JP2014091851A - Gallium nitride target and method of producing the same - Google Patents

Gallium nitride target and method of producing the same Download PDF

Info

Publication number
JP2014091851A
JP2014091851A JP2012242637A JP2012242637A JP2014091851A JP 2014091851 A JP2014091851 A JP 2014091851A JP 2012242637 A JP2012242637 A JP 2012242637A JP 2012242637 A JP2012242637 A JP 2012242637A JP 2014091851 A JP2014091851 A JP 2014091851A
Authority
JP
Japan
Prior art keywords
thin film
gallium nitride
gallium
molded body
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012242637A
Other languages
Japanese (ja)
Inventor
Ryo Kikuchi
僚 菊池
Keitaro Matsumaru
慶太郎 松丸
Tetsuo Shibutami
哲夫 渋田見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2012242637A priority Critical patent/JP2014091851A/en
Publication of JP2014091851A publication Critical patent/JP2014091851A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a gallium nitride target in which a joint portion is not peeled off even if sputtering is performed at high temperature.SOLUTION: A method of producing a gallium nitride target includes steps of subjecting a gallium nitride molding as a target material to UV cleaning, and then forming a tungsten thin film from 1000 nm to 2500 nm on the molding.

Description

本発明は、スパッタリング法により窒化ガリウム薄膜を製造する際に使う窒化ガリウムターゲットに関するものである。詳しくは、高温でスパッタを行っても金属部材との接合部分が剥がれない窒化ガリウムターゲットに関するものである。   The present invention relates to a gallium nitride target used when manufacturing a gallium nitride thin film by a sputtering method. Specifically, the present invention relates to a gallium nitride target in which a joint portion with a metal member is not peeled even when sputtering is performed at a high temperature.

窒化ガリウムは、青色発光ダイオード(LED)の発光層や青色レーザーダイオード(LD)の原料として注目され、近年では薄膜や基板の形態にて白色LEDや青色LDなどの様々な用途に用いられており、また将来的にはパワーデバイスなどの用途の材料としても注目されている。   Gallium nitride is attracting attention as a light emitting layer for blue light emitting diodes (LEDs) and a raw material for blue laser diodes (LDs). In the future, it is also attracting attention as a material for applications such as power devices.

窒化ガリウム薄膜の作製法としてはスパッタリング法が挙げられるが、窒化ガリウムは焼結しにくいので通常の焼成では密度が50%程度までしか向上しないため、ターゲットとして使用するには不向きであった。窒化ガリウムの密度を向上させる方法として、窒化ガリウム焼結体に金属ガリウムを含浸させた成形体が提案されているが(例えば、特許文献1参照)、ガリウムは融点が30℃程度と低いので、基板を加熱してスパッタすると、ターゲット材も加熱され、ターゲット材からガリウムが析出し、金属部材との接合部にあるバリア層であるNiやCu及びIn系ハンダと反応して接合力が弱くなり、ターゲット材と金属部材の接合が剥がれてしまうという問題があった。   As a method for producing a gallium nitride thin film, a sputtering method can be mentioned. However, since gallium nitride is difficult to sinter, the density is improved only to about 50% by ordinary firing, so that it is not suitable for use as a target. As a method for improving the density of gallium nitride, a molded body in which a gallium nitride sintered body is impregnated with metal gallium has been proposed (see, for example, Patent Document 1), but gallium has a low melting point of about 30 ° C. When the substrate is heated and sputtered, the target material is also heated, gallium is deposited from the target material, and reacts with Ni, Cu, and In-based solder, which is a barrier layer at the joint with the metal member, and the bonding force is weakened. There is a problem that the bonding between the target material and the metal member is peeled off.

また、金属部材との接合不良を改善したターゲットとして、金属のバリア層を形成したBa系合金スパッタリングターゲットがある(例えば、特許文献2参照)。この方法ではバリア層の濡れ性が不十分なため、バリア層と金属部材をハンダで直接ロウ付けをすることができず、バリア層上にNiやCuの濡れ性改善層の形成が必要であり工程が複雑でコストが高くなるという課題があった。さらに、ガリウムは液体の状態で拡散するので、Ba系よりも拡散しやすく、より密着性の高いバリア層が必要である。   In addition, there is a Ba-based alloy sputtering target in which a metal barrier layer is formed as a target with improved bonding failure with a metal member (see, for example, Patent Document 2). Since the wettability of the barrier layer is insufficient with this method, the barrier layer and the metal member cannot be brazed directly with solder, and it is necessary to form a wettability improving layer of Ni or Cu on the barrier layer. There was a problem that the process was complicated and the cost was high. Furthermore, since gallium diffuses in a liquid state, a barrier layer that is easier to diffuse than Ba-based and has higher adhesion is required.

特開2012−144805号公報JP 2012-144805 A 特開2009−35762号公報JP 2009-35762 A

本発明の目的は、窒化ガリウム成形物に、ガリウムと反応しない密着性のよい薄膜を形成することで、高温でスパッタを行っても接合部分が剥がれない窒化ガリウムのスパッタリングターゲットを提供することである。   An object of the present invention is to provide a sputtering target of gallium nitride in which a bonded portion that does not react with gallium is formed on a gallium nitride molded article so that the bonded portion does not peel off even when sputtering is performed at a high temperature. .

窒化ガリウムターゲットにおいて、ターゲット材にNiやCuの薄膜を形成して濡れ性を向上させ、融点の低いIn系ハンダを接合層として金属部材にロウ付けする方法が一般的であるが、ガリウムは融点が約30℃のため、基板を加熱して窒化ガリウムターゲットをスパッタすると、ターゲット表面にガリウムが析出する場合がある。ガリウムは多くの金属を侵食する性質があるので、NiやCuの薄膜を形成した場合、薄膜の一部がガリウムと反応し、さらにガリウムがIn系ハンダと反応して接合部の接着性が低下し、ターゲット材と金属部材の接合が剥がれてしまうことがある。   In a gallium nitride target, it is common to form a thin film of Ni or Cu on the target material to improve wettability, and braze the metal member as a bonding layer with an In-based solder having a low melting point. However, when the substrate is heated and the gallium nitride target is sputtered, gallium may be deposited on the target surface. Since gallium has the property of eroding many metals, when a thin film of Ni or Cu is formed, a part of the thin film reacts with gallium, and further gallium reacts with In-based solder, resulting in a decrease in adhesion at the joint. However, the bond between the target material and the metal member may be peeled off.

そこで本発明者らは窒化ガリウム成形物と金属部材との接合面にタングステン薄膜を形成することにより、薄膜がガリウムと反応せずガリウムが薄膜表面に析出しないことを見出し、本発明を完成するに至った。   Therefore, the present inventors have found that by forming a tungsten thin film on the joint surface between the gallium nitride molded product and the metal member, the thin film does not react with gallium and gallium does not precipitate on the surface of the thin film, thereby completing the present invention. It came.

すなわち、本発明は、ターゲット材である窒化ガリウム成形物をUV洗浄した後、前記成形物に1000nmから2500nmのタングステン薄膜を形成することを特徴とする窒化ガリウムターゲットの製造方法である。   That is, the present invention is a method for producing a gallium nitride target, characterized by forming a tungsten thin film having a thickness of 1000 nm to 2500 nm on the molding after the gallium nitride molding as a target material is UV-cleaned.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

成形物とは、成形、焼成など様々な方法で粉末を固めたものを含む成形体を指す。本発明において、窒化ガリウム成形物とは窒化ガリウムを主成分とする焼結体、窒化ガリウム焼結体に金属ガリウムを含浸させた成形体などが挙げられる。窒化ガリウム焼結体に金属ガリウムを含浸させた成形体では、金属ガリウムが窒化ガリウム焼結体の空隙に存在しているため、スパッタ中にターゲット材からガリウムが析出するという事態が起こりやすく、特に本発明が好適に利用されうる。   The molded product refers to a molded body including those obtained by solidifying powder by various methods such as molding and baking. In the present invention, the gallium nitride molded product includes a sintered body containing gallium nitride as a main component, a molded body obtained by impregnating a gallium nitride sintered body with metal gallium, and the like. In a molded body in which metal gallium is impregnated into a gallium nitride sintered body, since the metal gallium is present in the voids of the gallium nitride sintered body, a situation in which gallium is likely to precipitate from the target material during sputtering is particularly likely. The present invention can be suitably used.

本発明において、タングステン薄膜の密着性が非常に重要である。タングステン薄膜の密着性が悪いと剥がれやすくなるだけでなく、タングステン薄膜が酸化して濡れ性が低下しやすくなり、接合層のロウを十分に塗布できず、金属部材との接合部分が剥がれる可能性がある。そこでタングステン薄膜の密着性を向上させるため、窒化ガリウム成形物の表面を100nmから280nmの短波長の紫外線(UV)で3分以上、好ましくは5分以上照射してからタングステン薄膜を形成させる。   In the present invention, the adhesion of the tungsten thin film is very important. If the adhesion of the tungsten thin film is poor, not only is it easy to peel off, but also the tungsten thin film is likely to oxidize and the wettability is liable to be lowered, the solder of the bonding layer cannot be applied sufficiently, and the joint portion with the metal member may be peeled off There is. Therefore, in order to improve the adhesion of the tungsten thin film, the surface of the gallium nitride molded product is irradiated with ultraviolet rays (UV) having a short wavelength of 100 nm to 280 nm for 3 minutes or more, preferably 5 minutes or more, and then the tungsten thin film is formed.

窒化ガリウム成形物に形成されるタングステン薄膜の厚さは1000nm以上2500nm未満であることが望ましい。1000nmより薄いと、ガリウムの析出を完全に防ぐことができない。また2500nmよりタングステン薄膜が厚いと膜の応力により薄膜が剥がれてしまう場合がある。   The thickness of the tungsten thin film formed on the gallium nitride molded product is desirably 1000 nm or more and less than 2500 nm. If it is thinner than 1000 nm, gallium deposition cannot be completely prevented. If the tungsten thin film is thicker than 2500 nm, the thin film may be peeled off due to the stress of the film.

本発明において、窒化ガリウム成形物に形成されるタングステン薄膜はスパッタリング法で形成されるのが望ましく、特にRFスパッタで形成される方がより好ましい。DCスパッタの方が速度を速くして成膜が可能であるが、成膜速度が速すぎるとタングステン薄膜の密着性が低下し、膜にひび割れが発生してしまう場合があるため、RFスパッタで85Å/min以下で成膜することが好ましい。   In the present invention, the tungsten thin film formed on the gallium nitride molded article is preferably formed by sputtering, and more preferably formed by RF sputtering. DC sputtering can be formed at a higher speed. However, if the film forming speed is too high, the adhesion of the tungsten thin film may be reduced and the film may be cracked. It is preferable to form a film at 85 Å / min or less.

本発明において、ガリウムによるタングステン薄膜の侵食は、例えば薄膜を形成させた成形物を200℃程度の高温で加熱し、ガリウムが析出するか観察することによって判断できる。200℃ではガリウムは銀色の液状となるので、容易に判別できる。   In the present invention, the erosion of the tungsten thin film by gallium can be determined by, for example, heating the molded article on which the thin film is formed at a high temperature of about 200 ° C. and observing whether gallium is precipitated. At 200 ° C., gallium becomes a silvery liquid and can be easily distinguished.

本発明によれば、窒化ガリウム成形物にタングステン薄膜を形成することにより、高温でスパッタを行っても成形物中のガリウムが金属部材との接合部に析出せず、タングステン薄膜が剥がれない窒化ガリウムターゲットを製造することが可能である。   According to the present invention, by forming a tungsten thin film on a gallium nitride molded product, the gallium in the molded product does not precipitate at the joint with the metal member even when sputtering is performed at a high temperature, and the tungsten thin film does not peel off. It is possible to produce a target.

以下、本発明の実施例をもって説明するが、本発明はこれに限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited thereto.

本発明の実施例において、窒化ガリウム成形物は、窒化ガリウムと金属ガリウムが混在した成形物(サイズ76.2mmφ×3.5mmt、密度5.2g/cm)を用いた。詳細な製造方法については特許文献1を参照のこと。 In the example of the present invention, a gallium nitride molded product in which gallium nitride and metal gallium were mixed (size 76.2 mmφ × 3.5 mmt, density 5.2 g / cm 3 ) was used. See Patent Document 1 for a detailed manufacturing method.

(成形体のUV洗浄)
成形体の薄膜を形成させる面に光表面処理装置(紫外線波長184.9nm、253.7nm)を用いてUV洗浄を5分間行った。
(UV cleaning of molded product)
UV cleaning was performed for 5 minutes using an optical surface treatment apparatus (ultraviolet wavelength 184.9 nm, 253.7 nm) on the surface of the molded body on which the thin film was to be formed.

(薄膜層の形成)
UV洗浄した成形体を10分以内にスパッタ装置にセットし、真空引きし、以下の成膜条件にて金属ターゲットをスパッタし、薄膜を形成した。
放電方式:RFスパッタ、DCスパッタ
成膜圧力:0.5Pa
添加ガス:アルゴン
放電パワー:100W
(薄膜層の評価)
薄膜層を形成した成形体を200℃の真空オーブンで3時間加熱した。加熱後に薄膜層にガリウムが析出されているかによって評価した。
(Formation of thin film layer)
The UV-cleaned molded body was set in a sputtering apparatus within 10 minutes, evacuated, and a metal target was sputtered under the following film forming conditions to form a thin film.
Discharge method: RF sputtering, DC sputtering Film forming pressure: 0.5 Pa
Additive gas: Argon discharge power: 100W
(Evaluation of thin film layer)
The molded body on which the thin film layer was formed was heated in a vacuum oven at 200 ° C. for 3 hours. Evaluation was made based on whether gallium was deposited on the thin film layer after heating.

(金属部材との接合)
加熱して溶融させたInハンダ材を成形体の薄膜を形成した面、およびCu製バッキングプレートに塗布して成形体とバッキングプレートを接合し、ハンダ材を硬化させた。作製したターゲットを200℃の真空オーブンで3時間加熱し、加熱後に成形体と金属部材が剥離するか評価した。
(Joining with metal parts)
The In solder material that was heated and melted was applied to the surface of the molded body on which the thin film was formed and the Cu backing plate, and the molded body and the backing plate were joined together to cure the solder material. The produced target was heated in a vacuum oven at 200 ° C. for 3 hours, and it was evaluated whether the formed body and the metal member were peeled off after heating.

(実施例1)
UV洗浄した窒化ガリウム成形体に、タングステンをRFスパッタ、成膜速度50Å/minで成形体上に1000nmのタングステン薄膜を形成した。
Example 1
A tungsten thin film having a thickness of 1000 nm was formed on the green body by UV sputtering on a UV-cleaned gallium nitride molded body at a deposition rate of 50 Å / min.

薄膜層を形成した成形体を200℃で加熱したところ、表面へのガリウムの析出は見られなかった。   When the molded body on which the thin film layer was formed was heated at 200 ° C., no precipitation of gallium on the surface was observed.

薄膜層を形成した成形体とCu製のバッキングプレートをInハンダで接合し、200℃で加熱したところ、金属部材との接合部分は剥がれなかった。   When the formed body on which the thin film layer was formed and the Cu backing plate were bonded with In solder and heated at 200 ° C., the bonded portion with the metal member was not peeled off.

(実施例2)
UV洗浄した窒化ガリウム成形体に、タングステンをRFスパッタ、成膜速度60Å/minで成形体上に2000nmのタングステン薄膜を形成した。
(Example 2)
A tungsten thin film having a thickness of 2000 nm was formed on the molded body of the UV-cleaned gallium nitride formed by RF sputtering with tungsten at a deposition rate of 60 Å / min.

薄膜層を形成した成形体を200℃で加熱したところ、表面へのガリウムの析出は見られなかった。   When the molded body on which the thin film layer was formed was heated at 200 ° C., no precipitation of gallium on the surface was observed.

薄膜層を形成した成形体とCu製のバッキングプレートをInハンダで接合し、200℃で加熱したところ、金属部材との接合部分は剥がれなかった。   When the formed body on which the thin film layer was formed and the Cu backing plate were bonded with In solder and heated at 200 ° C., the bonded portion with the metal member was not peeled off.

(実施例3)
UV洗浄した窒化ガリウム成形体に、タングステンをRFスパッタ、成膜速度70Å/minで成形体上に2500nmのタングステン薄膜を形成した。
(Example 3)
A tungsten thin film having a thickness of 2500 nm was formed on the molded body of the UV-cleaned gallium nitride molded body by RF sputtering at a deposition rate of 70 Å / min.

薄膜層を形成した成形体を200℃で加熱したところ、表面へのガリウムの析出は見られなかった。   When the molded body on which the thin film layer was formed was heated at 200 ° C., no precipitation of gallium on the surface was observed.

薄膜層を形成した成形体とCu製のバッキングプレートをInハンダで接合し、200℃で加熱したところ、金属部材との接合部分は剥がれなかった。   When the formed body on which the thin film layer was formed and the Cu backing plate were bonded with In solder and heated at 200 ° C., the bonded portion with the metal member was not peeled off.

(実施例4)
UV洗浄した窒化ガリウム成形体に、タングステンをRFスパッタ、成膜速度50Å/minで成形体上に1500nmのタングステン薄膜を形成した。
(Example 4)
A tungsten thin film with a thickness of 1500 nm was formed on the molded body of the UV-cleaned gallium nitride molded body with RF sputtering at a deposition rate of 50 Å / min.

薄膜層を形成した成形体を200℃で加熱したところ、表面へのガリウムの析出は見られなかった。   When the molded body on which the thin film layer was formed was heated at 200 ° C., no precipitation of gallium on the surface was observed.

薄膜層を形成した成形体とCu製のバッキングプレートをInハンダで接合し、200℃で加熱したところ、金属部材との接合部分は剥がれなかった。   When the formed body on which the thin film layer was formed and the Cu backing plate were bonded with In solder and heated at 200 ° C., the bonded portion with the metal member was not peeled off.

(比較例1)
UV洗浄した窒化ガリウム成形体に、CuをRFスパッタ、成膜速度120Å/minで成形体上に1000nmの銅薄膜を形成した。
(Comparative Example 1)
A 1000 nm copper thin film was formed on the molded body of the UV-cleaned gallium nitride formed on the molded body by RF sputtering with Cu at a deposition rate of 120 Å / min.

薄膜層を形成した成形体を200℃で加熱したところ、成形体表面にガリウムの析出が見られた。   When the molded body on which the thin film layer was formed was heated at 200 ° C., precipitation of gallium was observed on the surface of the molded body.

薄膜層を形成した成形体とCu製のバッキングプレートをInハンダで接合し、200℃で加熱したところ、金属部材と成形体は剥がれた。   When the molded body on which the thin film layer was formed and the Cu backing plate were joined with In solder and heated at 200 ° C., the metal member and the molded body were peeled off.

(比較例2)
UV洗浄した窒化ガリウム成形体に、タングステンをRFスパッタ、成膜速度50Å/minで成形体上に500nmのタングステン薄膜を形成した。
(Comparative Example 2)
A tungsten thin film having a thickness of 500 nm was formed on the compacted gallium nitride molded body subjected to UV cleaning with RF sputtering at a deposition rate of 50 Å / min.

薄膜層を形成した成形体を200℃で加熱したところ、成形体表面にガリウムが析出した。   When the molded body on which the thin film layer was formed was heated at 200 ° C., gallium was deposited on the surface of the molded body.

薄膜層を形成した成形体とCu製のバッキングプレートをInハンダで接合し、200℃で加熱したところ、金属部材と成形体は剥がれた。   When the molded body on which the thin film layer was formed and the Cu backing plate were joined with In solder and heated at 200 ° C., the metal member and the molded body were peeled off.

(比較例3)
UV洗浄した窒化ガリウム成形体に、タングステンをDCスパッタ、成膜速度90Å/minで成形体上に3000nmのタングステン薄膜を形成した。
(Comparative Example 3)
A tungsten thin film having a thickness of 3000 nm was formed on the compacted gallium nitride molded body subjected to UV cleaning by DC sputtering with a deposition rate of 90 Å / min.

薄膜層を形成した成形体を200℃で加熱したところ、成形体表面にガリウムが析出した。   When the molded body on which the thin film layer was formed was heated at 200 ° C., gallium was deposited on the surface of the molded body.

薄膜層を形成した成形体とCu製のバッキングプレートをInハンダで接合し、200℃で加熱したところ、金属部材と成形体は剥がれた。   When the molded body on which the thin film layer was formed and the Cu backing plate were joined with In solder and heated at 200 ° C., the metal member and the molded body were peeled off.

(比較例4)
UV洗浄していない窒化ガリウム成形体に、タングステンをRFスパッタ、成膜速度50Å/minで成形体上に1000nmのタングステン薄膜を形成した。
(Comparative Example 4)
A tungsten thin film having a thickness of 1000 nm was formed on the molded body of gallium nitride that had not been UV-cleaned by RF sputtering at a deposition rate of 50 Å / min.

薄膜層を形成した成形体を200℃で加熱したところ、成形体表面にガリウムが析出した。   When the molded body on which the thin film layer was formed was heated at 200 ° C., gallium was deposited on the surface of the molded body.

薄膜層を形成した成形体とCu製のバッキングプレートをInハンダで接合し、200℃で加熱したところ、金属部材と成形体は剥がれた。   When the molded body on which the thin film layer was formed and the Cu backing plate were joined with In solder and heated at 200 ° C., the metal member and the molded body were peeled off.

Figure 2014091851
Figure 2014091851

Claims (1)

ターゲット材である窒化ガリウム成形物をUV洗浄した後、前記成形物に1000nmから2500nmのタングステン薄膜を形成することを特徴とする窒化ガリウムターゲットの製造方法。   A method for producing a gallium nitride target, comprising: cleaning a gallium nitride molded article as a target material with UV; and forming a tungsten thin film of 1000 nm to 2500 nm on the molded article.
JP2012242637A 2012-11-02 2012-11-02 Gallium nitride target and method of producing the same Pending JP2014091851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012242637A JP2014091851A (en) 2012-11-02 2012-11-02 Gallium nitride target and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012242637A JP2014091851A (en) 2012-11-02 2012-11-02 Gallium nitride target and method of producing the same

Publications (1)

Publication Number Publication Date
JP2014091851A true JP2014091851A (en) 2014-05-19

Family

ID=50936173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012242637A Pending JP2014091851A (en) 2012-11-02 2012-11-02 Gallium nitride target and method of producing the same

Country Status (1)

Country Link
JP (1) JP2014091851A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020075661A1 (en) 2018-10-10 2020-04-16 東ソー株式会社 Gallium nitride-based sintered body and method for manufacturing same
EP3998370A1 (en) 2015-03-30 2022-05-18 Tosoh Corporation Gallium nitride-based film and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3998370A1 (en) 2015-03-30 2022-05-18 Tosoh Corporation Gallium nitride-based film and method for manufacturing same
US11802049B2 (en) 2015-03-30 2023-10-31 Tosoh Corporation Gallium nitride-based sintered compact and method for manufacturing same
WO2020075661A1 (en) 2018-10-10 2020-04-16 東ソー株式会社 Gallium nitride-based sintered body and method for manufacturing same
KR20210071954A (en) 2018-10-10 2021-06-16 도소 가부시키가이샤 Gallium nitride-based sintered compact and method for manufacturing the same

Similar Documents

Publication Publication Date Title
WO2018199060A1 (en) Ceramic circuit board, method for manufacturing ceramic circuit board, and module using ceramic circuit board
JP5210498B2 (en) Joining type sputtering target and method for producing the same
JP6511424B2 (en) LAMINATE AND METHOD FOR MANUFACTURING THE SAME
CN107004752A (en) The manufacture method of light-emitting device substrate and light-emitting device substrate
TW201325330A (en) Wiring substrate and method for manufacturing same and semiconductor device
JP6584399B2 (en) Composite and production method thereof
JP2011129880A (en) Heat sink for electronic device, and process for production thereof
JP2014091851A (en) Gallium nitride target and method of producing the same
KR20090092289A (en) Method of diffusion-bond powder metallurgy sputtering target
JP6176854B2 (en) Composite material with active metal brazing material layer
CN105331940A (en) Method for depositing metal membrane on substrate and LED device
JP5974831B2 (en) Gallium nitride target
CN105814233B (en) Diffusion bonded copper sputtering target assembly
JP2018111111A (en) Manufacturing method for metal junction body and semiconductor device
JP4747368B2 (en) W-Ti target for sputtering for forming a W-Ti diffusion prevention film
TWI612025B (en) Solder for fabricating sputtering target and applying method thereof
JP6213684B2 (en) Copper alloy target
TW201704482A (en) Cu-Ga alloy sputtering target, and method for producing Cu-Ga alloy sputtering target
JP2013227194A (en) Method for manufacturing metal-ceramic bonding substrate
JP4449699B2 (en) Discharge surface treatment electrode and discharge surface treatment method
JP6273734B2 (en) Flat plate sputtering target and manufacturing method thereof
JP2008057031A (en) Wiring and electrode electrode for liquid crystal display free from generation of heat defect and sputtering target for forming them
KR20160051577A (en) Preparation method of reuse ito target by thermal spray
JP4720326B2 (en) Ti-W target for sputtering
TWI511827B (en) Active soft solder filler composition