JP2014094850A - Surface-decorated metal oxide fine particle, fluid dispersion containing the same, resin composition, complex and optical member - Google Patents

Surface-decorated metal oxide fine particle, fluid dispersion containing the same, resin composition, complex and optical member Download PDF

Info

Publication number
JP2014094850A
JP2014094850A JP2012246520A JP2012246520A JP2014094850A JP 2014094850 A JP2014094850 A JP 2014094850A JP 2012246520 A JP2012246520 A JP 2012246520A JP 2012246520 A JP2012246520 A JP 2012246520A JP 2014094850 A JP2014094850 A JP 2014094850A
Authority
JP
Japan
Prior art keywords
metal oxide
oxide fine
fine particles
modified
modified metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012246520A
Other languages
Japanese (ja)
Other versions
JP6028529B2 (en
Inventor
Yoshizumi Ishikawa
佳澄 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2012246520A priority Critical patent/JP6028529B2/en
Publication of JP2014094850A publication Critical patent/JP2014094850A/en
Application granted granted Critical
Publication of JP6028529B2 publication Critical patent/JP6028529B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a surface-decorated metal oxide fine particle having both high refractive index and high transparency.SOLUTION: The surface-decorated metal oxide fine particle is used by being dispersed in resin having an aromatic ring skeleton and is obtained by decorating a surface of a metal oxide fine particle with a surface decoration agent, and has an average primary particle diameter of 4 nm to 15 nm. The metal oxide fine particle contains one or more kind of metal elements selected from a group of zirconium, zinc, iron, copper, titanium, tin, cerium, tantalum, niobium, tungsten, europium and hafnium, where the surface decoration agent is represented by general formula (1). In the formula (1), n is 1 to 3 and Si-X, Si-Xand Si-Xare each independently a functional group which becomes a silanol group by hydrolysis.

Description

本発明は、表面修飾金属酸化物微粒子、それを含有する分散液、樹脂組成物、複合体及び光学部材に関し、特に高屈折率と高透明性が要求される光学部材に用いて好適な、表面修飾金属酸化物微粒子、それを含有する分散液、樹脂組成物、複合体及び光学部材に関する。   The present invention relates to surface-modified metal oxide fine particles, a dispersion containing the same, a resin composition, a composite, and an optical member, and particularly suitable for an optical member that requires high refractive index and high transparency. The present invention relates to modified metal oxide fine particles, a dispersion containing the same, a resin composition, a composite, and an optical member.

レンズ等の光学部材に用いられる樹脂には、屈折率が高く、かつ透明性が高いことが求められる。汎用的な樹脂は透明ではあるが、その屈折率は1.4〜1.6程度であり、更なる高屈折率化が求められている。そこで光学部材で用いられる樹脂を高屈折率化させるために、様々な手法が検討されている。   Resins used for optical members such as lenses are required to have a high refractive index and high transparency. A general-purpose resin is transparent, but its refractive index is about 1.4 to 1.6, and further higher refractive index is required. Therefore, various techniques have been studied in order to increase the refractive index of the resin used in the optical member.

ジルコニア、チタニアをはじめとした高屈折率の金属酸化物の微粒子を樹脂中に均一分散させることによって、高屈折率化と高透明性とを両立させる試みもそのひとつであり、数多くの検討がなされている。   An attempt to achieve both high refractive index and high transparency by uniformly dispersing fine particles of metal oxides such as zirconia and titania in the resin is one of them, and many studies have been made. ing.

金属酸化物微粒子を分散させて樹脂の高屈折率化を図る場合、樹脂の透明性も維持するためには、分散している粒子の大きさを可能な限り小さくすることが重要である。例えば、非特許文献1記載の計算式によると、屈折率が1.55、比重が1、厚さ1mmにおける透過率が92%である樹脂に、屈折率2.2、比重5のジルコニア微粒子を分散させて、屈折率を1.6まで向上させようとする場合、厚み1mmにおける透過率を85%以上に維持するには、微粒子の大きさが樹脂中で17nm以下である必要があり、また、同条件で透過率を90%以上に維持するには、微粒子の大きさが樹脂中で7nm以下である必要がある。   When the metal oxide fine particles are dispersed to increase the refractive index of the resin, it is important to reduce the size of the dispersed particles as much as possible in order to maintain the transparency of the resin. For example, according to the calculation formula described in Non-Patent Document 1, zirconia fine particles having a refractive index of 2.2 and a specific gravity of 5 are applied to a resin having a refractive index of 1.55, a specific gravity of 1 and a transmittance of 92% at a thickness of 1 mm. In order to increase the refractive index up to 1.6 by dispersing, in order to maintain the transmittance at a thickness of 1 mm at 85% or more, the size of the fine particles needs to be 17 nm or less in the resin. In order to maintain the transmittance at 90% or more under the same conditions, the size of the fine particles needs to be 7 nm or less in the resin.

金属酸化物微粒子を樹脂中において、凝集させずに均一分散させるためには、粒子表面を有機修飾し、粒子表面状態を制御することが必要である。この場合、表面修飾に用いられる表面修飾剤は、金属酸化物微粒子よりも屈折率が小さく、樹脂同等の屈折率であることから、屈折率向上を図るためには、表面修飾剤による修飾量は可能な限り少なくすることが重要である。   In order to uniformly disperse the metal oxide fine particles in the resin without agglomeration, it is necessary to organically modify the particle surface to control the particle surface state. In this case, the surface modifier used for the surface modification has a refractive index smaller than that of the metal oxide fine particles and has a refractive index equivalent to that of the resin. Therefore, in order to improve the refractive index, the amount of modification by the surface modifier is It is important to minimize as much as possible.

一方で、高透明性を得るためには、小さい金属酸化物微粒子を、凝集することなく樹脂中に分散させることが必要である。しかし粒子径が小さくなるほど、金属酸化物微粒子の単位質量あたりの表面積は増大することから、表面修飾剤の必要量は多くなるのが必然である。   On the other hand, in order to obtain high transparency, it is necessary to disperse small metal oxide fine particles in the resin without aggregation. However, since the surface area per unit mass of the metal oxide fine particles increases as the particle diameter decreases, the necessary amount of the surface modifier is inevitably increased.

すなわち、屈折率を向上させるためには表面修飾剤の量を少なくする必要があり、透明性を向上させるためには表面修飾剤の量を多くする必要がある。そのため、高透明性と高屈折率を両立させることが難しいという問題があった。   That is, it is necessary to reduce the amount of the surface modifier in order to improve the refractive index, and it is necessary to increase the amount of the surface modifier in order to improve transparency. Therefore, there is a problem that it is difficult to achieve both high transparency and high refractive index.

このような問題を解決するために、特許文献1では、芳香族骨格と4個以上の原子が連なった芳香族骨格への結合構造とを含む有機成分を無機系微粒子表面に有する複合粒子が提案されている(特許文献1)。   In order to solve such a problem, Patent Document 1 proposes a composite particle having an organic component including an aromatic skeleton and a bonded structure to an aromatic skeleton in which four or more atoms are connected on the surface of inorganic fine particles. (Patent Document 1).

Journal of Materials Chemistry, Vol.19 PP2884-2991, 2009Journal of Materials Chemistry, Vol.19 PP2884-2991, 2009 特開2010−37534号公報JP 2010-37534 A

特許文献1の複合粒子は、高透明性と高屈折率の両立が依然として不十分であり、両特性の更なる向上が切望されている。   The composite particle of Patent Document 1 still has insufficient compatibility between high transparency and high refractive index, and further improvement of both characteristics is eagerly desired.

本発明は上記事情に鑑みてなされたものであって、複合体等の高屈折率と高透明性とを両立でき、複合体等の発色も少ない表面修飾金属酸化物微粒子、それを含有する分散液、樹脂組成物、複合体及び光学部材を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can achieve both high refractive index and high transparency of a composite, etc., and surface-modified metal oxide fine particles with little color development of the composite, etc., and a dispersion containing the same It aims at providing a liquid, a resin composition, a composite_body | complex, and an optical member.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、一般式(1)で表される表面修飾剤で修飾した表面修飾金属酸化物微粒子を、芳香環骨格を有する樹脂に分散して得られる複合体であれば、高屈折率と高透明性を両立でき、発色も生じないことを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventors have converted surface-modified metal oxide fine particles modified with a surface modifier represented by the general formula (1) into a resin having an aromatic ring skeleton. It was found that a composite obtained by dispersion can achieve both a high refractive index and high transparency and no color development, and has completed the present invention.

すなわち、本発明は、次の[1]〜[7]を提供するものである。
[1]芳香環骨格を有する樹脂に分散して用いられる、表面修飾剤により金属酸化物微粒子の表面が修飾されている表面修飾金属酸化物微粒子であって、前記金属酸化物微粒子の平均一次粒子径は4nm以上かつ15nm以下であって、前記金属酸化物微粒子は、ジルコニウム、亜鉛、鉄、銅、チタン、スズ、セリウム、タンタル、ニオブ、タングステン、ユーロピウム及びハフニウムの群から選択される1種または2種以上の金属元素を含む金属酸化物微粒子であって、前記表面修飾剤が下記一般式(1)で示される表面修飾剤であることを特徴とする、表面修飾金属酸化物微粒子。
That is, the present invention provides the following [1] to [7].
[1] Surface-modified metal oxide fine particles in which the surface of the metal oxide fine particles is modified with a surface modifier used in a resin having an aromatic ring skeleton, and the average primary particles of the metal oxide fine particles The diameter is 4 nm or more and 15 nm or less, and the metal oxide fine particles are selected from the group consisting of zirconium, zinc, iron, copper, titanium, tin, cerium, tantalum, niobium, tungsten, europium and hafnium. A surface-modified metal oxide fine particle, which is a metal oxide fine particle containing two or more kinds of metal elements, wherein the surface modifier is a surface modifier represented by the following general formula (1).

Figure 2014094850
Figure 2014094850

(式中、nは1〜3であり、Si−X1、Si−X2、Si−X3は、それぞれ独立して、加水分解してシラノール基となる官能基である)
[2]X1、X2、X3は、それぞれ独立して、アルコキシ基又はハロゲノ基である、[1]記載の表面修飾金属酸化物微粒子。
[3][1]又は[2]記載の表面修飾金属酸化物微粒子が分散媒中に分散していることを特徴とする、表面修飾金属酸化物微粒子含有分散液。
[4][1]又は[2]記載の表面修飾金属酸化物微粒子及び[3]記載の表面修飾金属酸化物微粒子含有分散液の一方又は双方と、芳香環骨格を有する樹脂とを含有していることを特徴とする、表面修飾金属酸化物微粒子含有樹脂組成物。
[5]前記表面修飾剤の修飾量が、前記金属酸化物微粒子100質量部に対して、5質量部以上かつ40質量部以下であることを特徴とする、[4]記載の表面修飾金属酸化物微粒子含有樹脂組成物。
[6][5]記載の表面修飾金属酸化物微粒子含有樹脂組成物の硬化物からなることを特徴とする、表面修飾金属酸化物微粒子含有複合体。
[7][6]記載の表面修飾金属酸化物微粒子含有複合体を備えていることを特徴とする、光学部材。
(Wherein, n is 1~3, Si-X 1, Si -X 2, Si-X 3 are each independently a functional group which becomes a silanol group by hydrolysis)
[2] The surface-modified metal oxide fine particles according to [1], wherein X 1 , X 2 and X 3 are each independently an alkoxy group or a halogeno group.
[3] A surface-modified metal oxide fine particle-containing dispersion, wherein the surface-modified metal oxide fine particles according to [1] or [2] are dispersed in a dispersion medium.
[4] One or both of the surface-modified metal oxide fine particles according to [1] or [2] and the surface-modified metal oxide fine particle-containing dispersion according to [3], and a resin having an aromatic ring skeleton A resin composition containing surface-modified metal oxide fine particles.
[5] The surface-modified metal oxidation according to [4], wherein the modification amount of the surface modifier is 5 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the metal oxide fine particles. Fine particle-containing resin composition.
[6] A surface-modified metal oxide fine particle-containing composite comprising a cured product of the resin composition containing the surface-modified metal oxide fine particles according to [5].
[7] An optical member comprising the composite containing the surface-modified metal oxide fine particles according to [6].

本発明によると、複合体等の高屈折率と高透明性とを両立でき、複合体等の発色の少ない表面修飾金属酸化物微粒子、それを含有する分散液、樹脂組成物、複合体及び光学部材を提供することができる。   According to the present invention, surface-modified metal oxide fine particles that can achieve both high refractive index and high transparency of composites and the like, and less color development such as composites, dispersions containing the same, resin compositions, composites, and optics A member can be provided.

以下、本発明を実施形態により説明する。なお、この実施形態は、発明の趣旨をよりよく理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。   Hereinafter, the present invention will be described with reference to embodiments. This embodiment is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.

[表面修飾金属酸化物微粒子]
本実施形態の表面修飾金属酸化物微粒子は、芳香環骨格を有する樹脂に分散して用いられる、表面修飾剤により金属酸化物微粒子の表面が修飾されている表面修飾金属酸化物微粒子であって、前記金属酸化物微粒子の平均一次粒子径は4nm以上かつ15nm以下であって、前記金属酸化物微粒子は、ジルコニウム、亜鉛、鉄、銅、チタン、スズ、セリウム、タンタル、ニオブ、タングステン、ユーロピウム及びハフニウムの群から選択される1種または2種以上の金属元素を含む金属酸化物微粒子であって、前記表面修飾剤が下記一般式(1)で示される表面修飾剤であることを特徴とする。
[Surface-modified metal oxide fine particles]
The surface-modified metal oxide fine particles of the present embodiment are surface-modified metal oxide fine particles that are used by being dispersed in a resin having an aromatic ring skeleton, wherein the surface of the metal oxide fine particles is modified with a surface modifier, The metal oxide fine particles have an average primary particle diameter of 4 nm or more and 15 nm or less, and the metal oxide fine particles include zirconium, zinc, iron, copper, titanium, tin, cerium, tantalum, niobium, tungsten, europium and hafnium. Metal oxide fine particles containing one or two or more metal elements selected from the group of the above, wherein the surface modifier is a surface modifier represented by the following general formula (1).

Figure 2014094850
Figure 2014094850

(式中、nは1〜3であり、Si−X1、Si−X2、Si−X3は、それぞれ独立して、加水分解してシラノール基となる官能基である) (Wherein, n is 1~3, Si-X 1, Si -X 2, Si-X 3 are each independently a functional group which becomes a silanol group by hydrolysis)

<金属酸化物微粒子>
本実施形態にて用いられる金属酸化物微粒子としては、平均一次粒子径が4nm以上かつ15nm以下であり、かつジルコニウム、亜鉛、鉄、銅、チタン、スズ、セリウム、タンタル、ニオブ、タングステン、ユーロピウム及びハフニウムの群から選択される1種または2種以上の金属元素を含む金属酸化物微粒子であればよく、特に限定はない。これらの金属酸化物微粒子の中でも、酸化ジルコニウム(ZrO2:ジルコニア)微粒子または酸化チタン(TiO2:チタニア)微粒子が好ましい。
金属酸化物微粒子中の金属元素をジルコニウム、亜鉛、鉄、銅、チタン、スズ、セリウム、タンタル、ニオブ、タングステン、ユーロピウム及びハフニウムに限定した理由は、これらの金属元素を含む金属酸化物微粒子の屈折率が高いためである。換言すれば、上記の金属元素以外であっても、複合体の屈折率を向上させることができるような金属元素、例えば、その金属元素を含む金属酸化物微粒子の波長589nmにおける屈折率が1.9以上となるような金属元素であれば、本実施形態にて使用することができる。
<Metal oxide fine particles>
The metal oxide fine particles used in the present embodiment have an average primary particle diameter of 4 nm or more and 15 nm or less, and zirconium, zinc, iron, copper, titanium, tin, cerium, tantalum, niobium, tungsten, europium, and There is no particular limitation as long as it is a metal oxide fine particle containing one or more metal elements selected from the group of hafnium. Among these metal oxide fine particles, zirconium oxide (ZrO 2 : zirconia) fine particles or titanium oxide (TiO 2 : titania) fine particles are preferable.
The reason for limiting the metal elements in metal oxide fine particles to zirconium, zinc, iron, copper, titanium, tin, cerium, tantalum, niobium, tungsten, europium and hafnium is the reason for refraction of metal oxide fine particles containing these metal elements. This is because the rate is high. In other words, the refractive index at a wavelength of 589 nm of a metal element capable of improving the refractive index of the composite, for example, metal oxide fine particles containing the metal element, other than the above metal elements is 1. Any metal element that is 9 or more can be used in this embodiment.

本実施形態の金属酸化物微粒子の平均一次粒子径は、4nm以上かつ15nm以下であり、好ましくは、4nm以上かつ10nm以下であり、より好ましくは、5nm以上かつ8nm以下である。平均一次粒子径を上記範囲とすることにより、樹脂複合体の高屈折率と高透明性を両立することができる。
なお、本発明において、平均一次粒子径は、複数個の金属酸化物微粒子それぞれの長径、たとえば、100個以上の金属酸化物微粒子、好ましくは500個以上の金属酸化物微粒子それぞれの長径を透過型電子顕微鏡で測定し、これらの平均値を算出することで求められる。
The average primary particle diameter of the metal oxide fine particles of the present embodiment is 4 nm or more and 15 nm or less, preferably 4 nm or more and 10 nm or less, more preferably 5 nm or more and 8 nm or less. By setting the average primary particle diameter in the above range, both the high refractive index and high transparency of the resin composite can be achieved.
In the present invention, the average primary particle diameter is the long diameter of each of the plurality of metal oxide fine particles, for example, the long diameter of 100 or more metal oxide fine particles, preferably 500 or more metal oxide fine particles, and the transmission type. It is obtained by measuring with an electron microscope and calculating the average value of these.

<表面修飾剤>
本実施形態で用いられる表面修飾剤は、上記一般式(1)で示されるものである。一般式(1)中の官能基Si−X1、Si−X2、Si−X3が、加水分解してシラノール基となって金属酸化物微粒子に結合し、また一般式(1)中の芳香環が、後述する複合体を構成する樹脂の芳香環骨格と相互作用することにより、表面修飾金属酸化物微粒子が樹脂中で凝集することが防止されるものと考えられる。このように、表面処理剤の一部を複合体の樹脂の一部に類似させる手法は、種々のナノ粒子の樹脂への分散に対して応用可能であると考えられる。
1、X2、X3としては、例えば、アルコキシ基やハロゲノ基等が挙げられる。X1、X2、X3は同種であってもよく、異種であってもよい。
アルコキシ基は、好ましくは炭素数1〜5のアルコキシ基であり、より好ましくはメトキシ基又はエトキシ基である。
ハロゲノ基は、好ましくはクロロ基、ブロモ基、フルオロ基、ヨード基であり、より好ましくはクロロ基である。
<Surface modifier>
The surface modifier used in this embodiment is represented by the general formula (1). The functional groups Si—X 1 , Si—X 2 , and Si—X 3 in the general formula (1) are hydrolyzed to form silanol groups and bonded to the metal oxide fine particles, and in the general formula (1) It is considered that the surface-modified metal oxide fine particles are prevented from aggregating in the resin by the interaction between the aromatic ring and the aromatic ring skeleton of the resin constituting the complex described later. As described above, it is considered that a technique for making a part of the surface treatment agent similar to a part of the resin of the composite is applicable to dispersion of various nanoparticles into the resin.
Examples of X 1 , X 2 , and X 3 include an alkoxy group and a halogeno group. X 1 , X 2 and X 3 may be the same or different.
The alkoxy group is preferably an alkoxy group having 1 to 5 carbon atoms, more preferably a methoxy group or an ethoxy group.
The halogeno group is preferably a chloro group, a bromo group, a fluoro group, or an iodo group, and more preferably a chloro group.

本実施形態の表面修飾剤は、一般式(1)に示すように、芳香環を構成する6個の炭素と結合している6個の水素のうち1個だけ置換されているのみであり、2個以上が置換されたものを含まない。詳細は不明であるが、このような表面修飾剤を用いることにより、表面処理剤の芳香環と後述する樹脂の芳香環の相互作用が阻害されないため、透明性を高くすることができると考えられる。   As shown in the general formula (1), the surface modifier of the present embodiment is only substituted for one of the six hydrogen atoms bonded to the six carbon atoms constituting the aromatic ring, It does not include those in which 2 or more are substituted. Although details are unknown, it is thought that by using such a surface modifier, the interaction between the aromatic ring of the surface treatment agent and the aromatic ring of the resin described later is not hindered, so that the transparency can be increased. .

また、上記表面修飾剤は、一般式(1)に示すように、芳香環とケイ素の間に、エーテル、エステル、アミノ基、アミド基等の特性基が存在するものを含まない。このような特性基が存在しないことにより、表面修飾金属酸化物微粒子を後述する樹脂に混合させた場合に、微粒子が樹脂中で凝集するのを防ぎ、また特性基の影響により複合体が発色するのを防ぐことができる。   The surface modifier does not include those having a characteristic group such as an ether, ester, amino group or amide group between the aromatic ring and silicon as shown in the general formula (1). The absence of such a characteristic group prevents the fine particles from aggregating in the resin when the surface-modified metal oxide fine particles are mixed with the resin described later, and the complex is colored by the influence of the characteristic groups. Can be prevented.

さらに、上記表面修飾剤は、一般式(1)に示すように、Si−X1、Si−X2、Si−X3は、それぞれ独立して、加水分解してシラノール基となる官能基でなければならず、シラノールを生成する官能基が2つ以下であるものを含まない。
シラノールを生成する官能基を3つとすることで、表面修飾剤がより適切に表面修飾機能を果たすことができる。
Furthermore, the surface modifier, as shown in general formula (1), Si-X 1 , Si-X 2, Si-X 3 are each independently, with a silanol group by hydrolysis functional groups It does not include those having 2 or less functional groups that produce silanol.
By using three functional groups that generate silanol, the surface modifier can more appropriately perform the surface modification function.

表面修飾剤の量は、所望の屈折率と透明性を得るために、金属酸化物微粒子の一次粒子径を勘案して、適宜調節して実施すればよい。例えば、金属酸化物微粒子100質量部に対して、5質量部以上かつ40質量部以下が好ましく、10質量部以上かつ40質量部以下がより好ましく、21質量部以上かつ40質量部以下がさらに好ましく、30質量部以上かつ40質量部以下がより更に好ましい。   The amount of the surface modifier may be appropriately adjusted in consideration of the primary particle size of the metal oxide fine particles in order to obtain a desired refractive index and transparency. For example, it is preferably 5 parts by weight or more and 40 parts by weight or less, more preferably 10 parts by weight or more and 40 parts by weight or less, and further preferably 21 parts by weight or more and 40 parts by weight or less with respect to 100 parts by weight of the metal oxide fine particles. 30 parts by mass or more and 40 parts by mass or less is even more preferable.

表面修飾剤の量は、ICP発光分析等により、測定することができる。すなわち、表面修飾前後の微粒子の無機元素含有率を測定し、表面修飾剤に含まれるケイ素量と、金属酸化物微粒子自身に含まれる元素の比率、及び表面修飾剤の構造から算出することができる。   The amount of the surface modifier can be measured by ICP emission analysis or the like. That is, the inorganic element content of the fine particles before and after the surface modification can be measured, and can be calculated from the amount of silicon contained in the surface modifier, the ratio of the elements contained in the metal oxide fine particles themselves, and the structure of the surface modifier. .

<表面修飾金属酸化物微粒子の製造方法>
本実施形態の表面修飾金属酸化物微粒子は、通常、湿式法又は乾式法により得ることができる。
表面処理剤を均一に処理しやすい点で湿式法が好ましく、例えば、表面処理剤をアルコール等に溶解させて溶液とし、その溶液中に金属酸化物微粒子を浸漬させる方法、表面処理剤をアルコール等に溶解させて溶液とし、その溶液と、金属酸化物微粒子の水分散液とを撹拌混合させる方法、金属酸化物微粒子を分散媒中に分散させて分散液とし、その分散液を表面処理剤を含む溶液に滴下させたりする方法等が挙げられる。
<Method for producing surface-modified metal oxide fine particles>
The surface-modified metal oxide fine particles of the present embodiment can be usually obtained by a wet method or a dry method.
A wet method is preferable in that the surface treatment agent can be easily treated uniformly, for example, a method in which the surface treatment agent is dissolved in alcohol to form a solution, and metal oxide fine particles are immersed in the solution, and the surface treatment agent is alcohol or the like The solution is dissolved in a solution, and the solution and the aqueous dispersion of metal oxide fine particles are stirred and mixed. The metal oxide fine particles are dispersed in a dispersion medium to obtain a dispersion, and the dispersion is treated with a surface treatment agent. Examples thereof include a method of dropping the solution.

表面処理を促進させるために、酸やアルカリの添加や、加熱処理等を行ってもよい。
表面処理後に固液分離を行い、回収した粉体を必要に応じて乾燥させることで、本実施形態の表面修飾金属酸化物微粒子を得ることができる。
In order to promote the surface treatment, acid or alkali may be added, or heat treatment may be performed.
The surface-modified metal oxide fine particles of the present embodiment can be obtained by performing solid-liquid separation after the surface treatment and drying the collected powder as necessary.

[表面修飾金属酸化物微粒子含有分散液]
本実施形態の表面修飾金属酸化物微粒子含有分散液は、本実施形態の表面修飾金属酸化物微粒子を分散していることを特徴とする。
[Dispersion containing fine particle of surface modified metal oxide]
The surface-modified metal oxide fine particle-containing dispersion liquid of this embodiment is characterized in that the surface-modified metal oxide fine particles of this embodiment are dispersed.

この表面修飾金属酸化物微粒子の平均分散粒径は、4nm以上かつ50nm以下が好ましく、より好ましくは4nm以上かつ30nm以下、さらに好ましくは5nm以上かつ20nm以下である。
平均分散粒径を上記範囲とすることで、透明性が高い分散液等を得ることができる。
なお、本発明において、平均分散粒径とは、表面修飾金属酸化物微粒子の含有量を1質量%に調整した分散液中の表面修飾金属酸化物微粒子の粒子径を動的光散乱法により測定した結果得られた累積体積百分率が50体積%における体積分散粒径(D50)のことである。
The average dispersed particle size of the surface-modified metal oxide fine particles is preferably 4 nm or more and 50 nm or less, more preferably 4 nm or more and 30 nm or less, and further preferably 5 nm or more and 20 nm or less.
By setting the average dispersed particle size in the above range, a highly transparent dispersion or the like can be obtained.
In the present invention, the average dispersed particle size is the particle size of the surface-modified metal oxide fine particles in the dispersion with the content of the surface-modified metal oxide fine particles adjusted to 1% by mass by a dynamic light scattering method. The cumulative volume percentage obtained as a result of this is the volume dispersed particle size (D50) at 50% by volume.

この表面修飾金属酸化物微粒子の表面修飾金属酸化物微粒子含有分散液中における含有率(質量%)は、特に限定されず、後述する複合体を得るための製造プロセスに合わせて適宜選択すればよい。中でも、ハンドリング性がよく、かつ生産効率を向上させるためには、1質量%以上かつ50質量%以下が好ましく、より好ましくは10質量%以上かつ30質量%以下である。   The content (mass%) of the surface-modified metal oxide fine particles in the surface-modified metal oxide fine particle-containing dispersion is not particularly limited, and may be appropriately selected according to the production process for obtaining the composite described later. . Among these, in order to improve the handleability and improve the production efficiency, the content is preferably 1% by mass or more and 50% by mass or less, more preferably 10% by mass or more and 30% by mass or less.

分散媒は、本実施形態の表面処理剤や、後述する芳香環骨格を有する樹脂と相溶性が良好なものであれば特に限定されず、例えば、メタノール、エタノール、2−プロパノール、ブタノール、オクタノール等のアルコール類、酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、γ−ブチロラクトン等のエステル類、ジエチルエーテル、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、シクロヘキサノン等のケトン類、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素、ジメチルホルムアミド、N,N−ジメチルアセトアセトアミド、N−メチルピロリドン等のアミド類が好適に用いられ、これらの溶媒のうち1種または2種以上を用いることができる。これらの中でも、芳香族炭化水素が好ましく、トルエン及びキシレンがより好ましく、トルエンが更に好ましい。   The dispersion medium is not particularly limited as long as it has good compatibility with the surface treatment agent of the present embodiment and a resin having an aromatic ring skeleton described later. For example, methanol, ethanol, 2-propanol, butanol, octanol, etc. Alcohol, ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, esters such as γ-butyrolactone, diethyl ether, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl Ethers such as ether (ethyl cellosolve), ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, acetone Preferred are ketones such as methyl ethyl ketone, methyl isobutyl ketone, acetylacetone and cyclohexanone, aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene, and amides such as dimethylformamide, N, N-dimethylacetoacetamide and N-methylpyrrolidone. One or two or more of these solvents can be used. Among these, aromatic hydrocarbons are preferable, toluene and xylene are more preferable, and toluene is still more preferable.

本実施形態の表面修飾金属酸化物微粒子含有分散液は、上記以外に、その特性を損なわない範囲において、他の無機酸化物微粒子、分散剤、分散助剤、カップリング剤、樹脂モノマー等の任意成分を含有していてもよい。
当該任意成分を含有する場合、当該任意成分の表面修飾金属酸化物微粒子含有分散液中における含有率(質量%)は、ハンドリング性がよく、かつ生産効率を向上させるためには、1質量%以上かつ50質量%以下が好ましく、より好ましくは1質量%以上かつ30質量%以下であり、更に好ましくは1質量%以上かつ10質量%以下である。
In addition to the above, the surface-modified metal oxide fine particle-containing dispersion of the present embodiment is an arbitrary one of other inorganic oxide fine particles, a dispersant, a dispersion aid, a coupling agent, a resin monomer, etc., as long as the characteristics are not impaired. It may contain components.
When the optional component is contained, the content (% by mass) of the optional component in the surface-modified metal oxide fine particle-containing dispersion is 1% by mass or more in order to improve the handleability and improve the production efficiency. And 50 mass% or less is preferable, More preferably, it is 1 mass% or more and 30 mass% or less, More preferably, it is 1 mass% or more and 10 mass% or less.

この分散液は、表面修飾金属酸化物微粒子の含有率を5質量%とし、光路長を10mmとしたときの可視光透過率が、90%以上であることが好ましく、より好ましくは95%以上である。
この可視光透過率は、表面修飾金属酸化物微粒子の含有率により異なり、表面修飾金属酸化物微粒子の含有率が1質量%では、95%以上、表面修飾金属酸化物微粒子の含有率が40質量%では、80%以上であることが好ましい。
This dispersion preferably has a visible light transmittance of 90% or more, more preferably 95% or more when the content of the surface-modified metal oxide fine particles is 5% by mass and the optical path length is 10 mm. is there.
The visible light transmittance varies depending on the content of the surface-modified metal oxide fine particles. When the content of the surface-modified metal oxide fine particles is 1% by mass, the visible light transmittance is 95% or more, and the content of the surface-modified metal oxide fine particles is 40% by mass. % Is preferably 80% or more.

本実施形態の表面修飾金属酸化物微粒子含有分散液の製造方法は特に限定されず、本実施形態の表面修飾金属酸化物微粒子を、上記分散媒中に分散させることができれば特に限定されない。   The method for producing the surface-modified metal oxide fine particle-containing dispersion of the present embodiment is not particularly limited, and is not particularly limited as long as the surface-modified metal oxide fine particles of the present embodiment can be dispersed in the dispersion medium.

[表面修飾金属酸化物微粒子含有樹脂組成物]
本実施形態の表面修飾金属酸化物微粒子含有樹脂組成物は、本実施形態の表面修飾金属酸化物微粒子及び本実施形態の表面修飾金属酸化物微粒子含有分散液の一方又は双方と、芳香環骨格を有する樹脂とを含有していることを特徴とする。
[Surface-modified metal oxide fine particle-containing resin composition]
The surface-modified metal oxide fine particle-containing resin composition of the present embodiment comprises one or both of the surface-modified metal oxide fine particles of the present embodiment and the surface-modified metal oxide fine particle-containing dispersion of the present embodiment, and an aromatic ring skeleton. It contains the resin which has.

<芳香環骨格を有する樹脂>
本実施形態で用いられる樹脂は、芳香環骨格を有する樹脂であれば特に限定されず、例えば、芳香環骨格を有するアクリル樹脂や、芳香環骨格を有するエポキシ樹脂等が挙げられる。芳香環骨格としては、フルオレン骨格やビスフェノールA骨格を有する樹脂が好ましく、フルオレン骨格及びビスフェノールA骨格の少なくとも1種を有するエポキシ樹脂がより好ましい。
<Resin having an aromatic ring skeleton>
The resin used in the present embodiment is not particularly limited as long as the resin has an aromatic ring skeleton, and examples thereof include an acrylic resin having an aromatic ring skeleton and an epoxy resin having an aromatic ring skeleton. As the aromatic ring skeleton, a resin having a fluorene skeleton or a bisphenol A skeleton is preferable, and an epoxy resin having at least one of a fluorene skeleton and a bisphenol A skeleton is more preferable.

上記樹脂は、市販品を用いてもよい。フルオレン骨格を有する樹脂としては、例えば、大阪瓦斯社製のエポキシ樹脂 オグソールEG200や、新中村化学社製のアクリル樹脂 NKエステル A−BPEF等を用いることができる。ビスフェノールA骨格を有する樹脂としては、例えば、三菱化学社製のエポキシ樹脂 jER828等が挙げられる。   A commercial product may be used as the resin. As the resin having a fluorene skeleton, for example, epoxy resin OGSOL EG200 manufactured by Osaka Gas Co., Ltd., acrylic resin NK ester A-BPEF manufactured by Shin Nakamura Chemical Co., Ltd., or the like can be used. Examples of the resin having a bisphenol A skeleton include epoxy resin jER828 manufactured by Mitsubishi Chemical Corporation.

<任意成分>
また、使用する樹脂に応じて適宜添加剤を加えることが好ましい。例えば、芳香環骨格を有するエポキシ樹脂を用いる場合には、酸無水物硬化剤や硬化促進剤等を適宜添加するのが好ましい。
芳香環骨格を有するアクリル樹脂を用いる場合には、反応性希釈剤や光重合開始剤等を適宜添加するのが好ましい。
<Optional component>
Moreover, it is preferable to add an additive suitably according to resin to be used. For example, when an epoxy resin having an aromatic ring skeleton is used, it is preferable to add an acid anhydride curing agent, a curing accelerator, or the like as appropriate.
When an acrylic resin having an aromatic ring skeleton is used, it is preferable to add a reactive diluent, a photopolymerization initiator, or the like as appropriate.

<表面修飾金属酸化物微粒子含有樹脂組成物の製造方法>
本実施形態の表面修飾金属酸化物微粒子含有樹脂組成物の製造方法は特に限定されず、上記表面修飾金属酸化物微粒子及び上記表面修飾金属酸化物微粒子含有分散液の一方又は双方と、上記芳香環骨格を有する樹脂とを、混合することができればよい。
混合装置として、例えば、ミキサーやロールミル等の混合装置を用いてもよい。
粘度調整等が必要であれば、上記分散媒を適宜混合させてもよい。
<Method for Producing Surface-Modified Metal Oxide Fine Particle-Containing Resin Composition>
The method for producing the surface-modified metal oxide fine particle-containing resin composition of the present embodiment is not particularly limited, and one or both of the surface-modified metal oxide fine particles and the surface-modified metal oxide fine particle-containing dispersion, and the aromatic ring It is only necessary that the resin having a skeleton can be mixed.
As a mixing device, for example, a mixing device such as a mixer or a roll mill may be used.
If it is necessary to adjust the viscosity, the dispersion medium may be mixed as appropriate.

<表面修飾金属酸化物微粒子含有樹脂組成物の物性等>
上記樹脂組成物中における表面修飾金属酸化物微粒子の含有量は、所望の特性に応じて適宜調整すればよいが、1質量%以上かつ80質量%以下が好ましく、10質量%以上かつ80質量%以下がより好ましく、10質量%以上かつ50質量%以下がさらに好ましい。
樹脂組成物中における、芳香環骨格を有する樹脂の含有量は、所望の特性に応じて適宜調整すればよいが、20質量%以上かつ90量%以下が好ましく、40質量%以上かつ90質量%以下がより好ましく、50質量%以上かつ90質量%以下が更に好ましい。
また、表面修飾金属酸化物微粒子と芳香環骨格を有する樹脂との質量混合比は、所望の特性に応じて適宜調整すればよいが、1:9〜9:1の範囲内であることが好ましく、2:8〜8:2の範囲内であることがより好ましく、3:7〜6:4の範囲内であることが更に好ましい。
この表面修飾金属酸化物微粒子の平均分散粒径は、4nm以上かつ50nm以下が好ましく、より好ましくは4nm以上かつ30nm以下、さらに好ましくは5nm以上かつ20nm以下である。平均分散粒径を上記範囲とすることで、透明性が高い表面修飾金属酸化物微粒子含有複合体を得ることができる。
<Physical Properties of Surface-Modified Metal Oxide Fine Particle-Containing Resin Composition>
The content of the surface-modified metal oxide fine particles in the resin composition may be appropriately adjusted according to desired properties, but is preferably 1% by mass or more and 80% by mass or less, and is preferably 10% by mass or more and 80% by mass. The following is more preferable, and 10 mass% or more and 50 mass% or less are further more preferable.
The content of the resin having an aromatic ring skeleton in the resin composition may be appropriately adjusted according to desired characteristics, but is preferably 20% by mass or more and 90% by mass or less, and 40% by mass or more and 90% by mass. The following is more preferable, and 50 mass% or more and 90 mass% or less are still more preferable.
The mass mixing ratio between the surface-modified metal oxide fine particles and the resin having an aromatic ring skeleton may be appropriately adjusted according to desired characteristics, but is preferably in the range of 1: 9 to 9: 1. The range of 2: 8 to 8: 2 is more preferable, and the range of 3: 7 to 6: 4 is still more preferable.
The average dispersed particle size of the surface-modified metal oxide fine particles is preferably 4 nm or more and 50 nm or less, more preferably 4 nm or more and 30 nm or less, and further preferably 5 nm or more and 20 nm or less. By setting the average dispersed particle size within the above range, a highly transparent surface-modified metal oxide fine particle-containing composite can be obtained.

この表面修飾金属酸化物微粒子含有樹脂組成物は、表面修飾金属酸化物微粒子の含有率を5質量%とし、光路長を10mmとしたときの可視光透過率が、90%以上であることが好ましく、より好ましくは95%以上である。
この可視光透過率は、表面修飾金属酸化物微粒子の含有率により異なり、表面修飾金属酸化物微粒子の含有率が1質量%では、95%以上、表面修飾金属酸化物微粒子の含有率が40質量%では、80%以上であることが好ましい。
The surface-modified metal oxide fine particle-containing resin composition preferably has a visible light transmittance of 90% or more when the content of the surface-modified metal oxide fine particles is 5% by mass and the optical path length is 10 mm. More preferably, it is 95% or more.
The visible light transmittance varies depending on the content of the surface-modified metal oxide fine particles. When the content of the surface-modified metal oxide fine particles is 1% by mass, the visible light transmittance is 95% or more, and the content of the surface-modified metal oxide fine particles is 40% by mass. % Is preferably 80% or more.

[表面修飾金属酸化物微粒子含有複合体]
本実施形態の表面修飾金属酸化物微粒子含有複合体は、本実施形態の表面修飾金属酸化物微粒子含有樹脂組成物の硬化物からなることを特徴とする。
[Composite containing surface-modified metal oxide fine particles]
The surface-modified metal oxide fine particle-containing composite of the present embodiment is characterized by comprising a cured product of the surface-modified metal oxide fine particle-containing resin composition of the present embodiment.

この複合体は、厚みを1mmとしたときの、波長700nmの光の透過率が85%以上であり、無色透明であることが好ましい。   This composite preferably has a light transmittance of 85% or more when the thickness is 1 mm, and is colorless and transparent.

複合体中における表面修飾金属酸化物微粒子の含有量は、所望の特性に応じて適宜調整すればよいが、10〜70質量%が好ましく、20〜60質量%がより好ましく、30〜50質量%が更に好ましく、35〜45質量%がより更に好ましい。
複合体中における、芳香環骨格を有する樹脂の含有量は、所望の特性に応じて適宜調整すればよいが、30〜90質量%が好ましく、40〜80質量%がより好ましく、50〜70質量%が更に好ましく、55〜65質量%がより更に好ましい。
また、表面修飾金属酸化物微粒子と芳香環骨格を有する樹脂との質量混合比は、所望の特性に応じて適宜調整すればよいが、1:9〜9:1の範囲内であることが好ましく、2:8〜8:2の範囲内であることがより好ましく、3:7〜6:4の範囲内であることが更に好ましい。
この表面修飾金属酸化物微粒子の平均分散粒径は、4nm以上かつ50nm以下が好ましく、より好ましくは4nm以上かつ30nm以下、さらに好ましくは5nm以上かつ20nm以下である。平均分散粒径を上記範囲とすることで、透明性が高い表面修飾金属酸化物微粒子含有複合体を得ることができる。
The content of the surface-modified metal oxide fine particles in the composite may be appropriately adjusted according to the desired properties, but is preferably 10 to 70% by mass, more preferably 20 to 60% by mass, and 30 to 50% by mass. Is more preferable, and 35-45 mass% is still more preferable.
The content of the resin having an aromatic ring skeleton in the composite may be appropriately adjusted according to desired characteristics, but is preferably 30 to 90% by mass, more preferably 40 to 80% by mass, and 50 to 70% by mass. % Is more preferable, and 55-65 mass% is still more preferable.
The mass mixing ratio between the surface-modified metal oxide fine particles and the resin having an aromatic ring skeleton may be appropriately adjusted according to desired characteristics, but is preferably in the range of 1: 9 to 9: 1. The range of 2: 8 to 8: 2 is more preferable, and the range of 3: 7 to 6: 4 is still more preferable.
The average dispersed particle size of the surface-modified metal oxide fine particles is preferably 4 nm or more and 50 nm or less, more preferably 4 nm or more and 30 nm or less, and further preferably 5 nm or more and 20 nm or less. By setting the average dispersed particle size within the above range, a highly transparent surface-modified metal oxide fine particle-containing composite can be obtained.

この複合体として、例えば、三次元形状のバルク体を作製する場合、本実施形態の表面修飾金属酸化物微粒子含有樹脂組成物を金型を用いて成形する方法や、金型又は容器内に上記樹脂組成物を充填する方法等が挙げられる。その後、樹脂の種類に応じて加熱あるいは紫外線等の光の照射を施すことにより硬化させる方法等が挙げられる。
また、塗膜を作製する場合、プラスチック基材上に本実施形態の表面修飾金属酸化物微粒子含有樹脂組成物を塗布し、その後、必要に応じて加熱による熱硬化あるいは紫外線等の光の照射等による光硬化を施す方法等が挙げられる。
As this composite, for example, when producing a three-dimensional bulk body, a method of molding the surface-modified metal oxide fine particle-containing resin composition of the present embodiment using a mold, or the above in a mold or a container Examples thereof include a method of filling a resin composition. Thereafter, a method of curing by heating or irradiating with light such as ultraviolet rays according to the type of resin may be used.
Further, when preparing a coating film, the surface-modified metal oxide fine particle-containing resin composition of the present embodiment is applied on a plastic substrate, and then heat-cured by heating or irradiation with light such as ultraviolet rays as necessary. And the like.

プラスチック基材としては、プラスチック製の基材であれば特に限定されず、用途に応じて適宜選択すればよい。このようなプラスチック基材としては、例えば、アクリル、高弾性のアクリルゴムを含有したアクリル、アクリル−スチレン共重合体、ポリスチレン、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリエチレンテレフタレート(PET)、トリアセチルセルロース(TAC)、エポキシ等のシート状のものやフィルム状のものを挙げることができる。また、これらのプラスチック基材は、上記の基材のうち1種を単独で用いてもよく、1種または2種以上を積層した積層構造としてもよい。   The plastic substrate is not particularly limited as long as it is a plastic substrate, and may be appropriately selected according to the application. Examples of such plastic base materials include acrylic, acrylic containing highly elastic acrylic rubber, acrylic-styrene copolymer, polystyrene, polyethylene, polypropylene, polycarbonate, polyethylene terephthalate (PET), and triacetyl cellulose (TAC). And a sheet-like material such as epoxy and a film-like material. Moreover, these plastic base materials may be used individually by 1 type among said base materials, and are good also as a laminated structure which laminated | stacked 1 type (s) or 2 or more types.

この塗膜を形成する塗工方法としては、例えば、バーコート法、スピンコート法、ディップコート法、グラビアコート法、スプレー法、ローラー法、はけ塗り法等が挙げられる。   Examples of the coating method for forming the coating film include a bar coating method, a spin coating method, a dip coating method, a gravure coating method, a spray method, a roller method, and a brush coating method.

なお、樹脂組成物を形成、硬化させる場合に、溶媒等が多すぎて成形や硬化が難しくなる場合には、溶媒等を留去し、樹脂組成物の粘度等を調整してから実施してもよい。   In addition, when forming and curing the resin composition, if there are too many solvents etc. and molding or curing becomes difficult, carry out after adjusting the viscosity etc. of the resin composition by distilling off the solvent etc. Also good.

[光学部材]
本実施形態の光学部材は、本実施形態の表面修飾金属酸化物微粒子含有複合体を備えていることを特徴とする。
この光学部材としては、透明なプラスチック基材が用いられる光学部材であればよく、特に限定されないが、例えば、カメラ、レンズ付フィルム等のフィルム一体型カメラ、ビデオカメラ、車載用カメラ等の各種カメラレンズ、CD、CD−ROM、MO、CD−R、CD−Video、DVD等の光ピックアップレンズやマイクロレンズアレイ、複写機、プリンター等のOA機器等の各種機器に用いられる光学部材やプリズムシート、光ファイバー通信装置、LED用封止剤等が挙げられる。
[Optical member]
The optical member of this embodiment is characterized by including the surface-modified metal oxide fine particle-containing composite of this embodiment.
The optical member may be an optical member using a transparent plastic substrate, and is not particularly limited. For example, various cameras such as a camera, a film-integrated camera such as a lens-equipped film, a video camera, and an in-vehicle camera. Optical members and prism sheets used in various devices such as optical pickup lenses such as lenses, CDs, CD-ROMs, MOs, CD-Rs, CD-Videos, DVDs, micro lens arrays, copiers, printers, etc. Examples include optical fiber communication devices and LED sealants.

本実施形態の透明複合体を光学部材に実装する方法としては、特に限定されず、公知の方法で光学部材に実装させればよい。   The method for mounting the transparent composite of the present embodiment on the optical member is not particularly limited, and may be mounted on the optical member by a known method.

次に本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
なお、各例における諸特性は下記の方法に従って測定した。
(1)表面修飾剤の金属酸化物微粒子に対する表面修飾量
表面修飾量は、ICP発光分析装置を使用して、測定した。
(2)複合体の屈折率の測定
メトリコン社製のプリズムカプラー Model12010を使用して、プリズムカップリング法により、594nmの波長における複合体の屈折率を測定した。
(3)複合体の透明性の評価
得られた複合体の厚みを1mmに研磨し、日立ハイテクノロジーズ社製の紫外可視分光光度計 U-3900H(φ60mm積分球を装着)を使用して、700nmの波長における複合体の透過率を測定した。
(4)金属酸化物微粒子の平均一次粒子径
金属酸化物微粒子の平均一次粒子径を、透過型電子顕微鏡(FE−TEM、日本電子社製 JEM−2100F)にて粒子を観察し、500個の長径を測定し、これらの平均値を算出することで求めた。
(5)表面修飾金属酸化物微粒子含有分散液の平均分散粒径
表面修飾金属酸化物微粒子含有分散液の平均分散粒径(D50)を、動的光散乱式粒子径分布測定装置(Malvern社製)を用いて測定した。データ解析条件として粒子径基準を体積基準とした。
(6)表面修飾金属酸化物微粒子含有複合体の観察
得られた透明複合体から、膜厚約100nmの薄い試験片を切り出し、この薄い透明複合体を透過型電子顕微鏡(FE−TEM、日本電子社製 JEM−2100F)にて観察した。
EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited at all by these examples.
Various characteristics in each example were measured according to the following methods.
(1) Surface modification amount for metal oxide fine particles of surface modifier The surface modification amount was measured using an ICP emission analyzer.
(2) Measurement of refractive index of composite The refractive index of the composite at a wavelength of 594 nm was measured by a prism coupling method using a prism coupler Model 12010 manufactured by Metricon.
(3) Evaluation of the transparency of the composite The thickness of the obtained composite was polished to 1 mm, and 700 nm using an ultraviolet-visible spectrophotometer U-3900H (equipped with a φ60 mm integrating sphere) manufactured by Hitachi High-Technologies Corporation. The transmittance of the composite at the wavelength of was measured.
(4) Average primary particle diameter of metal oxide fine particles The average primary particle diameter of metal oxide fine particles was observed with a transmission electron microscope (FE-TEM, JEM-2100F manufactured by JEOL Ltd.), and 500 particles were observed. The major axis was measured, and the average value was calculated.
(5) Average dispersion particle diameter of dispersion containing surface-modified metal oxide fine particles The average dispersion particle diameter (D50) of the dispersion containing surface-modified metal oxide fine particles is determined using a dynamic light scattering particle size distribution analyzer (Malvern). ). As a data analysis condition, the particle size standard was a volume standard.
(6) Observation of surface-modified metal oxide fine particle-containing composite From the obtained transparent composite, a thin test piece having a film thickness of about 100 nm was cut out, and the thin transparent composite was subjected to transmission electron microscopy (FE-TEM, JEOL). It was observed with JEM-2100F).

[実施例1]
「表面修飾金属酸化物微粒子の作製」
ジルコニア微粒子の水分散液(平均一次粒子径5nm)と、ベンジルトリエトキシシランを含有するメタノール溶液とを、ジルコニアとベンジルトリエトキシシランの質量比が100:50(ジルコニア粒子100質量部に対して50質量部)となるように撹拌混合した。
次いで、固液分離で表面修飾されたジルコニア微粒子を回収し、乾燥させて、実施例1のベンジルトリエトキシシランで表面修飾された表面修飾ジルコニア微粒子を得た。
ジルコニア微粒子100質量部に対する表面修飾量をICP発光分析により測定した結果、35質量部であった。
[Example 1]
"Production of surface-modified metal oxide fine particles"
An aqueous dispersion of zirconia fine particles (average primary particle diameter 5 nm) and a methanol solution containing benzyltriethoxysilane have a mass ratio of zirconia to benzyltriethoxysilane of 100: 50 (50 parts by mass relative to 100 parts by mass of zirconia particles). The mixture was stirred and mixed so as to be (part by mass).
Subsequently, the surface-modified zirconia fine particles surface-modified by solid-liquid separation were collected and dried to obtain the surface-modified zirconia fine particles surface-modified with benzyltriethoxysilane of Example 1.
As a result of measuring the surface modification amount with respect to 100 parts by mass of the zirconia fine particles by ICP emission analysis, it was 35 parts by mass.

[実施例2]
「表面修飾金属酸化物微粒子の作製」
実施例1において、ベンジルトリエトキシシランの替わりに、フェニルエチルトリメトキシシランを用いた以外は実施例1と同様にして、実施例2のフェニルエチルトリメトキシシランで表面修飾された表面修飾ジルコニア微粒子を得た。
ジルコニア微粒子100質量部に対する表面修飾量をICP発光分析により測定した結果、36質量部であった。
[Example 2]
"Production of surface-modified metal oxide fine particles"
In Example 1, surface-modified zirconia fine particles surface-modified with phenylethyltrimethoxysilane of Example 2 were used in the same manner as in Example 1 except that phenylethyltrimethoxysilane was used instead of benzyltriethoxysilane. Obtained.
As a result of measuring the surface modification amount with respect to 100 parts by mass of the zirconia fine particles by ICP emission analysis, it was 36 parts by mass.

[実施例3]
「表面修飾金属酸化物微粒子の作製」
実施例1において、ベンジルトリエトキシシランの替わりに、フェニルプロピルトリメトキシシランを用いた以外は実施例1と同様にして、実施例3のフェニルプロピルトリメトキシシランで表面修飾された表面修飾ジルコニア微粒子を得た。
ジルコニア微粒子100質量部に対する表面修飾量をICP発光分析により測定した結果、36質量部であった。
[Example 3]
"Production of surface-modified metal oxide fine particles"
In Example 1, surface modified zirconia fine particles surface-modified with phenylpropyltrimethoxysilane of Example 3 were obtained in the same manner as in Example 1 except that phenylpropyltrimethoxysilane was used instead of benzyltriethoxysilane. .
As a result of measuring the surface modification amount with respect to 100 parts by mass of the zirconia fine particles by ICP emission analysis, it was 36 parts by mass.

[実施例4]
「表面修飾金属酸化物微粒子の作製」
実施例1において、平均一次粒子径が5nmのジルコニア水分散液の替わりに、平均一次粒子径が5nmのチタニア微粒子の水分散液を用い、ベンジルトリエトキシシランの替わりに、フェニルエチルトリメトキシシランを用いた以外は実施例1と同様にして、実施例4のフェニルエチルトリメトキシシランで表面修飾された表面修飾チタニア微粒子を得た。
チタニア微粒子100質量部に対する表面修飾量をICP発光分析により測定した結果、37質量部であった。
[Example 4]
"Production of surface-modified metal oxide fine particles"
In Example 1, instead of a zirconia aqueous dispersion having an average primary particle diameter of 5 nm, an aqueous dispersion of titania fine particles having an average primary particle diameter of 5 nm was used, and phenylethyltrimethoxysilane was used instead of benzyltriethoxysilane. Surface-modified titania microparticles surface-modified with phenylethyltrimethoxysilane of Example 4 were obtained in the same manner as Example 1 except that it was used.
As a result of measuring the surface modification amount with respect to 100 parts by mass of titania fine particles by ICP emission analysis, it was 37 parts by mass.

[比較例1]
実施例1において、ベンジルトリエトキシシランの替わりに、トリルトリメトキシシランを用いた以外は実施例1と同様にして、比較例1のトリルトリメトキシシランで表面修飾された表面修飾ジルコニア微粒子を得た。
ジルコニア微粒子100質量部に対する表面修飾量をICP発光分析により測定した結果、35質量部であった。
[Comparative Example 1]
In Example 1, surface modified zirconia fine particles surface-modified with tolyltrimethoxysilane of Comparative Example 1 were obtained in the same manner as in Example 1 except that tolyltrimethoxysilane was used instead of benzyltriethoxysilane. .
As a result of measuring the surface modification amount with respect to 100 parts by mass of the zirconia fine particles by ICP emission analysis, it was 35 parts by mass.

[比較例2]
実施例1において、ベンジルトリエトキシシランの替わりに、エチルフェニルエチルトリメトキシシランを用いた以外は実施例1と同様にして、比較例2のエチルフェニルエチルトリメトキシシランで表面修飾された表面修飾ジルコニア微粒子を得た。
ジルコニア微粒子100質量部に対する表面修飾量をICP発光分析により測定した結果、38質量部であった。
[Comparative Example 2]
In Example 1, a surface-modified zirconia surface-modified with ethylphenylethyltrimethoxysilane of Comparative Example 2 in the same manner as in Example 1 except that ethylphenylethyltrimethoxysilane was used instead of benzyltriethoxysilane. Fine particles were obtained.
As a result of measuring the surface modification amount with respect to 100 parts by mass of the zirconia fine particles by ICP emission analysis, it was 38 parts by mass.

[比較例3]
実施例1において、ベンジルトリエトキシシランの替わりに、ベンゾイロキシプロピルトリメトキシシランを用いた以外は実施例1と同様にして、比較例3のベンゾイロキシプロピルトリメトキシシランで表面修飾された表面修飾ジルコニア微粒子を得た。
ジルコニア微粒子100質量部に対する表面修飾量をICP発光分析により測定した結果、37質量部であった。
[Comparative Example 3]
Surface modified with benzoyloxypropyltrimethoxysilane of Comparative Example 3 in the same manner as in Example 1 except that benzoyloxypropyltrimethoxysilane was used instead of benzyltriethoxysilane in Example 1. Modified zirconia fine particles were obtained.
As a result of measuring the surface modification amount with respect to 100 parts by mass of the zirconia fine particles by ICP emission analysis, it was 37 parts by mass.

[比較例4]
実施例1において、ベンジルトリエトキシシランの替わりに、フェニルアミノプロピルトリメトキシシランを用いた以外は実施例1と同様にして、比較例4のフェニルアミノプロピルトリメトキシシランで表面修飾された表面修飾ジルコニア微粒子を得た。
ジルコニア微粒子100質量部に対する表面修飾量をICP発光分析により測定した結果、36質量部であった。
[Comparative Example 4]
In Example 1, surface-modified zirconia surface-modified with phenylaminopropyltrimethoxysilane of Comparative Example 4 in the same manner as in Example 1 except that phenylaminopropyltrimethoxysilane was used instead of benzyltriethoxysilane. Fine particles were obtained.
As a result of measuring the surface modification amount with respect to 100 parts by mass of the zirconia fine particles by ICP emission analysis, it was 36 parts by mass.

[実施例5]
<表面修飾金属酸化物微粒子含有分散液の作製>
実施例1で得られた表面修飾ジルコニア微粒子0.8質量部と、トルエン10質量部を混合して、実施例5の透明な分散液を得た。
得られた分散液の平均分散粒径は、5nm以上かつ20nm以下であった。
[Example 5]
<Preparation of surface-modified metal oxide fine particle-containing dispersion>
0.8 parts by mass of the surface-modified zirconia fine particles obtained in Example 1 and 10 parts by mass of toluene were mixed to obtain a transparent dispersion of Example 5.
The average dispersion particle size of the obtained dispersion was 5 nm or more and 20 nm or less.

<表面修飾金属酸化物微粒子含有樹脂組成物の作製>
得られた透明な分散液10.8質量部と、フルオレン骨格を有するエポキシ樹脂(大阪瓦斯社製、オグソールEG200、屈折率1・60)と、メチルヘキサヒドロ無水フタル酸と、ホスホニウム塩系化合物(サンアプロ社製、U−CAT5003)とを質量比で100:50:0.05となるように混合した混合物1.2質量部とを混合して(表面修飾金属酸化物微粒子と樹脂の質量比は40:60)、実施例5の透明な樹脂組成物を得た。
<Preparation of surface-modified metal oxide fine particle-containing resin composition>
10.8 parts by mass of the obtained transparent dispersion, an epoxy resin having a fluorene skeleton (Ossol EG200, refractive index 1.60), methylhexahydrophthalic anhydride, phosphonium salt compound ( Mixing 1.2 parts by mass of a mixture of U.S.Apro (U-CAT5003) so that the mass ratio is 100: 50: 0.05 (the mass ratio of the surface-modified metal oxide fine particles to the resin is 40:60), a transparent resin composition of Example 5 was obtained.

<表面修飾金属酸化物微粒子含有複合体の作製>
得られた樹脂組成物からトルエンを留去させ、次いで、20mmφのテフロン(登録商標)製の型に、乾燥膜厚が1mm以上になるように、この樹脂組成物を、型に均一になるように注入した。次いで150℃で樹脂組成物を加熱硬化させ、実施例5の透明な複合体を得た。
複合体をFE−TEMで観察した結果、複合体中にジルコニア微粒子が均一に分散されていることが確認された。
<Preparation of surface-modified metal oxide fine particle-containing composite>
Toluene is distilled off from the obtained resin composition, and then the resin composition is made uniform in the mold so that the dry film thickness is 1 mm or more in a 20 mmφ Teflon (registered trademark) mold. Injected into. Next, the resin composition was heat-cured at 150 ° C. to obtain a transparent composite of Example 5.
As a result of observing the composite with FE-TEM, it was confirmed that the zirconia fine particles were uniformly dispersed in the composite.

[実施例6]
実施例5において、実施例1で得られた表面修飾ジルコニア微粒子の替わりに、実施例2で得られた表面修飾ジルコニア微粒子を用いた以外は実施例5と同様にして、実施例6の透明な分散液と、実施例6の透明な樹脂組成物と、実施例6の透明な複合体を得た。
分散液中における表面修飾ジルコニア微粒子の平均分散粒径は、5nm以上かつ20nm以下であった。
複合体をFE−TEMで観察した結果、複合体中にジルコニア微粒子が均一に分散されていることが確認された。
[Example 6]
In Example 5, in place of the surface-modified zirconia fine particles obtained in Example 1, the surface-modified zirconia fine particles obtained in Example 2 were used in the same manner as in Example 5 except that the transparent A dispersion, the transparent resin composition of Example 6, and the transparent composite of Example 6 were obtained.
The average dispersed particle size of the surface-modified zirconia fine particles in the dispersion was 5 nm or more and 20 nm or less.
As a result of observing the composite with FE-TEM, it was confirmed that the zirconia fine particles were uniformly dispersed in the composite.

[実施例7]
実施例5において、実施例1で得られた表面修飾ジルコニア微粒子の替わりに、実施例3で得られた表面修飾ジルコニア微粒子を用いた以外は実施例5と同様にして、実施例7の透明な分散液と、実施例7の透明な樹脂組成物と、実施例7の透明な複合体を得た。
分散液中における表面修飾ジルコニア微粒子の平均分散粒径は、5nm以上かつ20nm以下であった。
複合体をFE−TEMで観察した結果、複合体中にジルコニア微粒子が均一に分散されていることが確認された。
[Example 7]
In Example 5, instead of the surface-modified zirconia fine particles obtained in Example 1, the transparent surface of Example 7 was obtained in the same manner as in Example 5 except that the surface-modified zirconia fine particles obtained in Example 3 were used. A dispersion, a transparent resin composition of Example 7, and a transparent composite of Example 7 were obtained.
The average dispersed particle size of the surface-modified zirconia fine particles in the dispersion was 5 nm or more and 20 nm or less.
As a result of observing the composite with FE-TEM, it was confirmed that the zirconia fine particles were uniformly dispersed in the composite.

[実施例8]
実施例5において、実施例1で得られた表面修飾ジルコニア微粒子の替わりに、実施例4で得られた表面修飾チタニア微粒子を用いた以外は実施例5と同様にして、実施例8の透明な分散液と、実施例8の透明な樹脂組成物と、実施例8の透明な複合体を得た。
複合体をFE−TEMで観察した結果、複合体中にチタニア微粒子が均一に分散されていることが確認された。
分散液中における表面修飾チタニア微粒子の平均分散粒径は、5nm以上かつ20nm以下であった。
[Example 8]
In Example 5, in place of the surface-modified zirconia fine particles obtained in Example 1, the surface-modified titania fine particles obtained in Example 4 were used. A dispersion, the transparent resin composition of Example 8, and the transparent composite of Example 8 were obtained.
As a result of observing the composite with FE-TEM, it was confirmed that titania fine particles were uniformly dispersed in the composite.
The average dispersed particle size of the surface-modified titania fine particles in the dispersion was 5 nm or more and 20 nm or less.

[比較例5]
<表面修飾金属酸化物微粒子含有分散液及び表面修飾金属酸化物微粒子含有樹脂組成物の作製>
実施例5において、実施例1で得られた表面修飾ジルコニア微粒子の替わりに、比較例1で得られた表面修飾ジルコニア微粒子を用いた以外は実施例5と同様にして、比較例5の透明な分散液と、比較例5の透明な樹脂組成物を得た。
[Comparative Example 5]
<Preparation of surface-modified metal oxide fine particle-containing dispersion and surface-modified metal oxide fine particle-containing resin composition>
In Example 5, in place of the surface-modified zirconia fine particles obtained in Example 1, the surface-modified zirconia fine particles obtained in Comparative Example 1 were used except that the surface-modified zirconia fine particles obtained in Comparative Example 1 were used. A dispersion and a transparent resin composition of Comparative Example 5 were obtained.

<表面修飾金属酸化物微粒子含有複合体の作製>
得られた樹脂組成物からトルエンを留去させた。次いで、20mmφのテフロン(登録商標)製の型に、乾燥膜厚が1mm以上となるように樹脂組成物を注入したが、樹脂組成物の粘性が高すぎて流動性を有しないため、型に均一に充填することができなかった。次いで150℃で樹脂組成物を加熱硬化させ、比較例5の半透明な複合体を得た。
トルエンを留去させたあとに樹脂組成物の粘性が高くなったことにより、芳香環上にメチル基を有する表面修飾剤を表面修飾させたジルコニア微粒子は、成形性に劣り、透明性も優れないことが確認された。
複合体をFE−TEMで観察した結果、複合体中で、ジルコニア微粒子の凝集体が形成されているのが確認された。
<Preparation of surface-modified metal oxide fine particle-containing composite>
Toluene was distilled off from the obtained resin composition. Next, the resin composition was injected into a 20 mmφ Teflon (registered trademark) mold so that the dry film thickness was 1 mm or more. However, since the viscosity of the resin composition was too high to have fluidity, Uniform filling was not possible. Subsequently, the resin composition was heat-cured at 150 ° C. to obtain a translucent composite of Comparative Example 5.
Since the viscosity of the resin composition is increased after the toluene is distilled off, the zirconia fine particles obtained by surface modification with a surface modifier having a methyl group on the aromatic ring are inferior in moldability and in transparency. It was confirmed.
As a result of observing the composite with FE-TEM, it was confirmed that aggregates of zirconia fine particles were formed in the composite.

[比較例6]
<表面修飾金属酸化物微粒子含有分散液及び表面修飾金属酸化物微粒子含有樹脂組成物の作製>
実施例5において、実施例1で得られた表面修飾ジルコニア微粒子の替わりに、比較例2で得られた表面修飾ジルコニア微粒子を用いた以外は実施例5と同様にして、比較例6の透明な分散液と、比較例6の透明な樹脂組成物を得た。
[Comparative Example 6]
<Preparation of surface-modified metal oxide fine particle-containing dispersion and surface-modified metal oxide fine particle-containing resin composition>
In Example 5, in place of the surface-modified zirconia fine particles obtained in Example 1, the surface-modified zirconia fine particles obtained in Comparative Example 2 were used in the same manner as in Example 5 except that the transparent modified particles of Comparative Example 6 were used. A dispersion and a transparent resin composition of Comparative Example 6 were obtained.

<表面修飾金属酸化物微粒子含有複合体の作製>
得られた樹脂組成物からトルエンを留去させたところ、樹脂組成物が白濁した。次いで、20mmφのテフロン(登録商標)製の型に、乾燥膜厚が1mm以上となるように樹脂組成物を注入したが、樹脂組成物の粘性が高すぎて流動性を有しないため、型に均一に充填することができなかった。次いで150℃で樹脂組成物を加熱硬化させ、比較例6の複合体を得た。
<Preparation of surface-modified metal oxide fine particle-containing composite>
When toluene was distilled off from the obtained resin composition, the resin composition became cloudy. Next, the resin composition was injected into a 20 mmφ Teflon (registered trademark) mold so that the dry film thickness was 1 mm or more. However, since the viscosity of the resin composition was too high to have fluidity, Uniform filling was not possible. Subsequently, the resin composition was heat-cured at 150 ° C. to obtain a composite of Comparative Example 6.

トルエンを留去させたところで、樹脂組成物が白濁し、かつ、樹脂組成物の粘性が高くなったことにより、芳香環上にエチル基を有する表面修飾剤を表面修飾させたジルコニア微粒子が、成形性にも透明性にも劣ることが確認された。
複合体をFE−TEMで観察した結果、複合体中で、ジルコニア微粒子の凝集体が形成されているのが確認された。
When toluene is distilled off, the resin composition becomes cloudy and the viscosity of the resin composition becomes high, so that zirconia fine particles whose surface modifier has an ethyl group on the aromatic ring are molded. It was confirmed that it was inferior to the property and transparency.
As a result of observing the composite with FE-TEM, it was confirmed that aggregates of zirconia fine particles were formed in the composite.

[比較例7]
<表面修飾金属酸化物微粒子含有分散液及び表面修飾金属酸化物微粒子含有樹脂組成物の作製>
実施例5において、実施例1で得られた表面修飾ジルコニア微粒子の替わりに、比較例3で得られた表面修飾ジルコニア微粒子を用いた以外は実施例5と同様にして、比較例7の透明な分散液と、比較例7の透明な樹脂組成物を得た。
[Comparative Example 7]
<Preparation of surface-modified metal oxide fine particle-containing dispersion and surface-modified metal oxide fine particle-containing resin composition>
In Example 5, instead of the surface-modified zirconia fine particles obtained in Example 1, the transparent surface of Comparative Example 7 was obtained in the same manner as in Example 5 except that the surface-modified zirconia fine particles obtained in Comparative Example 3 were used. A dispersion and a transparent resin composition of Comparative Example 7 were obtained.

<表面修飾金属酸化物微粒子含有複合体の作製>
得られた樹脂組成物からトルエンを留去させ、次いで、20mmφのテフロン(登録商標)製の型に、乾燥膜厚が1mm以上になるように、この樹脂組成物を注入した。次いで150℃で樹脂組成物を加熱硬化させたところ、比較例7の白色で失透した複合体を得た。
150℃の加熱で白濁したことより、芳香環とケイ素の間にエステル結合を有する表面修飾剤を表面修飾させたジルコニア微粒子が、透明性に劣ることが確認された。
複合体をFE−TEMで観察した結果、複合体中で、ジルコニア微粒子の凝集体が形成されているのが確認された。
<Preparation of surface-modified metal oxide fine particle-containing composite>
Toluene was distilled off from the obtained resin composition, and then this resin composition was poured into a 20 mmφ Teflon (registered trademark) mold so that the dry film thickness was 1 mm or more. Next, when the resin composition was heat-cured at 150 ° C., the white devitrified composite of Comparative Example 7 was obtained.
Since it became cloudy by heating at 150 ° C., it was confirmed that the zirconia fine particles obtained by surface modification with a surface modifier having an ester bond between the aromatic ring and silicon were inferior in transparency.
As a result of observing the composite with FE-TEM, it was confirmed that aggregates of zirconia fine particles were formed in the composite.

[比較例8]
<表面修飾金属酸化物微粒子含有分散液及び表面修飾金属酸化物微粒子含有樹脂組成物の作製>
実施例5において、実施例1で得られた表面修飾ジルコニア微粒子の替わりに、比較例4で得られた表面修飾ジルコニア微粒子を用いた以外は実施例5と同様にして、比較例8の透明な分散液と、比較例8の透明な樹脂組成物を得た。
[Comparative Example 8]
<Preparation of surface-modified metal oxide fine particle-containing dispersion and surface-modified metal oxide fine particle-containing resin composition>
In Example 5, instead of the surface-modified zirconia fine particles obtained in Example 1, the transparent surface of Comparative Example 8 was obtained in the same manner as in Example 5 except that the surface-modified zirconia fine particles obtained in Comparative Example 4 were used. A dispersion and a transparent resin composition of Comparative Example 8 were obtained.

<表面修飾金属酸化物微粒子含有複合体の作製>
得られた樹脂組成物からトルエンを留去させ、次いで、20mmφのテフロン(登録商標)製の型に、乾燥膜厚が1mm以上になるように、この樹脂組成物を注入した。次いで150℃で樹脂組成物を加熱硬化させたところ、比較例8の赤紫色の透明な複合体を得た。
150℃の加熱で着色したことより、芳香環とケイ素の間にイミノ基(=NH)を有する表面修飾剤を表面修飾させたジルコニア微粒子が、透明性にやや劣り、また着色する点で劣ることが確認された。
複合体をFE−TEMで観察した結果、複合体中にジルコニア微粒子が均一に分散されていることが確認された。
<Preparation of surface-modified metal oxide fine particle-containing composite>
Toluene was distilled off from the obtained resin composition, and then this resin composition was poured into a 20 mmφ Teflon (registered trademark) mold so that the dry film thickness was 1 mm or more. Subsequently, when the resin composition was heat-cured at 150 ° C., a red-violet transparent composite of Comparative Example 8 was obtained.
Since it is colored by heating at 150 ° C., zirconia fine particles obtained by surface modification with a surface modifier having an imino group (= NH) between an aromatic ring and silicon are slightly inferior in transparency and inferior in coloration. Was confirmed.
As a result of observing the composite with FE-TEM, it was confirmed that the zirconia fine particles were uniformly dispersed in the composite.

[実施例9]
<表面修飾金属酸化物微粒子含有樹脂組成物の作製>
実施例5で得られた透明な分散液10.8質量部と、ビスフェノールA骨格を有するエポキシ樹脂(三菱化学社製、jER828、屈折率1.55)と、メチルヘキサヒドロ無水フタル酸と、ホスホニウム塩系化合物(サンアプロ社製、U−CAT5003)とを質量比で100:90:0.05となるように混合した混合物1.2質量部を混合して(表面修飾金属酸化物微粒子と樹脂の質量比は40:60)、実施例9の透明な樹脂組成物を得た。
[Example 9]
<Preparation of surface-modified metal oxide fine particle-containing resin composition>
10.8 parts by mass of the transparent dispersion obtained in Example 5, an epoxy resin having a bisphenol A skeleton (manufactured by Mitsubishi Chemical Corporation, jER828, refractive index 1.55), methylhexahydrophthalic anhydride, and phosphonium 1.2 parts by weight of a mixture obtained by mixing a salt compound (manufactured by San Apro, U-CAT5003) in a mass ratio of 100: 90: 0.05 was mixed (surface-modified metal oxide fine particles and resin The transparent resin composition of Example 9 was obtained at a mass ratio of 40:60).

<表面修飾金属酸化物微粒子含有複合体の作製>
得られた樹脂組成物からトルエンを留去させ、次いで、20mmφのテフロン(登録商標)製の型に、乾燥膜厚が1mm以上になるように、この樹脂組成物を注入した。次いで150℃で樹脂組成物を加熱硬化させ、実施例9の透明な複合体を得た。
複合体をFE−TEMで観察した結果、複合体中にジルコニア微粒子が均一に分散されていることが確認された。
<Preparation of surface-modified metal oxide fine particle-containing composite>
Toluene was distilled off from the obtained resin composition, and then this resin composition was poured into a 20 mmφ Teflon (registered trademark) mold so that the dry film thickness was 1 mm or more. Next, the resin composition was heat-cured at 150 ° C. to obtain a transparent composite of Example 9.
As a result of observing the composite with FE-TEM, it was confirmed that the zirconia fine particles were uniformly dispersed in the composite.

[実施例10]
実施例9において、実施例5で得られた表面修飾ジルコニア微粒子含有分散液の替わりに、実施例6で得られた表面修飾ジルコニア微粒子含有分散液を用いた以外は実施例9と同様にして、実施例10の透明な樹脂組成物と、実施例10の透明な複合体を得た。
複合体をFE−TEMで観察した結果、複合体中にジルコニア微粒子が均一に分散されていることが確認された。
[Example 10]
In Example 9, instead of the surface-modified zirconia fine particle-containing dispersion obtained in Example 5, the same procedure as in Example 9 except that the surface-modified zirconia fine particle-containing dispersion obtained in Example 6 was used. The transparent resin composition of Example 10 and the transparent composite of Example 10 were obtained.
As a result of observing the composite with FE-TEM, it was confirmed that the zirconia fine particles were uniformly dispersed in the composite.

[実施例11]
実施例9において、実施例5で得られた表面修飾ジルコニア微粒子含有分散液の替わりに、実施例7で得られた表面修飾ジルコニア微粒子含有分散液を用いた以外は実施例9と同様にして、実施例11の透明な樹脂組成物と、実施例11の透明な複合体を得た。
複合体をFE−TEMで観察した結果、複合体中にジルコニア微粒子が均一に分散されていることが確認された。
[Example 11]
In Example 9, instead of the surface-modified zirconia fine particle-containing dispersion obtained in Example 5, the same procedure as in Example 9 was used except that the surface-modified zirconia fine particle-containing dispersion obtained in Example 7 was used. The transparent resin composition of Example 11 and the transparent composite of Example 11 were obtained.
As a result of observing the composite with FE-TEM, it was confirmed that the zirconia fine particles were uniformly dispersed in the composite.

[実施例12]
実施例9において、実施例5で得られた表面修飾ジルコニア微粒子含有分散液の替わりに、実施例8で得られた表面修飾チタニア微粒子含有分散液を用いた以外は実施例9と同様にして、実施例12の透明な樹脂組成物と、実施例12の透明な複合体を得た。
複合体をFE−TEMで観察した結果、複合体中にチタニア微粒子が均一に分散されていることが確認された。
[Example 12]
In Example 9, instead of the surface-modified zirconia fine particle-containing dispersion obtained in Example 5, the same procedure as in Example 9 was used except that the surface-modified titania fine particle-containing dispersion obtained in Example 8 was used. The transparent resin composition of Example 12 and the transparent composite of Example 12 were obtained.
As a result of observing the composite with FE-TEM, it was confirmed that titania fine particles were uniformly dispersed in the composite.

[比較例9]
<表面修飾金属酸化物微粒子含有樹脂組成物の作製>
実施例9において、実施例1で得られた表面修飾ジルコニア微粒子含有分散液の替わりに、比較例5で得られた表面修飾ジルコニア微粒子含有分散液を用いた以外は実施例9と同様にして、比較例9の透明な樹脂組成物を得た。
[Comparative Example 9]
<Preparation of surface-modified metal oxide fine particle-containing resin composition>
In Example 9, instead of the surface-modified zirconia fine particle-containing dispersion obtained in Example 1, the same procedure as in Example 9 was used except that the surface-modified zirconia fine particle-containing dispersion obtained in Comparative Example 5 was used. A transparent resin composition of Comparative Example 9 was obtained.

<表面修飾金属酸化物微粒子含有複合体の作製>
得られた樹脂組成物からトルエンを留去させた。次いで、20mmφのテフロン(登録商標)製の型に、乾燥膜厚が1mm以上となるように樹脂組成物を注入したが、樹脂組成物の粘性が高すぎて流動性を有しないため、型に均一に充填することができなかった。次いで150℃で樹脂組成物を加熱硬化させ、比較例9の半透明な複合体を得た。
トルエンを留去させたあとに樹脂組成物の粘性が高くなったことにより、芳香環上にメチル基を有する表面修飾剤を表面修飾させたジルコニア微粒子は、成形性に劣り、透明性も優れないことが確認された。
<Preparation of surface-modified metal oxide fine particle-containing composite>
Toluene was distilled off from the obtained resin composition. Next, the resin composition was injected into a 20 mmφ Teflon (registered trademark) mold so that the dry film thickness was 1 mm or more. However, since the viscosity of the resin composition was too high to have fluidity, Uniform filling was not possible. Subsequently, the resin composition was heat-cured at 150 ° C. to obtain a translucent composite of Comparative Example 9.
Since the viscosity of the resin composition is increased after the toluene is distilled off, the zirconia fine particles obtained by surface modification with a surface modifier having a methyl group on the aromatic ring are inferior in moldability and in transparency. It was confirmed.

[比較例10]
<表面修飾金属酸化物微粒子含有樹脂組成物の作製>
実施例9において、実施例5で得られた表面修飾ジルコニア微粒子含有分散液の替わりに、比較例6で得られた表面修飾ジルコニア微粒子含有分散液を用いた以外は実施例9と同様にして、比較例10の透明な樹脂組成物を得た。
[Comparative Example 10]
<Preparation of surface-modified metal oxide fine particle-containing resin composition>
In Example 9, instead of the surface-modified zirconia fine particle-containing dispersion obtained in Example 5, the same procedure as in Example 9 except that the surface-modified zirconia fine particle-containing dispersion obtained in Comparative Example 6 was used. A transparent resin composition of Comparative Example 10 was obtained.

<表面修飾金属酸化物微粒子含有複合体の作製>
得られた樹脂組成物からトルエンを留去させたところ、樹脂組成物が白濁した。次いで、20mmφのテフロン(登録商標)製の型に、乾燥膜厚が1mm以上となるように樹脂組成物を注入したが、樹脂組成物の粘性が高すぎて流動性を有しないため、型に均一に充填することができなかった。次いで150℃で樹脂組成物を加熱硬化させ、比較例10の複合体を得た。
<Preparation of surface-modified metal oxide fine particle-containing composite>
When toluene was distilled off from the obtained resin composition, the resin composition became cloudy. Next, the resin composition was injected into a 20 mmφ Teflon (registered trademark) mold so that the dry film thickness was 1 mm or more. However, since the viscosity of the resin composition was too high to have fluidity, Uniform filling was not possible. Subsequently, the resin composition was heat-cured at 150 ° C. to obtain a composite of Comparative Example 10.

トルエンを留去させたところ、樹脂組成物が白濁し、かつ、樹脂組成物の粘性が高くなったことにより、芳香環上にエチル基を有する表面修飾剤を表面修飾させたジルコニア微粒子が、成形性にも透明性にも劣ることが確認された。   When toluene was distilled off, the resin composition became cloudy, and the viscosity of the resin composition became high, so that the zirconia fine particles obtained by surface modification with a surface modifier having an ethyl group on the aromatic ring were molded. It was confirmed that it was inferior to the property and transparency.

[比較例11]
<表面修飾金属酸化物微粒子含有樹脂組成物の作製>
実施例9において、実施例5で得られた表面修飾ジルコニア微粒子含有分散液の替わりに、比較例7で得られた表面修飾ジルコニア微粒子含有分散液を用いた以外は実施例5と同様にして、比較例11の透明な樹脂組成物を得た。
[Comparative Example 11]
<Preparation of surface-modified metal oxide fine particle-containing resin composition>
In Example 9, instead of the surface-modified zirconia fine particle-containing dispersion obtained in Example 5, the same procedure as in Example 5 was used except that the surface-modified zirconia fine particle-containing dispersion obtained in Comparative Example 7 was used. A transparent resin composition of Comparative Example 11 was obtained.

<表面修飾金属酸化物微粒子含有複合体の作製>
得られた樹脂組成物からトルエンを留去させたところ、樹脂組成物が白濁した。次いで、20mmφのテフロン(登録商標)製の型に、乾燥膜厚が1mm以上になるように、この樹脂組成物を注入した。次いで150℃で樹脂組成物を加熱硬化させたところ、比較例11の白濁した複合体を得た。
150℃の加熱で白濁したことより、芳香環とケイ素の間にエステル結合を有する表面修飾剤を表面修飾させたジルコニア微粒子が、透明性に劣ることが確認された。
<Preparation of surface-modified metal oxide fine particle-containing composite>
When toluene was distilled off from the obtained resin composition, the resin composition became cloudy. Next, this resin composition was poured into a 20 mmφ Teflon (registered trademark) mold so that the dry film thickness was 1 mm or more. Next, when the resin composition was heat-cured at 150 ° C., the cloudy composite of Comparative Example 11 was obtained.
Since it became cloudy by heating at 150 ° C., it was confirmed that the zirconia fine particles obtained by surface modification with a surface modifier having an ester bond between the aromatic ring and silicon were inferior in transparency.

[比較例12]
<表面修飾酸化物粒子含有樹脂組成物の作製>
実施例9において、実施例5で得られた表面修飾ジルコニア微粒子含有分散液の替わりに、比較例8で得られた表面修飾ジルコニア微粒子含有分散液を用いた以外は実施例9と同様にして、比較例12の透明な樹脂組成物を得た。
[Comparative Example 12]
<Preparation of surface-modified oxide particle-containing resin composition>
In Example 9, instead of the surface-modified zirconia fine particle-containing dispersion obtained in Example 5, the same procedure as in Example 9 except that the surface-modified zirconia fine particle-containing dispersion obtained in Comparative Example 8 was used. A transparent resin composition of Comparative Example 12 was obtained.

<表面修飾金属酸化物微粒子含有複合体の作製>
得られた樹脂組成物からトルエンを留去させ、次いで、20mmφのテフロン(登録商標)製の型に、乾燥膜厚が1mm以上になるように、この樹脂組成物を注入した。次いで150℃で樹脂組成物を加熱硬化させたところ、比較例12の赤紫色の透明な複合体を得た。
150℃の加熱で着色したことより、芳香環とケイ素の間にアミノ基を有する表面修飾剤を表面修飾させたジルコニア微粒子が、透明性に劣ることが確認された。
<Preparation of surface-modified metal oxide fine particle-containing composite>
Toluene was distilled off from the obtained resin composition, and then this resin composition was poured into a 20 mmφ Teflon (registered trademark) mold so that the dry film thickness was 1 mm or more. Subsequently, when the resin composition was heat-cured at 150 ° C., a reddish purple transparent composite of Comparative Example 12 was obtained.
From coloring by heating at 150 ° C., it was confirmed that the zirconia fine particles obtained by surface modification with a surface modifier having an amino group between the aromatic ring and silicon are inferior in transparency.

[比較例13]
実施例1において、ベンジルトリエトキシシランの替わりに、(フェニルエチル)メチルジメトキシシランを用いた以外は実施例1と同様にして、(フェニルエチル)メチルジメトキシシランで表面修飾された表面修飾ジルコニア微粒子を得ようと試みた。
実施例1〜4及び比較例1〜4では、上記撹拌混合時間が0.5時間〜6時間程度で表面修飾金属酸化物微粒子を得ることができたが、比較例13では、12時間以上経過しても表面修飾金属酸化物微粒子を得ることができなかった。
[Comparative Example 13]
In Example 1, surface-modified zirconia fine particles surface-modified with (phenylethyl) methyldimethoxysilane in the same manner as in Example 1 except that (phenylethyl) methyldimethoxysilane was used instead of benzyltriethoxysilane. I tried to get it.
In Examples 1 to 4 and Comparative Examples 1 to 4, the surface-modified metal oxide fine particles could be obtained with the stirring and mixing time of about 0.5 to 6 hours. In Comparative Example 13, 12 hours or more elapsed. Even so, the surface-modified metal oxide fine particles could not be obtained.

[評価]
実施例5〜12、比較例5〜12の複合体の評価結果を、表1に示す。
[Evaluation]
Table 1 shows the evaluation results of the composites of Examples 5 to 12 and Comparative Examples 5 to 12.

Figure 2014094850
Figure 2014094850

表1の結果より、一般式(1)の条件を満たす表面修飾剤を用いた有機無機複合材料では、所望の特性が得られたのに対して、一般式(1)の条件に満たない表面修飾剤を用いた有機無機複合材料では、白濁や着色などの不具合が生じることが確認された。   From the results in Table 1, the organic-inorganic composite material using the surface modifier satisfying the condition of the general formula (1) obtained desired characteristics, whereas the surface does not satisfy the condition of the general formula (1). It has been confirmed that the organic-inorganic composite material using the modifier has problems such as white turbidity and coloring.

Claims (7)

芳香環骨格を有する樹脂に分散して用いられる、表面修飾剤により金属酸化物微粒子の表面が修飾されている表面修飾金属酸化物微粒子であって、
前記金属酸化物微粒子の平均一次粒子径は4nm以上かつ15nm以下であって、
前記金属酸化物微粒子は、ジルコニウム、亜鉛、鉄、銅、チタン、スズ、セリウム、タンタル、ニオブ、タングステン、ユーロピウム及びハフニウムの群から選択される1種または2種以上の金属元素を含む金属酸化物微粒子であって、
前記表面修飾剤が下記一般式(1)で示される表面修飾剤であることを特徴とする、表面修飾金属酸化物微粒子。
Figure 2014094850
(式中、nは1〜3であり、Si−X1、Si−X2、Si−X3は、それぞれ独立して、加水分解してシラノール基となる官能基である)
Surface-modified metal oxide fine particles in which the surface of the metal oxide fine particles is modified with a surface modifier used by dispersing in a resin having an aromatic ring skeleton,
The average primary particle diameter of the metal oxide fine particles is 4 nm or more and 15 nm or less,
The metal oxide fine particles include a metal oxide containing one or more metal elements selected from the group consisting of zirconium, zinc, iron, copper, titanium, tin, cerium, tantalum, niobium, tungsten, europium and hafnium. Fine particles,
Surface-modified metal oxide fine particles, wherein the surface modifier is a surface modifier represented by the following general formula (1).
Figure 2014094850
(Wherein, n is 1~3, Si-X 1, Si -X 2, Si-X 3 are each independently a functional group which becomes a silanol group by hydrolysis)
1、X2、X3は、それぞれ独立して、アルコキシ基又はハロゲノ基である、請求項1記載の表面修飾金属酸化物微粒子。 The surface-modified metal oxide fine particles according to claim 1 , wherein X 1 , X 2 and X 3 are each independently an alkoxy group or a halogeno group. 請求項1又は2記載の表面修飾金属酸化物微粒子が分散媒中に分散していることを特徴とする、表面修飾金属酸化物微粒子含有分散液。   A surface-modified metal oxide fine particle-containing dispersion, wherein the surface-modified metal oxide fine particles according to claim 1 or 2 are dispersed in a dispersion medium. 請求項1又は2記載の表面修飾金属酸化物微粒子及び請求項3記載の表面修飾金属酸化物微粒子含有分散液の一方又は双方と、芳香環骨格を有する樹脂とを含有していることを特徴とする、表面修飾金属酸化物微粒子含有樹脂組成物。   One or both of the surface-modified metal oxide fine particles according to claim 1 or 2 and the surface-modified metal oxide fine particle-containing dispersion according to claim 3 and a resin having an aromatic ring skeleton are contained. A surface-modified metal oxide fine particle-containing resin composition. 前記表面修飾剤の修飾量が、前記金属酸化物微粒子100質量部に対して、5質量部以上かつ40質量部以下であることを特徴とする、請求項4記載の表面修飾金属酸化物微粒子含有樹脂組成物。   5. The surface-modified metal oxide fine particle content according to claim 4, wherein the modification amount of the surface modifier is 5 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the metal oxide fine particles. Resin composition. 請求項5記載の表面修飾金属酸化物微粒子含有樹脂組成物の硬化物からなることを特徴とする、表面修飾金属酸化物微粒子含有複合体。   6. A surface-modified metal oxide fine particle-containing composite comprising a cured product of the surface-modified metal oxide fine particle-containing resin composition according to claim 5. 請求項6記載の表面修飾金属酸化物微粒子含有複合体を備えていることを特徴とする、光学部材。   An optical member comprising the surface-modified metal oxide fine particle-containing composite according to claim 6.
JP2012246520A 2012-11-08 2012-11-08 Surface-modified metal oxide fine particles, dispersion containing the same, resin composition, composite, and optical member Active JP6028529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012246520A JP6028529B2 (en) 2012-11-08 2012-11-08 Surface-modified metal oxide fine particles, dispersion containing the same, resin composition, composite, and optical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012246520A JP6028529B2 (en) 2012-11-08 2012-11-08 Surface-modified metal oxide fine particles, dispersion containing the same, resin composition, composite, and optical member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016161259A Division JP6206564B2 (en) 2016-08-19 2016-08-19 Surface-modified metal oxide fine particles, dispersion containing the same, resin composition, composite, and optical member

Publications (2)

Publication Number Publication Date
JP2014094850A true JP2014094850A (en) 2014-05-22
JP6028529B2 JP6028529B2 (en) 2016-11-16

Family

ID=50938254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012246520A Active JP6028529B2 (en) 2012-11-08 2012-11-08 Surface-modified metal oxide fine particles, dispersion containing the same, resin composition, composite, and optical member

Country Status (1)

Country Link
JP (1) JP6028529B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023178945A1 (en) * 2022-03-21 2023-09-28 山东国瓷功能材料股份有限公司 Nano-zirconia monomer type dispersion, preparation method therefor, and optical film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182204A (en) * 1987-01-22 1988-07-27 Nippon Shokubai Kagaku Kogyo Co Ltd Production of monodisperse body of fine inorganic oxide particle in organic solvent
JPH1191255A (en) * 1997-09-18 1999-04-06 Fuji Photo Film Co Ltd Lithographic printing original plate and manufacture of lithographic printing plate employing the same
JP2005298818A (en) * 2004-04-05 2005-10-27 Xerox Corp Process for producing hydrophobic metal oxide nanoparticle
JP2006520258A (en) * 2003-02-06 2006-09-07 ビューラー パルテック ゲーエムベーハー Chemomechanical production of functional colloids
US20070003463A1 (en) * 2005-07-01 2007-01-04 Tohoku Techno Arch Co., Ltd. Organically modified fine particles
JP2010195967A (en) * 2009-02-26 2010-09-09 Dic Corp Inorganic oxide dispersion, method for producing the same and composite material using the dispersion
JP2010223985A (en) * 2009-03-19 2010-10-07 Tomoegawa Paper Co Ltd Metal oxide fine particle, coating material, optical laminate, and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182204A (en) * 1987-01-22 1988-07-27 Nippon Shokubai Kagaku Kogyo Co Ltd Production of monodisperse body of fine inorganic oxide particle in organic solvent
JPH1191255A (en) * 1997-09-18 1999-04-06 Fuji Photo Film Co Ltd Lithographic printing original plate and manufacture of lithographic printing plate employing the same
JP2006520258A (en) * 2003-02-06 2006-09-07 ビューラー パルテック ゲーエムベーハー Chemomechanical production of functional colloids
JP2005298818A (en) * 2004-04-05 2005-10-27 Xerox Corp Process for producing hydrophobic metal oxide nanoparticle
US20070003463A1 (en) * 2005-07-01 2007-01-04 Tohoku Techno Arch Co., Ltd. Organically modified fine particles
JP2010195967A (en) * 2009-02-26 2010-09-09 Dic Corp Inorganic oxide dispersion, method for producing the same and composite material using the dispersion
JP2010223985A (en) * 2009-03-19 2010-10-07 Tomoegawa Paper Co Ltd Metal oxide fine particle, coating material, optical laminate, and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023178945A1 (en) * 2022-03-21 2023-09-28 山东国瓷功能材料股份有限公司 Nano-zirconia monomer type dispersion, preparation method therefor, and optical film

Also Published As

Publication number Publication date
JP6028529B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
TWI364367B (en) Siloxane-based coating, optical article and process for producing the siloxane-based coating
TWI680152B (en) Surface modified metal oxide particle dispersion and manufacturing method thereof, surface modified metal oxide particle-silicone resin composite composition, surface modified metal oxide particle-silicone resin composite, optical member, and light emitting device
JP5345891B2 (en) Anti-glare film and method for producing the same
KR101398506B1 (en) Aggregate of spherical core-shell cerium oxide/polymer hybrid nanoparticles and method for producing the same
CN104411745B (en) Liquid polymerizable composition comprising mineral nano particle and its purposes for producing optical article
JP2008120848A (en) Transparent inorganic oxide dispersion, transparent composite, method for producing the same, composition for sealing light-emitting element and light-emitting element
CN106661362A (en) Metal oxide particle dispersion, composition containing metal oxide particles, coating film, and display device
CN103764567A (en) Inorganic oxide transparent dispersion and resin composition for forming transparent composite, and transparent composite and optical member
JP6206564B2 (en) Surface-modified metal oxide fine particles, dispersion containing the same, resin composition, composite, and optical member
JP2010209325A (en) White fine particle, and method for producing the same fine particle
TWI384021B (en) Method for transferring inorganic oxide nanoparticles from aqueous phase to organic phase
CN105593294B (en) Hybrid epoxy-acrylic with zirconium oxide nanocomposite for curable coatings
JP6028529B2 (en) Surface-modified metal oxide fine particles, dispersion containing the same, resin composition, composite, and optical member
JP5606274B2 (en) Method for producing fine particle dispersion
JP6291057B2 (en) Liquid polymerizable composition comprising an anhydride derivative monomer and inorganic nanoparticles dispersed therein, and use thereof for producing optical articles
Kudo et al. Optically transparent and refractive index-tunable ZrO2/photopolymer composites designed for ultraviolet nanoimprinting
TWI478765B (en) Inorganic compound fine particle dispersion composition and inorganic compound fine particle dispersion hardening
JP6192895B2 (en) Method for producing inorganic particle dispersion
JP7430985B2 (en) Dispersion of surface-treated particles and curable composition containing the dispersion
CN105907299B (en) Resin lens coating composition and preparation method thereof
CN105885674B (en) Inorganic nano SiO2The preparation method of/urethane acrylate composite transparent coating
US20080114082A1 (en) Dispersing agent for metallic nanoparticles in an organic media
JP2008308386A (en) Composite rutile fine particle, composite rutile fine particle dispersion liquid, high refractive index material, high refractive index member, and method for manufacturing composite rutile fine particle
KR20190059075A (en) Preparation of UV-Curable Hydrophilic Coating Films Using Colloidal Silica And Manufacturing Method Of Thereof
JP2024029655A (en) Dispersion containing inorganic particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161003

R150 Certificate of patent or registration of utility model

Ref document number: 6028529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150