JP2014092366A - Photometric device - Google Patents

Photometric device Download PDF

Info

Publication number
JP2014092366A
JP2014092366A JP2012240885A JP2012240885A JP2014092366A JP 2014092366 A JP2014092366 A JP 2014092366A JP 2012240885 A JP2012240885 A JP 2012240885A JP 2012240885 A JP2012240885 A JP 2012240885A JP 2014092366 A JP2014092366 A JP 2014092366A
Authority
JP
Japan
Prior art keywords
measurement
measured
light
light beam
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012240885A
Other languages
Japanese (ja)
Other versions
JP5941824B2 (en
Inventor
Akitomo Suzuki
了智 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2012240885A priority Critical patent/JP5941824B2/en
Publication of JP2014092366A publication Critical patent/JP2014092366A/en
Application granted granted Critical
Publication of JP5941824B2 publication Critical patent/JP5941824B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photometric device that can be improved in measurement precision by reducing an influence of rear-face reflection even when a rear surface of a sample to be measured tilts to a measured surface of the sample to be measured.SOLUTION: A photometric device 50 includes: a light source 1; a luminance flux shaping part 20 which shapes luminous flux from the light source 1 into measurement luminous flux Lhaving a cross-sectional shape and so sectioned orthogonally to the optical axis Othat a ring-shaped vacant part is formed in a part of a ring-shaped pattern in a peripheral direction; a light shield position change part which changes the formation position of the ring-shaped vacant part; an objective 6 which converges the measurement luminous flux Lon a measured surface of a sample to be measured; an image forming optical system 9 which converges reflected luminous flux, reflected by the sample 7 to be measured, of the measurement luminous flux L; an incidence opening diaphragm 10a arranged in optically conjugate position relation with the measured surface 7a across the image forming optical system 9; a spectroscope 10 which measures luminous flux passed through the incidence opening diaphragm 10a; and an observation optical system 14 which can observe a projection image by the image forming optical system 9 through the image forming optical system 9.

Description

本発明は測光装置に関する。   The present invention relates to a photometric device.

従来、被測定試料に測定光束を照射し、被測定面における測定光束の反射光束を集光し、集光された光束を、例えば、分光器や受光装置などの測光手段に入射して、測光を行う測光装置が知られている。
例えば、特許文献1には、このような測光装置の一例である反射率測定装置が記載されている。
この反射率測定装置は、対物レンズと、該対物レンズの後方に配置された光路分割素子と、該光路分割素子により分けられた一方の光路中に配置された輪帯状光束を発する光源と、上記光路分割素子により分けられた他方の光路中に配置された微小開口絞りと、該微小開口絞りの後方に配置された光感応素子とを具え、上記光源を発した光束を上記光路分割素子を介して上記対物レンズにより被検面に集束し、該被検面による反射光を上記対物レンズ、光路分割素子、微小開口絞りを介して上記光感応素子により受けるようにして成る装置である。
このような反射率測定装置によれば、被測定試料の被測定面と微小開口絞りとを互いに光学的に共役な位置関係に配置する。これにより、被測定面の表面反射光は、微小開口絞りに入射して光感応素子に入射する。一方、被測定面と対向する被測定試料の裏面における裏面反射光は、微小開口絞り上では輪帯状にぼけた像として投影され、微小開口絞りの開口よりも外側に到達して遮光される。
このため、裏面反射光に起因する測定ノイズを低減することが可能となる。
Conventionally, the measurement sample is irradiated with the measurement light beam, the reflected light beam of the measurement light beam on the measurement surface is collected, and the collected light beam is incident on a photometric means such as a spectroscope or a light receiving device to measure the light. A photometric device that performs the above is known.
For example, Patent Document 1 describes a reflectance measuring device that is an example of such a photometric device.
The reflectance measuring device includes an objective lens, an optical path splitting element disposed behind the objective lens, a light source that emits an annular light beam disposed in one optical path divided by the optical path splitting element, and A micro-aperture stop disposed in the other optical path divided by the optical path splitting element; and a light-sensitive element disposed behind the micro-aperture stop. A light beam emitted from the light source is passed through the optical path splitting element. The light beam is focused on the test surface by the objective lens, and the reflected light from the test surface is received by the light sensitive element through the objective lens, the optical path dividing element, and the minute aperture stop.
According to such a reflectance measurement apparatus, the measurement surface of the sample to be measured and the minute aperture stop are arranged in an optically conjugate positional relationship. Thereby, the surface reflected light of the surface to be measured enters the minute aperture stop and enters the photosensitive element. On the other hand, the back-surface reflected light on the back surface of the sample to be measured facing the surface to be measured is projected as a ring-shaped blurred image on the minute aperture stop, and is shielded by reaching the outside of the aperture of the minute aperture stop.
For this reason, it becomes possible to reduce the measurement noise resulting from back surface reflected light.

特公平6−27706号公報Japanese Examined Patent Publication No. 6-27706

しかしながら、上記のような従来の測光装置には、以下のような問題があった。
特許文献1の反射率測定装置では、被測定面と裏面とが平行である場合には、被測定面での反射光束と裏面での裏面反射光とが同軸に進むため裏面反射光が遮光される。
しかし、裏面が被測定面に対して傾斜している場合には、微小開口絞り上の裏面反射光の中心が測定光束の光軸からずれるため、輪帯状にぼけていても、裏面反射光の一部が微小開口絞りの開口に入射してしまう場合がある。
このため、微小開口絞りの開口に入射した裏面反射光が測定ノイズになり、被測定面の光学特性を正確に測定できなくなるという問題がある。
However, the conventional photometric device as described above has the following problems.
In the reflectance measuring apparatus of Patent Document 1, when the measured surface and the back surface are parallel, the reflected light beam on the measured surface and the back surface reflected light on the back surface travel on the same axis, so that the back surface reflected light is shielded. The
However, when the back surface is inclined with respect to the surface to be measured, the center of the back surface reflected light on the minute aperture stop deviates from the optical axis of the measurement light beam. Some may enter the aperture of the minute aperture stop.
For this reason, there is a problem that the back-surface reflected light incident on the aperture of the minute aperture stop becomes measurement noise and the optical characteristics of the surface to be measured cannot be measured accurately.

本発明は、上記のような問題に鑑みてなされたものであり、被測定試料の被測定面に対して被測定試料の裏面が傾斜している場合でも、裏面反射の影響を低減して測定精度を向上することができる測光装置を提供することを目的とする。   The present invention has been made in view of the above problems, and even when the back surface of the sample to be measured is tilted with respect to the surface to be measured of the sample to be measured, measurement is performed while reducing the influence of back surface reflection. An object of the present invention is to provide a photometric device capable of improving accuracy.

上記の課題を解決するために、本発明の第1の態様の測光装置は、光源と、該光源から出射される光束を、その光軸に直交する断面において輪帯状パターンの周方向の一部に輪帯欠損部が形成された断面形状を有する測定光束に整形可能な光束整形部と、前記輪帯欠損部の形成位置を変更する遮光位置変更部と、前記測定光束を被測定試料の被測定面上に集光する第1の集光光学系と、前記測定光束のうち、前記被測定試料によって反射された反射光束を集光する第2の集光光学系と、該第2の集光光学系を挟んで、前記被測定面と光学的に共役な位置関係に配置された開口絞りと、該開口絞りを通過した光束を測光する測光部と、前記第2の集光光学系によって、前記被測定面と光学的に共役とされた像面における前記第2の集光光学系による投影像が観察可能な観察部と、を備える構成とする。   In order to solve the above-described problem, a photometric device according to the first aspect of the present invention includes a light source and a light beam emitted from the light source in a circumferential direction of a ring-shaped pattern in a cross section orthogonal to the optical axis. A light beam shaping unit that can be shaped into a measurement light beam having a cross-sectional shape in which an annular zone defect portion is formed, a light-shielding position changing unit that changes a formation position of the annular zone defect portion, A first condensing optical system for condensing on a measurement surface; a second condensing optical system for condensing a reflected light beam reflected by the sample to be measured out of the measurement light beam; and the second light collecting system. An aperture stop disposed in an optically conjugate positional relationship with the surface to be measured across an optical optical system, a photometric unit that measures a light beam that has passed through the aperture stop, and the second condensing optical system The second condensing optical system in the image plane optically conjugate with the surface to be measured. Projected image and the observation unit observable, the configuration with that.

上記測光装置では、前記光束整形部は、輪帯状の開口が形成された輪帯開口絞りと、前記開口に対して移動可能に設けられ、前記輪帯開口絞りの前記開口の一部を遮光して前記測定光束の前記輪帯欠損部を形成する遮光部材とを備え、前記遮光位置変更部は、前記遮光部材を、前記輪帯開口絞りの前記開口に対して移動可能に保持する遮光部材移動部を備えることが可能である。   In the photometric device, the light beam shaping unit is provided with an annular aperture stop in which an annular aperture is formed, and is movable with respect to the aperture, and shields a part of the aperture of the annular aperture stop. A light shielding member that forms the annular zone defect portion of the measurement light beam, and the light shielding position changing portion holds the light shielding member movably with respect to the opening of the annular aperture stop. Can be provided.

上記の遮光部材移動部を備える測光装置では、前記遮光部材移動部は、前記遮光部材を、前記開口の周方向に沿って回転移動させることが可能である。   In the photometric device provided with the light shielding member moving unit, the light shielding member moving unit is capable of rotating the light shielding member along the circumferential direction of the opening.

上記測光装置では、前記光束整形部は、輪帯状パターンの周方向の一部に遮光領域が形成された開口形状を有する絞り部材を備え、前記遮光位置変更部は、前記絞り部材を前記輪帯状パターンの周方向に回転移動することが可能である。   In the photometric device, the light beam shaping unit includes a diaphragm member having an opening shape in which a light shielding region is formed in a part of a ring-shaped pattern in the circumferential direction, and the light shielding position changing unit moves the diaphragm member to the ring-shaped pattern. It is possible to rotate and move in the circumferential direction of the pattern.

本発明の測光装置は、遮光位置変更部により測定光束の輪帯欠損部の形成位置を変更することにより、裏面反射して開口絞りの開口に到達する測定光束の一部を遮光することができるため、被測定試料の被測定面に対して被測定試料の裏面が傾斜している場合でも、裏面反射の影響を低減して測定精度を向上することができるという効果を奏する。   The photometric device of the present invention can shield a part of the measurement light beam that is reflected from the back surface and reaches the aperture stop aperture by changing the formation position of the annular zone defect portion of the measurement light beam by the light shielding position changing unit. Therefore, even when the back surface of the sample to be measured is inclined with respect to the measurement surface of the sample to be measured, the effect of reducing the influence of the back surface reflection and improving the measurement accuracy is achieved.

本発明の第1の実施形態の測光装置の概略構成を示す模式的な構成図である。It is a typical block diagram which shows schematic structure of the photometry apparatus of the 1st Embodiment of this invention. 図1におけるA視図、このA視図におけるB−B断面図、および光束整形部からの出射される測定光束を示す模式的な斜視図である。FIG. 2 is a schematic perspective view showing an A view in FIG. 1, a BB cross-sectional view in the A view, and a measurement light beam emitted from a light beam shaping unit. 被測定試料が被測定面と裏面とが平行な場合であって、光束整形部を有しない場合の模式的な光路図、および像面の様子の一例を示す模式図である。FIG. 4 is a schematic diagram showing an example of the state of an image plane and a schematic optical path diagram in the case where the sample to be measured is parallel to the surface to be measured and does not have a light beam shaping unit. 被測定面と裏面とが非平行な場合であって、光束整形部を有しない場合の模式的な光路図、および像面の様子の一例を示す模式図である。FIG. 6 is a schematic diagram showing an example of a schematic optical path diagram and an image plane when the surface to be measured and the back surface are non-parallel and do not have a light beam shaping unit. 本発明の第1の実施形態の測光装置における光束整形部および遮光位置変更部の動作を示す正面図、被測定面と裏面とが平行な場合の像面の様子の一例を示す模式図、および被測定面と裏面とが非平行な場合の像面の様子の一例を示す模式図である。The front view which shows operation | movement of the light beam shaping part and the light-shielding position change part in the photometry apparatus of the 1st Embodiment of this invention, The schematic diagram which shows an example of the mode of an image surface in case a to-be-measured surface and a back surface are parallel, It is a schematic diagram which shows an example of the mode of an image surface in case a to-be-measured surface and a back surface are non-parallel. 本発明の第1の実施形態の測光装置の遮光部材の移動前、移動後の観察部による観察像の例を示す模式図である。It is a schematic diagram which shows the example of the observation image by the observation part before the movement of the light-shielding member of the photometry apparatus of the 1st Embodiment of this invention after a movement. 本発明の第2の実施形態の測光装置の主要部の構成を示す図1におけるA視図、およびこのA視図におけるC−C断面図である。FIG. 4 is a view as viewed in FIG. 1 showing a configuration of a main part of a photometric device according to a second embodiment of the present invention, and a cross-sectional view taken along a line CC in FIG. 本発明の第3の実施形態の測光装置の主要部の構成を示す図1におけるA視図、このA視図におけるD−D断面図、および動作説明図である。FIG. 4 is a view as viewed in FIG. 1 showing a configuration of a main part of a photometric device according to a third embodiment of the present invention, a DD cross-sectional view in the view as viewed in A, and an operation explanatory diagram. 本発明の第3の実施形態の測光装置の光束整形部による遮光前、および遮光後の観察部による観察像の一例を示す模式図である。It is a schematic diagram which shows an example of the observation image by the observation part before and after light-shielding by the light beam shaping part of the photometry apparatus of the 3rd Embodiment of this invention.

以下では、本発明の実施形態について添付図面を参照して説明する。すべての図面において、実施形態が異なる場合であっても、同一または相当する部材には同一の符号を付し、共通する説明は省略する。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In all the drawings, even if the embodiments are different, the same or corresponding members are denoted by the same reference numerals, and common description is omitted.

[第1の実施形態]
本発明の第1の実施形態の測光装置について説明する。
図1は、本発明の第1の実施形態の測光装置の概略構成を示す模式的な構成図である。図2(a)は、図1におけるA視図である。図2(b)は、図2(a)におけるB−B断面図である。図2(c)は、光束整形部からの出射される測定光束を示す模式的な斜視図である。
[First Embodiment]
A photometric device according to a first embodiment of the present invention will be described.
FIG. 1 is a schematic configuration diagram showing a schematic configuration of a photometric device according to a first embodiment of the present invention. FIG. 2 (a) is a view on A in FIG. FIG. 2B is a BB cross-sectional view in FIG. FIG. 2C is a schematic perspective view showing the measurement light beam emitted from the light beam shaping unit.

本実施形態の測光装置50は、図1に示すように、測光装置50に対向して向けられた被測定試料7(被測定試料)の表面である被測定面7a、あるいは同様に配置され、分光反射率が既知の基準被測定試料70(被測定試料)の基準測定面70a(被測定面)を落射照明することによって、被測定面7aおよび基準測定面70aの分光強度を測定し、それぞれの測定で得られた分光強度の測定値の比率を求め、基準測定面70aの既知の分光反射率に基づいて、被測定面7aの相対分光反射率を算出するものである。   As shown in FIG. 1, the photometric device 50 according to the present embodiment is arranged in the same manner as the measured surface 7 a that is the surface of the measured sample 7 (measured sample) facing the photometric device 50, or the like. The reference measurement surface 70a (measurement surface) of the reference measurement sample 70 (measurement sample) whose spectral reflectance is known is incident on the surface to measure the spectral intensity of the measurement surface 7a and the reference measurement surface 70a. The ratio of the measured values of the spectral intensity obtained by the above measurement is obtained, and the relative spectral reflectance of the measured surface 7a is calculated based on the known spectral reflectance of the reference measurement surface 70a.

被測定試料7は、特に限定されないが、例えば、レンズ、光学フィルタ、反射ミラー等の光学素子などを挙げることができる。なお、図1は模式図のため、被測定試料7を平板状に描いているが、レンズや曲面ミラーの場合には、被測定面7aは曲面であってもよい。また、被測定試料7において測光装置50と反対側に位置する裏面7bも曲面が可能である。
また、被測定面7aおよび裏面7bが平面の場合であっても、互いに平行とは限らず、互いに傾斜していることが可能である。
被測定試料7の肉厚は限定されず、例えば、1mm以下の薄肉形状も可能である。
また、レンズの場合には、測定場所により、被測定面7aと裏面7bとの間隔が変化することが一般的であり、凸レンズの外周部や凹レンズの中心部では、例えば、1mm以下の薄肉形状になる場合もある。
The sample 7 to be measured is not particularly limited, and examples thereof include optical elements such as lenses, optical filters, and reflection mirrors. 1 is a schematic diagram, the sample 7 to be measured is drawn in a flat plate shape. However, in the case of a lens or a curved mirror, the surface 7a to be measured may be a curved surface. Further, the back surface 7b located on the opposite side to the photometric device 50 in the sample 7 to be measured can be curved.
Further, even when the measured surface 7a and the back surface 7b are flat, they are not necessarily parallel to each other and can be inclined with respect to each other.
The thickness of the sample 7 to be measured is not limited. For example, a thin shape of 1 mm or less is also possible.
In the case of a lens, the distance between the measured surface 7a and the back surface 7b is generally changed depending on the measurement location. At the outer peripheral part of the convex lens and the central part of the concave lens, for example, a thin shape of 1 mm or less Sometimes it becomes.

基準被測定試料70は、本実施形態では、平行平板から構成されるが、基準測定面70aと、基準測定面70aを挟んで測光装置50と反対側に位置する裏面70bとは、10mm離れている。このため、基準測定面70aと裏面70bとの平行度に製作誤差があったとしても、裏面70bによる反射光束(裏面反射光)が測定ノイズとなるおそれはない。   In the present embodiment, the reference sample 70 is a parallel plate, but the reference measurement surface 70a and the back surface 70b located on the opposite side of the photometry device 50 across the reference measurement surface 70a are separated by 10 mm. Yes. For this reason, even if there is a manufacturing error in the parallelism between the reference measurement surface 70a and the back surface 70b, the reflected light beam (back surface reflected light) from the back surface 70b is not likely to be measurement noise.

測光装置50の概略構成は、光源1、照明レンズ2、ピンホール絞り3、コリメータレンズ4、ハーフミラー5、対物レンズ6(第1の集光光学系、第2の集光光学系)、保持台19、結像レンズ8(第2の集光光学系)、観察光学系14(観察部)、分光器10(測光部)、表示モニタ15、測定制御部16、および操作部17を備える。
このうち、保持台19、対物レンズ6、ハーフミラー5、結像レンズ8、観察光学系14、および分光器10は、分光器10の入射光軸で規定される測光装置50の測定基準軸O上に、この順に配置されている。
The schematic configuration of the photometric device 50 includes a light source 1, an illumination lens 2, a pinhole diaphragm 3, a collimator lens 4, a half mirror 5, an objective lens 6 (first condensing optical system and second condensing optical system), and holding A table 19, an imaging lens 8 (second condensing optical system), an observation optical system 14 (observation unit), a spectroscope 10 (photometry unit), a display monitor 15, a measurement control unit 16, and an operation unit 17 are provided.
Among these, the holding table 19, the objective lens 6, the half mirror 5, the imaging lens 8, the observation optical system 14, and the spectroscope 10 are the measurement reference axis O of the photometric device 50 defined by the incident optical axis of the spectroscope 10. Above, they are arranged in this order.

光源1は、被測定面7a(基準測定面70a)を照明するための測定光束Lを発生するもので、例えばハロゲンランプや重水素ランプなどを採用することができる。また、測定目的によっては、発光ダイオードなどの発光素子からなる光源を採用することも可能である。
照明レンズ2は、光源1で発生された測定光束Lによってピンホール絞り3を照明する光学素子である。
ピンホール絞り3は、照明レンズ2によって照明された測定光束Lの通過範囲をピンホール3aの内側の範囲に制限する絞り部材である。
Light source 1 is for generating a measuring beam L 0 for illuminating a surface to be measured 7a (reference measuring surface 70a), it is possible for example to adopt a halogen lamp or a deuterium lamp. Further, depending on the purpose of measurement, it is possible to employ a light source composed of a light emitting element such as a light emitting diode.
The illumination lens 2 is an optical element that illuminates the pinhole diaphragm 3 with the measurement light beam L 0 generated by the light source 1.
Aperture pinhole 3 is a diaphragm member to limit the passing range of the measurement light beam L 0, which is illuminated by the illumination lens 2 in a range inside of the pinhole 3a.

コリメータレンズ4は、ピンホール絞り3から出射した測定光束Lを平行光束とするために、焦点位置をピンホール絞り3に一致するように配置されたレンズまたはレンズ群である。 Collimator lens 4, to a parallel beam of measurement beam L 0 emitted from the pinhole diaphragm 3, which is arranged lens or lens group to match the focal position pinhole diaphragm 3.

光束整形部20は、平行光束化された測定光束Lを、測定光束Lに整形するものである。測定光束Lは、図2(c)に示すように、その光軸Oに直交する断面において、輪帯状パターンの周方向の一部に輪帯欠損部D(図2(c)参照)を有する平行光束である。
光束整形部20は、図示略の支持部材に支持され、図1に示すように、コリメータレンズ4を透過した測定光束Lの光路上に配置されている。
光束整形部20は、図2(a)、(b)に示すように、輪帯開口絞り21、遮光部材22、回転支軸23、移動操作部24(遮光位置変更部、遮光部材移動部)、および位置保持部材25を備える。
Beam shaping unit 20 is for shaping the measuring beam L 0, which is collimated, the measuring beam L 1. Measuring beam L 1, as shown in FIG. 2 (c), in a cross section perpendicular to the optical axis O 0, zonal defects D on a part of circumferential direction of the annular pattern (see FIG. 2 (c)) Is a parallel light flux having
The light beam shaping unit 20 is supported by a support member (not shown), and is disposed on the optical path of the measurement light beam L 0 that has passed through the collimator lens 4 as shown in FIG.
As shown in FIGS. 2A and 2B, the light beam shaping unit 20 includes an annular aperture stop 21, a light shielding member 22, a rotation support shaft 23, a movement operation unit 24 (light shielding position changing unit, light shielding member moving unit). And a position holding member 25.

輪帯開口絞り21は、点P21(図2(a)参照)を中心とする輪帯状の開口部21a(輪帯状の開口)を有する板状の絞り部材であり、図1に示すように、光軸Oに直交し、光軸Oが点P21を通る位置に配置されている。以下、点P21を、輪帯中心点P21と称する。
開口部21aは、完全な輪帯形状、または擬似的な輪帯状に形成することができる。
擬似的な輪帯状とは、輪帯形状が周方向に途切れているため、厳密には輪帯とは言えないものの、全体としては略輪帯状をなしている形状を意味する。例えば、開口部21aの内周部と外周部とを接続するための線状部が一部に形成され、この線状部を除く1以上の開口が全体として略輪帯状をなして配列された形状の例などを挙げることができる。
輪帯開口絞り21は、例えば、開口部21aの形状が打ち抜かれた金属板や、開口部21aを除く領域に遮光層が成膜されたガラス板などによって構成することができる。
The annular aperture stop 21 is a plate-like aperture member having an annular aperture 21a (annular aperture) centered at a point P 21 (see FIG. 2A), as shown in FIG. , perpendicular to the optical axis O 0, the optical axis O 0 is disposed at a position passing through the point P 21. Hereinafter, the point P 21, referred to as annular central point P 21.
The opening 21a can be formed in a complete annular shape or a pseudo annular shape.
The quasi-annular shape means a shape having a substantially annular shape as a whole, although the annular shape is discontinuous in the circumferential direction. For example, a linear portion for connecting the inner peripheral portion and the outer peripheral portion of the opening 21a is formed in a part, and one or more openings excluding the linear portion are arranged in a substantially annular shape as a whole. Examples of the shape can be given.
The annular aperture stop 21 can be constituted by, for example, a metal plate in which the shape of the opening 21a is punched or a glass plate in which a light shielding layer is formed in a region excluding the opening 21a.

遮光部材22は、輪帯開口絞り21の開口部21aを径方向に横断して、開口部21aの一部を遮光することにより、測定光束Lの輪帯欠損部Dを形成する部材であり、一方向に細長い帯状の板部材からなる。
遮光部材22の長手方向の一端部には、後述する回転支軸23と回転可能に連結する軸受部22aが形成されている。
遮光部材22の長手方向の長さは、長手方向の一端部を輪帯中心点P21に配置したときに、長手方向の他端部が開口部21aを横断できる長さになっている。
遮光部材22の短手方向の幅は、輪帯欠損部Dとして必要な周方向の大きさに応じて適宜設定する。例えば、開口部21aの周方向の1/6〜1/3程度の大きさとすることが可能である。
遮光部材22の材質は、例えば、金属板や光透過性を有しない合成樹脂などを採用することができる。
Light blocking member 22, across the opening 21a of the annular aperture stop 21 in the radial direction, by shielding a part of the opening 21a, be a member forming the annular defect D of the measuring beam L 1 , Consisting of a strip-like plate member elongated in one direction.
At one end portion in the longitudinal direction of the light shielding member 22, a bearing portion 22 a that is rotatably connected to a rotation support shaft 23 described later is formed.
Longitudinal length of the light shielding member 22, when placing the end portion in the longitudinal direction in the zonal center point P 21, the other end portion in the longitudinal direction is a length which can cross the opening 21a.
The width of the light blocking member 22 in the short direction is appropriately set according to the size in the circumferential direction required for the annular zone missing portion D. For example, it is possible to make the size about 1/6 to 1/3 of the circumferential direction of the opening 21a.
As the material of the light shielding member 22, for example, a metal plate or a synthetic resin having no light transmittance can be employed.

回転支軸23は、遮光部材22の軸受部22aに回転可能に連結する軸部材であり、輪帯開口絞り21の輪帯中心点P21上に立設されている。
移動操作部24は、遮光部材22の回転移動を操作するため、遮光部材22の長手方向において軸受部23と反対側の端部に、長手方向に沿って固定された棒状部材である。
移動操作部24は、測光装置50の外部から操作者が操作可能な位置に、延出方向の先端部が露出されている。
The rotation support shaft 23 is a shaft member that is rotatably connected to the bearing portion 22 a of the light shielding member 22, and is erected on the annular zone center point P 21 of the annular zone aperture stop 21.
The movement operation unit 24 is a rod-like member fixed along the longitudinal direction at an end opposite to the bearing unit 23 in the longitudinal direction of the light shielding member 22 in order to manipulate the rotational movement of the light shielding member 22.
The moving operation unit 24 has a leading end in the extending direction exposed at a position where the operator can operate from the outside of the photometric device 50.

位置保持部材25は、移動操作部24の長手方向の中間部を回転の軸方向から挟持して、移動操作部24を回転移動可能、かつ回転停止時の位置の保持が可能となるように係止する部材である。
位置保持部材25の構成としては、例えば、回転移動に抗する摩擦力を発生させる弾性部材や、一定の操作力によって乗り越え可能な微細な波形の凹凸を有する弾性部材などを採用することができる。
なお、位置保持部材25を用いなくても、例えば、移動操作部24および遮光部材22の自重等により、測光中に遮光部材22が移動しない構成になっている場合には、位置保持部材25を省略した構成とすることも可能である。
The position holding member 25 is engaged so that the intermediate portion in the longitudinal direction of the moving operation unit 24 is sandwiched from the axial direction of rotation so that the moving operation unit 24 can be rotated and the position can be held when the rotation is stopped. It is a member to stop.
As the configuration of the position holding member 25, for example, an elastic member that generates a frictional force that resists rotational movement, an elastic member that has fine corrugations that can be overcome by a constant operating force, and the like can be employed.
Even if the position holding member 25 is not used, for example, when the light shielding member 22 is not moved during photometry due to the weight of the moving operation unit 24 and the light shielding member 22, the position holding member 25 is used. An omitted configuration is also possible.

ハーフミラー5は、図1に示すように、光束整形部20を透過した測定光束Lの一部を対物レンズ6側に反射して、対物レンズ6に導く光路分割手段である。 As shown in FIG. 1, the half mirror 5 is an optical path dividing unit that reflects a part of the measurement light beam L 1 transmitted through the light beam shaping unit 20 toward the objective lens 6 and guides it to the objective lens 6.

対物レンズ6は、ハーフミラー5で反射された測定光束Lを、下方に配置された被測定試料7(基準被測定試料70)の被測定面7a(基準測定面70a)上に測定光束Lとして集光するとともに、被測定面7a(基準測定面70a)で反射された測定光束Lを集光するためのレンズまたはレンズ群である。
対物レンズ6のレンズ光軸は測定基準軸Oに整列されている。
このため、対物レンズ6は、測定光束Lを被測定面7a(基準測定面70a)上に集光する第1の集光光学系を構成している。
The objective lens 6, the measuring beam L 1 reflected by the half mirror 5, the measuring light beam L on the surface to be measured 7a (reference measuring surface 70a) of the measured sample 7 is disposed below (reference sample to be measured 70) as well as condensed as 2, a lens or a lens group for focusing the measuring beam L 3 reflected by the measurement surface 7a (the reference measuring surface 70a).
The lens optical axis of the objective lens 6 is aligned with the measurement reference axis O.
Therefore, the objective lens 6 constitute the first condensing optical system for condensing the measuring beam L 1 on the measured surface 7a (the reference measuring surface 70a).

保持台19は、被測定試料7(基準被測定試料70)を、その被測定面7a(基準測定面70a)が測定基準軸Oに対して垂直、かつ対物レンズ6の焦点位置に一致するように保持するものである。
本実施形態では、保持台19の構成は、被測定試料7(基準被測定試料70)を保持する保持部19aと、保持部19aの測定基準軸Oに対する傾斜角を調整する傾斜ステージ19bと、傾斜ステージ19bを測定基準軸Oに直交する方向および測定基準軸Oに沿う方向に移動するXYZ移動ステージ19cとを備える。
このため、保持台19の保持部19aに保持された被測定面7a(基準測定面70a)は、傾斜ステージ19bおよびXYZ移動ステージ19cによって姿勢および位置を調整することで、測定基準軸Oに対して垂直、かつ対物レンズ6の焦点位置に一致するように保持される。このような配置によれば、光源1で発生した測定光束Lによるピンホール3aの像がスポット状に投影されるようになっている。
なお、保持台19は、被測定試料7(基準被測定試料70)を配置するだけで、被測定面7a(基準測定面70a)が測定基準軸Oに対して垂直、かつ対物レンズ6の焦点位置に一致するように保持できれば、傾斜ステージ19bおよびXYZ移動ステージ19cの少なくともいずれかを削除してもよい。
The holding table 19 is configured so that the measured sample 7 (reference measured sample 70) has a measured surface 7a (reference measured surface 70a) perpendicular to the measurement reference axis O and coincides with the focal position of the objective lens 6. It is something to hold.
In the present embodiment, the structure of the holding table 19 includes a holding unit 19a that holds the sample 7 to be measured (reference measured sample 70), an inclination stage 19b that adjusts an inclination angle of the holding unit 19a with respect to the measurement reference axis O, An XYZ moving stage 19c that moves the tilt stage 19b in a direction orthogonal to the measurement reference axis O and a direction along the measurement reference axis O is provided.
For this reason, the measurement surface 7a (reference measurement surface 70a) held by the holding portion 19a of the holding table 19 is adjusted with respect to the measurement reference axis O by adjusting the posture and position by the tilt stage 19b and the XYZ moving stage 19c. And is held so as to coincide with the focal position of the objective lens 6. According to this arrangement, the image of the pinhole 3a is adapted to be projected into a spot shape by the measurement light beam L 0 generated by the light source 1.
Note that the holding table 19 is simply arranged with the sample to be measured 7 (reference measurement sample 70), the measurement surface 7a (reference measurement surface 70a) is perpendicular to the measurement reference axis O, and the focus of the objective lens 6 is reached. As long as it can hold | maintain so that it may correspond to a position, you may delete at least any one of the inclination stage 19b and the XYZ movement stage 19c.

結像レンズ8は、対物レンズ6によって集光され、ハーフミラー5を透過した測定光束Lを集光して測定光束Lとして、後述する分光器10の入射開口絞り10aの開口部10bに結像させるものである。
このため、対物レンズ6および結像レンズ8で構成される結像光学系9は、被測定面7a(基準測定面70a)と、入射開口絞り10aが配置された像面Iとを、光学的に共役な位置関係としている。
また、結像光学系9は、測定光束Lのうち、被測定試料7(基準被測定試料70)によって反射された反射光束を集光する第2の集光光学系を構成している。
Imaging lens 8 is converged by the objective lens 6, the measuring beam L 4 passing through the half mirror 5 as a measuring beam L 5 is condensed, the opening 10b of the incident aperture stop 10a of the spectrometer 10 to be described later The image is formed.
For this reason, the image forming optical system 9 including the objective lens 6 and the image forming lens 8 optically converts the measured surface 7a (reference measurement surface 70a) and the image surface I 0 on which the entrance aperture stop 10a is disposed. The positional relationship is conjugate.
Further, the image-forming optical system 9, of the measuring beam L 1, constitute a second condensing optical system for condensing the reflected light beam reflected by the sample to be measured 7 (reference sample to be measured 70).

観察光学系14は、結像光学系9により被測定面7a(基準測定面70a)と光学的に共役とされた像面Iの像を観察するものである。本実施形態では、観察光学系14は、結像レンズ8によって集光される光を測定基準軸Oの側方に測定光束Lとして分岐させる光路分岐部材14aと、光路分岐部材14aで分岐された測定光束Lによる像を観察する接眼レンズ14bとを備える。
このため、光路分岐部材14aと接眼レンズ14bとの間の光路上には、入射開口絞り10aが配置された像面Iと等価な像面Iが形成される。
また、図示は省略するが、本実施形態では、観察光学系14の光路内に、像面Iにおいて、像面Iにおける開口部10bの開口範囲を参照するための参照線(レティクル)を表示する照準部材が設けられている。本実施形態では、開口部10bの開口形状に一致する円状等の参照線を採用している。ただし、参照線は、開口部10bの中心からの距離や方向が参照可能なパターンを有していてもよい。例えば、一定角度をおいて放射線状に設けられた参照線や、放射線状のパターンと同心円状のパターンとを組み合わせた参照線や、方眼状の参照線などを採用することも可能である。
なお、観察光学系14では、接眼レンズ14bに代えて撮像カメラを配置し、撮像カメラで撮像した画像をモニタに表示して観察できるようにしてもよい。この場合には、参照線は、画像データとして生成して、撮像した画像と重ね合わせて表示することが可能であるため、観察光学系14中の照準部材は省略することも可能である。
The observation optical system 14 is for observing an image of the image plane I 1 optically conjugate with the measurement surface 7 a (reference measurement surface 70 a) by the imaging optical system 9. In the present embodiment, the observation optical system 14, an optical path branching member 14a for branching the measurement light beam L 6 the light condensed on the side of the measurement reference axis O by the imaging lens 8, is branched by the optical path branching member 14a It was provided with an eyepiece lens 14b to observe the image formed by the measurement light beam L 6.
For this reason, an image plane I 1 equivalent to the image plane I 0 on which the entrance aperture stop 10a is arranged is formed on the optical path between the optical path branching member 14a and the eyepiece lens 14b.
Although not shown, in the present embodiment, the optical path of the observation optical system 14, the image plane I 1, reference line for referring to the opening range of the opening portion 10b on the image plane I 0 (the reticle) An aiming member for display is provided. In the present embodiment, a circular reference line or the like that matches the opening shape of the opening 10b is employed. However, the reference line may have a pattern in which the distance and direction from the center of the opening 10b can be referred to. For example, it is possible to adopt a reference line provided radially at a certain angle, a reference line combining a radial pattern and a concentric pattern, a grid-like reference line, or the like.
In the observation optical system 14, an imaging camera may be arranged in place of the eyepiece 14b, and an image captured by the imaging camera may be displayed on a monitor so that it can be observed. In this case, since the reference line can be generated as image data and displayed superimposed on the captured image, the aiming member in the observation optical system 14 can be omitted.

分光器10は、回折格子11と、一次元撮像素子12と、制御回路13とを備え、入射開口絞り10aから入射された測定光束Lを回折格子11によって波長ごとに分解して、一次元撮像素子12の異なる受光素子上に結像し、一次元撮像素子12の各受光素子の受光量に応じた出力信号を、測定制御部16に出力する測光部である。
入射開口絞り10aは、結像光学系9によって結像された測定光束を分光器10内に導くため、分光器10の外周部において、結像光学系9の像面Iに配置された板状部材である。入射開口絞り10aは、入射開口絞り10aには、微小なピンホールからなる開口部10bが貫通して設けられている。開口部10bの内径は、結像光学系9による結像スポットよりもわずかに大きい適宜径に設定されている。
入射開口絞り10aは、結像光学系9を挟んで、被測定面7aと光学的に共役な位置関係に配置された開口絞りを構成している。
Spectrometer 10 includes a diffraction grating 11, the one-dimensional image sensor 12, and a control circuit 13, is decomposed into each wavelength the measurement light beam L 5 incident from the incident aperture stop 10a by the diffraction grating 11, a one-dimensional This is a photometry unit that forms an image on different light receiving elements of the image sensor 12 and outputs an output signal corresponding to the amount of light received by each light receiving element of the one-dimensional image sensor 12 to the measurement control unit 16.
Incident aperture stop 10a is, for guiding the measuring light beam is imaged by the imaging optical system 9 to the spectrometer 10, at the outer periphery of the spectroscope 10, arranged on the image plane I 0 of the image-forming optical system 9 plate It is a shaped member. The incident aperture stop 10a is provided with an aperture 10b formed of a small pinhole passing through the incident aperture stop 10a. The inner diameter of the opening 10b is set to an appropriate diameter that is slightly larger than the imaging spot formed by the imaging optical system 9.
The entrance aperture stop 10a constitutes an aperture stop disposed in an optically conjugate positional relationship with the measured surface 7a with the imaging optical system 9 interposed therebetween.

一次元撮像素子12は、例えば、線状に配置されたフォトダイオードからなる複数の受光素子と、各受光素子の蓄積電荷を順次読み出してビデオ信号として取り出すシフトレジスタ等の読み出し手段とを備えている。
制御回路13は、一次元撮像素子12に駆動クロックおよびスタートパルス信号を供給し、各受光素子の蓄積電荷をビデオ信号として読み出す制御回路であり、一次元撮像素子12と測定制御部16とに電気的に接続されている。
制御回路13は、ビデオ信号をA/D変換してデジタル化された出力信号を測定制御部16に送出する構成としてもよいし、ビデオ信号を測定制御部16に送出し、A/D変換は、測定制御部16で行う構成としてもよい。以下では、一例として、制御回路13からの出力信号はデジタル化されているものとして説明する。
The one-dimensional imaging device 12 includes, for example, a plurality of light receiving elements formed of photodiodes arranged in a line, and a reading unit such as a shift register that sequentially reads out the accumulated charges of each light receiving element and extracts them as video signals. .
The control circuit 13 is a control circuit that supplies a drive clock and a start pulse signal to the one-dimensional image sensor 12 and reads out the accumulated charge of each light receiving element as a video signal. The control circuit 13 is electrically connected to the one-dimensional image sensor 12 and the measurement control unit 16. Connected.
The control circuit 13 may be configured to A / D convert the video signal and send the digitized output signal to the measurement control unit 16, or send the video signal to the measurement control unit 16. Alternatively, the measurement control unit 16 may perform the configuration. In the following description, as an example, the output signal from the control circuit 13 is assumed to be digitized.

測定制御部16は、測光装置50の全体制御を行うものであり、分光器10と電気的に接続され、例えば、分光器10から送出された出力信号に演算処理を施して相対分光反射率を算出したり、制御回路13に蓄積時間を設定したり、分光器10の受光動作を制御したりすることができる。
測定制御部16には、測定制御部16に送出された出力信号や相対分光反射率の情報をグラフや数値情報として表示する表示モニタ15と、測定制御部16に操作入力を行うため、例えばキーボード、マウス、操作ボタンなどからなる操作部17とが接続されている。
The measurement control unit 16 performs overall control of the photometric device 50 and is electrically connected to the spectroscope 10. For example, the measurement control unit 16 performs arithmetic processing on the output signal sent from the spectroscope 10 to obtain the relative spectral reflectance. It is possible to calculate, set an accumulation time in the control circuit 13, and control the light receiving operation of the spectrometer 10.
The measurement control unit 16 includes a display monitor 15 that displays information on output signals and relative spectral reflectances sent to the measurement control unit 16 as graphs and numerical information, and an operation input to the measurement control unit 16. Are connected to an operation unit 17 including a mouse, operation buttons, and the like.

測定制御部16の装置構成は、CPU、メモリ、入出力インターフェース、外部記憶装置などからなるコンピュータからなり、これにより測光装置50の動作制御に必要な制御機能、演算機能に実現する制御プログラム、演算プログラムが実行されるようになっている。   The apparatus configuration of the measurement control unit 16 includes a computer including a CPU, a memory, an input / output interface, an external storage device, and the like. The program is to be executed.

次に、本実施形態の測光装置50の動作について説明する。
図3(a)、(b)は、被測定試料が被測定面と裏面とが平行な場合であって、光束整形部を有しない場合の模式的な光路図、および像面の様子の一例を示す模式図である。図4(a)、(b)は、被測定面と裏面とが非平行な場合であって、光束整形部を有しない場合の模式的な光路図、および像面の様子の一例を示す模式図である。図5(a)は、本発明の第1の実施形態の測光装置における光束整形部および遮光位置変更部の動作を示す正面図である。図5(b)、(c)は、被測定面と裏面とが平行な場合の像面の様子の一例を示す模式図、および被測定面と裏面とが非平行な場合の像面の様子の一例を示す模式図である。図6(a)、(b)は、本発明の第1の実施形態の測光装置の遮光部材の移動前、移動後の観察部による観察像の例を示す模式図である。
Next, the operation of the photometric device 50 of this embodiment will be described.
FIGS. 3A and 3B are schematic optical path diagrams in the case where the sample to be measured is parallel to the measured surface and the back surface and no light beam shaping unit, and an example of the state of the image surface. It is a schematic diagram which shows. 4A and 4B are schematic optical path diagrams in the case where the surface to be measured and the back surface are non-parallel and do not have the light beam shaping unit, and a schematic diagram illustrating an example of the state of the image plane. FIG. FIG. 5A is a front view showing operations of the light beam shaping unit and the light shielding position changing unit in the photometric device according to the first embodiment of the present invention. FIGS. 5B and 5C are schematic views showing an example of the state of the image surface when the measured surface and the back surface are parallel, and the state of the image surface when the measured surface and the back surface are non-parallel. It is a schematic diagram which shows an example. FIGS. 6A and 6B are schematic diagrams illustrating examples of images observed by the observation unit before and after the movement of the light shielding member of the photometric device according to the first embodiment of the present invention.

測光装置50によって、被測定試料7の相対分光反射率の測定を行うには、基準被測定試料70および被測定試料7の分光反射率データR(λ)、R(λ)を測定して、予め測定制御部16に記憶された基準被測定試料70の基準測定面70aにおける相対分光反射率データRtheory(λ)を用いて、次式(1)から、被測定面7aの相対分光反射率データRresult(λ)を算出する。ここで、λは波長を表し、例えば、380nm〜800nmなど、測定目的に応じた範囲を有する。 In order to measure the relative spectral reflectance of the sample 7 to be measured by the photometric device 50, spectral reflectance data R a (λ), R b (λ) of the reference sample 70 and the sample 7 to be measured are measured. Then, using the relative spectral reflectance data R theory (λ) on the reference measurement surface 70a of the reference measurement sample 70 stored in advance in the measurement control unit 16, the relative spectrum of the measurement surface 7a can be calculated from the following equation (1). The reflectance data R result (λ) is calculated. Here, λ represents a wavelength, and has a range according to the measurement purpose, such as 380 nm to 800 nm.

Figure 2014092366
Figure 2014092366

基準被測定試料70および被測定試料7の分光反射率測定は、いずれも略同様にして行うことができ、本実施形態では、それぞれの測定はどちらを先に行ってもよい。以下では、まず、被測定試料7の分光反射率測定を例にとって測定動作を説明し、次に、基準被測定試料70の測定について、被測定試料7の測定と異なる点を中心に説明する。   The spectral reflectance measurement of the reference sample 70 and the sample 7 can be performed in substantially the same manner. In the present embodiment, either measurement may be performed first. In the following, the measurement operation will be described first by taking the spectral reflectance measurement of the sample 7 to be measured as an example, and then the measurement of the reference sample 70 will be described focusing on the points different from the measurement of the sample 7 to be measured.

まず測定者は、図1に示すように、被測定面7aが対物レンズ6に対向するように、被測定試料7を保持台19上に保持させる。被測定面7aの位置、姿勢が調整されていない場合には、光源1を点灯し、観察光学系14を通して被測定面7a上のスポット像を観察し、保持台19のXYZ移動ステージ19cや傾斜ステージ19bを用いて位置調整を行い、被測定面7aを対物レンズ6の焦点位置に合わせるとともに測定基準軸Oに直交する姿勢に配置する。   First, as shown in FIG. 1, the measurer holds the measured sample 7 on the holding table 19 so that the measured surface 7 a faces the objective lens 6. When the position and orientation of the surface to be measured 7a are not adjusted, the light source 1 is turned on, the spot image on the surface to be measured 7a is observed through the observation optical system 14, and the XYZ moving stage 19c of the holding table 19 is tilted. Position adjustment is performed using the stage 19b, and the measured surface 7a is aligned with the focal position of the objective lens 6 and arranged in a posture orthogonal to the measurement reference axis O.

次に測定者は、操作部17から、分光強度の測定を開始する操作入力を行う。これにより、測定制御部16は、制御回路13に制御信号等を出力して、分光器10の受光動作を開始させる。   Next, the measurer performs an operation input for starting the measurement of the spectral intensity from the operation unit 17. As a result, the measurement control unit 16 outputs a control signal or the like to the control circuit 13 to start the light receiving operation of the spectrometer 10.

ここで、測光装置50における光路について説明する。
図1に示すように、光源1から出射された測定光束Lは、照明レンズ2によって集光され、これによりピンホール絞り3が照明される。ピンホール絞り3のピンホール3aは、コリメータレンズ4の焦点位置に配置されているため、ピンホール3aを透過した測定光束Lはコリメータレンズ4に入射して平行光束として出射され、光束整形部20に入射する。
Here, the optical path in the photometric device 50 will be described.
As shown in FIG. 1, the measurement light beam L 0 emitted from the light source 1 is collected by the illumination lens 2, thereby illuminating the pinhole diaphragm 3. Pinhole 3a of the pinhole diaphragm 3, since it is arranged at the focal position of the collimator lens 4, the measurement light beam transmitted through the pinhole 3a L 0 is emitted as parallel light beam incident on the collimator lens 4, a beam shaping unit 20 is incident.

光束整形部20に入射した測定光束Lは、図2(c)に示すように、輪帯欠損部Dを有する断面C字状の平行光束である測定光束Lに整形されて、ハーフミラー5に到達する。ここで、光軸O回りの輪帯欠損部Dの位置は、開口部21a上の遮光部材22の位置に対応しており、後述するように、遮光部材22を回転移動すると、その回転位置に応じて変化する。 Measuring beam incident on the beam shaping unit 20 L 0, as shown in FIG. 2 (c), is shaped into a measuring beam L 1 is a parallel beam C-shaped cross section having annular defect D, a half mirror Reach 5 Here, the position of the annular zone missing portion D around the optical axis O 0 corresponds to the position of the light shielding member 22 on the opening 21a, and when the light shielding member 22 is rotationally moved, as will be described later, the rotational position thereof. It changes according to.

ハーフミラー5では、図1に示すように、測定光束Lの一部が対物レンズ6側に反射され、測定基準軸Oに沿って進む軸上光束として対物レンズ6に入射し、対物レンズ6の焦点位置に向けて集光され、測定光束Lとして被測定面7aに到達する。
対物レンズ6の焦点面には、コリメータレンズ4および対物レンズ6からなる照明光学系の光学倍率に応じたピンホール3aの像が投影される。
In the half mirror 5, as shown in FIG. 1, a part of the measurement light beam L 1 is reflected to the objective lens 6 side and enters the objective lens 6 as an axial light beam that travels along the measurement reference axis O. It is condensed toward the focal point, and reaches the measurement surface 7a as measuring beam L 2.
An image of the pinhole 3 a corresponding to the optical magnification of the illumination optical system including the collimator lens 4 and the objective lens 6 is projected onto the focal plane of the objective lens 6.

被測定面7aでは、測定光束Lの一部が反射され、測定光束Lとして対物レンズ6に入射して集光され、平行光束である測定光束Lとしてハーフミラー5に入射する。
ハーフミラー5では、測定光束Lの一部が透過して、結像レンズ8に入射し、結像レンズ8によって集光されて、観察光学系14の光路分岐部材14aに到達する。
In the measurement surface 7a, a portion of the reflected measuring beam L 2, is condensed and enters the objective lens 6 as a measuring beam L 3, incident on the half mirror 5 as a measuring beam L 4 is a parallel light beam.
In the half mirror 5, a part of the measurement light beam L 4 is transmitted, enters the imaging lens 8, is collected by the imaging lens 8, and reaches the optical path branching member 14 a of the observation optical system 14.

光路分岐部材14aでは、測定光束Lの光路が、光路分岐部材14aを透過して測定基準軸O上を直進する測定光束Lと、光路分岐部材14aによって測定基準軸Oの側方に導かれる測定光束Lとに分岐される。
測定光束Lは、分光器10の開口部10bに入射し、回折格子11によって波長に応じて回折されて、一次元撮像素子12上の異なる位置に結像され、一次元撮像素子12の受光素子によって受光される。これにより、一次元撮像素子12の各受光素子の電荷量に対応するビデオ信号が制御回路13に送出され、各受光素子の受光量に対応する出力信号に変換される。この出力信号は、測定制御部16からの制御信号に応じて、測定制御部16に送出される。
一方、測定光束Lは、接眼レンズ14bに入射し、被測定面7a上の像が観察可能となる。これにより、例えば、この像を観察して上記のような被測定面7aの位置および姿勢の調整を行うことができる。
In the optical path branching member 14a, the optical path of the measurement beam L 4 is the measuring light beam L 5 for straight on measurement reference axis O passes through the optical path splitting member 14a, guide on the side of the measurement reference axis O by the optical path branching member 14a It is branched into measurement light beams L 6 withering.
Measuring beam L 5 represents, enters the opening 10b of the spectrometer 10, it is diffracted according to the wavelength by the diffraction grating 11 is focused at different positions on the one-dimensional image sensor 12, light receiving of a one-dimensional image sensor 12 Light is received by the element. As a result, a video signal corresponding to the charge amount of each light receiving element of the one-dimensional imaging element 12 is sent to the control circuit 13 and converted into an output signal corresponding to the amount of light received by each light receiving element. This output signal is sent to the measurement control unit 16 in accordance with a control signal from the measurement control unit 16.
On the other hand, the measurement light beam L 6 enters the ocular lens 14b, an image on the surface to be measured 7a is observable. Thereby, for example, the position and posture of the measurement target surface 7a can be adjusted by observing this image.

以上、被測定面7aから反射された測定光束Lの光路について説明したが、結像光学系9によって集光される光束には裏面7bでの反射光束も含まれる。この反射光束の光路について、遮光部材22を削除した構成における光路を記載した図3(a)、図4(a)を参照して説明する。このため、図3(a)、図4(a)では、各測定光束の断面形状は、結像位置を除いて輪帯状である。
なお、図3(a)は、被測定面7aと裏面7bとが平行な場合、図4(a)は、被測定面7aと裏面7b’とが非平行な場合である。裏面7b、7b’は、平面とは限らないが、簡単のため、平面であるとして説明する。
Having described the optical path of the measuring beam L 3 reflected from the measured surface 7a, the light beam is condensed by the imaging optical system 9 also includes reflected light beam at the rear surface 7b. The optical path of this reflected light beam will be described with reference to FIGS. 3A and 4A illustrating the optical path in the configuration in which the light shielding member 22 is omitted. For this reason, in FIGS. 3A and 4A, the cross-sectional shape of each measurement light beam is an annular shape except for the imaging position.
3A shows a case where the measured surface 7a and the back surface 7b are parallel, and FIG. 4A shows a case where the measured surface 7a and the back surface 7b ′ are non-parallel. The back surfaces 7b and 7b ′ are not necessarily flat surfaces, but are described as being flat surfaces for simplicity.

図3(a)に示す例では、測定光束Lのうち被測定面7aを透過した測定光束L12は輪帯状に広がって、被測定試料7の媒質内を進み、裏面7bで反射されて、測定光束L13として被測定面7aから出射され、対物レンズ6に入射する。
このとき、測定光束L13は、測定光束Lの結像位置である点Pを裏面7bで折り返した点Pからの拡散光束になっている。なお、点Pは、測定基準軸O上にあって点Pよりも物体側に位置している。
このため、測定光束L13は、測定光束L14、L15として示すように、対物レンズ6、結像レンズ8によって集光され、結像光学系9の倍率に応じて、測定光束Lの結像位置である点Qよりも物体側の点Qで像を結んでから、拡散光束として入射開口絞り10aに到達する。
このため、入射開口絞り10aを像側から見ると、図3(b)に示すように、測定光束Lは、ピンホール状の開口部10bを透過するものの、測定光束L15は、測定光束Lの同心円状に広がる輪帯光束として開口部10bの外周側に照射される。これにより、測定光束L15は入射開口絞り10aによって遮光される。
In the example shown in FIG. 3 (a), the measuring light beam L 12 passing through the measurement surface 7a of the measuring beam L 2 is spread annular proceeds to the medium of the sample 7, it is reflected by the rear surface 7b as the measurement light beam L 13 emitted from the measured surface 7a, it enters the objective lens 6.
At this time, the measuring light beam L 13 is a measuring beam L 2 of P a point is the imaging position becomes diffused light beam from the folding point P b at the rear surface 7b. Incidentally, the point P b is positioned on the object side of the point P a to be on the measurement reference axis O.
For this reason, the measurement light beam L 13 is collected by the objective lens 6 and the imaging lens 8 as shown as measurement light beams L 14 and L 15 , and the measurement light beam L 5 depends on the magnification of the imaging optical system 9. from signed image in terms of the object side than the point that an imaging position Q a Q b, reaches the incident aperture stop 10a as diffused light beams.
Thus, looking at the incident aperture stop 10a from the image side, as shown in FIG. 3 (b), the measuring light beam L 5 represents, but passes through the pinhole-like opening 10b, the measuring light beam L 15 is the measuring light beam It is applied to the outer peripheral side of the opening 10b as annular beams spreading in concentric L 5. Thus, the measuring light beam L 15 is blocked by the incident aperture stop 10a.

これに対し、図4(a)に示す例では、測定光束L12は、被測定面7aに対して傾斜した裏面7b’によって、測定基準軸Oに交差する方向に反射される。この反射光束は測定光束L13’として被測定面7aから出射され、対物レンズ6に入射する。
測定光束L13’は、点Pよりも物体側に位置する軸外の点P’から、対物レンズ6に斜め入射する拡散光束になっている。
このため、測定光束L13’は、測定光束L14’、L15’として示すように、対物レンズ6、結像レンズ8によって集光され、結像光学系9の倍率に応じて、測定光束Lの結像位置である点Qよりも物体側かつ測定基準軸Oに関して点P’と反対側に位置する点Q’で像を結んでから、輪帯状に拡散して入射開口絞り10aに到達する。
このため、入射開口絞り10aを像側から見ると、図4(b)に示すように、測定光束L15’は、測定基準軸Oに対して偏心した輪帯光束として入射開口絞り10a上に照射される。この結果、偏心の程度によっては、測定光束L15’の一部である入射光束Fとして、開口部10b内を透過してしまう。入射光束Fは、分光器10内の回折格子11で回折されて一次元撮像素子12に到達するおそれがあり、一次元撮像素子12で受光されると測定誤差をもたらす。
In contrast, in the example shown in FIG. 4 (a), the measuring light beam L 12 is the back surface 7b 'which is inclined with respect to the measurement surface 7a, is reflected in a direction crossing the measurement reference axis O. This reflected light beam is emitted from the measurement surface 7a as a measurement light beam L 13 ′ and enters the objective lens 6.
Measurement beam L 13 'is, P b point outside axis positioned on the object side than the point P a' from, and is diffused light flux obliquely enters the objective lens 6.
Therefore, the measurement light beam L 13 ′ is condensed by the objective lens 6 and the imaging lens 8 as shown as measurement light beams L 14 ′ and L 15 ′, and is measured according to the magnification of the imaging optical system 9. from signed image with than Q a point is the imaging position of the L 5 'Q b a point located on the opposite side of the' point P b with respect to the object side and the measurement reference axis O, entrance aperture to diffuse into zonal The diaphragm 10a is reached.
For this reason, when the entrance aperture stop 10a is viewed from the image side, as shown in FIG. 4B, the measurement light beam L 15 ′ is formed on the entrance aperture stop 10a as an annular beam decentered with respect to the measurement reference axis O. Irradiated. As a result, depending on the degree of eccentricity, the incident light beam F that is a part of the measurement light beam L 15 ′ is transmitted through the opening 10b. The incident light beam F may be diffracted by the diffraction grating 11 in the spectroscope 10 and reach the one-dimensional image sensor 12. When the incident light beam F is received by the one-dimensional image sensor 12, a measurement error is caused.

なお、以上の説明において、裏面7b、7b’が曲面の場合には、その反射面としての屈折力に応じて、結像位置がずれるのみである。   In the above description, when the back surfaces 7b and 7b 'are curved surfaces, only the imaging position is shifted according to the refractive power as the reflecting surface.

本実施形態では、遮光部材22によって遮光されることにより、測定光束Lの一部に輪帯欠損部Dが形成される。輪帯欠損部Dは、遮光部材22を回転移動することにより、測定光束Lの周方向に移動させることができる。例えば、図5(a)に示すように、遮光部材22を回転移動して、図3(a)、図4(a)において二点鎖線で示す位置に遮光部材22を移動するとする。
このとき、入射開口絞り10aには、開口部21aと遮光部材22とで形成される開口形状が、結像光学系9の倍率に応じて投影されるため、入射開口絞り10aを像側から見ると、図5(b)、(c)にそれぞれ破線で示す輪帯の一部を欠いたC字状の光像が投影される。参考のため、各図には、遮光部材22の対応位置を二点鎖線で描いている。
特に、図5(c)では、遮光部材22が、入射光束Fが形成される領域に遮光部材22による遮光部分が投影されるため、入射光束Fは消失する。
このため、測光装置50では、遮光部材22を回転移動することにより、裏面7b、7b’による裏面反射光である入射光束Fの一部または全部が、開口部10b内に入射することを防止できる。
In the present embodiment, the annular zone deficient portion D is formed in a part of the measurement light beam L 1 by being shielded by the light shielding member 22. The annular zone defect portion D can be moved in the circumferential direction of the measurement light beam L 1 by rotating the light shielding member 22. For example, as shown in FIG. 5A, it is assumed that the light shielding member 22 is rotated and moved to a position indicated by a two-dot chain line in FIGS. 3A and 4A.
At this time, since the aperture shape formed by the aperture 21a and the light shielding member 22 is projected onto the entrance aperture stop 10a according to the magnification of the imaging optical system 9, the entrance aperture stop 10a is viewed from the image side. Then, a C-shaped optical image lacking a part of the annular zone indicated by a broken line in FIGS. 5B and 5C is projected. For reference, the corresponding position of the light shielding member 22 is drawn with a two-dot chain line in each figure.
In particular, in FIG. 5C, since the light shielding member 22 projects a light shielding portion by the light shielding member 22 in a region where the incident light flux F is formed, the incident light flux F disappears.
For this reason, in the photometric device 50, by rotating the light shielding member 22, a part or all of the incident light flux F, which is the back surface reflected light by the back surfaces 7b and 7b ′, can be prevented from entering the opening 10b. .

具体的な測定動作としては、分光反射率測定に先だって、測定者が接眼レンズ14bを通して像面Iを観察し、必要に応じて遮光部材22の位置を変える。
例えば、図6(a)に示すように、接眼レンズ14bの視野内は、図示略の照準部材における円状の参照線14cとともに、測定光束L、L15’が分岐された測定光束L、L16’による光像S、S16’が観察される。光像S16’は、点O16’を中心とする輪帯の一部に、輪帯欠損部Dに対応して輪帯欠損部dが形成されたC字状の画像である。本実施形態では、参照線14cは、開口部10bの開口形状と等価である。
図6(a)に示す例では、光像S16’が参照線14cの内側に入っているため、測定者は入射光束Fが発生していることが分かる。
そこで、測定者は、接眼レンズ14bを通して光像S15’を観察しながら、移動操作部24を回転支軸23回りに回転させて遮光部材22を移動させる。これにより、光像S16’は点O16’を中心として回転し、これに伴って、輪帯欠損部dの位置も回転する。測定者は、輪帯欠損部dが参照線14cを覆う位置関係となり、光像S16’が参照線14cの外側に位置することを確認できたら回転を停止する。
これにより、入射光束Fが消失するため、分光反射率の測定を開始することができる。
As a specific measuring operation, prior to the spectral reflectance measurement, measuring person observes the image surface I 1 through the eyepiece 14b, changing the position of the light blocking member 22 as needed.
For example, as shown in FIG. 6A, in the field of view of the eyepiece 14b, the measurement light beam L 6 in which the measurement light beams L 5 and L 15 ′ are branched together with the circular reference line 14c in the sighting member (not shown). , L 16 ′, light images S 6 and S 16 ′ are observed. The optical image S 16 ′ is a C-shaped image in which an annular zone deficient portion d is formed corresponding to the annular zone missing portion D in a part of the annular zone centered on the point O 16 ′. In the present embodiment, the reference line 14c is equivalent to the opening shape of the opening 10b.
In the example shown in FIG. 6A, since the optical image S 16 ′ is inside the reference line 14c, the measurer knows that the incident light flux F is generated.
Therefore, the measurer moves the light shielding member 22 by rotating the moving operation unit 24 around the rotation support shaft 23 while observing the optical image S 15 ′ through the eyepiece 14b. As a result, the optical image S 16 ′ rotates about the point O 16 ′, and the position of the annular zone d is also rotated accordingly. Measurer becomes a positional relationship in the annular defect d covers the reference line 14c, to stop the rotation After verifying that the optical image S 16 'is located outside the reference line 14c.
Thereby, since the incident light flux F disappears, the measurement of the spectral reflectance can be started.

分光反射率の測定は、測定者が操作部17を通して測定開始の操作入力を行うことで実行される。
すなわち、測定制御部16は、制御回路13に制御信号を送出して、制御回路13からの出力信号を取得し、この出力信号を一次元撮像素子12の画素位置の情報とともに記憶する。これにより、測定制御部16に、被測定面7aの分光反射率データR(λ)が記憶される。
The measurement of the spectral reflectance is executed when the measurer performs an operation input for starting measurement through the operation unit 17.
That is, the measurement control unit 16 sends a control signal to the control circuit 13 to acquire an output signal from the control circuit 13 and stores this output signal together with information on the pixel position of the one-dimensional image sensor 12. Thereby, the spectral reflectance data R b (λ) of the measured surface 7 a is stored in the measurement control unit 16.

次に、測定者は、被測定試料7を保持台19から外して、上記と同様にして、基準測定面70aを保持台19に保持させて、基準測定面70aに、測定光束Lを照射する。
このとき、本実施形態では、基準被測定試料70の裏面70bは、基準測定面70aから充分離れているため、裏面70bで反射した反射光束が開口部10bに入射するおそれがない。このため、測定者は、遮光部材22の位置を移動させることなく、操作部17から操作入力して基準被測定試料70の分光反射率測定を実行させる。
すなわち、測定制御部16は、制御回路13に制御信号を送出して、制御回路13からの出力信号を取得し、この出力信号を一次元撮像素子12の画素位置の情報とともに記憶する。これにより、測定制御部16に、基準測定面70aの分光反射率データR(λ)が記憶される。
Next, the measurer, remove the sample to be measured 7 from holder 19, in the same manner as described above, the reference measuring surface 70a and is held by the holding table 19, the reference measuring surface 70a, the measurement light beam L 2 To do.
At this time, in this embodiment, since the back surface 70b of the reference sample 70 is sufficiently separated from the reference measurement surface 70a, there is no possibility that the reflected light beam reflected by the back surface 70b enters the opening 10b. For this reason, the measurer inputs the operation from the operation unit 17 without moving the position of the light shielding member 22 and performs the spectral reflectance measurement of the reference sample 70 to be measured.
That is, the measurement control unit 16 sends a control signal to the control circuit 13 to acquire an output signal from the control circuit 13 and stores this output signal together with information on the pixel position of the one-dimensional image sensor 12. Thereby, the spectral reflectance data R a (λ) of the reference measurement surface 70a is stored in the measurement control unit 16.

ただし、基準被測定試料70の裏面反射光が開口部10bに入射するような場合には、被測定試料7の測定と同様にして、遮光部材22を移動して、入射光束Fが発生しない状態を形成してから、分光反射率測定を開始すればよい。   However, when the back surface reflected light of the reference sample 70 is incident on the opening 10b, the light shielding member 22 is moved and the incident light flux F is not generated in the same manner as the measurement of the sample 7 to be measured. Spectral reflectivity measurement may be started after forming.

次に、測定制御部16は、予め記憶された相対分光反射率データRtheory(λ)と、測定された分光反射率データR(λ)、R(λ)とから、上記式(1)を用いて、被測定面7aの相対分光反射率データRresult(λ)を算出して、表示モニタ15に算出結果を、例えば、グラフや数値データなどとして表示する。
以上で、測光装置50による被測定試料7の測光が終了する。
Next, the measurement control unit 16 calculates the above equation (1) from the previously stored relative spectral reflectance data R theory (λ) and the measured spectral reflectance data R b (λ), R a (λ). ) Is used to calculate the relative spectral reflectance data R result (λ) of the measured surface 7a, and the calculation result is displayed on the display monitor 15 as, for example, a graph or numerical data.
The photometry of the sample 7 to be measured by the photometry device 50 is thus completed.

このように本実施形態の測光装置50によれば、移動操作部24によって遮光部材22を移動して測定光束Lの輪帯欠損部Dの形成位置を変更することにより、裏面反射して入射開口絞り10aの開口部10bに到達する測定光束の一部を遮光することができる。
このため、被測定試料7の被測定面7aに対して裏面7bが傾斜している場合でも、裏面反射の影響を低減して測定精度を向上することができる。
According to the photometric apparatus 50 of the present embodiment, by changing the formation position of the annular defect D of the measuring beam L 1 by moving the light shielding member 22 by the moving operation part 24, the back reflecting to incident A part of the measurement light beam reaching the opening 10b of the aperture stop 10a can be shielded.
For this reason, even when the back surface 7b is inclined with respect to the measurement surface 7a of the sample 7 to be measured, the measurement accuracy can be improved by reducing the influence of the back surface reflection.

[第2の実施形態]
次に、本発明の第2の実施形態の測光装置について説明する。
図7(a)は、本発明の第2の実施形態の測光装置の主要部の構成を示す図1におけるA視図である。図7(b)は、図7(a)におけるC−C断面図である。
[Second Embodiment]
Next, a photometric device according to a second embodiment of the present invention will be described.
FIG. 7A is a view as viewed from A in FIG. 1 showing the configuration of the main part of the photometric device of the second embodiment of the present invention. FIG.7 (b) is CC sectional drawing in Fig.7 (a).

図1に示すように、本実施形態の測光装置51は、上記第1の実施形態の測光装置50の光束整形部20に代えて、光束整形部30を備える。
以下、上記第1の実施形態と異なる点を中心に説明する。
As shown in FIG. 1, the photometric device 51 of the present embodiment includes a light beam shaping unit 30 instead of the light beam shaping unit 20 of the photometric device 50 of the first embodiment.
Hereinafter, a description will be given centering on differences from the first embodiment.

図7(a)、(b)に示すように、光束整形部30は、図示略の支持部材に設けられた回転支軸32と、回転支軸32に回転可能に支持された絞り部材31と、絞り部材31の外周部に固定された移動操作部33(遮光位置変更部)と、上記第1の実施形態と同様の位置保持部材25とを備える。   As shown in FIGS. 7A and 7B, the light beam shaping unit 30 includes a rotation support shaft 32 provided on a support member (not shown), and a diaphragm member 31 rotatably supported on the rotation support shaft 32. The moving operation unit 33 (light-shielding position changing unit) fixed to the outer peripheral portion of the aperture member 31 and the position holding member 25 similar to the first embodiment are provided.

回転支軸32の中心軸は、光軸Oと同軸になるように配置されている。
絞り部材31は、円状の外形を有する板状部材であり、その中心点P31は、回転支軸32と同軸になっている。
絞り部材31には、中心点P31を中心する同心円弧状に延び、厚さ方向に貫通された開口部31a(輪帯状パターンの周方向の一部に遮光領域が形成された開口形状)が形成されている。
The central axis of the rotary shaft 32 is disposed so that the optical axis O 0 coaxially.
The aperture member 31 is a plate-like member having a circular outer shape, and its center point P 31 is coaxial with the rotation support shaft 32.
The throttle member 31 extends in concentric arc of around a center point P 31, the thickness direction pierced opening 31a (opening shape in which a part to the light shielding region in the circumferential direction is formed in the annular pattern) formed Has been.

開口部31aの形状は、上記第1の実施形態の開口部21aの輪帯形状の一部が途切れた形状であるC字状とされ、内周部および外周部の径寸法はそれぞれ開口部21aの内径および外径に一致している。開口部31aの周方向の両端部は、中心点P31に対する中心角が、例えば、240°〜300°程度になるように離間している。
このため、開口部31aの周方向の両端部の間には、例えば、120°〜60°程度の範囲にわたって、測定光束Lを遮光する遮光部31b(遮光領域)が形成されている。
なお、開口部31aの両端部は、図7(a)のような中心点P31を通る径方向に沿う形状には限定されず、例えば、開口部31aの対称軸に平行に形成されていてもよい。この場合、両端部の対向間隔を上記第1の実施形態の遮光部材22の短手方向の幅寸法と一致させれば、開口部31aの形状は、上記第1の実施形態の開口部21aと遮光部材22とが重なって形成されるC字状の形状と同一になる。
The shape of the opening 31a is a C-shape that is a shape in which a part of the annular zone of the opening 21a of the first embodiment is interrupted, and the diameter of the inner peripheral portion and the outer peripheral portion is the opening portion 21a. Is consistent with the inner and outer diameters. Circumferential direction of the both end portions of the opening 31a, the center angle with respect to the center point P 31, for example, are spaced apart so that the order of 240 ° to 300 °.
Therefore, between the circumferential opposite end portions of the opening 31a, for example, over a range of about 120 ° to 60 °, the light-shielding portion 31b shields the measuring light beam L 0 (light shielding region) is formed.
Both ends of the opening 31a is not limited to the shape along the center point radially through P 31 as in FIG. 7 (a), for example, be formed in parallel with the symmetry axis of the opening 31a Also good. In this case, the shape of the opening 31a is the same as that of the opening 21a of the first embodiment as long as the facing distance between both ends matches the width dimension in the short direction of the light shielding member 22 of the first embodiment. This is the same as the C-shape formed by overlapping the light shielding member 22.

移動操作部33は、回転支軸32を中心として、絞り部材31全体を回転移動する操作を行うための部材であり、上記第1の実施形態の移動操作部24と同様の棒状部材が絞り部材31の径方向に沿って延びる姿勢で固定されている。
移動操作部33の周方向の固定位置は特に限定されないが、本実施形態では、開口部31aの対称軸と重なる位置になっている。このため、移動操作部33の周方向の位置は、遮光部31bの中心位置に対応している。
移動操作部33は、上記第1の実施形態の移動操作部24と同様に、絞り部材31の外周側に配置された一対の位置保持部材25によって、回転移動可能、かつ回転停止時の位置の保持が可能となるように係止されている。
The movement operation unit 33 is a member for performing an operation of rotating the entire diaphragm member 31 around the rotation support shaft 32, and a rod-like member similar to the movement operation unit 24 of the first embodiment is a diaphragm member. 31 is fixed in a posture extending along the radial direction.
The fixed position in the circumferential direction of the movement operation unit 33 is not particularly limited, but in the present embodiment, the position is overlapped with the axis of symmetry of the opening 31a. For this reason, the circumferential position of the movement operation unit 33 corresponds to the center position of the light shielding unit 31b.
Similar to the movement operation unit 24 of the first embodiment, the movement operation unit 33 can be rotated and moved by a pair of position holding members 25 arranged on the outer peripheral side of the diaphragm member 31 and at a position when rotation is stopped. It is locked so that it can be held.

このような測光装置51によれば、光束整形部30が遮光部31bを含む絞り部材31を備えるため、移動操作部33によって絞り部材31の全体を回転することによって輪帯欠損部Dを回転移動することができる。
このため、移動操作部24に代えて、移動操作部33を操作する点を除いては、上記第1の実施形態と同様にして、被測定試料7の被測定面7aの相対分光反射率測定を行うことができる。
この測定では、移動操作部33による回転操作によって、裏面反射して入射開口絞り10aの開口部10bに到達する測定光束の一部を遮光することができる。
このため、被測定試料7の被測定面7aに対して裏面7bが傾斜している場合でも、裏面反射の影響を低減して測定精度を向上することができる。
According to such a photometric device 51, since the light beam shaping unit 30 includes the diaphragm member 31 including the light shielding unit 31b, the annular defect part D is rotationally moved by rotating the entire diaphragm member 31 by the movement operation unit 33. can do.
Therefore, the relative spectral reflectance measurement of the measurement surface 7a of the sample 7 to be measured is performed in the same manner as in the first embodiment except that the movement operation unit 33 is operated instead of the movement operation unit 24. It can be performed.
In this measurement, a part of the measurement light beam that reaches the opening 10b of the entrance aperture stop 10a by being reflected from the back surface can be shielded by the rotation operation by the movement operation unit 33.
For this reason, even when the back surface 7b is inclined with respect to the measurement surface 7a of the sample 7 to be measured, the measurement accuracy can be improved by reducing the influence of the back surface reflection.

[第3の実施形態]
次に、本発明の第3の実施形態の測光装置について説明する。
図8(a)は、本発明の第3の実施形態の測光装置の主要部の構成を示す図1におけるA視図である。図8(b)は、図8(a)におけるD−D断面図である。図8(c)は、本発明の第3の実施形態の測光装置の主要部の動作説明図である。
[Third Embodiment]
Next, a photometric device according to a third embodiment of the present invention will be described.
FIG. 8A is a view as seen from A in FIG. 1 showing the configuration of the main part of the photometric device of the third embodiment of the present invention. FIG.8 (b) is DD sectional drawing in Fig.8 (a). FIG. 8C is an explanatory diagram of the operation of the main part of the photometric device of the third embodiment of the present invention.

図1に示すように、本実施形態の測光装置52は、上記第1の実施形態の測光装置50の光束整形部20に代えて、光束整形部40を備える。
以下、上記第1の実施形態と異なる点を中心に説明する。
As shown in FIG. 1, the photometric device 52 of the present embodiment includes a light beam shaping unit 40 instead of the light beam shaping unit 20 of the photometric device 50 of the first embodiment.
Hereinafter, a description will be given centering on differences from the first embodiment.

図8(a)、(b)に示すように、光束整形部40は、上記第1の実施形態の遮光部材22に代えて、輪帯開口絞り21の径方向に進退可能に配置された4枚の遮光板41A、41B、41C、41D(遮光部材)を備える。
遮光板41A、41B、41C、41Dの外形は、輪帯開口絞り21の開口部21aを径方向外側から、例えば、約1/3程度覆うことができる大きさの矩形状とされ、遮光板保持部材43によって互いに直交する2軸方向に、それぞれ対をなして配置されている。本実施形態では、遮光板41A、41Cが図8(a)の図示横方向に互いに対向して配置され、遮光板41B、41Dが図8(a)の図示縦方向に互いに対向して配置されている。
遮光板41A、41B、41C、41Dには、進退量を操作するためのそれぞれの退避方向側の端部に、棒状の移動操作部42が固定されている。
以下、各遮光板の位置を問題にしない場合には、簡単のため、添字を省略して、遮光板41A、41B、41C、41Dをいずれも遮光板41と称する場合がある。また、遮光板41A、41B、41C、41Dを総称する場合、各遮光板41と称する場合がある。
As shown in FIGS. 8A and 8B, the light beam shaping unit 40 is arranged so as to be able to advance and retreat in the radial direction of the annular aperture stop 21 instead of the light shielding member 22 of the first embodiment. The light shielding plates 41A, 41B, 41C, and 41D (light shielding members) are provided.
The outer shape of the light shielding plates 41A, 41B, 41C, and 41D is a rectangular shape that can cover, for example, about 1/3 of the opening 21a of the annular aperture stop 21 from the outside in the radial direction. The members 43 are arranged in pairs in two axial directions orthogonal to each other. In the present embodiment, the light shielding plates 41A and 41C are arranged to face each other in the illustrated horizontal direction of FIG. 8A, and the light shielding plates 41B and 41D are arranged to face each other in the illustrated vertical direction of FIG. ing.
In the light shielding plates 41A, 41B, 41C, and 41D, rod-like movement operation portions 42 are fixed to the end portions on the retreat direction side for manipulating the advance / retreat amount.
Hereinafter, when the position of each light shielding plate is not a problem, the subscripts are omitted for simplicity, and the light shielding plates 41A, 41B, 41C, and 41D may be referred to as the light shielding plate 41 in some cases. The light shielding plates 41A, 41B, 41C, and 41D may be collectively referred to as the light shielding plates 41.

遮光板保持部材43は、開口部21aを外周側から囲むことができる大きさの矩形状の開口部43dが中心に貫通して形成され、開口部43dの径方向外側には、開口部43dの中心に対する径方向に互いに90°をなして4方向に延びる平面部43aを有している。
各平面部43aは、各遮光板41を移動可能に保持する摺動面を構成するもので、延在方向の両側部に遮光板41の側面を遮光板41の進退方向に沿って案内するガイド面43bが立設されている。
また、各平面部43aの延在方向の端部には、各平面部43a上に配置された各遮光板41の進退方向に沿って移動操作部42を移動可能に保持する進退ガイド部43cが設けられている。
The light shielding plate holding member 43 is formed by penetrating a rectangular opening 43d having a size capable of surrounding the opening 21a from the outer peripheral side, and the opening 43d is formed radially outside the opening 43d. It has plane portions 43a extending in four directions at 90 ° in the radial direction with respect to the center.
Each flat surface portion 43a constitutes a sliding surface that holds each light shielding plate 41 so as to be movable, and guides the side surfaces of the light shielding plate 41 along the advancing / retreating direction of the light shielding plate 41 to both sides in the extending direction. A surface 43b is erected.
Further, at the end in the extending direction of each flat surface portion 43a, there is a forward / backward guide portion 43c that holds the movement operation portion 42 movably along the forward / backward direction of each light shielding plate 41 disposed on each flat surface portion 43a. Is provided.

このような光束整形部40の構成により、各平面部43a上の各遮光板41は、移動操作部42を測定者が進退させることによって、その操作量に合わせて開口部43dの中心を通る径方向に進退する。
遮光板41が進出すると、開口部43dから中心側に突出して、輪帯開口絞り21の開口部21aの一部を覆うことができる。本実施形態では、例えば、図8(a)に示すように、遮光板41Aを最大限進出させると、開口部21aの径方向において、例えば、約1/3が覆われるようになっている。
遮光板41を後退させると、輪帯開口絞り21の開口部21aの外周側の位置に退避して、開口部21aと重ならないようにすることが可能である。
With such a configuration of the light beam shaping unit 40, each light-shielding plate 41 on each plane unit 43a has a diameter that passes through the center of the opening 43d in accordance with the amount of operation of the moving operation unit 42 that is moved forward and backward by the measurer. Advance and retreat in the direction.
When the light shielding plate 41 advances, it can project from the opening 43d toward the center and cover a part of the opening 21a of the annular opening stop 21. In the present embodiment, for example, as shown in FIG. 8A, when the light shielding plate 41A is advanced to the maximum extent, for example, about 1/3 is covered in the radial direction of the opening 21a.
When the light shielding plate 41 is retracted, it can be retracted to a position on the outer peripheral side of the opening 21a of the annular aperture stop 21 so that it does not overlap the opening 21a.

同様に、図8(c)に二点鎖線で示すように、他の遮光板41B、41C、41Dも、開口部21aに重なる進出位置と、開口部21aと重ならない退避位置との間で移動可能である。
移動操作部42の操作量は、無段階で可変できるため、遮光板41Aが開口部21aを覆う範囲は、移動操作部42の進出量に応じて変化させることができる。
Similarly, as indicated by a two-dot chain line in FIG. 8C, the other light-shielding plates 41B, 41C, and 41D also move between an advanced position that overlaps the opening 21a and a retracted position that does not overlap the opening 21a. Is possible.
Since the operation amount of the movement operation unit 42 can be changed steplessly, the range in which the light shielding plate 41A covers the opening 21a can be changed according to the advancement amount of the movement operation unit 42.

本実施形態では、図8(c)に示すように、各遮光板41の遮光範囲は、一部が重なっており、このため、開口部21aの各部は、各遮光板41のいずれかによって遮光されるようになっている。   In the present embodiment, as shown in FIG. 8C, the light shielding ranges of the respective light shielding plates 41 are partially overlapped. For this reason, each portion of the opening 21 a is shielded by any one of the light shielding plates 41. It has come to be.

次に、測光装置52の動作について、上記第1の実施形態と異なる点を中心に説明する。
図9(a)、(b)は、本発明の第3の実施形態の測光装置の光束整形部の遮光前、および遮光後の観察部による観察像の一例を示す模式図である。
Next, the operation of the photometric device 52 will be described focusing on the differences from the first embodiment.
FIGS. 9A and 9B are schematic diagrams illustrating an example of an observation image obtained by the observation unit before and after light shielding of the light beam shaping unit of the photometric device according to the third embodiment of the present invention.

本実施形態の測光装置52によって、被測定試料7の相対分光反射率測定を行うには、上記第1の実施形態と略同様にして、被測定試料7、基準被測定試料70の分光反射率をこの順に測定して、上記式(1)によって、相対分光反射率を算出する。
上記第1の実施形態との違いは、光束整形部20と光束整形部40との構成の相違であるため、この点に関係する分光反射率測定前の動作を中心に説明する。
In order to measure the relative spectral reflectance of the sample 7 to be measured by the photometric device 52 of the present embodiment, the spectral reflectances of the sample 7 to be measured and the reference sample 70 to be measured are substantially the same as in the first embodiment. Are measured in this order, and the relative spectral reflectance is calculated by the above equation (1).
Since the difference from the first embodiment is the difference in configuration between the light beam shaping unit 20 and the light beam shaping unit 40, the operation before the spectral reflectance measurement related to this point will be mainly described.

測光装置52では、被測定試料7の分光反射率測定を行う前に、光束整形部40の各遮光板41を後退させておく。このため、測定光束Lには輪帯欠損部Dが形成されず開口部10bには、裏面7bの裏面反射による測定光束も輪帯状になる。
このため、観察光学系14で観察される観察像は、例えば、図9(a)に示すように、測定光束Lに対応するスポット状の光像Sと、裏面反射による測定光束L16’に対応する輪帯状の偏心した光像S16’とである。
測定者は、参照線14c内に入る光像S16’の位置を見て、この位置に輪帯欠損部Dを形成できる遮光板41を適宜進出させる。
これにより、遮光板41が開口部21aに重なっていくにつれて、上記第1の実施形態と同様に、測定光束Lに輪帯欠損部D(図9(a)には図示略)が形成されていく。ただし、輪帯欠損部Dの形状は、遮光板41の重なり方に応じて形成され、図2(c)に示す形状とは異なる。
In the photometric device 52, each light shielding plate 41 of the light beam shaping unit 40 is retracted before measuring the spectral reflectance of the sample 7 to be measured. Therefore, the measuring beam L 1 opening 10b not formed annular defect D in, also becomes zonal measuring light flux by back reflection of the back surface 7b.
Therefore, the observation image observed by the observation optical system 14 is, for example, as shown in FIG. 9A, a spot-like light image S 6 corresponding to the measurement light beam L 6 and a measurement light beam L 16 due to back surface reflection. An annular optical image S 16 'corresponding to'.
The measurer looks at the position of the optical image S 16 ′ entering the reference line 14c, and appropriately advances the light shielding plate 41 capable of forming the annular zone defect portion D at this position.
Thus, as the light shielding plate 41 is gradually overlapped with the opening 21a, as in the first embodiment, the measurement light beam L 1 to the zonal defect D (not shown in in FIG. 9 (a)) is formed To go. However, the shape of the annular zone defect portion D is formed according to the way in which the light shielding plates 41 overlap, and is different from the shape shown in FIG.

このため、測定光束L16’も、輪帯欠損部Dを有する断面C字状の測定光束L16’’に変化し、図9(b)に示すように、接眼レンズ14bを通して、輪帯欠損部d’’を有する光像S16’’が観察される。
測定者は、図9(b)に示すように、輪帯欠損部d’’が参照線14cを覆うことにより、光像S16’’が参照線14cの外側に位置することを確認できたら、遮光板41の進出を停止する。
これにより、裏面7bの反射光束による開口部10bへの入射光束が消失するため、分光反射率の測定を開始することができる。
For this reason, the measurement light beam L 16 ′ also changes to a measurement light beam L 16 ″ having a C-shaped cross section having an annular zone defect portion D, and as shown in FIG. 9B, the annular zone defect is transmitted through the eyepiece lens 14b. An optical image S 16 ″ having a part d ″ is observed.
As shown in FIG. 9B, the measurer can confirm that the optical zone S 16 ″ is located outside the reference line 14c by covering the reference line 14c with the annular zone d ′. The advancement of the light shielding plate 41 is stopped.
Thereby, since the incident light flux to the opening 10b by the reflected light flux on the back surface 7b disappears, the measurement of the spectral reflectance can be started.

なお、裏面7bの傾斜量によっては、輪帯欠損部d’’を形成するまでもなく、光像S16’が参照線14cの外側に位置する場合がある。この場合には、輪帯欠損部d’’を形成する必要がないため、各遮光板41は進出させることなく、分光反射率の測定を行うことができる。したがって、光束整形部40は、場合によっては輪帯欠損部を形成しないため、輪帯欠損部を有する測定光束に整形可能な場合の例になっている。 Depending on the amount of inclination of the back surface 7b, the optical image S 16 ′ may be located outside the reference line 14c without forming the annular zone defect d ″. In this case, since it is not necessary to form the annular zone deficient portion d ″, the spectral reflectance can be measured without the light shielding plates 41 being advanced. Therefore, since the light beam shaping unit 40 does not form an annular zone defect part in some cases, it is an example of a case where it can be shaped into a measurement light beam having an annular zone defect part.

次に、上記第1の実施形態と同様にして、被測定面7aの分光反射率の測定を行ってから、被測定試料7を基準被測定試料70に交換して、基準測定面70aの分光反射率を測定する。
このとき、各遮光板41の位置は、被測定試料7の測定時の位置から変更しないようにする。これにより、被測定面7aの測定時と、基準測定面70aの測定時の測定光束Lの光量を合わせることができる。
Next, in the same manner as in the first embodiment, after measuring the spectral reflectance of the measurement target surface 7a, the measurement sample 7 is replaced with the reference measurement sample 70, and the spectral measurement of the reference measurement surface 70a is performed. Measure reflectivity.
At this time, the position of each light shielding plate 41 is not changed from the measurement position of the sample 7 to be measured. Thus, it is possible to match the time of measurement of the measurement surface 7a, the light amount of the measuring beam L 1 at the time of measurement of the reference measuring surface 70a.

このような測光装置52によれば、光束整形部40の遮光板41を、移動操作部42を用いて進退させることによって、輪帯欠損部Dの形成位置や大きさを変化させることができる。
このため、上記第1の実施形態と略同様にして、被測定試料7の被測定面7aの相対分光反射率測定を行うことができる。
この測定では、開口部21aの外周に配置された複数の遮光板41を、移動操作部42の操作により選択的に進退させることによって、裏面反射して入射開口絞り10aの開口部10bに到達する測定光束の一部を遮光することができる。
このため、被測定試料7の被測定面7aに対して裏面7bが傾斜している場合でも、裏面反射の影響を低減して測定精度を向上することができる。
また、本実施形態では、遮光板41による遮光量を、開口部10bへの入射光束の発生状態に合わせて設定することができるため、入射光束の発生が少ない場合には、測定光束の光量を低減しなくて済むため、一律に遮光する場合に比べると測定のS/N比を向上することが可能である。
According to such a photometric device 52, the formation position and size of the annular zone defect portion D can be changed by moving the light shielding plate 41 of the light beam shaping unit 40 forward and backward using the movement operation unit 42.
For this reason, the relative spectral reflectance measurement of the measurement surface 7a of the sample 7 to be measured can be performed in substantially the same manner as in the first embodiment.
In this measurement, the plurality of light shielding plates 41 arranged on the outer periphery of the opening 21a are selectively advanced and retracted by operation of the moving operation unit 42 to be reflected from the back surface and reach the opening 10b of the incident aperture stop 10a. A part of the measurement light beam can be shielded.
For this reason, even when the back surface 7b is inclined with respect to the measurement surface 7a of the sample 7 to be measured, the measurement accuracy can be improved by reducing the influence of the back surface reflection.
In the present embodiment, the amount of light shielded by the light shielding plate 41 can be set according to the state of incidence of incident light flux into the opening 10b. Since it does not need to be reduced, it is possible to improve the S / N ratio of measurement compared to the case where light is uniformly shielded.

なお、上記各実施形態の説明では、測光装置が被測定面の相対分光反射率を測定する場合の例で説明したが、上記の説明から容易に分かるように、裏面反射のよる影響は、分光反射率の測定時に除去されている。したがって、測光装置は、分光反射強度(または光量、または光度)を測定する装置であってもよい。   In the description of each of the above embodiments, the example in which the photometric device measures the relative spectral reflectance of the measurement target surface has been described. However, as can be easily understood from the above description, the influence of back surface reflection is Removed when measuring reflectance. Therefore, the photometric device may be a device that measures spectral reflection intensity (or light quantity or luminous intensity).

また、上記第3の実施形態の説明では、遮光板41の最大進出位置が、一例として、開口部21aを1/3程度覆う構成として説明したが、遮光板41の最大進出位置は、開口部10bに入射しうる裏面反射光の発生の仕方に応じて適宜設定することが可能である。例えば、開口部21aの1/3よりも多く覆ってもよいし、少なく覆ってもよい。
また、例えば、各遮光板41を互いに独立に進退できるように保持することも可能である。この場合、2枚以上の遮光板41によって、より広い範囲を覆うことができるため、開口部10b上で、裏面反射光が種々の位置に現れる場合でも、より確実に開口部10bへの入射を防止することができる。
In the description of the third embodiment, the maximum advancing position of the light shielding plate 41 has been described as an example of a configuration that covers about 1/3 of the opening 21a, but the maximum advancing position of the light shielding plate 41 is an opening. It can be set as appropriate depending on how the back surface reflected light that can enter 10b is generated. For example, it may cover more than 1/3 of the opening 21a or less.
Further, for example, it is possible to hold the light shielding plates 41 so that they can advance and retract independently of each other. In this case, since a wider range can be covered by the two or more light shielding plates 41, even when the back-surface reflected light appears at various positions on the opening 10b, the incident to the opening 10b is more reliably performed. Can be prevented.

また、上記第3の実施形態の説明では、4枚の矩形状の遮光板41を用いた場合の例で説明したが、これは一例であって、進退移動させる遮光板の枚数、形状はこれには限定されない。例えば、1枚から3枚の構成でもよいし、5枚以上の構成でもよい。また、遮光板の形状は、矩形状の他にも、例えば、円弧状、扇形、台形、その他の任意の形状が可能である。
例えば、1枚の遮光板を用いる例としては、内径が開口部21aの外径よりも大きい円環状の遮光板を、開口部21aの中心に向かう任意方向に進退させる構成の例などを挙げることができる。
In the description of the third embodiment, an example in which four rectangular light shielding plates 41 are used has been described. However, this is an example, and the number and shape of the light shielding plates to be moved forward and backward are the same. It is not limited to. For example, the configuration may be one to three, or five or more. In addition to the rectangular shape, the shape of the light shielding plate can be, for example, an arc shape, a sector shape, a trapezoidal shape, or any other shape.
For example, as an example of using one light shielding plate, there is an example of a configuration in which an annular light shielding plate having an inner diameter larger than the outer diameter of the opening 21a is advanced and retracted in an arbitrary direction toward the center of the opening 21a. Can do.

また、上記各実施形態の説明では、光束整形部が形成する輪帯欠損部によって、裏面反射光が測光部にまったく入射しないようにする場合の例で説明したが、測定誤差の許容範囲内であれば、一部の裏面反射光が測光部に入射することは許容できる。   In the description of each of the above embodiments, the example in which the back surface reflected light is not incident on the photometry unit at all by the annular zone defect formed by the light beam shaping unit has been described. If so, it is permissible for some back-surface reflected light to enter the photometry unit.

また、上記各実施形態の説明では、光束整形部の遮光位置変更部の操作を測定者が手動で行う場合の例で説明したが、遮光位置変更部は、例えば、遮光部材22や絞り部材31を回転させたり、遮光板41を進退させたりするため、モータ等によって動力駆動可能な移動機構を備えた構成としてもよい。   In the description of each of the above embodiments, an example in which the operator manually operates the light shielding position changing unit of the light beam shaping unit has been described. However, the light shielding position changing unit may be, for example, the light shielding member 22 or the diaphragm member 31. It is good also as a structure provided with the moving mechanism which can be motively driven by a motor etc. in order to rotate this and to move the light-shielding plate 41 forward and backward.

また、上記の各実施形態で説明したすべての構成要素は、本発明の技術的思想の範囲で適宜組み合わせたり、削除したりして実施することができる。   In addition, all the components described in the above embodiments can be implemented by being appropriately combined or deleted within the scope of the technical idea of the present invention.

1 光源
2 照明レンズ
4 コリメータレンズ
5 ハーフミラー
6 対物レンズ(第1の集光光学系)
7 被測定試料
7a 被測定面
7b、7b’、70b 裏面
8 結像レンズ
9 結像光学系(第2の集光光学系)
10 分光器(測光部)
10a 入射開口絞り(開口絞り)
10b 開口部(開口)
14 観察光学系(観察部)
14c 参照線
16 測定制御部
20、30、40 光束整形部
21 輪帯開口絞り
21a 開口部(輪帯状の開口)
22 遮光部材
24、42 移動操作部(遮光位置変更部、遮光部材移動部)
31 絞り部材
31a 開口部(輪帯状パターンの周方向の一部に遮光領域が形成された開口形状)
31b 遮光部(遮光領域)
33 移動操作部(遮光位置変更部)
41、41A、41B、41C、41D 遮光板(遮光部材)
50、51、52 測光装置
70 基準被測定試料(被測定試料)
70a 基準測定面(被測定面)
D、d、d’’ 輪帯欠損部
F 入射光束
、I 像面
、L、L、L、L、L、L、L15、L15’、L16、L16’ 測定光束
O 測定基準軸
DESCRIPTION OF SYMBOLS 1 Light source 2 Illumination lens 4 Collimator lens 5 Half mirror 6 Objective lens (1st condensing optical system)
7 Measurement Sample 7a Measurement Surfaces 7b, 7b ', 70b Back Surface 8 Imaging Lens 9 Imaging Optical System (Second Condensing Optical System)
10 Spectrometer (photometry part)
10a Entrance aperture stop (aperture stop)
10b Opening (opening)
14 Observation optical system (observation part)
14c Reference line 16 Measurement control part 20, 30, 40 Light beam shaping part 21 Ring zone aperture stop 21a Opening part (ring zone-shaped opening)
22 light shielding members 24 and 42 moving operation unit (light shielding position changing unit, light shielding member moving unit)
31 Diaphragm member 31a Opening portion (opening shape in which a light shielding region is formed in a part of the ring-shaped pattern in the circumferential direction)
31b Shading part (shading area)
33 Moving operation part (light-shielding position changing part)
41, 41A, 41B, 41C, 41D Light shielding plate (light shielding member)
50, 51, 52 Photometric device 70 Reference measurement sample (measurement sample)
70a Reference measurement surface (surface to be measured)
D, d, d ″ annular zone defect F incident light flux I 0 , I 1 image planes L 0 , L 1 , L 2 , L 3 , L 4 , L 5 , L 6 , L 15 , L 15 ′, L 16 , L 16 'Measuring beam O Measurement reference axis

Claims (4)

光源と、
該光源から出射される光束を、その光軸に直交する断面において輪帯状パターンの周方向の一部に輪帯欠損部が形成された断面形状を有する測定光束に整形可能な光束整形部と、
前記輪帯欠損部の形成位置を変更する遮光位置変更部と、
前記測定光束を被測定試料の被測定面上に集光する第1の集光光学系と、
前記測定光束のうち、前記被測定試料によって反射された反射光束を集光する第2の集光光学系と、
該第2の集光光学系を挟んで、前記被測定面と光学的に共役な位置関係に配置された開口絞りと、
該開口絞りを通過した光束を測光する測光部と、
前記第2の集光光学系によって、前記被測定面と光学的に共役とされた像面における前記第2の集光光学系による投影像が観察可能な観察部と、
を備える、測光装置。
A light source;
A light beam shaping unit capable of shaping a light beam emitted from the light source into a measurement light beam having a cross-sectional shape in which a ring-shaped defect portion is formed in a part of the circumferential direction of the ring-shaped pattern in a cross section orthogonal to the optical axis;
A light shielding position changing portion for changing the formation position of the annular zone defect portion;
A first condensing optical system for condensing the measurement light beam on a measurement surface of a sample to be measured;
A second condensing optical system for condensing a reflected light beam reflected by the sample to be measured among the measurement light beam;
An aperture stop disposed in an optically conjugate positional relationship with the surface to be measured across the second focusing optical system;
A metering unit for metering the luminous flux that has passed through the aperture stop;
An observation unit capable of observing an image projected by the second condensing optical system on an image plane optically conjugate with the surface to be measured by the second condensing optical system;
A photometric device.
前記光束整形部は、
輪帯状の開口が形成された輪帯開口絞りと、
前記開口に対して移動可能に設けられ、前記輪帯開口絞りの前記開口の一部を遮光して前記測定光束の前記輪帯欠損部を形成する遮光部材と
を備え、
前記遮光位置変更部は、
前記遮光部材を、前記輪帯開口絞りの前記開口に対して移動可能に保持する遮光部材移動部を備える
ことを特徴とする、請求項1に記載の測光装置。
The light beam shaping unit
An annular aperture stop in which an annular aperture is formed;
A light-shielding member provided so as to be movable with respect to the aperture, and shielding a part of the aperture of the annular aperture stop to form the annular defect portion of the measurement light beam,
The light shielding position changing unit
The photometric device according to claim 1, further comprising a light shielding member moving unit that holds the light shielding member so as to be movable with respect to the opening of the annular aperture stop.
前記遮光部材移動部は、
前記遮光部材を、前記開口の周方向に沿って回転移動させる
ことを特徴とする、請求項2に記載の測光装置。
The shading member moving part is
The photometric device according to claim 2, wherein the light shielding member is rotationally moved along a circumferential direction of the opening.
前記光束整形部は、
輪帯状パターンの周方向の一部に遮光領域が形成された開口形状を有する絞り部材を備え、
前記遮光位置変更部は、
前記絞り部材を前記輪帯状パターンの周方向に回転移動する
ことを特徴とする、請求項1に記載の測光装置。
The light beam shaping unit
A diaphragm member having an opening shape in which a light shielding region is formed in a part of the ring-shaped pattern in the circumferential direction,
The light shielding position changing unit
The photometric device according to claim 1, wherein the aperture member is rotationally moved in a circumferential direction of the annular pattern.
JP2012240885A 2012-10-31 2012-10-31 Photometric device Active JP5941824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012240885A JP5941824B2 (en) 2012-10-31 2012-10-31 Photometric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012240885A JP5941824B2 (en) 2012-10-31 2012-10-31 Photometric device

Publications (2)

Publication Number Publication Date
JP2014092366A true JP2014092366A (en) 2014-05-19
JP5941824B2 JP5941824B2 (en) 2016-06-29

Family

ID=50936546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012240885A Active JP5941824B2 (en) 2012-10-31 2012-10-31 Photometric device

Country Status (1)

Country Link
JP (1) JP5941824B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990813A (en) * 1982-11-15 1984-05-25 Nippon Kogaku Kk <Nikon> Projection type microscope
JPH0949784A (en) * 1995-08-04 1997-02-18 Nikon Corp Inspecting method for projection optical system and illumination optical system used for the inspection
JP2009181131A (en) * 2009-03-24 2009-08-13 Olympus Corp Imaging optical system, and imaging apparatus using the same
JP2009258080A (en) * 2008-03-27 2009-11-05 Nikon Corp Hole shape measuring apparatus
JP2010287747A (en) * 2009-06-11 2010-12-24 Nikon Corp Illumination optical device, exposure device, and device manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990813A (en) * 1982-11-15 1984-05-25 Nippon Kogaku Kk <Nikon> Projection type microscope
JPH0949784A (en) * 1995-08-04 1997-02-18 Nikon Corp Inspecting method for projection optical system and illumination optical system used for the inspection
JP2009258080A (en) * 2008-03-27 2009-11-05 Nikon Corp Hole shape measuring apparatus
JP2009181131A (en) * 2009-03-24 2009-08-13 Olympus Corp Imaging optical system, and imaging apparatus using the same
JP2010287747A (en) * 2009-06-11 2010-12-24 Nikon Corp Illumination optical device, exposure device, and device manufacturing method

Also Published As

Publication number Publication date
JP5941824B2 (en) 2016-06-29

Similar Documents

Publication Publication Date Title
US9989746B2 (en) Light microscope and microscopy method
JP5092104B2 (en) Spectrometer and spectroscopic method
AU2006293071B2 (en) Optical measuring system
JP3404134B2 (en) Inspection device
JP2019095799A (en) Optical waveguide for guiding illumination light
TW201732261A (en) Optical characteristic measurement apparatus and optical system
JP2017519235A (en) Apparatus and method for optical beam scanning microscopy
US9715096B2 (en) Microscope apparatus
JP5266551B2 (en) Surface shape measuring apparatus and surface shape measuring method
JP2007078485A (en) Auto-collimator and angle measuring device using it
JP6485498B2 (en) Total reflection microscope and adjustment method of total reflection microscope
JP5472780B2 (en) Hole shape measuring apparatus and optical system
JP5941824B2 (en) Photometric device
JP2019215262A (en) Spectrometric measurement device and spectrometric measurement method
JP2009244156A (en) Spectroscopic device and spectral confocal microscope
JP2006047780A (en) Infrared microscope
JP2022170900A (en) Analyzer
WO2020231257A1 (en) Confocal and multi-scatter ophthalmoscope
JP2005017127A (en) Interferometer and shape measuring system
JP2017151373A (en) Infrared microscope and infrared microscope system
JP2012122757A (en) Photometric device
JP2011058953A (en) Detector, optical apparatus with the same
JP2015094703A (en) Spectral transmission measuring instrument
JP4135133B2 (en) Optical axis correction apparatus and optical instrument system
JP2009121927A (en) Eccentricity measuring device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150806

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R151 Written notification of patent or utility model registration

Ref document number: 5941824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250