Sumi
知之 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2012245494A priority Critical patent/JP6088212B2/en
Priority to CN201310342634.0A priority patent/CN103807178B/en
Publication of JP2014095296A publication Critical patent/JP2014095296A/en
Application granted granted Critical
Publication of JP6088212B2 publication Critical patent/JP6088212B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a screw compressor capable of sealing a clearance gap between backward faces of male and female rotors by a liquid supplied from the external of the compressor.SOLUTION: A screw compressor includes: a pair of male and female rotors 2, 3 having spiral lobes 2t, 3t and rotated while engaged with each other; a casing 4; and a liquid supply opening 25 formed on a casing suction-side inner wall 9 opposed to suction-side end faces 2p, 3p of the male and female rotors 2, 3, communicated to a region between a tooth bottom diameter r1 and a tooth tip diameter r3 of the suction-side end face 2p of the male rotor 3 on an axial center 26 of the female rotor 3 as a center, and positioned within an angular range between an intersection 27 of a female rotor-side bore wb and a male rotor-side bore mb of the casing 4, and a male rotor shaft center 28, to supply the liquid into the casing 4. The suction-side end faces 2p, 3p of the male and female rotors 2, 3 surrounding the liquid supply opening 25 and the casing suction-side inner wall 9 are disposed in adjacent to each other to prevent leakage of the liquid.

Description

本発明は、スクリュー圧縮機に関する。   The present invention relates to a screw compressor.

スクリュー圧縮機は、螺旋状のローブを持ち互いに噛み合って回転する雄・雌一対のロータ、該一対のロータを収納するケーシング、および雄・雌両ロータをそれぞれ回転自在に支持するための吸込側軸受と吐出側軸受によって構成される。   A screw compressor includes a pair of male and female rotors that have a helical lobe and rotate in mesh with each other, a casing that houses the pair of rotors, and a suction-side bearing for rotatably supporting both male and female rotors And a discharge-side bearing.

図9は、スクリュー圧縮機101のケーシング内を斜め上方の軸方向から目視した内部構成図である。
一般的に、雄ロータ102は吸込側端部に駆動軸のシャフト部102sを有し、シャフト部102sがスクリュー圧縮機101の外部において回転駆動源に接続される。
すなわち、雄ロータ102が外部動力により駆動され、雄ロータ102の駆動により、雌ロータ103が駆動される構成である。換言すれば、雄ロータ102が駆動ロータであり、雌ロータ103は従動ロータを構成している。
FIG. 9 is an internal configuration diagram of the inside of the casing of the screw compressor 101 viewed from an obliquely upward axial direction.
In general, the male rotor 102 has a shaft portion 102 s of a drive shaft at the suction side end portion, and the shaft portion 102 s is connected to a rotational drive source outside the screw compressor 101.
That is, the male rotor 102 is driven by external power, and the female rotor 103 is driven by driving the male rotor 102. In other words, the male rotor 102 is a drive rotor, and the female rotor 103 constitutes a driven rotor.

また、吸込側軸受と雄・雌両ロータ102、103の吸込側(図9の手前側)の端部、および吐出側軸受と雄・雌両ロータ102、103の吐出側(図9の奧側)端部の間には、シャフト部102s、103sを除いて、それぞれ吸込側・吐出側軸受と雄・雌両ロータ102、103とが画設される隔壁が設けられている。   Further, the suction side bearing and the end of the male and female rotors 102 and 103 on the suction side (front side in FIG. 9), and the discharge side bearing and the discharge side of both the male and female rotors 102 and 103 (inner side in FIG. 9). ) Between the end portions, except for the shaft portions 102s and 103s, there are provided partition walls in which the suction side and discharge side bearings and both the male and female rotors 102 and 103 are defined.

回転駆動源によって回転駆動される雄ロータ102は、もう一方の雌ロータ103を回転駆動し、雄・雌両ロータ102、103の歯溝102m、103mとそれを囲むケーシングの内壁面とで形成される作動室が、膨張することによって負圧となり空気等の流体を吸込んで、収縮することによって容積を減少させ、空気等の気体を圧縮する。
この作動室には、他の空間と連通するすき間が複数あり、これらのすき間は作動室内の圧縮気体の他空間への内部漏洩の流路となる。
The male rotor 102 that is rotationally driven by the rotational drive source is configured to rotate the other female rotor 103, and is formed by the tooth grooves 102m and 103m of both the male and female rotors 102 and 103 and the inner wall surface of the casing that surrounds them. When the working chamber expands, it becomes negative pressure, sucks in fluid such as air, and contracts to reduce volume and compresses gas such as air.
This working chamber has a plurality of gaps communicating with other spaces, and these gaps serve as a flow path for internal leakage to the other space of the compressed gas in the working chamber.

特に、雄・雌両ロータ102、103が接触または近接して雌ロータ103が駆動される駆動面(シールラインs100(s101、s102))の反回転側(吸込側)の面の後進面の間に形成されるすき間(シールラインs102)は、すき間の大きさおよびすき間を介した他空間との圧力差が他のすき間に較べて大きいため、他空間への気体の漏洩量が大きく、圧縮機効率を低下させる主な要因となる。なお、後進面の間に形成されるすき間とは、シールラインs102を形成する雄・雌両ロータ102、103の反回転側(吸込側)の間のすき間をいう。
このすき間の密閉、雄・雌ロータ102、103の摺動部の潤滑、および圧縮気体の冷却を目的として、圧縮機外部から作動室内に液体を注入するスクリュー圧縮機がある。
In particular, between the reverse surface of the surface on the counter-rotation side (suction side) of the drive surface (seal line s100 (s101, s102)) on which the female rotor 103 is driven in contact with or close to both the male and female rotors 102, 103 Since the gap (seal line s102) formed in the gap has a larger gap size and a larger pressure difference with the other space through the gap, the amount of gas leakage to the other space is large. It is the main factor that reduces efficiency. The gap formed between the reverse surfaces refers to a gap between the counter-rotating side (suction side) of both the male and female rotors 102 and 103 forming the seal line s102.
There is a screw compressor that injects liquid into the working chamber from the outside of the compressor for the purpose of sealing the gap, lubricating the sliding portions of the male and female rotors 102 and 103, and cooling the compressed gas.

この類のスクリュー圧縮機に関して、例えば特許文献1に給油式スクリュー圧縮機が開示されている。特許文献1に記載の給油式スクリュー圧縮機では、ケーシングのボア部において、雌雄両ロータの歯溝の長手方向中央部に給油ノズルが設けられている。
また、特許文献2には、吸込側軸受が収納された空間とスクリューロータが収納された空間との間の隔壁に、吸込側軸受の内部を通過した後の潤滑油をスクリューロータ側に流して回収する第1の回収孔および第2の回収穴とを備えたことを特徴とするスクリュー圧縮機が開示されている。
With regard to this type of screw compressor, for example, Patent Document 1 discloses an oil supply type screw compressor. In the oil supply type screw compressor described in Patent Document 1, an oil supply nozzle is provided in the longitudinal center portion of the tooth groove of both the male and female rotors in the bore portion of the casing.
Further, in Patent Document 2, lubricating oil after passing through the inside of the suction side bearing is caused to flow to the screw rotor side through a partition between the space in which the suction side bearing is accommodated and the space in which the screw rotor is accommodated. A screw compressor including a first recovery hole and a second recovery hole to be recovered is disclosed.

特開2001−153073号公報(図1、図2等)Japanese Patent Laying-Open No. 2001-153073 (FIG. 1, FIG. 2, etc.) 特許第4066038号公報(図1等)Japanese Patent No. 4066038 (FIG. 1 etc.)

ところで、特許文献1に記載された構成は、ケーシングのボア部に給油ノズルが設けられた場合、給油ノズルから給油された潤滑油は回転する雌雄両ロータの遠心力を受けてケーシングの内壁面に向けて移動し、ケーシングの内壁面に付着する。
特許文献2に記載のスクリュー圧縮機は、吸込側軸受に供給される潤滑油を、第2の回収穴を設けることで低減し、吸い込み側軸受けの撹拌ロスを低減することができる。なお、第1の回収穴および第2の回収穴の位置については、潤滑油を雄ロータまたは雌ロータの半径方向の位置に関してのみ記載がある。
By the way, in the configuration described in Patent Document 1, when an oil supply nozzle is provided in the bore portion of the casing, the lubricating oil supplied from the oil supply nozzle receives the centrifugal force of the rotating male and female rotors and is applied to the inner wall surface of the casing. It moves toward and adheres to the inner wall surface of the casing.
The screw compressor described in Patent Document 2 can reduce the lubricating oil supplied to the suction side bearing by providing the second recovery hole, and can reduce the agitation loss of the suction side bearing. In addition, about the position of a 1st collection | recovery hole and a 2nd collection | recovery hole, there exists description only about the position of the lubricating oil in the radial direction of a male rotor or a female rotor.

特許文献1および特許文献2に記載のスクリュー圧縮機については、いずれも給油後の潤滑油が回転する雄・雌両ロータの遠心力によってケーシングの内壁面に付着する懸念がある。従って、潤滑油による密閉が特に必要な雄・雌両ロータ102、103の後進面の間に形成されるすき間は、雌ロータ103の外径より内側の位置であることから、当該すき間には潤滑油が届きにくいという課題がある。
さらには、ケーシングの内壁面に付着した潤滑油を、雄・雌両ロータ102、103がローブの歯先で攪拌するため、潤滑油が雄・雌両ロータ102、103の回転に際しての抵抗(トルク)となり、損失動力が大きくなる課題も生じる。
Regarding the screw compressors described in Patent Document 1 and Patent Document 2, there is a concern that the lubricating oil after refueling adheres to the inner wall surface of the casing due to the centrifugal force of both the male and female rotors rotating. Therefore, since the gap formed between the reverse surfaces of both the male and female rotors 102 and 103, which need to be sealed with lubricating oil, is a position inside the outer diameter of the female rotor 103, the gap is lubricated. There is a problem that oil is difficult to reach.
Furthermore, since the male and female rotors 102 and 103 agitate the lubricating oil adhering to the inner wall surface of the casing at the tips of the lobes, the resistance of the lubricating oil during rotation of the male and female rotors 102 and 103 (torque) Thus, there is a problem that the power loss is increased.

本発明の目的は、圧縮機外部から供給された液体(潤滑油)で雌雄両ロータの後進面の間に形成されたすき間を密閉することが可能なスクリュー圧縮機の実現にある。   An object of the present invention is to realize a screw compressor capable of sealing a gap formed between the reverse surfaces of both male and female rotors with a liquid (lubricating oil) supplied from the outside of the compressor.

上記の目的を達成するため、本発明では第一の手段として、螺旋状のローブを持ち互いに噛み合って回転する雄・雌一対のロータと、それらを収納するケーシングによって構成され、ケーシング内部に液体を供給しうる機能を備えたスクリュー圧縮機において、雄・雌ロータの軸方向に見て、前記雌ロータの軸中心を中心として、雌ロータの吸込側端面における歯底径と歯先径の間の領域に連通する液体供給口を、雄・雌ロータの吸込側端面と対向するケーシング内壁に有することを特徴とする。
また、第二の手段として、第一の手段において、雄・雌ロータの軸方向に見て、雌ロータ軸中心を中心として、ケーシング内壁における液体供給口の位置は、ケーシングの雌ロータ側ボアと雄ロータ側ボアの交点と、雄ロータ軸中心との間の角度の範囲に在ることを特徴とする。
さらに、第三の手段として、第一・第二の手段において、液体供給口を囲む雌ロータの吸込側端面および雄ロータの吸込側端面と、ケーシング吸込側内壁とは、前記液体供給口から供給される前記液体が漏出しないように近接して配置されている。
In order to achieve the above object, the present invention comprises, as a first means, a pair of male and female rotors having a helical lobe and rotating while meshing with each other, and a casing for housing them, and liquid is contained inside the casing. In a screw compressor having a function that can be supplied, when viewed in the axial direction of the male and female rotors, the center between the axial centers of the female rotors, the diameter between the root diameter and the tip diameter on the suction side end surface of the female rotor A liquid supply port communicating with the region is provided on the inner wall of the casing facing the suction side end surface of the male / female rotor.
Further, as a second means, in the first means, the position of the liquid supply port on the inner wall of the casing around the center of the female rotor shaft as viewed in the axial direction of the male / female rotor is the same as the female rotor side bore of the casing. It exists in the range of the angle between the intersection of a male rotor side bore, and a male rotor axial center.
Further, as a third means, in the first and second means, the suction side end face of the female rotor surrounding the liquid supply port, the suction side end face of the male rotor, and the casing suction side inner wall are supplied from the liquid supply port. So that the liquid is not leaked.

本発明によれば、圧縮機外部から供給された液体で雄・雌両ロータの後進面の間に形成されたすき間を密閉することが可能なスクリュー圧縮機を実現できる。   ADVANTAGE OF THE INVENTION According to this invention, the screw compressor which can seal the clearance gap formed between the backward surfaces of both male and female rotors with the liquid supplied from the compressor outside is realizable.

本発明に係る実施形態1のスクリュー圧縮機のケーシング内を雄ロータ側の側方から見た要部断面を含む側面図。The side view including the principal part cross section which looked at the inside of the casing of the screw compressor of Embodiment 1 which concerns on this invention from the side by the side of a male rotor. 実施形態1のスクリュー圧縮機のケーシング内の雄・雌ロータを上方から見た上面図。The top view which looked at the male / female rotor in the casing of the screw compressor of Embodiment 1 from upper direction. 実施形態1のスクリュー圧縮機のケーシング内を、雄ロータを省略して、雄ロータ側の側方から見た要部断面を含む側面図。The side view including the principal part cross section which abbreviate | omitted the male rotor inside the casing of the screw compressor of Embodiment 1, and was seen from the side of the male rotor side. スクリュー圧縮機の雄・雌ロータと吸込側隔壁の接触面における断面の図1のA−A線断面図。1. The sectional view on the AA line of FIG. 1 of the cross section in the contact surface of the male / female rotor of a screw compressor and a suction side partition. (a)は図2のC方向から見た吸込端から吐き出し端までにおける雄・雌ロータ間のシールラインを示す図であり、(b)は(a)の各シールラインのすき間を示す図。(a) is a figure which shows the seal line between the male-female rotor from the suction end to the discharge end seen from the C direction of FIG. 2, (b) is a figure which shows the clearance gap between each seal line of (a). 雄・雌ロータにおける前進面と後進面とを示す雄・雌ロータを吸込側の斜め上方から見た斜視図。The perspective view which looked at the male / female rotor which shows the advancing surface and the backward surface in a male / female rotor from diagonally upward on the suction side. 本発明に係る実施形態2のスクリュー圧縮機のケーシング内の雄ロータを側方から見た側面図。The side view which looked at the male rotor in the casing of the screw compressor of Embodiment 2 concerning the present invention from the side. 図1のD−D線断面図。The DD sectional view taken on the line of FIG. スクリュー圧縮機のケーシング内を斜め上方の軸方向から目視した内部構成図。The internal block diagram which looked at the inside of the casing of a screw compressor from the diagonally upward axial direction.

以下、本発明の実施形態について添付図面を参照して説明する。
<<実施形態1>>
図1は、本発明に係る実施形態1のスクリュー圧縮機1のケーシング4内を雄ロータ2側の側方から見た要部断面を含む側面図である。
図2は、実施形態1のスクリュー圧縮機1のケーシング4内の雄・雌ロータ2、3を上方から見た上面図である。
図3は、実施形態1のスクリュー圧縮機1のケーシング内を、雄ロータ2を省略して、雄ロータ2側の側方から見た要部断面を含む側面図である。なお、図3はケーシング内の雌ロータ3を側方から見たものである。
図4は、スクリュー圧縮機1の雄・雌ロータ2、3と吸込側隔壁9の接触面における断面の図1のA−A線断面図である。図4中の矢印は、雄ロータ2および雌ロータ3の各回転方向を示す。なお、図4では、凹部24の形状を明確にするため、その輪郭を実線で示している。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
<< Embodiment 1 >>
FIG. 1 is a side view including a cross section of a main part when the inside of a casing 4 of a screw compressor 1 according to a first embodiment of the present invention is viewed from the side on the male rotor 2 side.
FIG. 2 is a top view of the male and female rotors 2 and 3 in the casing 4 of the screw compressor 1 according to the first embodiment as viewed from above.
FIG. 3 is a side view including a main part cross-section of the inside of the casing of the screw compressor 1 of the first embodiment when the male rotor 2 is omitted and viewed from the side on the male rotor 2 side. FIG. 3 is a side view of the female rotor 3 in the casing.
4 is a cross-sectional view taken along the line AA in FIG. 1, which is a cross-sectional view of the contact surface between the male / female rotors 2 and 3 and the suction-side partition wall 9 of the screw compressor 1. The arrows in FIG. 4 indicate the rotation directions of the male rotor 2 and the female rotor 3. In FIG. 4, the contour is indicated by a solid line in order to clarify the shape of the recess 24.

実施形態1のスクリュー圧縮機1は、運転中の機内に外部から潤滑油を供給し、空気などの被圧縮気体を圧縮して出力する機械である。
具体的には、スクリュー圧縮機1は、互いに噛み合う雄・雌ロータ2、3のシールライン(詳細は後記)および各歯溝2m、3mとケーシング4とによって形成される作動室(作動空間)に外部から潤滑油(液体)を供給し、空気などの被圧縮気体を圧縮する機能を備えた圧縮機である。
潤滑油は、潤滑、冷却、および、被圧縮気体を圧縮する作動室(作動空間)をシールする役割をもつ。
雄・雌ロータ2、3のシールライン(後に詳述)は、駆動側の雄ロータ2の歯が従動側の雌ロータ3の歯に接触して、雄ロータ2が雌ロータ3を駆動するとともに、駆動側の雄ロータ2の歯が従動側の雌ロータ3の歯に接触または近接して、作動室を他の空間からシールするラインである。
The screw compressor 1 according to Embodiment 1 is a machine that supplies lubricating oil from the outside into an operating machine and compresses and outputs a compressed gas such as air.
Specifically, the screw compressor 1 has a seal line (details will be described later) of the male and female rotors 2 and 3 meshing with each other and a working chamber (working space) formed by the tooth grooves 2 m and 3 m and the casing 4. It is a compressor having a function of supplying lubricating oil (liquid) from the outside and compressing a compressed gas such as air.
The lubricating oil serves to lubricate, cool, and seal the working chamber (working space) that compresses the compressed gas.
The seal line (detailed later) of the male / female rotors 2 and 3 is such that the teeth of the driving-side male rotor 2 come into contact with the teeth of the driven-side female rotor 3 and the male rotor 2 drives the female rotor 3. The teeth of the driving-side male rotor 2 are in contact with or close to the teeth of the driven-side female rotor 3 to seal the working chamber from other spaces.

スクリュー圧縮機1は、互いに噛み合う雄ロータ2および雌ロータ3と、両ロータ2、3を収納するケーシング4と、および両ロータ2、3をそれぞれ回転自在に支持するための吸込側軸受5a、5bおよび吐出側軸受6a、6bとを備え、構成されている。吐出側軸受6a、6bは、円筒ころ軸受とアンギュラ玉軸受による組み合わせ軸受であり、ラジアル荷重とスラスト荷重との両方を受けることができる。
雄ロータ2と雌ロータ3とは、ネジ状である螺旋状の凸状の歯と凹状の歯とを互いに噛み合わせて回転するものであり、ネジ状の螺旋状のローブ2t、3tをそれぞれ有している。
The screw compressor 1 includes a male rotor 2 and a female rotor 3 that mesh with each other, a casing 4 that houses both rotors 2 and 3, and suction-side bearings 5a and 5b for rotatably supporting the rotors 2 and 3 respectively. And discharge-side bearings 6a and 6b. The discharge-side bearings 6a and 6b are combined bearings of cylindrical roller bearings and angular ball bearings, and can receive both radial loads and thrust loads.
The male rotor 2 and the female rotor 3 rotate by meshing screw-shaped helical convex teeth and concave teeth with screw-shaped helical lobes 2t and 3t, respectively. doing.

図4に示すように、雄ロータ2は、ネジ状である螺旋状の凸状の歯2hが形成されており、ネジ状の螺旋状のローブ(突き出し部)2tと、隣接するローブ2t間の歯溝2mとを有している。
雌ロータ3は、雄ロータ2の凸状の歯2hが噛み合う状の凹状の歯3hが形成されており、ネジ状の螺旋状のローブ(突き出し部)3tと、隣接するローブ3t間の歯溝3mとを有している。
As shown in FIG. 4, the male rotor 2 is formed with screw-like spiral convex teeth 2h, and between the screw-like spiral lobe (protruding portion) 2t and the adjacent lobe 2t. And a tooth gap 2m.
The female rotor 3 is formed with concave teeth 3h that mesh with the convex teeth 2h of the male rotor 2, and a tooth groove between a screw-like spiral lobe (protruding portion) 3t and an adjacent lobe 3t. 3m.

雄ロータ2は、吸込側(図1の紙面左側)端部に、ケーシング4外に突出するシャフト部7mを有し、シャフト部7mがケーシング4の外部において、不図示のモータ等の回転駆動源に接続される。一方、雌ロータ3は、シャフト部7wを有するが、ケーシング4外に突出することなく、駆動源に接続されず、ケーシング4内に枢設されている。つまり、雄ロータ2は、駆動ロータであり、雌ロータ3は、雄ロータ2の噛み合いによって駆動される従動ロータである。   The male rotor 2 has a shaft portion 7m that protrudes outside the casing 4 at the suction side (left side in FIG. 1) end, and the shaft portion 7m is outside the casing 4 and has a rotational drive source such as a motor (not shown). Connected to. On the other hand, the female rotor 3 has the shaft portion 7w, but does not protrude out of the casing 4 and is not connected to a driving source, but is pivotally provided in the casing 4. That is, the male rotor 2 is a drive rotor, and the female rotor 3 is a driven rotor driven by meshing of the male rotor 2.

雄・雌ロータ2、3およびケーシング4の内面4nで囲繞される作動室(空間)で圧縮された圧縮空気が、ケーシング4とシャフト部7m、7wの摺動面を介して、外部に漏洩することを防ぐため,メカニカルシール8が設けられている。メカニカルシール8は、例えば、ステンレス鋼板(SUS304など)に、カーボンのパッキンの面を摺動させてシールする構造である。   Compressed air compressed in the working chamber (space) surrounded by the male / female rotors 2, 3 and the inner surface 4n of the casing 4 leaks to the outside through the sliding surfaces of the casing 4 and the shaft portions 7m, 7w. In order to prevent this, a mechanical seal 8 is provided. The mechanical seal 8 has a structure in which, for example, a stainless steel plate (SUS304 or the like) is sealed by sliding the surface of the carbon packing.

吸込側軸受5a、5bと雄・雌ロータ2、3との間には、シャフト部7m、7wを除いて、吸込側隔壁9が設けられている。また、吐出側軸受6a、6bと雄・雌両ロータ2、3の間には、シャフト部7m、7wを除いて、吐出側隔壁10が設けられている。
ケーシング4の吸い込み側(図1、3の紙面左側)には、圧縮する空気を外部から内部に吸い込む吸込口11がケーシング4に貫設されている。一方、ケーシング4の吐き出し側には、圧縮する空気を吐き出す吐出ポート12が形成されている。
A suction-side partition wall 9 is provided between the suction-side bearings 5a and 5b and the male and female rotors 2 and 3 except for the shaft portions 7m and 7w. A discharge-side partition 10 is provided between the discharge-side bearings 6a and 6b and the male and female rotors 2 and 3 except for the shaft portions 7m and 7w.
On the suction side of the casing 4 (on the left side of the drawing in FIGS. 1 and 3), a suction port 11 for sucking compressed air from the outside to the inside is provided through the casing 4. On the other hand, a discharge port 12 for discharging compressed air is formed on the discharge side of the casing 4.

そこで、スクリュー圧縮機1において、吸込口11がある側(図1、3の紙面左側)を吸込側と定義する一方、吐出ポート12がある側(図1、3の紙面右側)を吐出側と定義する。
不図示の回転駆動源によって回転駆動された雄ロータ2は、前記したように、シールラインにおける後記の前進面の接触部で雌ロータ3に接触して雌ロータ3を回転駆動する。また、雄・雌両ロータ2、3の噛み合いのラインのシールラインで、雄ロータ2と雌ロータ3とが接触または近接して、雄・雌両ロータ2、3で形成される作動空間の雄・雌両ロータ2、3の噛み合い部を封止する。
Therefore, in the screw compressor 1, the side having the suction port 11 (left side in FIG. 1 and 3) is defined as the suction side, and the side having the discharge port 12 (right side in FIG. 1 and 3) is defined as the discharge side. Define.
As described above, the male rotor 2 that is rotationally driven by a rotational drive source (not shown) contacts the female rotor 3 at the contact portion of the advancing surface described later in the seal line and rotationally drives the female rotor 3. Further, the male rotor 2 and the female rotor 3 are in contact with or close to each other at the seal line of the meshing line of the male and female rotors 2 and 3, and the male of the working space formed by the male and female rotors 2 and 3 is male. -The meshing portions of the female rotors 2 and 3 are sealed.

そして、雄・雌両ロータ2、3の歯溝2m、3mと、それを囲む前記ケーシング4の内壁と、雄・雌両ロータ2、3の噛み合いのラインのシールラインで形成される作動室(作動空間)が膨張および収縮することによって、吸込口11から流入した空気は吸込された後、圧縮される。
つまり、作動室の容積は、ある時点まで膨張して負圧となり、吸込口11から外部の空気を作動室内に吸込する。その後、作動室の容積は、次第に収縮して作動室内に吸込された空気を圧縮する。
そして、圧縮された空気は、吐出ポート12から外部の圧縮空気消費機器(図示せず)に供給される。このとき、作動室内の圧力は、吸込口11に近いほど低く、吐出ポート12に近いほど高い。
Then, the working chambers formed by the tooth grooves 2m and 3m of the male and female rotors 2 and 3, the inner wall of the casing 4 surrounding the rotor and the sealing line of the meshing line of the male and female rotors 2 and 3 ( As the working space expands and contracts, the air flowing in from the suction port 11 is sucked and then compressed.
That is, the volume of the working chamber expands to a certain point and becomes negative pressure, and external air is sucked into the working chamber from the suction port 11. Thereafter, the volume of the working chamber gradually contracts to compress the air sucked into the working chamber.
The compressed air is supplied from the discharge port 12 to an external compressed air consuming device (not shown). At this time, the pressure in the working chamber is lower as it is closer to the suction port 11 and higher as it is closer to the discharge port 12.

スクリュー圧縮機1の動作に際して、雄・雌両ロータ2、3の回転中は、吸込側軸受5a、5b,吐出側軸受6a、6b,およびメカニカルシール8を固体摩擦や磨耗を可及的に抑制して潤滑する必要があるため、吸込側軸受給油穴13および吐出側軸受給油穴14から潤滑油を供給して潤滑膜を形成し、摺動面やころがり面が直接触れ合わないようにする。それぞれの軸受(5a、5b、6a、6b)を潤滑した後の潤滑油は、ケーシング4下部に形成される吸込側油回収穴15および吐出側油回収穴16を通過させて、雄・雌両ロータ2、3の不図示の油回収部に回収する。吸込側軸受給油穴13および吐出側軸受給油穴14から供給される潤滑油は、それぞれ1〜5リットル/分(min)程度である。   During the operation of the screw compressor 1, during the rotation of the male and female rotors 2 and 3, the suction side bearings 5a and 5b, the discharge side bearings 6a and 6b, and the mechanical seal 8 are suppressed as much as possible from solid friction and wear. Therefore, the lubricating oil is supplied from the suction-side bearing oil supply hole 13 and the discharge-side bearing oil supply hole 14 to form a lubricating film so that the sliding surface and the rolling surface are not in direct contact with each other. The lubricating oil after lubricating the respective bearings (5a, 5b, 6a, 6b) passes through the suction-side oil recovery hole 15 and the discharge-side oil recovery hole 16 formed in the lower part of the casing 4, and both male and female The oil is collected in an oil collection unit (not shown) of the rotors 2 and 3. The lubricating oil supplied from the suction side bearing oil supply hole 13 and the discharge side bearing oil supply hole 14 is about 1 to 5 liters / minute (min), respectively.

このとき、潤滑油の回収が円滑に行われないと吸込側軸受5a、5bおよび吐出側軸受6a、6bの攪拌損失動力が増大する。そのため、雄・雌両ロータ2、3の油回収部における潤滑油の回収位置は、攪拌を避けるために吸込側・吐出側軸受5a、5b、6a、6bより出来るだけ下方にして重力の作用により油溜まりを軸受(5a、5b、6a、6b)から遠ざけ、かつ、圧力による潤滑油の流れを円滑にするため、低圧である必要がある。   At this time, if the lubricating oil is not collected smoothly, the stirring loss power of the suction side bearings 5a and 5b and the discharge side bearings 6a and 6b increases. Therefore, the lubricating oil collecting position in the oil collecting portions of both the male and female rotors 2 and 3 is made as low as possible from the suction side / discharge side bearings 5a, 5b, 6a, and 6b in order to avoid agitation. In order to keep the oil reservoir away from the bearings (5a, 5b, 6a, 6b) and to facilitate the flow of the lubricating oil due to the pressure, it is necessary to be at a low pressure.

<シールライン>
以下、雄ロータ2と雌ロータ3とが噛み合い、両者間をシール(封止)する作用を担うシールラインについて説明する。
図4において、雌ロータ3と噛み合う雄ロータ2のローブ2tの表面(外周面)において、歯先17を境に回転方向側を雄側前進面18、および回転方向逆側(反回転方向側)を雄側後進面19と定義する。また、雄ロータ2と噛み合う雌ロータ3の歯溝3m(外周面)において、歯底20を境に回転方向側を雌側前進面21、および回転方向逆側(反回転方向側)を雌側後進面22と定義する。
<Seal line>
In the following, a description will be given of a seal line that has a function of engaging the male rotor 2 and the female rotor 3 and sealing (sealing) the two.
In FIG. 4, on the surface (outer peripheral surface) of the lobe 2 t of the male rotor 2 that meshes with the female rotor 3, the rotation direction side is the male advancement surface 18 and the rotation direction opposite side (counter rotation direction side) with the tooth tip 17 as a boundary. Is defined as a male reverse surface 19. Further, in the tooth groove 3m (outer peripheral surface) of the female rotor 3 that meshes with the male rotor 2, the rotational side is the female-side advancement surface 21 and the rotational direction opposite side (counter-rotational direction side) is the female side with the tooth bottom 20 as a boundary. This is defined as a reverse surface 22.

雄・雌ロータ2、3の噛み合い部に存在するすき間は、そのすき間を介して吐出圧力にある作動室の空間と吸込圧力にある作動室の空間とが隣接するため、作動室に存在する複数のすき間のうち、最も空気(被圧縮気体)の内部漏洩の体積効率に対する影響が大きい。
雄・雌ロータ2、3間のすき間は、雄側前進面18と雌側前進面21との間のすき間、および雄側後進面19と雌側後進面22との間のすき間によって形成される。
前記のシールラインは、雄側前進面18と雌側前進面21との間の領域(接触部とすき間)および雄側後進面19と雌側後進面22との間の領域(すき間)で形成され、隣接する作動室の空間を隔絶し、シールする作用を担う。
The gaps present in the meshing portions of the male / female rotors 2 and 3 are such that the space of the working chamber at the discharge pressure and the space of the working chamber at the suction pressure are adjacent to each other through the gap. Among the gaps, the effect of the internal leakage of air (compressed gas) on the volumetric efficiency is the largest.
The gap between the male and female rotors 2 and 3 is formed by a gap between the male side advance surface 18 and the female side advance surface 21 and a gap between the male side reverse surface 19 and the female side reverse surface 22. .
The seal line is formed in a region between the male advance surface 18 and the female advance surface 21 (contact portion and gap) and a region between the male reverse surface 19 and the female reverse surface 22 (clearance). In other words, the space between adjacent working chambers is isolated and sealed.

図5(a)は、図2のC方向から見た吸込端から吐き出し端までにおける雄・雌ロータ2、3間のシールラインs(s1、s2)を示す図であり、図5(b)は、図5(a)の各シールラインs(s1、s2)のすき間(寸法)を示す図である。図5(a)の実線は、雌ロータ3を示し、雄ロータ2は省略して示している。   FIG. 5A is a diagram showing the seal lines s (s1, s2) between the male and female rotors 2 and 3 from the suction end to the discharge end as viewed from the direction C in FIG. These are figures which show the clearance gap (dimension) of each seal line s (s1, s2) of Fig.5 (a). The solid line in FIG. 5A shows the female rotor 3, and the male rotor 2 is omitted.

図6は、雄・雌ロータ2、3における前進面と後進面とを示す雄・雌ロータ2、3を吸込側の斜め上方から見た斜視図である。
一つのシールラインs(s1、s2)は、図5(a)、図6に示すように、雄・雌ロータ2、3の歯2h、3hの一回り毎に形成される。シールラインsにおける前進面のシールラインs1は、雄側前進面18と雌側前進面21とで形成され、後進面のシールラインs2は、雄側後進面19と雌側後進面22とで形成される。
そして、雄・雌ロータ2、3の回転に伴って、各シールラインs(s1、s2)は、図5(a)、図6の矢印α1に示すように、吸込側から吐出側へ、平行移動する。
FIG. 6 is a perspective view of the male / female rotors 2, 3 showing the forward and reverse surfaces of the male / female rotors 2, 3 as viewed obliquely from the suction side.
One seal line s (s1, s2) is formed for each rotation of the teeth 2h, 3h of the male / female rotors 2, 3 as shown in FIGS. The forward seal line s1 in the seal line s is formed by the male advance surface 18 and the female advance surface 21, and the reverse seal line s2 is formed by the male reverse surface 19 and the female reverse surface 22. Is done.
As the male / female rotors 2 and 3 rotate, the seal lines s (s1, s2) are parallel from the suction side to the discharge side as indicated by the arrow α1 in FIG. 5 (a) and FIG. Moving.

本実施形態のスクリュー圧縮機1は、図5(b)に示すように、雄ロータ2の雄側前進面18が雌側前進面21に接触して雌ロータ3に、駆動源からの駆動力を伝達する。そのため、雄側前進面18と雌側前進面21との間のすき間は、実質ゼロに近く小さい。一方、雄ロータ2の雄側後進面19と、雌ロータ3の雌側後進面22との間に形成されるすき間,すなわち後進面すき間23(図4参照)は、比較的大きい。
従って、空気(被圧縮気体)の内部漏洩による効率低下を最小限にするためには、雄側後進面19と雌側後進面22との間のすき間の後進面すき間23(図4参照)を潤滑油によって封じる必要がある。
In the screw compressor 1 of the present embodiment, as shown in FIG. 5 (b), the male-side advance surface 18 of the male rotor 2 contacts the female-side advance surface 21, and the driving force from the drive source is applied to the female rotor 3. To communicate. Therefore, the clearance between the male side advance surface 18 and the female side advance surface 21 is substantially close to zero. On the other hand, the gap formed between the male reverse surface 19 of the male rotor 2 and the female reverse surface 22 of the female rotor 3, that is, the reverse surface gap 23 (see FIG. 4) is relatively large.
Therefore, in order to minimize the efficiency reduction due to the internal leakage of air (compressed gas), the reverse surface clearance 23 (see FIG. 4) between the male reverse surface 19 and the female reverse surface 22 is provided. Must be sealed with lubricating oil.

そこで、後進面すき間23に潤滑油を供給するため、図1に示すように、後進面すき間23を含む雄・雌ロータ2、3と近接して対向するケーシング4の吸込側隔壁9の箇所に、潤滑油を受ける凹部24を設ける。そして、吸込側隔壁9に凹部24と連通する給油口(液体供給口)25を設ける。給油口25から供給される潤滑油の量は、10リットル/分(min)以上とする。これにより、少ない潤滑油の量で確実に後進面すき間23を潤滑油で封じることができる。   Therefore, in order to supply the lubricating oil to the reverse surface clearance 23, as shown in FIG. 1, the suction side partition wall 9 of the casing 4 facing the male and female rotors 2 and 3 including the reverse surface clearance 23 is provided. A recess 24 for receiving lubricating oil is provided. An oil supply port (liquid supply port) 25 communicating with the recess 24 is provided in the suction side partition wall 9. The amount of lubricating oil supplied from the oil supply port 25 is 10 liters / minute (min) or more. Thereby, the reverse surface clearance 23 can be reliably sealed with the lubricating oil with a small amount of the lubricating oil.

ここで、ケーシング4における吸込側隔壁9の凹部24を囲繞する(囲む)吸込側隔壁9と、雄ロータ2の吸込側端面2pおよび雌ロータ3の吸込側端面3pとの間の寸法(距離)は、潤滑油が凹部24からケーシング4の吸込側隔壁9と雄・雌ロータ2、3との間に漏出しないように、500μm以下の近接した寸法(距離)としている。   Here, the dimension (distance) between the suction side partition wall 9 surrounding (enclosing) the concave portion 24 of the suction side partition wall 9 in the casing 4 and the suction side end surface 2p of the male rotor 2 and the suction side end surface 3p of the female rotor 3. Is set to a dimension (distance) of 500 μm or less so that lubricating oil does not leak from the recess 24 between the suction-side partition wall 9 of the casing 4 and the male / female rotors 2 and 3.

図4に示すように、凹部24は、雄・雌ロータ2、3の軸方向に見て、雌ロータ3の軸中心26を中心とする扇形の形状をしており、その内径は雌ロータ3の歯底半径r1であり、また、外径は雌ロータ3のピッチ円半径r2である。なお、外径は雌ロータ3の歯先円の半径r3(軸方向に見たローブ3tが形成する円)としてもよい。
これにより、雌ロータ3が回転する毎に、給油口25から機内(ケーシング4の内部)に供給された潤滑油が、雌側後進面22の大部分に付着するため、後進面すき間23を潤滑油によって封じることが可能になる。
As shown in FIG. 4, the recess 24 has a sector shape centered on the axial center 26 of the female rotor 3 when viewed in the axial direction of the male / female rotors 2, 3. And the outer diameter is the pitch circle radius r2 of the female rotor 3. The outer diameter may be the radius r3 of the tip circle of the female rotor 3 (a circle formed by the lobe 3t as viewed in the axial direction).
Accordingly, every time the female rotor 3 rotates, the lubricating oil supplied from the oil supply port 25 to the inside of the machine (inside the casing 4) adheres to most of the female-side reverse surface 22, and therefore the reverse surface clearance 23 is lubricated. It can be sealed with oil.

また、凹部24の上端は、雄・雌ロータ2、3の軸方向に見て、雌ロータ軸中心26と雄ロータ軸中心28を結ぶ線分上にある。換言すれば、凹部24の上端は、雄・雌ロータ2、3の軸方向に見て、雌ロータ軸中心26と雌ロータ3の歯底20と雄ロータ2の歯先17が接する点とを通る直線上にある。   The upper end of the recess 24 is on a line segment connecting the female rotor shaft center 26 and the male rotor shaft center 28 when viewed in the axial direction of the male / female rotors 2 and 3. In other words, the upper end of the recess 24 is a point where the female rotor shaft center 26, the tooth bottom 20 of the female rotor 3, and the tooth tip 17 of the male rotor 2 contact each other when viewed in the axial direction of the male / female rotors 2 and 3. It is on a straight line.

凹部24の下端は、雌ロータ軸中心26と、雌ロータ側ボアwbと雄ロータ側ボアmbの交点のカスプ部27を結ぶ線分上にある。
すなわち、給油口25の位置は、雄・雌ロータ2、3の軸方向に見て雌ロータ軸中心26を中心として、ケーシング4の雌ロータ側ボアwbと雄ロータ側ボアmbの交点のカスプ部27と、雄ロータ軸中心28との間の角度の範囲に存在する。
The lower end of the recess 24 is on the line segment connecting the female rotor shaft center 26 and the cusp portion 27 at the intersection of the female rotor side bore wb and the male rotor side bore mb.
That is, the position of the fuel filler 25 is a cusp portion at the intersection of the female rotor side bore wb and the male rotor side bore mb of the casing 4 with the female rotor shaft center 26 as the center when viewed in the axial direction of the male / female rotors 2 and 3. 27 and a range of angles between the male rotor shaft center 28.

これによって、雌側後進面22に付着した潤滑油が遠心力によって雌ロータ3の周方向(外径方向)に飛散した場合においても、ケーシング4の内壁面に付着することが抑制され、雄ロータ2の歯溝2mに付着する。そのため、雌ロータ3がケーシング4の内壁面の潤滑油を撹拌する際に生じる損失動力を増大させることがない。
従って、潤滑油により、雄ロータ2の雄側後進面19と雌ロータ3の雌側後進面22との間のすき間の後進面すき間23の密閉を促進することが可能となる。
As a result, even when the lubricating oil adhering to the female reverse surface 22 is scattered in the circumferential direction (outer diameter direction) of the female rotor 3 due to centrifugal force, it is suppressed from adhering to the inner wall surface of the casing 4. It adheres to the 2 tooth gap 2m. Therefore, the loss power generated when the female rotor 3 agitates the lubricating oil on the inner wall surface of the casing 4 is not increased.
Therefore, it becomes possible to promote the sealing of the reverse surface gap 23 between the male reverse surface 19 of the male rotor 2 and the female reverse surface 22 of the female rotor 3 by the lubricating oil.

図5に示されるように,後進面のシールラインs2は,雌雄ロータ軸より下方に位置する。すなわち,雄・雌ロータ2、3で形成される後進面すき間23は全域が,雌雄ロータ軸より下方に位置する。従って,吸込側隔壁9における雌雄ロータ軸の上方に凹部24を設けても,潤滑油は後進面すき間23に供給されない。このような理由から、凹部24の上端を、雌ロータ軸中心26と雄ロータ軸中心28を結ぶ線分上に一致させている。   As shown in FIG. 5, the seal line s2 on the reverse surface is positioned below the male and female rotor shafts. That is, the reverse surface clearance 23 formed by the male / female rotors 2 and 3 is located below the male and female rotor shafts. Therefore, even if the recess 24 is provided above the male and female rotor shafts in the suction-side partition wall 9, the lubricating oil is not supplied to the reverse surface clearance 23. For this reason, the upper end of the recess 24 is made to coincide with a line segment connecting the female rotor shaft center 26 and the male rotor shaft center 28.

後進面すき間23に入った潤滑油は、雄・雌両ロータ2、3の回転に伴い、図5(a)、図6の矢印α1に示すように、各シールラインs(s1、s2)が吸込側から吐き出し側へ平行移動するに伴い、吸込側端面2p、3pから吐出側端面2q、3qに輸送されることとなる。
従って、雄・雌両ロータ2、3の吸込側端面2p、3pから吐出側端面2q、3qまでの雌雄ロータ2、3間の後進面すき間23を一様に密閉可能となる。
As the male and female rotors 2 and 3 rotate, the lubricating oil that has entered the clearance 23 on the reverse surface moves to the seal lines s (s1 and s2) as shown by arrows α1 in FIGS. As it moves parallel from the suction side to the discharge side, it is transported from the suction side end faces 2p, 3p to the discharge side end faces 2q, 3q.
Therefore, the reverse surface clearance 23 between the male and female rotors 2 and 3 from the suction side end faces 2p and 3p of the male and female rotors 2 and 3 to the discharge side end faces 2q and 3q can be uniformly sealed.

ここで、重力により潤滑油が凹部24の下部に溜まる懸念があること、および、潤滑油が、雌側後進面22に付着すると遠心力の影響を受けることなどから、給油口25の凹部24との連通位置は、雌ロータ軸中心26に近く、かつ上方であることが望ましい。何故なら、給油口25の凹部24との連通位置を、雌ロータ軸中心26に近くにすることで遠心力(=mrω)のrを小さくし、遠心力(=mrω)を小さくできる。また、給油口25を上方にすることにより、後進面すき間23またはその近傍に給油口25を配置して潤滑油を供給することができるからである。
なお、潤滑油は、低圧の吸込側と高圧の吐出側との圧力差により、不図示のタンク、冷却器などを介して冷却されたりしつつ、ケーシング4内を循環する。
Here, since there is a concern that the lubricating oil may accumulate in the lower portion of the concave portion 24 due to gravity, and when the lubricating oil adheres to the female-side reverse surface 22, it is affected by centrifugal force. It is desirable that the communication position is close to and above the female rotor shaft center 26. It is because, the communication position with the recess 24 of the fuel supply port 25, to reduce the r of the centrifugal force (= mrω 2) by close to the female rotor shaft center 26, it is possible to reduce the centrifugal force (= mrω 2). Further, by making the oil supply port 25 upward, the oil supply port 25 can be disposed in the reverse surface clearance 23 or in the vicinity thereof to supply the lubricating oil.
The lubricating oil circulates in the casing 4 while being cooled via a tank, a cooler, etc. (not shown) due to a pressure difference between the low pressure suction side and the high pressure discharge side.

以上により、被圧縮気体(空気)の内部漏洩による圧縮機効率の低下に最も影響の大きい雄・雌両ロータ2、3の後進面19、22の間に形成されたすき間(後進面すき間23)に対して潤滑油を供給し、すき間を介した被圧縮気体の内部漏洩を抑制することが可能となる。そのため、圧縮する被圧縮気体の流量を増やすことが可能である。   As described above, the gap formed between the reverse surfaces 19 and 22 of the male and female rotors 2 and 3 having the greatest influence on the reduction of the compressor efficiency due to the internal leakage of the compressed gas (air) (reverse surface clearance 23). Therefore, it is possible to suppress the internal leakage of the compressed gas through the gap. Therefore, it is possible to increase the flow rate of the compressed gas to be compressed.

さらに、ケーシング4の壁面に液体が付着しにくくなり、雄・雌両ロータ2、3がローブ2t、3tの歯先で攪拌する潤滑油の量が減るため、軸動力を低減することが可能となる。
そのため、潤滑油の撹拌による損失動力を最小限に抑え、かつ、空気(被圧縮気体)の最も内部漏洩量の多い雄・雌ロータ2、3間のすき間を効果的に密閉する給油構造を実現できる。従って、高効率なスクリュー圧縮機1の実現が可能となる。
Furthermore, it becomes difficult for liquid to adhere to the wall surface of the casing 4, and the amount of lubricating oil that the male and female rotors 2 and 3 agitate with the tips of the lobes 2t and 3t is reduced, so that the shaft power can be reduced. Become.
Therefore, the oil supply structure that effectively seals the gap between the male and female rotors 2 and 3 with the largest internal leakage of air (compressed gas) while minimizing the power loss due to the agitation of the lubricating oil is realized. it can. Therefore, the highly efficient screw compressor 1 can be realized.

なお、実施形態1では、潤滑油を、ケーシング4の雌ロータ側ボアwbと雄ロータ側ボアmb側から雄・雌ロータ2、3に供給する構成は記載しなかったが、ケーシング4の雄・雌ロータ側ボアmb、wb(図4参照)から雄・雌ロータ2、3に潤滑油を供給してもよい。
例えば、従来、ケーシング4の雄・雌ロータ側ボアmb、wbから雄・雌ロータ2、3へ潤滑油を50リットル/分(min)位供給しているが、給油口25から潤滑油を供給することで、ケーシング4の雄・雌ロータ側ボアmb、wbから雄・雌ロータ2、3へ潤滑油の量を20リットル/分(min)程度に低減できる。
In the first embodiment, the configuration in which the lubricating oil is supplied from the female rotor side bore wb and the male rotor side bore mb side of the casing 4 to the male / female rotors 2 and 3 is not described. Lubricating oil may be supplied to the male / female rotors 2 and 3 from the female rotor side bores mb and wb (see FIG. 4).
For example, conventionally, lubricating oil is supplied from the male / female rotor side bores mb, wb of the casing 4 to the male / female rotors 2, 3 at about 50 liters / min (min). By doing so, the amount of lubricating oil from the male / female rotor side bores mb, wb of the casing 4 to the male / female rotors 2, 3 can be reduced to about 20 liters / minute (min).

<<実施形態2>>
次に、実施形態2のスクリュー圧縮機21について説明する。
図7は、本発明に係る実施形態2のスクリュー圧縮機21のケーシング内の雄ロータ2を側方から見た側面図である。図8は、図1のD−D線断面図である。
実施形態2のスクリュー圧縮機21は、実施形態1の凹部24を形成することなく、実施形態1の凹部24の領域(図8に示す給油口形成領域24R)に、潤滑油を供給する給油口25Bを形成するものである。
これ以外の構成は、実施形態1と同様であるから、同様な構成要素には同一の符号を付して示し、詳細な説明は省略する。
<< Embodiment 2 >>
Next, the screw compressor 21 of Embodiment 2 is demonstrated.
FIG. 7: is the side view which looked at the male rotor 2 in the casing of the screw compressor 21 of Embodiment 2 which concerns on this invention from the side. 8 is a cross-sectional view taken along the line DD of FIG.
The screw compressor 21 of Embodiment 2 does not form the recess 24 of Embodiment 1, and supplies the lubricating oil to the region of the recess 24 of Embodiment 1 (oil supply port formation region 24R shown in FIG. 8). 25B is formed.
Since the other configuration is the same as that of the first embodiment, the same components are denoted by the same reference numerals, and detailed description thereof is omitted.

スクリュー圧縮機21では、後進面すき間23に潤滑油を供給するため、図8に示すように、ケーシング4における吸込側隔壁9の後進面すき間23を含む雄・雌ロータ2、3と近接して対向する箇所に、潤滑油を供給する給油口25Bを形成する給油口形成領域24Rを定めている。そして、吸込側隔壁9の給油口形成領域24Rに吸込側隔壁9と、雄ロータ2の吸込側端面2pおよび雌ロータ3の吸込側端面3pとの間に連通する給油口25Bを設けている。   In the screw compressor 21, in order to supply lubricating oil to the reverse surface clearance 23, as shown in FIG. 8, the screw compressor 21 is close to the male / female rotors 2 and 3 including the reverse surface clearance 23 of the suction side partition wall 9 in the casing 4. An oil supply port forming region 24R for forming an oil supply port 25B for supplying the lubricating oil is defined at an opposite location. An oil supply port 25 </ b> B that communicates between the suction side partition wall 9, the suction side end surface 2 p of the male rotor 2, and the suction side end surface 3 p of the female rotor 3 is provided in the oil supply port forming region 24 </ b> R of the suction side partition wall 9.

給油口25から供給される潤滑油の量は、実施形態1と同様、10リットル/分(min)以上である。
ここで、ケーシング4における吸込側隔壁9の給油口25Bを囲繞する(囲む)吸込側隔壁9と、雄ロータ2の吸込側端面2pおよび雌ロータ3の吸込側端面3pとの間の寸法(距離)は、給油口25Bからの潤滑油が、吸込側隔壁9と雄・雌ロータ2、3の吸込側端面2p、3pとの間に漏出しないように、500μm以下の近接した寸法(距離)としている。
The amount of lubricating oil supplied from the oil supply port 25 is 10 liters / minute (min) or more as in the first embodiment.
Here, the dimension (distance) between the suction side partition wall 9 surrounding (surrounding) the oil supply port 25B of the suction side partition wall 9 in the casing 4 and the suction side end surface 2p of the male rotor 2 and the suction side end surface 3p of the female rotor 3 ) Is a close dimension (distance) of 500 μm or less so that the lubricating oil from the oil supply port 25B does not leak between the suction side partition wall 9 and the suction side end faces 2p, 3p of the male / female rotors 2, 3. Yes.

図8に示すように、ケーシング4における吸込側隔壁9の給油口形成領域24Rは、雄・雌ロータ2、3の軸方向に見て、雌ロータ3の軸中心26を中心とする扇形の形状をしており、その内径は雌ロータ3の歯底半径r1であり、また、外径は雌ロータ3のピッチ円半径r2である。なお、外径は雌ロータ3の歯先円(軸方向に見たローブ3tが形成する円)の径r3としてもよい。   As shown in FIG. 8, the oil supply port forming region 24 </ b> R of the suction-side partition wall 9 in the casing 4 has a sector shape centered on the axial center 26 of the female rotor 3 when viewed in the axial direction of the male / female rotors 2 and 3. The inner diameter is the root radius r 1 of the female rotor 3, and the outer diameter is the pitch circle radius r 2 of the female rotor 3. The outer diameter may be the diameter r3 of the tip circle of the female rotor 3 (a circle formed by the lobe 3t as viewed in the axial direction).

また、給油口形成領域24Rの上端は、雄・雌ロータ2、3の軸方向に見て、雄側前進面18および雌側前進面21と、雄側後進面19および雌側後進面22との境界である雌ロータ軸中心26と雄ロータ軸中心28とを結ぶ線分上にある。換言すれば、給油口形成領域24Rの上端は、雌ロータ軸中心26と雌ロータ3の歯底20と雄ロータ2の歯先17が接する点とを通る直線上にある。
給油口形成領域24Rの下端は、雄・雌ロータ2、3の軸方向に見て、雌ロータ軸中心26と、雌ロータ側ボアwbと雄ロータ側ボアmbの交点のカスプ部27を結ぶ線分上にある。
Further, the upper end of the oil filler opening formation region 24R is seen in the axial direction of the male / female rotors 2 and 3, and a male advance surface 18 and a female advance surface 21, and a male reverse surface 19 and a female reverse surface 22 Are on a line segment connecting the female rotor shaft center 26 and the male rotor shaft center 28. In other words, the upper end of the oil filler forming region 24R is on a straight line passing through the female rotor shaft center 26, the point 20 where the tooth bottom 20 of the female rotor 3 and the tooth tip 17 of the male rotor 2 are in contact.
The lower end of the filler opening formation region 24R is a line connecting the female rotor shaft center 26 and the cusp portion 27 at the intersection of the female rotor side bore wb and the male rotor side bore mb when viewed in the axial direction of the male / female rotors 2 and 3. Is on the minute.

給油口25Bの位置は、雌ロータ軸中心26を中心として、ケーシング4の雌ロータ側ボアwbと雄ロータ側ボアmbの交点のカスプ部27と、雌ロータ3の歯底20と雄ロータ2の歯先17が接する点との間の角度の範囲に存在する。
これにより、雌ロータ3が回転する毎に、給油口25から機内(ケーシング4の内部)に供給された潤滑油が、雌側後進面22の後進面すき間23(図8参照)またはその近傍に付着するため、後進面すき間23を潤滑油によって封じることが可能になる。
The position of the oil filler opening 25B is centered on the female rotor shaft center 26. The cusp portion 27 at the intersection of the female rotor side bore wb and the male rotor side bore mb of the casing 4, the tooth bottom 20 of the female rotor 3, and the male rotor 2 It exists in the range of the angle between the point where the tooth tip 17 contacts.
Thus, every time the female rotor 3 rotates, the lubricating oil supplied from the oil supply port 25 to the inside of the machine (inside the casing 4) enters the reverse surface clearance 23 (see FIG. 8) of the female-side reverse surface 22 or the vicinity thereof. Since it adheres, it becomes possible to seal the reverse surface clearance 23 with lubricating oil.

また、雌側後進面22に付着した潤滑油が遠心力によって雌ロータ3の周方向(外径方向)に飛散した場合においても、ケーシング4の内壁面に付着することが抑制され、雄ロータ2の歯溝2mに付着する。そのため、雌ロータ3の潤滑油を攪拌する損失動力を増大させることがない。
従って、潤滑油により、雄ロータ2の雄側後進面19と雌ロータ3の雌側後進面22との間のすき間の後進面すき間23の密閉を促進することが可能となる。
Further, even when the lubricating oil adhering to the female reverse surface 22 scatters in the circumferential direction (outer diameter direction) of the female rotor 3 due to centrifugal force, it is suppressed from adhering to the inner wall surface of the casing 4, and the male rotor 2. It adheres to the tooth gap 2m. Therefore, the loss power for stirring the lubricating oil of the female rotor 3 is not increased.
Therefore, it becomes possible to promote the sealing of the reverse surface gap 23 between the male reverse surface 19 of the male rotor 2 and the female reverse surface 22 of the female rotor 3 by the lubricating oil.

図5に示されるように,後進面のシールラインs2は,雌雄ロータ軸より下方に位置する。すなわち,雄・雌ロータ2、3で形成される後進面すき間23は全域が,雌雄ロータ軸より下方に位置する。従って,吸込側隔壁9における雌雄ロータ軸の上方に凹部24を設けても,潤滑油は後進面すき間23に供給されない。そのため、実施形態1と同様、給油口形成領域24Rの上端を、雌ロータ軸中心26と雄ロータ軸中心28を結ぶ線分上に一致させている。 As shown in FIG. 5, the seal line s2 on the reverse surface is positioned below the male and female rotor shafts. That is, the reverse surface clearance 23 formed by the male / female rotors 2 and 3 is located below the male and female rotor shafts. Therefore, even if the recess 24 is provided above the male and female rotor shafts in the suction-side partition wall 9, the lubricating oil is not supplied to the reverse surface clearance 23. Therefore, as in the first embodiment, the upper end of the oil filler opening formation region 24R is made to coincide with a line segment connecting the female rotor shaft center 26 and the male rotor shaft center 28.

後進面すき間23に入った潤滑油は、雄・雌両ロータ2、3の回転に伴い、図5(a)、図6の矢印α1に示すように、各シールラインs(s1、s2)が、吸込側から吐き出し側へ平行移動するに伴って、吸込側端面2p、3pから吐出側端面2q、3qに輸送される。
従って、雄・雌両ロータ2、3の吸込側端面2p、3pから吐出側端面2q、3qまでの雌雄ロータ2、3間の後進面すき間23を一様に密閉可能となる。
ここで、重力により潤滑油が凹部24の下部に溜まる懸念があること、および、潤滑油が、雌側後進面22に付着すると遠心力の影響を受けることなどから、実施形態1と同様な理由で、給油口25の連通位置は、雌ロータ軸中心26に近く、かつ上方であることが望ましい。
As the male and female rotors 2 and 3 rotate, the lubricating oil that has entered the clearance 23 on the reverse surface moves to the seal lines s (s1 and s2) as shown by arrows α1 in FIGS. As the fluid moves parallel from the suction side to the discharge side, it is transported from the suction side end surfaces 2p and 3p to the discharge side end surfaces 2q and 3q.
Therefore, the reverse surface clearance 23 between the male and female rotors 2 and 3 from the suction side end faces 2p and 3p of the male and female rotors 2 and 3 to the discharge side end faces 2q and 3q can be uniformly sealed.
Here, since there is a concern that the lubricating oil may accumulate in the lower portion of the concave portion 24 due to gravity, and when the lubricating oil adheres to the female-side reverse surface 22, it is affected by centrifugal force. Therefore, it is desirable that the communication position of the fuel filler port 25 is close to the female rotor shaft center 26 and above.

以上により、潤滑油の撹拌による損失動力を最小限に抑え、かつ、最も空気(被圧縮気体)の内部漏洩量の多い雌雄ロータ2、3間のすき間を効果的に密閉する給油構造を実現し、高効率なスクリュー圧縮機21の実現が可能となる。   As described above, the oil supply structure that minimizes the power loss due to the agitation of the lubricating oil and effectively seals the gap between the male and female rotors 2 and 3 with the largest amount of internal leakage of air (compressed gas) is realized. Thus, it is possible to realize the highly efficient screw compressor 21.

なお、実施形態2では、給油口25Bを、予め定めた給油口形成領域24Rに設ける場合を例示したが、給油口25Bを、雄ロータ2の雄側後進面19と、雌ロータ3の雌側後進面22との間に形成されるすき間の後進面すき間23(図8参照)に対向する位置に設けると、給油口25Bから供給される潤滑油が直接、後進面すき間23に注入されるので、後進面すき間23の封止をより確実にできるので、より望ましい。   In the second embodiment, the case where the oil supply port 25B is provided in the predetermined oil supply port formation region 24R is illustrated. However, the oil supply port 25B is provided on the male reverse surface 19 of the male rotor 2 and the female side of the female rotor 3. If it is provided at a position facing the reverse surface gap 23 formed between the reverse surface 22 and the reverse surface gap 23 (see FIG. 8), the lubricating oil supplied from the oil supply port 25B is directly injected into the reverse surface gap 23. This is more desirable because the reverse surface clearance 23 can be more reliably sealed.

前記実施形態1、2のスクリュー圧縮機1、21では、被圧縮気体として、空気を例示したが、空気以外の他の気体、冷媒であってもよく、被圧縮気体は、本発明の作用効果を奏するものであれば、限定されない。   In the screw compressors 1 and 21 of the first and second embodiments, air is exemplified as the compressed gas. However, other gases other than air and a refrigerant may be used, and the compressed gas has the effects of the present invention. If it plays, it will not be limited.

以上、本発明の様々な実施形態を述べたが、本発明の範囲内で様々な修正と変更が可能である。すなわち、本発明は発明の趣旨を変更しない範囲において適宜、任意に変更可能である。   While various embodiments of the present invention have been described above, various modifications and changes can be made within the scope of the present invention. That is, the present invention can be arbitrarily changed as appropriate without departing from the spirit of the invention.

1 スクリュー圧縮機
2 雄ロータ
2p 雄ロータの吸い込み側端面
2t 雄ロータのローブ
3 雌ロータ
3p 雌ロータの吸い込み側端面
3t 雌ロータのローブ
4 ケーシング
9 吸込側隔壁(ケーシング吸込側内壁)
10 吐出側隔壁
11 吸込口
17 雄ロータの歯先
19 雄側後進面(雄ロータの後進面)
20 雌ロータの歯底
22 雌側後進面(雌ロータの後進面)
23 後進面すき間(雄ロータの後進面とこれに対向する雌ロータの後進面とで形成される空間)
24 凹部
25 給油口(液体供給口)
26 雌ロータ軸中心(雌ロータの軸中心)
27 カスプ部(交点)
28 雄ロータ軸中心
wb 雌ロータ側ボア
mb 雄ロータ側ボア
r1 雌ロータの歯底半径(雌ロータの歯底径)
r3 雌ロータの歯先円の半径(雌ロータの歯先径)
DESCRIPTION OF SYMBOLS 1 Screw compressor 2 Male rotor 2p Male rotor suction side end surface 2t Male rotor lobe 3 Female rotor 3p Female rotor suction side end surface 3t Female rotor lobe 4 Casing 9 Suction side partition (casing suction side inner wall)
10 Discharge-side partition
11 Suction port 17 Tip of male rotor 19 Male reverse surface (reverse surface of male rotor)
20 Tooth bottom of female rotor 22 Female reverse surface (reverse surface of female rotor)
23 Reverse clearance (space formed by the reverse surface of the male rotor and the reverse surface of the female rotor facing this)
24 Recess 25 Oil supply port (liquid supply port)
26 Female rotor shaft center (Female rotor shaft center)
27 Cusp part (intersection)
28 Male rotor shaft center wb Female rotor side bore mb Male rotor side bore r1 Ground radius of female rotor (bottom diameter of female rotor)
r3 Radius of tooth tip circle of female rotor (tooth tip diameter of female rotor)

Claims (5)

螺旋状のローブを有して互いに噛み合って回転する雄・雌一対のロータと、
該雄・雌一対のロータを収納するケーシングと、
前記雄・雌のロータの吸込側端面と対向するケーシング吸込側内壁に設けられ、前記ケーシング内部に液体を供給する液体供給口とを備え、
前記液体供給口は、前記雄・雌ロータの軸方向に見て、前記雌ロータの軸中心を中心として、前記雌ロータの吸込側端面における歯底径と歯先径との間の領域に連通するとともに、前記ケーシングの雌ロータ側ボアと雄ロータ側ボアの交点と、雄ロータ軸中心との間の角度の範囲に位置し、
前記液体供給口を囲む前記雌ロータの吸込側端面および前記雄ロータの吸込側端面と、前記ケーシング吸込側内壁とは、前記液体供給口から供給される前記液体が漏出しないように近接して配置される
ことを特徴とするスクリュー圧縮機。
A pair of male and female rotors having helical lobes and rotating in mesh with each other;
A casing for housing the pair of male and female rotors;
Provided on the casing suction side inner wall facing the suction side end face of the male and female rotors, and provided with a liquid supply port for supplying liquid into the casing,
The liquid supply port communicates with a region between the root diameter and the tip diameter of the suction side end surface of the female rotor with the axial center of the female rotor as a center when viewed in the axial direction of the male and female rotors. And located in the range of the angle between the intersection of the female rotor side bore and the male rotor side bore of the casing, and the male rotor shaft center,
The suction-side end surface of the female rotor and the suction-side end surface of the male rotor surrounding the liquid supply port and the casing suction-side inner wall are arranged close to each other so that the liquid supplied from the liquid supply port does not leak. A screw compressor characterized by being made.
請求項1に記載のスクリュー圧縮機において、
前記液体供給口を囲む前記雌ロータの吸込側端面および前記雄ロータの吸込側端面と、前記ケーシング吸込側内壁との間の隙間は、500μm以内である
ことを特徴とするスクリュー圧縮機。
The screw compressor according to claim 1,
The screw compressor, wherein a clearance between the suction side end face of the female rotor and the suction side end face of the male rotor surrounding the liquid supply port and the casing suction side inner wall is within 500 μm.
請求項1に記載のスクリュー圧縮機において、
前記液体供給口からの前記液体の供給量は、10リットル/min以上である
ことを特徴とするスクリュー圧縮機。
The screw compressor according to claim 1,
The screw compressor, wherein the supply amount of the liquid from the liquid supply port is 10 liters / min or more.
請求項1から請求項3のうちの何れか一項に記載のスクリュー圧縮機において、
前記液体供給口は、前記雄・雌ロータの軸方向に見て、前記雄ロータと前記雌ロータとが噛み合う前記雄ロータのローブの表面におけるその歯先を境に反回転方向側の雄ロータの後進面とこれに対向する前記雌ロータの後進面とで形成される空間に対向する位置に設けられる
ことを特徴とするスクリュー圧縮機。
In the screw compressor according to any one of claims 1 to 3,
The liquid supply port is seen in the axial direction of the male / female rotor, and the male rotor on the anti-rotation direction side of the surface of the lobe of the male rotor where the male rotor and the female rotor mesh with each other. A screw compressor characterized by being provided at a position facing a space formed by a reverse surface and a reverse surface of the female rotor facing the reverse surface.
請求項1または請求項3のうちの何れか一項に記載のスクリュー圧縮機において、
前記雄・雌のロータの吸込側端面と対向するケーシング吸込側内壁に、前記雄・雌ロータの軸方向に見て、前記雌ロータの軸中心を中心として、前記雌ロータの吸込側端面における歯底径と歯先径との間の領域にあって、前記ケーシングの雌ロータ側ボアと雄ロータ側ボアの交点と、雄ロータ軸中心との間の角度の範囲に位置する凹部を備える
ことを特徴とするスクリュー圧縮機。
In the screw compressor according to any one of claims 1 or 3,
Teeth on the suction side end surface of the female rotor centered on the axial center of the female rotor as viewed in the axial direction of the male / female rotor on the inner wall of the casing suction side facing the suction side end surface of the male / female rotor A recess located in a region between the bottom diameter and the tooth tip diameter and located in an angle range between the intersection of the female rotor side bore and the male rotor side bore of the casing and the male rotor shaft center. A featured screw compressor.
JP2012245494A 2012-11-07 2012-11-07 Screw compressor Active JP6088212B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012245494A JP6088212B2 (en) 2012-11-07 2012-11-07 Screw compressor
CN201310342634.0A CN103807178B (en) 2012-11-07 2013-08-08 Screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012245494A JP6088212B2 (en) 2012-11-07 2012-11-07 Screw compressor

Publications (2)

Publication Number Publication Date
JP2014095296A true JP2014095296A (en) 2014-05-22
JP6088212B2 JP6088212B2 (en) 2017-03-01

Family

ID=50704443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012245494A Active JP6088212B2 (en) 2012-11-07 2012-11-07 Screw compressor

Country Status (2)

Country Link
JP (1) JP6088212B2 (en)
CN (1) CN103807178B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6707021B2 (en) * 2016-12-22 2020-06-10 株式会社日立産機システム Screw compressor
JP6448698B2 (en) * 2017-03-24 2019-01-09 日立ジョンソンコントロールズ空調株式会社 Screw fluid machinery
CN114233625A (en) * 2020-09-09 2022-03-25 江森自控空调冷冻设备(无锡)有限公司 Compressor
CN115773585B (en) * 2022-11-16 2023-08-25 昆山瑞光新能源科技有限公司 Water-cooling variable-frequency screw type water chilling unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49118811U (en) * 1973-02-09 1974-10-11
JPH0373688U (en) * 1989-11-21 1991-07-24
US5653585A (en) * 1993-01-11 1997-08-05 Fresco; Anthony N. Apparatus and methods for cooling and sealing rotary helical screw compressors
JP2006226160A (en) * 2005-02-16 2006-08-31 Hokuetsu Kogyo Co Ltd Oil-cooled screw compressor
JP2008297944A (en) * 2007-05-30 2008-12-11 Hitachi Industrial Equipment Systems Co Ltd Screw compressor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1212015A (en) * 1967-05-03 1970-11-11 Svenksa Rotor Maskiner Aktiebo Improvements in and relating to meshing screw-rotor compressors
JPH0688581A (en) * 1992-09-08 1994-03-29 Kobe Steel Ltd Screw compressor
DE19546217A1 (en) * 1995-12-01 1997-06-05 Mannesmann Ag Screw compressor with liquid injection
JP2001323887A (en) * 2000-05-12 2001-11-22 Hitachi Ltd Oil feed type screw compressor
BE1016581A3 (en) * 2005-02-22 2007-02-06 Atlas Copco Airpower Nv IMPROVED WATER INJECTED SCREW COMPRESSOR ELEMENT.
JP4764221B2 (en) * 2006-03-27 2011-08-31 北越工業株式会社 Oil cooling flow path of oil-cooled screw compressor
JP5653585B2 (en) * 2009-03-05 2015-01-14 ヤンマー株式会社 Engine equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49118811U (en) * 1973-02-09 1974-10-11
JPH0373688U (en) * 1989-11-21 1991-07-24
US5653585A (en) * 1993-01-11 1997-08-05 Fresco; Anthony N. Apparatus and methods for cooling and sealing rotary helical screw compressors
JP2006226160A (en) * 2005-02-16 2006-08-31 Hokuetsu Kogyo Co Ltd Oil-cooled screw compressor
JP2008297944A (en) * 2007-05-30 2008-12-11 Hitachi Industrial Equipment Systems Co Ltd Screw compressor

Also Published As

Publication number Publication date
CN103807178A (en) 2014-05-21
JP6088212B2 (en) 2017-03-01
CN103807178B (en) 2017-03-01

Similar Documents

Publication Publication Date Title
CN111133197B (en) Scroll compressor having a scroll compressor with a suction chamber
JP6236219B2 (en) Oil-cooled screw compressor
JP5904961B2 (en) Screw compressor
JP6088212B2 (en) Screw compressor
JP5719451B2 (en) Internal gear pump
JP6329411B2 (en) Internal gear pump
KR101273017B1 (en) Vacuum pump
KR101064152B1 (en) Screw type vacuum pump having direct cooling device
JP2010275931A (en) Oil free screw compressor
JP4712506B2 (en) Lubricating device for screw compressor and screw compressor provided with the same
JP2010249045A (en) Screw compressor
CN207583622U (en) A kind of full seal type Quimby pump and high-pressure balancing rotor
JP7229720B2 (en) screw compressor
CN112746970A (en) Oil sump oil return structure, compressor and air conditioner
JP2007162679A (en) Fluid machine
CN112780558A (en) Rotor subassembly, compressor and air conditioner
CN214660859U (en) Oil sump oil return structure, compressor and air conditioner
JP2007321726A (en) Screw compressor
CN218266344U (en) Combined sealing device of oil-free screw air blower
CN110318997B (en) Rotary pump
WO2022137639A1 (en) Hydraulic device
JP2009097357A (en) Hermetically sealed scroll compressor
WO2020093924A1 (en) Scroll compressor
JP2006083783A (en) Screw type fluid machine
KR100595732B1 (en) Compressor having the oil path

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160208

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170203

R150 Certificate of patent or registration of utility model

Ref document number: 6088212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150