JP2014094870A - Powder for microwave absorption heating element, microwave absorption heating element using the powder and method of manufacturing them - Google Patents

Powder for microwave absorption heating element, microwave absorption heating element using the powder and method of manufacturing them Download PDF

Info

Publication number
JP2014094870A
JP2014094870A JP2012248658A JP2012248658A JP2014094870A JP 2014094870 A JP2014094870 A JP 2014094870A JP 2012248658 A JP2012248658 A JP 2012248658A JP 2012248658 A JP2012248658 A JP 2012248658A JP 2014094870 A JP2014094870 A JP 2014094870A
Authority
JP
Japan
Prior art keywords
powder
zno
sio
heating element
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012248658A
Other languages
Japanese (ja)
Other versions
JP5850821B2 (en
Inventor
Yukiko Nakamura
由紀子 中村
Mikio Takahashi
幹雄 高橋
Satoshi Goto
聡志 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2012248658A priority Critical patent/JP5850821B2/en
Publication of JP2014094870A publication Critical patent/JP2014094870A/en
Application granted granted Critical
Publication of JP5850821B2 publication Critical patent/JP5850821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Constitution Of High-Frequency Heating (AREA)
  • Electric Ovens (AREA)
  • Cookers (AREA)
  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a powder for a microwave absorption heating element which is a material having a white color tone and generates heat by efficiently absorbing a microwave.SOLUTION: A method includes a ZnO-SiO-based composite powder manufacturing process of obtaining a ZnO-SiO-based composite powder and a mixing process of preparing the ZnO-SiO-based composite powder obtained by the ZnO-SiO-based composite powder manufacturing process with 70 mass% or more and less than 100 mass% and mixing at least one kind selected from indium oxide, tin oxide and indium tin oxide (ITO) as the balance to obtain a powder for a microwave absorption heating element.

Description

本発明は、電子レンジ用調理皿などに用いられる特殊セラミック材料に関するものであり、特に2.45GHzのマイクロ波を吸収して優れた発熱性能を示し、しかも白色を呈するマイクロ波吸収発熱体用粉末およびその粉末を用いたマイクロ波吸収発熱体ならびにこれらの製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a special ceramic material used for a cooking dish for a microwave oven, and in particular, it absorbs a microwave of 2.45 GHz, exhibits excellent heat generation performance, and exhibits a white color, and is a powder for a microwave absorption heating element. And a microwave absorption heating element using the powder and a method for producing the same.

電子レンジは、通常2.45GHzのマイクロ波を食品に照射し、食品中の水分子がマイクロ波を吸収して振動する現象を利用して食品を加熱する調理機器である。ここで、マイクロ波を吸収できるのは水分子に限定されるものではなく、誘電損失や磁気損失の高い材料であれば、食品と同様にマイクロ波を吸収して温度が上昇することが知られている。   A microwave oven is a cooking device that heats food using a phenomenon in which microwaves of 2.45 GHz are normally irradiated onto food and water molecules in the food absorb and vibrate microwaves. Here, the ability to absorb microwaves is not limited to water molecules, and it is known that if the material has a high dielectric loss or magnetic loss, it will absorb microwaves and rise in temperature like foods. ing.

近年、電子レンジ用調理皿として、特殊セラミックス材料が2.45GHzのマイクロ波を吸収して発熱する性質を利用した製品が提案されている(例えば、(有)東彼セラミックス製「ドリームキッチン」など)。このような電子レンジ用の加熱調理器具は、電子レンジの放射するマイクロ波を食材に照射して調理するものではなく、マイクロ波で調理器具本体を発熱させ、その熱で食材を加熱して調理するものである。
そのため、調理器具本体の素材にマイクロ波吸収発熱粉を混合したり、表面にマイクロ波吸収発熱粉を含有する層を焼き付けたりして、マイクロ波吸収発熱性能を発現させている。
In recent years, products using the property that special ceramic materials absorb 2.45 GHz microwaves and generate heat have been proposed as cooking dishes for microwave ovens (for example, “Dream Kitchen” manufactured by Tohan Ceramics) ). Such cooking utensils for microwave ovens are not intended to cook by irradiating the microwaves radiated from the microwave oven, but to heat the cooking utensil body with microwaves and heat the ingredients with that heat for cooking. To do.
Therefore, microwave absorption heat generation powder is mixed with the raw material of a cooking utensil body, or the layer containing microwave absorption heat generation powder is baked on the surface, and microwave absorption heat generation performance is expressed.

マイクロ波吸収発熱体としては、従来から、炭化珪素のように誘電損失の高い物質や鉄系酸化物のように磁気損失の高い物質が用いられている。また、近年、発明者らにより開示した、特許文献1に記載のMgCu系フェライト粉を用いたマイクロ波吸収発熱体などがある。
しかしながら、これらの物質は黒色、暗茶色、灰色などを呈するため、調理器具の色に制約があり、白色や明るい色調の発熱調理器具を作製するには適さなかった。
As the microwave absorption heating element, conventionally, a substance having a high dielectric loss such as silicon carbide or a substance having a high magnetic loss such as iron-based oxide has been used. In addition, in recent years, there is a microwave absorption heating element using the MgCu-based ferrite powder disclosed in Patent Document 1 disclosed by the inventors.
However, since these substances are black, dark brown, gray, etc., there are restrictions on the color of the cooking utensil, and it is not suitable for producing a white or light-colored exothermic cooking utensil.

ここに、マイクロ波吸収発熱性能を発現する白色の物質として、誘電体として知られているZnO,BaTiOなどが挙げられるが、これらの酸化物は、上記した炭化珪素や鉄系酸化物と比べて発熱性能に劣り、短時間のマイクロ波照射で200℃を超える高温まで昇温させることは困難であった。
このため、優れたマイクロ波吸収発熱性能を有し、かつ白色系で色調の自由度が高くデザイン性に富んだ発熱体が求められていた。
Here, examples of white substances that exhibit microwave absorption heat generation performance include ZnO and BaTiO 3 known as dielectrics. These oxides are compared with the above-described silicon carbide and iron-based oxides. Therefore, it was difficult to raise the temperature to over 200 ° C. by short-time microwave irradiation.
Therefore, there has been a demand for a heating element that has excellent microwave absorption heat generation performance, is white, has a high degree of freedom in color tone, and is rich in design.

これに対し、発明者らは、特許文献2に示したように、白色を呈し、かつ優れたマイクロ波吸収発熱性能を有するZnO-SiO2系複合粉末を見出している。すなわち、特許文献2に記載された方法を用いれば、出力:500Wのマイクロ波を60秒照射した時に、300℃を超える高い温度まで昇温できる白い色調の発熱体が得られるのである。 On the other hand, the inventors have found a ZnO—SiO 2 composite powder that exhibits white color and has excellent microwave absorption heat generation performance, as shown in Patent Document 2. That is, if the method described in Patent Document 2 is used, a white-colored heating element that can be heated to a high temperature exceeding 300 ° C. when irradiated with a microwave of output: 500 W for 60 seconds can be obtained.

特許第4663005号公報Japanese Patent No. 4666305 特願2011−236441号明細書Japanese Patent Application No. 2011-236441

しかしながら、特許文献2に記載された方法では、焦げ目を付けるのに必要な温度である200℃まで昇温するのに、500Wで20秒以上の昇温時間を要するため、さらに短時間で昇温することができ、また、昇温特性を同等にした場合にあっては、発熱粉添加量を低減することができる、より発熱効率の良い白色発熱粉が求められていた。   However, in the method described in Patent Document 2, it takes more than 20 seconds at 500 W to raise the temperature to 200 ° C., which is a temperature necessary for scoring, so that the temperature is raised in a shorter time. In addition, when the temperature rise characteristics are made equal, white exothermic powder with higher exothermic efficiency that can reduce the amount of exothermic powder added has been demanded.

本発明は、上記の現状に鑑み開発されたもので、白い色調の物質で、かつマイクロ波吸収発熱性能に優れたマイクロ波吸収発熱体用粉末およびマイクロ波吸収発熱体を得ることを目的とする。   The present invention has been developed in view of the above-mentioned present situation, and an object thereof is to obtain a powder for a microwave absorption heating element and a microwave absorption heating element that are white-colored substances and have excellent microwave absorption heating performance. .

発明者らは、上記の課題を解決するために、特許文献2に記載されたZnO-SiO系複合粉末をもとに、他の白色粉末や、酸化物粉末を添加して、両者の複合効果によって効率良くマイクロ波を吸収し発熱する方法を種々試みた。その結果、インジウムまたはスズ系の酸化物粉末を添加することで、ZnO-SiO系複合粉末の発熱性能を一層向上できることが判り、500Wのマイクロ波の照射時間:20秒未満で、200℃まで昇温可能であることが明らかとなった。 In order to solve the above problems, the inventors added other white powders and oxide powders based on the ZnO—SiO 2 composite powder described in Patent Document 2, and combined them. Various methods have been tried to efficiently absorb microwaves and generate heat. As a result, it was found that by adding indium or tin-based oxide powder, the heat generation performance of the ZnO—SiO 2 composite powder could be further improved, and the irradiation time of 500 W microwave: less than 20 seconds up to 200 ° C. It became clear that the temperature could be raised.

発明者らの実験によれば、酸化インジウム、酸化第二スズおよび酸化インジウムスズは、それぞれ単体でも優れた発熱性能を有することが確認された。ここで、これらの物質の誘電率を測定したところ、誘電損失ε"が高いことから、酸化インジウム等による発熱性向上は、誘電損失による発熱機構が寄与していることが判った。しかしながら、酸化インジウムは黄色、酸化第二スズは灰褐色、また酸化インジウムスズは淡黄色や黄緑色を呈しており、いずれも単体では白色発熱粉を得ることは困難である。そこで、ZnO-SiO系複合粉末との混合比率と、色調および発熱性能との関係を詳細に調べた結果、30mass%以内の添加量であれば、ほぼ白色を呈した発熱粉が得られ、なおかつ、上記したように昇温時間を短縮できることが見出された。
本発明は、上記の知見に立脚するものである。
According to experiments by the inventors, it was confirmed that indium oxide, stannic oxide, and indium tin oxide each have excellent heat generation performance even when used alone. Here, when the dielectric constants of these substances were measured, the dielectric loss ε ″ was high, and it was found that the heat generation improvement due to indium oxide contributed to the heat generation mechanism due to dielectric loss. indium yellow stannic oxide gray-brown, also indium tin oxide has exhibited a pale yellow or yellowish green, both in itself it is difficult to obtain a white exothermic powder. Therefore, ZnO-SiO 2 composite As a result of examining the relationship between the mixing ratio with the powder, the color tone, and the heat generation performance in detail, if the addition amount is within 30 mass%, a heat generation powder having almost white color is obtained, and the temperature rises as described above. It has been found that time can be reduced.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.SiO換算で50mass%以下(但し、0mass%は含まない)のシリコン酸化物と、ZnO換算で50mass%以上(但し、100mass%は含まない)の亜鉛酸化物を含有する混合物を、750℃以上1350℃以下の温度範囲で焼成し、ZnO-SiO系複合粉末を得るZnO-SiO系複合粉末製造工程と、
上記ZnO-SiO系複合粉末製造工程で得られるZnO-SiO系複合粉末を70mass%以上100mass%未満とし、さらにインジウム酸化物、スズ酸化物および酸化インジウムスズ(ITO)のうちから選んだ少なくとも1種を残部として混合し、マイクロ波吸収発熱体用粉末を得る混合工程と
を含むことを特徴とするマイクロ波吸収発熱体用粉末の製造方法。
That is, the gist configuration of the present invention is as follows.
1. A mixture containing silicon oxide of 50 mass% or less (excluding 0 mass%) in terms of SiO 2 and zinc oxide of 50 mass% or more (excluding 100 mass%) in terms of ZnO is 750 ° C. or more. calcined at a temperature range of 1350 ° C. or less, and ZnO-SiO 2 composite powder manufacturing process to obtain a ZnO-SiO 2 composite powder,
The ZnO—SiO 2 composite powder obtained in the ZnO—SiO 2 composite powder manufacturing process is 70 mass% or more and less than 100 mass%, and at least selected from indium oxide, tin oxide and indium tin oxide (ITO) A method for producing a powder for a microwave-absorbing heating element, comprising mixing a mixture of one type as a balance to obtain a powder for a microwave-absorbing heating element.

2.前記ZnO-SiO系複合粉末を、ZnO-SiO系複合粉末:シリコン樹脂で、75:25(mass%)の比に混合して成形した樹脂シートの2.45GHzにおける複素誘電率:εを、下記式(1)で表す時、ε’≧3で、かつε’’≧0.5であることを特徴とする前記1に記載のマイクロ波吸収発熱体用粉末の製造方法。

ε = ε’+ε’’i ・・・(1)
ただし、iは、虚数単位である。
2. Complex dielectric constant: ε of 2.45 GHz of a resin sheet formed by mixing the ZnO—SiO 2 composite powder with ZnO—SiO 2 composite powder: silicone resin at a ratio of 75:25 (mass%). The method for producing a powder for a microwave absorption heating element as described in 1 above, wherein ε ′ ≧ 3 and ε ″ ≧ 0.5 when represented by the following formula (1):
Record
ε = ε ′ + ε ″ i (1)
However, i is an imaginary unit.

3.前記1または2に記載の製造方法に従い得られたマイクロ波吸収発熱体用粉末に、樹脂を混合し、成形して、マイクロ波吸収発熱体とすることを特徴とするマイクロ波吸収発熱体の製造方法。 3. Production of a microwave absorption heating element, wherein a powder is mixed with a powder for a microwave absorption heating element obtained according to the production method described in 1 or 2 above and molded to form a microwave absorption heating element. Method.

4.ZnO-SiO系複合粉末:70mass%以上100mass%未満と、
インジウム酸化物、スズ酸化物、酸化インジウムスズ(ITO)のうちから選ばれる少なくとも1種を残部として含有してなるマイクロ波吸収発熱体用粉末において、
上記ZnO-SiO系複合粉末が、
SiO換算で50mass%以下(但し、0mass%は含まない)のシリコン酸化物と、
ZnO換算で50mass%以上(但し、100mass%は含まない)の亜鉛酸化物を含む混合物を焼成してなるZnO-SiO系複合粉末であって、
上記ZnO-SiO系複合粉末を、ZnO-SiO系複合粉末:シリコン樹脂で、75:25(mass%)として混合し、成形した樹脂シートの2.45GHzにおける複素誘電率:εを、下記式(1)で表す時、ε’≧3で、かつε’’≧0.5であることを特徴とするマイクロ波吸収発熱体用粉末。

ε = ε’+ε’’i ・・・(1)
ただし、iは、虚数単位である。
4). ZnO—SiO 2 composite powder: 70 mass% or more and less than 100 mass%,
In the powder for a microwave absorption heating element comprising at least one selected from indium oxide, tin oxide, and indium tin oxide (ITO) as the balance,
The ZnO—SiO 2 composite powder is
Silicon oxide of 50 mass% or less (excluding 0 mass%) in terms of SiO 2 ;
ZnO—SiO 2 composite powder obtained by firing a mixture containing zinc oxide of 50 mass% or more (excluding 100 mass%) in terms of ZnO,
The above-mentioned ZnO—SiO 2 composite powder is mixed with ZnO—SiO 2 composite powder: silicone resin as 75:25 (mass%), and the molded resin sheet has a complex dielectric constant ε at 2.45 GHz: A powder for a microwave absorption heating element, wherein ε ′ ≧ 3 and ε ″ ≧ 0.5 when represented by the formula (1).
Record
ε = ε ′ + ε ″ i (1)
However, i is an imaginary unit.

5.前記4に記載のマイクロ波吸収発熱体用粉末を、少なくとも一部に含有することを特徴とするマイクロ波吸収発熱体。 5. 5. A microwave absorption heating element comprising at least a part of the powder for microwave absorption heating element described in 4 above.

本発明によれば、2.45GHzのマイクロ波を吸収して優れた発熱性能(300℃以上まで速い速度で昇温可能な発熱性能)を示し、しかも白色を呈して色調調整に優れたマイクロ波吸収発熱体用の粉末およびその粉末を用いたマイクロ波吸収発熱体を、それらの有利な製造方法と共に得ることができる。   According to the present invention, a microwave that absorbs microwaves of 2.45 GHz and exhibits excellent heat generation performance (heat generation performance that can raise the temperature at a high speed up to 300 ° C. or higher), and also exhibits white color and excellent color tone adjustment. Powders for absorption heating elements and microwave absorption heating elements using the powders can be obtained together with their advantageous production methods.

以下、本発明を具体的に説明する。
本発明は、原料粉を混合して、粉状または成形体とした後、焼成し、ついで必要に応じて粉砕や分級を施し、所定の粒子サイズに調整してマイクロ波吸収発熱体用粉末を製造する方法およびその際に得られるマイクロ波吸収発熱体用粉末ならびにその粉末を少なくとも一部に含有したマイクロ波吸収発熱体およびその製造方法に関するものである。
Hereinafter, the present invention will be specifically described.
In the present invention, the raw material powder is mixed to form a powder or molded body, then fired, then pulverized and classified as necessary, and adjusted to a predetermined particle size to obtain a powder for microwave absorption heating element. The present invention relates to a method for manufacturing, a powder for a microwave absorption heating element obtained at that time, a microwave absorption heating element containing at least part of the powder, and a method for manufacturing the same.

まず、本発明に用いる原料粉の基本組成について説明する。なお、以下に示すZnO-SiO系複合粉末、マイクロ波吸収発熱体用粉末(以下、発熱粉ともいう)およびマイクロ波吸収発熱体(以下、発熱体ともいう)の成分組成を表す%表示は、特に断らない限りmass%を意味する。
シリコン酸化物: SiO換算で50%以下(0%は含まない)
亜鉛酸化物: ZnO換算で50%以上(100%は含まない)
ZnOは、単体でもマイクロ波を吸収して発熱する物質であり、500Wで1分間のマイクロ波照射で150℃程度にまで発熱する。従って、亜鉛酸化物はZnO換算で50%以上添加させる。なお、亜鉛酸化物は、ZnO換算で 95〜60%が好ましく、93〜65%がより好ましい混合範囲である。
First, the basic composition of the raw material powder used in the present invention will be described. In addition,% display showing the component composition of the following ZnO—SiO 2 composite powder, powder for microwave absorption heating element (hereinafter also referred to as heating powder) and microwave absorption heating element (hereinafter also referred to as heating element) is Unless otherwise specified, it means mass%.
Silicon oxide: 50% or less (excluding 0%) in terms of SiO 2
Zinc oxide: 50% or more in terms of ZnO (not including 100%)
ZnO is a substance that absorbs microwaves and generates heat alone, and generates heat up to about 150 ° C. by microwave irradiation at 500 W for 1 minute. Therefore, 50% or more of zinc oxide is added in terms of ZnO. In addition, 95-60% of zinc oxide is preferable in conversion of ZnO, and 93-65% is a more preferable mixing range.

ZnOに、SiOを添加し、熱処理することで、発熱性能が一段と向上し、200℃以上までの昇温が可能となる。しかしながら、SiO自体は発熱しない物質であるため、シリコン酸化物がSiO換算で50%を超えると発熱性能が低下し、その添加効果が低減する。従って、シリコン酸化物はSiO換算で50%以下が必須である。なお、シリコン酸化物は、SiO換算で5〜40%が好ましく、7〜35%がより好ましい混合範囲である。 By adding SiO 2 to ZnO and performing a heat treatment, the heat generation performance is further improved, and the temperature can be raised to 200 ° C. or higher. However, since SiO 2 itself is a substance that does not generate heat, if silicon oxide exceeds 50% in terms of SiO 2 , the heat generation performance is reduced, and the effect of addition is reduced. Accordingly, the silicon oxide must be 50% or less in terms of SiO 2 . The silicon oxide, 5-40% in terms of SiO 2 is preferred, and more preferred mixing range 7-35%.

なお、上述のZnO-SiO系複合粉末には、シリコン酸化物および亜鉛酸化物以外にも、Al,MgO,TiOおよびBaTiOなど種々の白色系セラミックス粉末を混合させることができるが、これらの合計量が50%以上になると、200℃を超える高温まで発熱することが困難になるため、ZnO,SiO以外の成分の含有量は50%未満とする。 In addition to the silicon oxide and zinc oxide, various white ceramic powders such as Al 2 O 3 , MgO, TiO 2 and BaTiO 3 can be mixed with the above-described ZnO—SiO 2 composite powder. However, since it becomes difficult to generate heat up to a high temperature exceeding 200 ° C. when the total amount thereof is 50% or more, the content of components other than ZnO and SiO 2 is set to less than 50%.

また、上記した亜鉛酸化物やシリコン酸化物の所定の粒径に特別の限定はないが、製造時のハンドリングの容易さ、および樹脂や粘土との均一混合性などを考慮すると、亜鉛酸化物、シリコン酸化物共に、平均粒径で0.05〜100μm程度とするのが好ましい。
なお、その他のセラミックス粉末の粒径は、特に限定されないが、平均粒径:0.05〜100μm程度が好ましい。
In addition, there is no particular limitation on the predetermined particle size of the above-described zinc oxide or silicon oxide, but considering the ease of handling at the time of manufacture and uniform mixing with resin and clay, zinc oxide, Both silicon oxides preferably have an average particle size of about 0.05 to 100 μm.
The particle size of the other ceramic powder is not particularly limited, but the average particle size is preferably about 0.05 to 100 μm.

次に、ZnO-SiO系複合粉末の焼成温度の限定理由について説明する。
焼成温度:750〜1350℃
焼成温度は、ZnOとSiOの反応性に大きな影響を及ぼす。すなわち、焼成温度が750℃に満たないと、発熱特性を改善する化合物の生成反応が十分に進行しないため、最終的に発熱体が200℃を超える高温まで昇温できなくなる。一方、焼成温度が1350℃を超えると、ZnOの蒸発や、SiOの構造変化の影響を受けるため、発熱体の発熱特性が劣化する。
従って、焼成温度は750〜1350℃の範囲に限定する。好ましくは、850〜1250℃の範囲、より好ましくは900〜1250℃の範囲である。なお、焼成時間について、特別の限定はないが、0.5〜10時間(h)程度とするのが好ましい。
Next, the reason for limiting the firing temperature of the ZnO—SiO 2 composite powder will be described.
Firing temperature: 750 to 1350 ° C.
The firing temperature greatly affects the reactivity between ZnO and SiO 2 . That is, if the firing temperature is less than 750 ° C., the reaction for generating a compound that improves the heat generation characteristics does not proceed sufficiently, so that the heating element cannot finally be heated to a high temperature exceeding 200 ° C. On the other hand, if the firing temperature exceeds 1350 ° C., it is affected by the evaporation of ZnO and the structural change of SiO 2 , so the heat generation characteristics of the heating element deteriorate.
Therefore, the firing temperature is limited to the range of 750 to 1350 ° C. Preferably, it is the range of 850-1250 degreeC, More preferably, it is the range of 900-1250 degreeC. The firing time is not particularly limited, but is preferably about 0.5 to 10 hours (h).

上記した製造工程により得られたZnO-SiO系複合粉末は、ZnO-SiO系複合粉末:シリコン樹脂を75:25(%)の比で混合して成形した樹脂シートの2.45GHzにおける複素誘電率:εを、下記式(1)で表す時、ε’(実数部)およびε’’(虚数部)が所定の値を示すことが肝要である。

ε = ε’+ε’’i ・・・(1)
ただし、iは、虚数単位である。
The ZnO—SiO 2 composite powder obtained by the manufacturing process described above is a complex of a resin sheet formed by mixing ZnO—SiO 2 composite powder: silicone resin at a ratio of 75:25 (%) at 2.45 GHz. When the dielectric constant: ε is expressed by the following formula (1), it is important that ε ′ (real part) and ε ″ (imaginary part) show predetermined values.
Record
ε = ε ′ + ε ″ i (1)
However, i is an imaginary unit.

ε’≧3かつε’’≧0.5
上記した所定の値とは、ε’が3以上で、かつε’’が0.5以上である。というのは、ε’およびε’’のいずれかが、上記範囲を外れると、2.45GHzのマイクロ波に対する誘電損失が小さすぎるために、200℃以上の高温まで発熱することができないからである。
なお、好ましい範囲は、ε’が3.4以上、かつ、ε’’が0.55以上である。また、ε’およびε’’の上限に特別の限定はないが、工業的に有利なのは、ε’が30程度、ε’’が15程度である。
ε ′ ≧ 3 and ε ″ ≧ 0.5
The predetermined value mentioned above is that ε ′ is 3 or more and ε ″ is 0.5 or more. This is because if either ε ′ or ε ″ is out of the above range, the dielectric loss for the microwave of 2.45 GHz is too small to generate heat up to a high temperature of 200 ° C. or higher. .
A preferable range is that ε ′ is 3.4 or more and ε ″ is 0.55 or more. Further, although there are no particular limitations on the upper limits of ε ′ and ε ″, it is industrially advantageous that ε ′ is about 30 and ε ″ is about 15.

〔複素誘電率の測定方法〕
測定対象になる粉末と、シリコン樹脂(溶剤:トルエン)(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製YSR3022)とを、75:25(%)の比に混合し、さらに硬化触媒(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製YC6843)を混合して、シート状に成形後、溶剤を揮発させる。このシートから、外径:7mm、内径:3mm、厚さ:1mm程度のリング形状を切り出して、APC7型の同軸サンプルホルダーに設置し、ネットワークアナライザーを用いてSパラメータ法で2.45GHzの複素誘電率を測定する。
なお、後述する実施例においても上記方法により、ε’およびε’’の値を測定した。
[Measurement method of complex permittivity]
Powder to be measured and silicon resin (solvent: toluene) (YSR3022 made by Momentive Performance Materials Japan GK) are mixed in a ratio of 75:25 (%), and further a curing catalyst (momentive performance) -Materials Japan GK YC6843) is mixed and formed into a sheet, and then the solvent is volatilized. A ring shape having an outer diameter of 7 mm, an inner diameter of 3 mm, and a thickness of 1 mm is cut out from this sheet, placed on an APC7 type coaxial sample holder, and a 2.45 GHz complex dielectric using a network analyzer with the S-parameter method. Measure the rate.
In the examples described later, the values of ε ′ and ε ″ were measured by the above method.

さらに、本発明では、発熱特性を改善する目的で、前記ZnO-SiO系複合粉末:70mass%以上100mass%未満に、インジウム酸化物、スズ酸化物および酸化インジウムスズ(ITO)から選ばれる1種以上を、残部として混合する混合工程を経ることで、一層優れた昇温特性を有するマイクロ波吸収発熱体用粉末を製造することができる。
酸化インジウムIn、酸化第二スズSnOおよび酸化インジウムスズITOは、それぞれ単体でも発熱性能を有するため、添加量が多いほど、発熱性能は向上する。しかしながら、酸化インジウムは黄色、酸化第二スズは灰褐色、また酸化インジウムスズは淡黄色や黄緑色を呈するため、30%を超えると白色粉を得ることができなくなる。従って、添加量は0〜30%(ゼロは含まず)の範囲とする。 好ましくは、25%以下(ゼロは含まず)、より好ましくは1〜25%である。
Furthermore, in the present invention, for the purpose of improving heat generation characteristics, the ZnO—SiO 2 composite powder: one kind selected from indium oxide, tin oxide, and indium tin oxide (ITO) to 70 mass% or more and less than 100 mass%. By passing through the mixing step of mixing the above as the remainder, it is possible to produce a powder for a microwave absorption heating element having even more excellent temperature rise characteristics.
Since indium oxide In 2 O 3 , stannic oxide SnO 2, and indium tin oxide ITO each have a heat generation performance even as a single substance, the heat generation performance is improved as the addition amount is increased. However, indium oxide is yellow, stannic oxide is grey-brown, and indium tin oxide is light yellow or yellowish green. If it exceeds 30%, white powder cannot be obtained. Therefore, the addition amount is in the range of 0 to 30% (excluding zero). Preferably, it is 25% or less (excluding zero), more preferably 1 to 25%.

上述した工程(ZnO-SiO系複合粉末製造工程、発熱粉を得る混合工程)に示した条件以外で、発熱粉を製造する工程の条件、すなわち、ZnO-SiO系複合粉末の混合工程や、粉状または成形体とする工程、さらには、粉砕や分級などを施して所定の粒子サイズに調整する工程の条件などは、常法に従えば良い。 Other than the conditions shown in the above-described steps (ZnO—SiO 2 composite powder production process, mixing step for obtaining exothermic powder), the conditions of the process for producing exothermic powder, that is, the ZnO—SiO 2 composite powder mixing process, The conditions of the step of forming a powder or a molded body, and the step of adjusting the particle size to a predetermined particle size by pulverization or classification may be in accordance with conventional methods.

次に、発熱粉を少なくとも一部に含有する発熱体とする実施形態として、上記のマイクロ波吸収発熱体用粉末を用いて、電子レンジ用の加熱調理器具、例えば調理皿を製造する場合について説明する。
まず、前述したような好適成分組成に調整したZnOとSiOを混合し、粉末状または成形体として、大気雰囲気中で750〜1350℃の温度として熱処理した後、必要に応じて粉砕、分級などを施して所定の粒子サイズに調整することで、ε’およびε’’の値を前記の所定値としたZnO-SiO系複合粉末を製造する。その際、湿式合成法、水熱合成法など特殊な原料製造方法を用いることもできる。
Next, as an embodiment in which a heating element containing at least a part of the heating powder is used, a description will be given of a case of manufacturing a cooking device for a microwave oven, for example, a cooking dish, using the above-described powder for microwave absorption heating element. To do.
First, ZnO adjusted to a suitable component composition as described above and SiO 2 are mixed, heat-treated at a temperature of 750 to 1350 ° C. in an air atmosphere as a powder or molded body, and then pulverized and classified as necessary To adjust the particle size to a predetermined value, thereby producing a ZnO—SiO 2 composite powder having the values of ε ′ and ε ″ as the predetermined values. In that case, special raw material manufacturing methods, such as a wet synthesis method and a hydrothermal synthesis method, can also be used.

次いで、ZnO-SiO系複合粉末に、In、SnOおよびITOなどのインジウムおよび/またはスズを含有する酸化物を、乾式または湿式混合して、マイクロ波吸収発熱体用粉末とする。なお、上記酸化物を、乾式または湿式混合する条件は、常法に従うことが好ましい。 Next, an oxide containing indium and / or tin such as In 2 O 3 , SnO 2 and ITO is dry- or wet-mixed with the ZnO—SiO 2 composite powder to obtain a powder for microwave absorption heating element. . In addition, it is preferable that the conditions which dry-type or wet-mix the said oxide follow a conventional method.

ついで、上記発熱粉を、シリコン樹脂等の耐熱性樹脂などと混合して発熱調理器具に成形したのち、必要に応じて加熱して固化させることで、マイクロ波吸収発熱体を得る。その際の発熱粉と耐熱性樹脂との混合比率は、所望の発熱温度に応じて、発熱粉の質量/発熱体の質量の値で5〜75%程度の間となるように選定するのが好ましい。
また、釉薬などと混合し、セラミックス基材の調理皿の表面に塗布後、焼成することで、表面に、マイクロ波吸収発熱体を有する陶磁器皿として使用することができる。このとき、被膜層の厚みは50〜300μm程度とするのが好ましい。
Next, the heat-generating powder is mixed with a heat-resistant resin such as silicone resin and formed into a heat-generating cooking utensil, and then heated and solidified as necessary to obtain a microwave-absorbing heat-generating body. The mixing ratio of the exothermic powder and the heat-resistant resin at that time is selected so as to be between about 5 to 75% in terms of the mass of the exothermic powder / the mass of the exothermic body, depending on the desired exothermic temperature. preferable.
Moreover, it can be used as a ceramic dish having a microwave-absorbing heating element on its surface by mixing with a glaze and the like, baking it after applying it to the surface of a ceramic-based cooking dish. At this time, the thickness of the coating layer is preferably about 50 to 300 μm.

さらに、発熱粉を少なくとも一部に含有する発熱体とする実施形態として、陶磁器の原料粉末に、本発明に従う発熱粉を混合して、陶磁器全体をマイクロ波吸収発熱体とすることが挙げられる。この場合、およそ10%以上、好ましくは30%以下の上記マイクロ波吸収発熱体用粉末を添加した原料を用いて、成形して、焼成し、調理皿を作製することができる。   Furthermore, as an embodiment in which the exothermic powder is contained in at least part of the exothermic powder, the exothermic powder according to the present invention is mixed with the ceramic raw material powder to make the entire ceramic as a microwave absorption exothermic body. In this case, using a raw material to which the above-mentioned powder for microwave-absorbing heating element is added in an amount of about 10% or more, preferably 30% or less, it can be molded and fired to prepare a cooking dish.

本発明に従うマイクロ波吸収発熱体用粉末の用途は、上述した電子レンジ用発熱調理器具に限定されることはなく、マイクロ波加熱装置の壁や床材、電子レンジで加温して使用するカイロ、あんかなどの保温材、衣料品、接着剤など、マイクロ波を利用して温度上昇させる用途を有する物品全般に利用することができる。   The use of the powder for a microwave absorption heating element according to the present invention is not limited to the above-described heating cooker for a microwave oven, and the warmer is used by heating the wall or floor material of a microwave heating device or a microwave oven. It can be used for general articles having a purpose of raising the temperature using microwaves, such as a heat insulating material such as an anchor, clothing, and an adhesive.

上述したように、マイクロ波吸収発熱体用粉末を、少なくとも一部に含有すること、すなわち樹脂等の素地と発熱粉の混合比率を調整することで、用途に応じた発熱温度に調整することができる。また、本発明に従うマイクロ波吸収発熱体用粉末は白色であるため、他の色調の顔料を添加することで、種々の色調の発熱体を簡単に作製することができる。   As described above, it is possible to adjust the heat generation temperature according to the application by containing the powder for microwave absorption heating element at least in part, that is, by adjusting the mixing ratio of the base material such as resin and the heating powder. it can. Moreover, since the powder for microwave absorption heat generating bodies according to this invention is white, the heat generating body of a various color tone can be easily produced by adding the pigment of another color tone.

以下、本発明の具体的実施例について説明する。
〔発明例1〜7、参考例1および比較例1〜3〕
表1に示すZnOとSiOの配合比の混合粉に対して、表1に示した焼成温度で大気中2h焼成し、目開き:250μmの篩を通して整粒することにより、ZnO-SiO2系複合粉末を作製した。これらに、表1の添加条件に示した配合比で、酸化インジウム、酸化第二スズおよび酸化インジウムスズのうちから選ばれる1種以上の添加物を添加し、乳鉢を用いて均一に混合して、白色のマイクロ波吸収発熱体用粉末を得た。なお、参考例1は、特許文献2に記載された発明に該当する。なお、ε’およびε’’の値は、上記ZnO-SiO2系複合粉末を用いてそれぞれ測定した。
Hereinafter, specific examples of the present invention will be described.
[Invention Examples 1-7, Reference Example 1 and Comparative Examples 1-3]
The mixed powder of ZnO and SiO 2 in the mixing ratio shown in Table 1, and the atmosphere 2h is fired at a firing temperature shown in Table 1, opening: by sizing through 250μm sieve, ZnO-SiO 2 system A composite powder was produced. One or more additives selected from indium oxide, stannic oxide, and indium tin oxide are added to these at the mixing ratio shown in Table 1 and mixed uniformly using a mortar. A white microwave-absorbing heating element powder was obtained. Reference Example 1 corresponds to the invention described in Patent Document 2. The values of ε ′ and ε ″ were measured using the ZnO—SiO 2 composite powder.

〔比較例4,5〕
表1に示したZnO,SiO,InおよびSnOを配合した混合粉に対して、表1に示した焼成温度で大気中2h焼成し、目開き:250μmの篩を通して整粒することにより、白色のマイクロ波吸収発熱体用粉末を作製した。なお、ε’およびε’’の値は、上記ZnO,SiO、InおよびSnOを配合した混合粉を用いてそれぞれ測定した。
[Comparative Examples 4 and 5]
The mixed powder containing ZnO, SiO 2 , In 2 O 3 and SnO 2 shown in Table 1 is fired in the atmosphere for 2 hours at the firing temperature shown in Table 1, and the particle size is adjusted through a sieve having a mesh size of 250 μm. As a result, a white powder for microwave absorption heating element was produced. The values of ε ′ and ε ″ were measured using mixed powders containing the above ZnO, SiO 2 , In 2 O 3 and SnO 2 .

〔発熱特性の評価方法〕
マイクロ波吸収発熱体用粉末と耐熱性樹脂(シリコン樹脂)を混練して、マイクロ波吸収発熱体用粉末:樹脂=75:25(%)のシート(発熱体)を成形し、40×40×約1mmの形状に切り出して、マイクロ波吸収発熱体シート(以下、単に発熱体シートという)を作製した。これらの発熱体シートを、市販の電子レンジ(日立製作所製MRO-GS8型)の中に置き、500Wのマイクロ波を10〜90秒間照射した時の発熱体シート表面温度を放射温度計で測定した。
表1に、発熱体シートの特性として、発熱体シートの色調、発熱体シート表面温度が200℃到達までの所要時間、および60秒照射時点での発熱体シート表面温度を、上記ε’およびε’’の値と共に記載する。
[Method of evaluating heat generation characteristics]
Microwave-absorbing heating element powder and heat-resistant resin (silicone resin) are kneaded to form a microwave-absorbing heating element powder: resin = 75: 25 (%) sheet (heating element), 40 × 40 × A microwave-absorbing heating element sheet (hereinafter simply referred to as a heating element sheet) was cut into a shape of about 1 mm. These heating element sheets were placed in a commercially available microwave oven (MRO-GS8 manufactured by Hitachi, Ltd.), and the surface temperature of the heating element sheet was measured with a radiation thermometer when 500 W microwave was irradiated for 10 to 90 seconds. .
In Table 1, as the characteristics of the heating element sheet, the color tone of the heating element sheet, the time required for the heating element sheet surface temperature to reach 200 ° C., and the heating element sheet surface temperature at the time of irradiation for 60 seconds are shown as ε ′ and ε Enter with the value of ''.

Figure 2014094870
Figure 2014094870

同表から明らかなように、所定の配合比のZnO,SiOを、所定温度で焼成し、本発明に従い、所定の添加物を添加することで、白色を維持しつつ、200℃到達までの所要時間を短縮することが可能であることが分かる。これに対して、原料配合比や、焼成温度、添加物条件のいずれかが本発明の範囲外であった場合には、白色と高速昇温特性を兼ね備える発熱粉を得ることはできないことが分かる。 As is apparent from the table, ZnO, SiO 2 having a predetermined blending ratio is fired at a predetermined temperature, and according to the present invention, by adding a predetermined additive, the white color is maintained and the temperature reaches 200 ° C. It can be seen that the required time can be shortened. On the other hand, when any of the raw material blending ratio, the firing temperature, and the additive conditions are outside the scope of the present invention, it can be seen that it is not possible to obtain exothermic powder having both white color and high-speed temperature rise characteristics. .

以上、本実施例で示したとおり、本発明に従うマイクロ波吸収発熱体用粉末は、白色を呈し、そのマイクロ波吸収発熱体用粉末を用いて作製したマイクロ波吸収発熱体は、優れた発熱性能を示すと共に、200℃までの到達時間を従来材に比べて短縮できることが確認された。
なお、本発明における発熱体中の発熱粉の含有量は、75%に限定されるものではなく、含有量を調整することで、発熱温度を50℃〜350℃を超える高温まで任意の温度に調整することができる。
As described above, as shown in this Example, the powder for microwave absorption heating element according to the present invention is white, and the microwave absorption heating element produced using the powder for microwave absorption heating element has excellent heat generation performance. It was confirmed that the arrival time up to 200 ° C. can be shortened compared to the conventional material.
In addition, the content of the exothermic powder in the heating element in the present invention is not limited to 75%, and by adjusting the content, the exothermic temperature can be increased to a high temperature exceeding 50 ° C to 350 ° C. Can be adjusted.

Claims (5)

SiO換算で50mass%以下(但し、0mass%は含まない)のシリコン酸化物と、ZnO換算で50mass%以上(但し、100mass%は含まない)の亜鉛酸化物を含有する混合物を、750℃以上1350℃以下の温度範囲で焼成し、ZnO-SiO系複合粉末を得るZnO-SiO系複合粉末製造工程と、
上記ZnO-SiO系複合粉末製造工程で得られるZnO-SiO系複合粉末を70mass%以上100mass%未満とし、さらにインジウム酸化物、スズ酸化物および酸化インジウムスズ(ITO)のうちから選んだ少なくとも1種を残部として混合し、マイクロ波吸収発熱体用粉末を得る混合工程と
を含むことを特徴とするマイクロ波吸収発熱体用粉末の製造方法。
A mixture containing silicon oxide of 50 mass% or less (excluding 0 mass%) in terms of SiO 2 and zinc oxide of 50 mass% or more (excluding 100 mass%) in terms of ZnO is 750 ° C. or more. calcined at a temperature range of 1350 ° C. or less, and ZnO-SiO 2 composite powder manufacturing process to obtain a ZnO-SiO 2 composite powder,
The ZnO—SiO 2 composite powder obtained in the ZnO—SiO 2 composite powder manufacturing process is 70 mass% or more and less than 100 mass%, and at least selected from indium oxide, tin oxide and indium tin oxide (ITO) A method for producing a powder for a microwave-absorbing heating element, comprising mixing a mixture of one type as a balance to obtain a powder for a microwave-absorbing heating element.
前記ZnO-SiO系複合粉末を、ZnO-SiO系複合粉末:シリコン樹脂で、75:25(mass%)の比に混合して成形した樹脂シートの2.45GHzにおける複素誘電率:εを、下記式(1)で表す時、ε’≧3で、かつε’’≧0.5であることを特徴とする請求項1に記載のマイクロ波吸収発熱体用粉末の製造方法。

ε = ε’+ε’’i ・・・(1)
ただし、iは、虚数単位である。
Complex dielectric constant: ε of 2.45 GHz of a resin sheet formed by mixing the ZnO—SiO 2 composite powder with ZnO—SiO 2 composite powder: silicone resin at a ratio of 75:25 (mass%). The method for producing a powder for a microwave-absorbing heating element according to claim 1, wherein ε ′ ≧ 3 and ε ″ ≧ 0.5 when expressed by the following formula (1).
Record
ε = ε ′ + ε ″ i (1)
However, i is an imaginary unit.
請求項1または2に記載の製造方法に従い得られたマイクロ波吸収発熱体用粉末に、樹脂を混合し、成形して、マイクロ波吸収発熱体とすることを特徴とするマイクロ波吸収発熱体の製造方法。   A microwave-absorbing heating element, comprising: a microwave-absorbing heating element obtained by mixing a resin with the microwave-absorbing heating element powder obtained according to the production method according to claim 1; Production method. ZnO-SiO系複合粉末:70mass%以上100mass%未満と、
インジウム酸化物、スズ酸化物、酸化インジウムスズ(ITO)のうちから選ばれる少なくとも1種を残部として含有してなるマイクロ波吸収発熱体用粉末において、
上記ZnO-SiO系複合粉末が、
SiO換算で50mass%以下(但し、0mass%は含まない)のシリコン酸化物と、
ZnO換算で50mass%以上(但し、100mass%は含まない)の亜鉛酸化物を含む混合物を焼成してなるZnO-SiO系複合粉末であって、
上記ZnO-SiO系複合粉末を、ZnO-SiO系複合粉末:シリコン樹脂で、75:25(mass%)として混合し、成形した樹脂シートの2.45GHzにおける複素誘電率:εを、下記式(1)で表す時、ε’≧3で、かつε’’≧0.5であることを特徴とするマイクロ波吸収発熱体用粉末。

ε = ε’+ε’’i ・・・(1)
ただし、iは、虚数単位である。
ZnO—SiO 2 composite powder: 70 mass% or more and less than 100 mass%,
In the powder for a microwave absorption heating element comprising at least one selected from indium oxide, tin oxide, and indium tin oxide (ITO) as the balance,
The ZnO—SiO 2 composite powder is
Silicon oxide of 50 mass% or less (excluding 0 mass%) in terms of SiO 2 ;
ZnO—SiO 2 composite powder obtained by firing a mixture containing zinc oxide of 50 mass% or more (excluding 100 mass%) in terms of ZnO,
The above-mentioned ZnO—SiO 2 composite powder is mixed with ZnO—SiO 2 composite powder: silicone resin as 75:25 (mass%), and the molded resin sheet has a complex dielectric constant ε at 2.45 GHz: A powder for a microwave absorption heating element, wherein ε ′ ≧ 3 and ε ″ ≧ 0.5 when represented by the formula (1).
Record
ε = ε ′ + ε ″ i (1)
However, i is an imaginary unit.
請求項4に記載のマイクロ波吸収発熱体用粉末を、少なくとも一部に含有することを特徴とするマイクロ波吸収発熱体。   A microwave-absorbing heating element comprising at least a part of the powder for a microwave-absorbing heating element according to claim 4.
JP2012248658A 2012-11-12 2012-11-12 Powder for microwave-absorbing heating element, microwave-absorbing heating element using the powder, and production method thereof Active JP5850821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012248658A JP5850821B2 (en) 2012-11-12 2012-11-12 Powder for microwave-absorbing heating element, microwave-absorbing heating element using the powder, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012248658A JP5850821B2 (en) 2012-11-12 2012-11-12 Powder for microwave-absorbing heating element, microwave-absorbing heating element using the powder, and production method thereof

Publications (2)

Publication Number Publication Date
JP2014094870A true JP2014094870A (en) 2014-05-22
JP5850821B2 JP5850821B2 (en) 2016-02-03

Family

ID=50938272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012248658A Active JP5850821B2 (en) 2012-11-12 2012-11-12 Powder for microwave-absorbing heating element, microwave-absorbing heating element using the powder, and production method thereof

Country Status (1)

Country Link
JP (1) JP5850821B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016201358A (en) * 2015-04-10 2016-12-01 Jfeケミカル株式会社 Microwave absorption heating powder and microwave absorption heating element
CN110240167A (en) * 2019-07-26 2019-09-17 苏州中材非金属矿工业设计研究院有限公司 A kind of extraction process of high purity quartz
JP7505363B2 (en) 2020-10-15 2024-06-25 味の素株式会社 Microwave heating container for frozen packed foods and heating method using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272025A (en) * 1986-02-13 1987-11-26 Syst Kurieitsu:Kk Microwave heating promoter
JPH02107265A (en) * 1988-10-15 1990-04-19 Nippon Dry Chem Co Ltd Material and method for improving environment
JP2009221068A (en) * 2008-03-18 2009-10-01 Doshisha Zn2SiO4 CERAMICS AND ITS MANUFACTURING METHOD

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272025A (en) * 1986-02-13 1987-11-26 Syst Kurieitsu:Kk Microwave heating promoter
JPH02107265A (en) * 1988-10-15 1990-04-19 Nippon Dry Chem Co Ltd Material and method for improving environment
JP2009221068A (en) * 2008-03-18 2009-10-01 Doshisha Zn2SiO4 CERAMICS AND ITS MANUFACTURING METHOD

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016201358A (en) * 2015-04-10 2016-12-01 Jfeケミカル株式会社 Microwave absorption heating powder and microwave absorption heating element
CN110240167A (en) * 2019-07-26 2019-09-17 苏州中材非金属矿工业设计研究院有限公司 A kind of extraction process of high purity quartz
JP7505363B2 (en) 2020-10-15 2024-06-25 味の素株式会社 Microwave heating container for frozen packed foods and heating method using same

Also Published As

Publication number Publication date
JP5850821B2 (en) 2016-02-03

Similar Documents

Publication Publication Date Title
JP5688643B2 (en) Fever glaze and fever container applied here
JP4663005B2 (en) MgCu ferrite powder for microwave absorption heating element
CN101665350A (en) Ceramic microwave absorbing material and preparation method and application thereof
JP5850821B2 (en) Powder for microwave-absorbing heating element, microwave-absorbing heating element using the powder, and production method thereof
CN101864271B (en) Heat generating material capable of absorbing microwave and ceramic bonding heat generating material prepared by using same
CN101828855B (en) Microwave oven chinaware capable of frying and roasting
CN106136850A (en) The manufacture method of cooking container, cooking container and cooking apparatus
KR100470316B1 (en) Ceramic heating element and method of the same
JP5828812B2 (en) Method for producing powder for microwave absorption heating element, powder for microwave absorption heating element, and microwave absorption heating element using the powder
JP5824411B2 (en) Method for producing powder for microwave-absorbing heating element and method for producing microwave-absorbing heating element using the powder
JP5017438B2 (en) Cooking device for electromagnetic wave absorption heating element and microwave oven
KR101602574B1 (en) Cookware and Cookware manufacturing method for microwave oven
JP5468825B2 (en) Cooking device for electromagnetic wave absorption heating element and microwave oven
JP5546671B2 (en) Cooking device for electromagnetic wave absorption heating element and microwave oven
JP5483026B2 (en) Microwave absorption / self-heating heat-resistant ceramics and method for manufacturing the same
JP2013159527A (en) NiMgCuZn FERRITE POWDER FOR MICROWAVE ABSORPTION HEATING ELEMENT AND MICROWAVE ABSORPTION HEATING ELEMENT USING THE POWDER
JP2016201358A (en) Microwave absorption heating powder and microwave absorption heating element
JPH06124767A (en) Elf-heating far infrared radiation cooking device material for microwave oven
JP5912994B2 (en) Method for producing NiCuZn ferrite powder for microwave absorption heating element, and method for producing microwave absorption heating element using powder produced by the production method
HU210599B (en) Process for producing special coat-work of dish and/or inset for microwave ovens
CN101210701A (en) Microwave furnace baking tray and manufacturing method thereof
JP2017027933A (en) Microwave-absorbing heating body
JP2012082122A (en) Method of manufacturing microwave heating pottery
KR101589830B1 (en) Oven Type Cookware and Cookware manufacturing method for microwave oven
CN101798780A (en) Manufacturing method and application method of microwave-absorbing heat-generating decal tissue

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150216

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151201

R150 Certificate of patent or registration of utility model

Ref document number: 5850821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250