JP2014091792A - Method for producing reactive acrylic resin - Google Patents

Method for producing reactive acrylic resin Download PDF

Info

Publication number
JP2014091792A
JP2014091792A JP2012243788A JP2012243788A JP2014091792A JP 2014091792 A JP2014091792 A JP 2014091792A JP 2012243788 A JP2012243788 A JP 2012243788A JP 2012243788 A JP2012243788 A JP 2012243788A JP 2014091792 A JP2014091792 A JP 2014091792A
Authority
JP
Japan
Prior art keywords
acrylic resin
monomer
parts
reactive acrylic
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012243788A
Other languages
Japanese (ja)
Other versions
JP6087586B2 (en
Inventor
Kenichi Tsukinawa
賢一 月縄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Negami Chemical Industrial Co Ltd
Original Assignee
Negami Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Negami Chemical Industrial Co Ltd filed Critical Negami Chemical Industrial Co Ltd
Priority to JP2012243788A priority Critical patent/JP6087586B2/en
Publication of JP2014091792A publication Critical patent/JP2014091792A/en
Application granted granted Critical
Publication of JP6087586B2 publication Critical patent/JP6087586B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a reactive acrylic resin having a polymerizable double bond in the molecule without using an organic solvent.SOLUTION: There is provided a method for producing a reactive acrylic resin having a polymerizable double bond in the molecule, the method comprising the steps of: (1) obtaining a carboxyl group-containing acrylic resin by copolymerizing a (meth)acrylic acid ester and a carboxyl group-containing radically polymerizable monomer, followed by suspension polymerization in water used as a medium; and (2) reacting the carboxyl group-containing acrylic resin and an epoxy group-containing radically polymerizable monomer in an aqueous medium.

Description

本発明は、反応性アクリル樹脂の製造方法に関する。   The present invention relates to a method for producing a reactive acrylic resin.

近年、工業製品の高機能化や高性能化に伴い、高分子材料にも高い機能が求められている。たとえば、本来熱可塑性を有するアクリル樹脂に対して、成型加工又は塗装した後、光硬化又は熱硬化する機能が求められている。   In recent years, with high functionality and high performance of industrial products, high functionality is also required for polymer materials. For example, an acrylic resin that is inherently thermoplastic is required to have a function of photocuring or thermosetting after molding or coating.

熱可塑性アクリル樹脂が光硬化又は熱硬化する機能を備えるには、樹脂がその分子内に重合性二重結合を有した構造であること等が必要である。
分子内に重合性二重結合を有するアクリル樹脂(反応性アクリル樹脂)の製造方法としては、酸基含有アクリル系樹脂と脂環式エポキシ基含有不飽和化合物との反応、又は、脂環式エポキシ基含有不飽和樹脂と酸基含有不飽和化合物との反応、を有機溶剤中で行うことにより、樹脂中に硬化可能な二重結合を導入する方法が知られている(特許文献1参照)。
また、特定のホスフィン化合物を触媒として用い、有機溶剤中で、カルボキシ基を有する共重合体のカルボキシ基にエポキシ基含有不飽和化合物を付加させる製造方法が知られている(特許文献2参照)。
In order for the thermoplastic acrylic resin to have a function of photocuring or thermosetting, it is necessary that the resin has a structure having a polymerizable double bond in the molecule.
As a method for producing an acrylic resin having a polymerizable double bond in the molecule (reactive acrylic resin), a reaction between an acid group-containing acrylic resin and an alicyclic epoxy group-containing unsaturated compound, or an alicyclic epoxy A method is known in which a curable double bond is introduced into a resin by performing a reaction between a group-containing unsaturated resin and an acid group-containing unsaturated compound in an organic solvent (see Patent Document 1).
Moreover, the manufacturing method which adds an epoxy-group-containing unsaturated compound to the carboxy group of the copolymer which has a carboxy group in an organic solvent using a specific phosphine compound as a catalyst is known (refer patent document 2).

特開平1−289820号公報JP-A-1-289820 特開平10−231318号公報Japanese Patent Laid-Open No. 10-231318

しかしながら、特許文献1及び特許文献2に記載の方法では、有機溶剤中で反応を行う必要があるため、得られる反応物は、反応の際に媒体として用いた有機溶剤を溶媒とするアクリル樹脂溶液となる。
このため、反応性アクリル樹脂を樹脂溶液として用いる場合には、その溶媒が、該アクリル樹脂の製造時に媒体として用いた有機溶剤に制限される、という問題がある。
また、反応性アクリル樹脂の用途が成型加工の場合には、前記アクリル樹脂溶液から有機溶剤を予め除去する操作を要する。
本発明は上記事情に鑑みてなされたものであり、有機溶剤を用いずに、分子内に重合性二重結合を有する反応性アクリル樹脂を得ること、を課題とする。
However, in the methods described in Patent Document 1 and Patent Document 2, since it is necessary to perform the reaction in an organic solvent, the obtained reaction product is an acrylic resin solution using the organic solvent used as a medium in the reaction as a solvent. It becomes.
For this reason, when using a reactive acrylic resin as a resin solution, there exists a problem that the solvent is restrict | limited to the organic solvent used as a medium at the time of manufacture of this acrylic resin.
Further, when the reactive acrylic resin is used for molding, an operation for removing the organic solvent from the acrylic resin solution in advance is required.
This invention is made | formed in view of the said situation, and makes it a subject to obtain the reactive acrylic resin which has a polymerizable double bond in a molecule | numerator, without using an organic solvent.

本発明は以下の態様を包含する。
[1](メタ)アクリル酸アルキルエステルとカルボキシ基含有ラジカル重合性単量体とを、水を媒体とした懸濁重合により共重合させてカルボキシ基含有アクリル樹脂を得る工程(1)と、該カルボキシ基含有アクリル樹脂とエポキシ基含有ラジカル重合性単量体とを水媒体中で反応させる工程(2)と、を含む、分子内に重合性二重結合を有する反応性アクリル樹脂の製造方法。
[2]前記工程(1)及び/又は前記工程(2)でアミン化合物を用いる、[1]に記載の反応性アクリル樹脂の製造方法。
The present invention includes the following aspects.
[1] A step (1) of obtaining a carboxy group-containing acrylic resin by copolymerizing a (meth) acrylic acid alkyl ester and a carboxy group-containing radical polymerizable monomer by suspension polymerization using water as a medium; A process for producing a reactive acrylic resin having a polymerizable double bond in the molecule, comprising a step (2) of reacting a carboxyl group-containing acrylic resin and an epoxy group-containing radical polymerizable monomer in an aqueous medium.
[2] The method for producing a reactive acrylic resin according to [1], wherein an amine compound is used in the step (1) and / or the step (2).

本発明によれば、有機溶剤を用いずに、分子内に重合性二重結合を有する反応性アクリル樹脂を得ることができる。   According to the present invention, a reactive acrylic resin having a polymerizable double bond in the molecule can be obtained without using an organic solvent.

ビスフェノールA型液状エポキシ樹脂(828)(上側)、及び、828とメタクリル酸グリシジルエステル(GMA)との混合物(下側)の赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of a mixture (lower side) of bisphenol A liquid epoxy resin (828) (upper side) and 828, and glycidyl methacrylate ester (GMA). GMA(上側)、及び、エチレングリコールジメタクリル酸エステル(下側)の赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of GMA (upper side) and ethylene glycol dimethacrylic acid ester (lower side). 上から順に、実施例1、実施例2、比較例1でそれぞれ得られたアクリル樹脂の赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of the acrylic resin obtained in Example 1, Example 2, and the comparative example 1 in order from the top, respectively. 上から順に、実施例3、実施例4、比較例2でそれぞれ得られたアクリル樹脂の赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of the acrylic resin obtained by Example 3, Example 4, and the comparative example 2, respectively from the top. 実施例6(上側)、及び、実施例7(下側)でそれぞれ得られたアクリル樹脂の赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of the acrylic resin obtained in Example 6 (upper side) and Example 7 (lower side), respectively. 実施例8(上側)、及び、実施例9(下側)でそれぞれ得られたアクリル樹脂の赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of the acrylic resin obtained in Example 8 (upper side) and Example 9 (lower side), respectively. 上から順に、アリルグリシジルエーテル、828とアリルグリシジルエーテルとの混合物、実施例5で得られたアクリル樹脂の赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of the acrylic resin obtained in Example 5 in order from the top, the mixture of allyl glycidyl ether, 828, and allyl glycidyl ether.

<反応性アクリル樹脂の製造方法>
本発明の反応性アクリル樹脂の製造方法は、(メタ)アクリル酸アルキルエステルとカルボキシ基含有ラジカル重合性単量体とを、水を媒体とした懸濁重合により共重合させてカルボキシ基含有アクリル樹脂を得る工程(1)と、該カルボキシ基含有アクリル樹脂とエポキシ基含有ラジカル重合性単量体とを水媒体中で反応させる工程(2)と、を含む。
以下、(メタ)アクリル酸アルキルエステル、カルボキシ基含有ラジカル重合性単量体、エポキシ基含有ラジカル重合性単量体を、それぞれ単量体(a)、単量体(b)、単量体(c)ともいう。
尚、本発明において「(メタ)アクリル酸」とは、アクリル酸及びメタクリル酸の総称であり、「(メタ)アクリル酸アルキルエステル」とは、アクリル酸アルキルエステル及びメタクリル酸アルキルエステルの総称であり、「(メタ)アクリル酸グリシジルエステル」とは、アクリル酸グリシジルエステル及びメタクリル酸グリシジルエステルの総称であり、「(メタ)アクリロニトリル」とは、アクリロニトリル及びメタクリロニトリルの総称である。
<Method for producing reactive acrylic resin>
The method for producing a reactive acrylic resin according to the present invention comprises a copolymerization of a (meth) acrylic acid alkyl ester and a carboxy group-containing radical polymerizable monomer by suspension polymerization using water as a medium, and a carboxy group-containing acrylic resin. And a step (2) of reacting the carboxy group-containing acrylic resin and the epoxy group-containing radical polymerizable monomer in an aqueous medium.
Hereinafter, (meth) acrylic acid alkyl ester, carboxy group-containing radical polymerizable monomer, and epoxy group-containing radical polymerizable monomer are respectively represented as monomer (a), monomer (b), monomer ( Also referred to as c).
In the present invention, “(meth) acrylic acid” is a generic term for acrylic acid and methacrylic acid, and “(meth) acrylic acid alkyl ester” is a generic term for alkyl acrylates and alkyl methacrylates. , “(Meth) acrylic acid glycidyl ester” is a generic term for glycidyl acrylate and glycidyl methacrylate, and “(meth) acrylonitrile” is a generic term for acrylonitrile and methacrylonitrile.

((メタ)アクリル酸アルキルエステル:単量体(a))
本発明で使用できる単量体(a)は、単量体(b)と共重合し得る化合物である。
単量体(a)としては、たとえば(メタ)アクリル酸メチルエステル、(メタ)アクリル酸エチルエステル、(メタ)アクリル酸n−ブチルエステル、(メタ)アクリル酸i−ブチルエステル、(メタ)アクリル酸t−ブチルエステル、(メタ)アクリル酸2−エチルヘキシルエステル、(メタ)アクリル酸ベンジルエステル、(メタ)アクリル酸シクロヘキシルエステル、(メタ)アクリル酸イソボニルエステル、(メタ)アクリル酸ヒドロキシエチルエステル、(メタ)アクリル酸ヒドロキシプロピルエステル、(メタ)アクリル酸ジメチルアミノエチルエステル、(メタ)アクリル酸ジエチルアミノエチルエステルなどが挙げられる。
単量体(a)は、1種単独で用いてもよいし、2種以上を併用してもよい。
((Meth) acrylic acid alkyl ester: monomer (a))
The monomer (a) that can be used in the present invention is a compound that can be copolymerized with the monomer (b).
As the monomer (a), for example, (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid n-butyl ester, (meth) acrylic acid i-butyl ester, (meth) acrylic Acid t-butyl ester, (meth) acrylic acid 2-ethylhexyl ester, (meth) acrylic acid benzyl ester, (meth) acrylic acid cyclohexyl ester, (meth) acrylic acid isobornyl ester, (meth) acrylic acid hydroxyethyl ester, Examples include (meth) acrylic acid hydroxypropyl ester, (meth) acrylic acid dimethylaminoethyl ester, (meth) acrylic acid diethylaminoethyl ester, and the like.
A monomer (a) may be used individually by 1 type, and may use 2 or more types together.

(カルボキシ基含有ラジカル重合性単量体:単量体(b))
本発明で使用できる単量体(b)としては、たとえば(メタ)アクリル酸、クロトン酸、桂皮酸、マレイン酸、フマル酸、シトラコン酸、イタコン酸などが挙げられる。これらの中でも、入手し易く、単量体(a)との共重合性が良いことから、(メタ)アクリル酸が特に好ましい。
単量体(b)は、1種単独で用いてもよいし、2種以上を併用してもよい。
(Carboxy group-containing radical polymerizable monomer: monomer (b))
Examples of the monomer (b) that can be used in the present invention include (meth) acrylic acid, crotonic acid, cinnamic acid, maleic acid, fumaric acid, citraconic acid, and itaconic acid. Among these, (meth) acrylic acid is particularly preferable because it is easily available and has good copolymerizability with the monomer (a).
A monomer (b) may be used individually by 1 type, and may use 2 or more types together.

(エポキシ基含有ラジカル重合性単量体:単量体(c))
単量体(c)は、分子内に、エポキシ基と重合性二重結合とを有するものである。かかる単量体(c)を、工程(1)で得られるカルボキシ基含有アクリル樹脂と反応させることで、アクリル樹脂の分子内に重合性二重結合が導入される。
本発明で使用できる単量体(c)としては、たとえば(メタ)アクリル酸グリシジルエステル、α−エチルアクリル酸グリシジルエステル、α−n−プロピルアクリル酸グリシジルエステル、α−n−ブチルアクリル酸グリシジルエステル、アリルグリシジルエーテルなどが挙げられる。
単量体(c)は、1種単独で用いてもよいし、2種以上を併用してもよい。
(Epoxy group-containing radical polymerizable monomer: monomer (c))
The monomer (c) has an epoxy group and a polymerizable double bond in the molecule. By reacting the monomer (c) with the carboxy group-containing acrylic resin obtained in the step (1), a polymerizable double bond is introduced into the molecule of the acrylic resin.
Examples of the monomer (c) that can be used in the present invention include (meth) acrylic acid glycidyl ester, α-ethylacrylic acid glycidyl ester, α-n-propylacrylic acid glycidyl ester, α-n-butylacrylic acid glycidyl ester. And allyl glycidyl ether.
A monomer (c) may be used individually by 1 type, and may use 2 or more types together.

[工程(1)]
工程(1)では、単量体(a)と単量体(b)とを、水を媒体とした懸濁重合により共重合させてカルボキシ基含有アクリル樹脂を得る。
一例として、単量体(a)と、単量体(b)と、重合開始剤及び必要に応じてその他成分(以下「重合開始剤等」という)と、を水媒体に分散させて懸濁液を調製し、該懸濁液を加熱することで懸濁重合を行うことができる。
[Step (1)]
In the step (1), the monomer (a) and the monomer (b) are copolymerized by suspension polymerization using water as a medium to obtain a carboxy group-containing acrylic resin.
As an example, the monomer (a), the monomer (b), a polymerization initiator and, if necessary, other components (hereinafter referred to as “polymerization initiator”) are dispersed in an aqueous medium and suspended. Suspension polymerization can be performed by preparing a liquid and heating the suspension.

単量体(a)の配合量は、懸濁重合に用いる重合性単量体の総質量に対して20〜99.9質量%であることが好ましく、40〜99質量%であることがより好ましい。
単量体(a)の配合量を好ましい上限値以下とすることで、導入するカルボキシ基が過少となることなく共重合物を容易に得ることができる。一方、単量体(a)の配合量を好ましい下限値以上とすることで、導入するカルボキシ基が過多となることなく共重合物を容易に得ることができる。
単量体(b)の配合量は、懸濁重合に用いる重合性単量体の総質量に対して0.1〜50質量%であることが好ましく、1〜30質量%であることがより好ましい。
単量体(b)は水に溶解しやすい。このため、その配合量が50質量%を超えると、懸濁重合の際に、共重合物の粒子が凝集又は固化を生じやすい。一方、単量体(b)の配合量を好ましい下限値以上とすることで、得られる共重合物にカルボキシ基が充分に導入される。
尚、「懸濁重合に用いる重合性単量体」とは、単量体(a)、単量体(b)、これら以外の重合性単量体(後述の単量体(d))を包含する。
The blending amount of the monomer (a) is preferably 20 to 99.9% by mass and more preferably 40 to 99% by mass with respect to the total mass of the polymerizable monomer used for suspension polymerization. preferable.
By setting the blending amount of the monomer (a) to a preferable upper limit value or less, a copolymer can be easily obtained without introducing too few carboxy groups. On the other hand, by setting the blending amount of the monomer (a) to a preferable lower limit value or more, a copolymer can be easily obtained without introducing too many carboxy groups.
It is preferable that the compounding quantity of a monomer (b) is 0.1-50 mass% with respect to the gross mass of the polymerizable monomer used for suspension polymerization, and it is more preferable that it is 1-30 mass%. preferable.
The monomer (b) is easily dissolved in water. For this reason, if the blending amount exceeds 50% by mass, the particles of the copolymer tend to aggregate or solidify during suspension polymerization. On the other hand, a carboxy group is fully introduce | transduced into the copolymer obtained by making the compounding quantity of a monomer (b) more than a preferable lower limit.
The “polymerizable monomer used for suspension polymerization” refers to monomer (a), monomer (b), and other polymerizable monomers (monomer (d) described later). Includes.

単量体(a)と単量体(b)との混合比率は、「単量体(b)の配合量に対する、単量体(a)の配合量」の質量比が、1〜999であることが好ましく、2〜99であることがより好ましく、2〜20であることがさらに好ましい。
該質量比を好ましい上限値以下とすることで、導入するカルボキシ基が過少となることなく共重合物を容易に得ることができる。一方、該質量比を好ましい下限値以上とすることで、懸濁重合の際に、共重合物の粒子が凝集又は固化を生じにくい。加えて、導入するカルボキシ基が過多となることなく共重合物を容易に得ることができる。
The mixing ratio of the monomer (a) and the monomer (b) is such that the mass ratio of “the amount of monomer (a) to the amount of monomer (b)” is 1 to 999. It is preferable that it is 2 to 99, more preferably 2 to 20.
By setting the mass ratio to a preferable upper limit value or less, a copolymer can be easily obtained without introducing too few carboxy groups. On the other hand, when the mass ratio is set to a preferable lower limit value or more, the particles of the copolymer are less likely to aggregate or solidify during suspension polymerization. In addition, the copolymer can be easily obtained without excessive introduction of carboxy groups.

懸濁液中の水の含有量は、懸濁重合に用いる重合性単量体の総質量の1〜10倍に相当する質量であることが好ましい。
懸濁液の調製方法は、たとえば、水媒体に、単量体(a)と単量体(b)と重合開始剤等とを個別に加えて混合する方法;水媒体に、単量体(a)と単量体(b)と重合開始剤等との混合物を加えて混合する方法(後者)などが挙げられる。なかでも、懸濁液の分散安定性又は重合効率が良好なことから、後者の方法が好ましく、予め調製しておいた単量体(a)と単量体(b)と重合開始剤等との混合溶液を水媒体に加えて混合する方法が特に好ましい。
The water content in the suspension is preferably a mass corresponding to 1 to 10 times the total mass of the polymerizable monomers used for the suspension polymerization.
The method for preparing the suspension is, for example, a method in which the monomer (a), the monomer (b), the polymerization initiator and the like are separately added to the aqueous medium and mixed; the monomer ( Examples thereof include a method in which a mixture of a), the monomer (b) and a polymerization initiator is added and mixed (the latter). Among these, the latter method is preferable because the dispersion stability of the suspension or the polymerization efficiency is good. The monomer (a), the monomer (b), the polymerization initiator, and the like prepared in advance are preferable. Particularly preferred is a method in which the mixed solution is added to an aqueous medium and mixed.

単量体(a)と単量体(b)との懸濁重合を行う際の温度条件は、特に限定されないが、40〜100℃の範囲内とすることが好ましい。重合温度を40℃以上とすることで、比較的短時間で重合を行うことができ、重合温度を100℃以下とすることで、懸濁液の分散安定性を良好に維持しつつ重合を行いやすい。
かかる懸濁重合の間は、重合温度を、一定の温度に保ちながら重合を行ってもよく、連続的に又は段階的に温度を上昇させながら重合を行ってもよい。なかでも、重合効率が良好なことから、連続的に又は段階的に温度を上昇させながら重合を行うことが好ましい。
Although the temperature conditions at the time of performing suspension polymerization of a monomer (a) and a monomer (b) are not specifically limited, It is preferable to set it in the range of 40-100 degreeC. By setting the polymerization temperature to 40 ° C. or higher, polymerization can be performed in a relatively short time. By setting the polymerization temperature to 100 ° C. or lower, polymerization is performed while maintaining good dispersion stability of the suspension. Cheap.
During such suspension polymerization, the polymerization may be performed while maintaining the polymerization temperature at a constant temperature, or the polymerization may be performed while increasing the temperature continuously or stepwise. Among these, since the polymerization efficiency is good, it is preferable to carry out the polymerization while increasing the temperature continuously or stepwise.

単量体(a)と単量体(b)との懸濁重合を行う際の反応時間は、温度条件や重合スケール等を考慮して適宜決定すればよく、たとえば1〜20時間とすることが好ましい。
かかる懸濁重合を行う際、懸濁液の撹拌速度は、重合スケール等を考慮して適宜設定すればよく、たとえば撹拌翼の回転速度で20〜1000rpm程度とすることが好ましい。一例として実験室等のフラスコスケールの場合、懸濁液の撹拌速度は、撹拌翼の回転速度で200〜600rpm程度とすることが好ましい。
The reaction time for carrying out suspension polymerization of the monomer (a) and the monomer (b) may be appropriately determined in consideration of temperature conditions, polymerization scale, etc., for example, 1 to 20 hours. Is preferred.
When performing such suspension polymerization, the stirring speed of the suspension may be appropriately set in consideration of the polymerization scale and the like. For example, it is preferable to set the stirring speed to about 20 to 1000 rpm. As an example, in the case of a flask scale in a laboratory or the like, the stirring speed of the suspension is preferably about 200 to 600 rpm as the rotation speed of the stirring blade.

(重合開始剤)
懸濁重合の際に使用できる重合開始剤としては、たとえば2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2−メチルブチロニトリル)等のアゾ系重合開始剤;ジベンゾイルパーオキサイド、ジラウロイルパーオキサイド、t−ブチルパーオキシピヴァレート、t−ブチルパーオキシ2−エチルヘキサノエート等の有機過酸化物系重合開始剤などが挙げられる。
重合開始剤は、1種単独で用いてもよいし、2種以上を併用してもよい。
重合開始剤の配合量は、懸濁重合に用いる重合性単量体の総質量を100質量部とした際、これに対して0.01〜20質量部であることが好ましく、0.05〜5質量部であることがより好ましい。
(Polymerization initiator)
Examples of the polymerization initiator that can be used for suspension polymerization include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis ( Azo polymerization initiators such as 2-methylbutyronitrile); organic peroxidation such as dibenzoyl peroxide, dilauroyl peroxide, t-butylperoxypivalate, t-butylperoxy 2-ethylhexanoate And physical polymerization initiators.
A polymerization initiator may be used individually by 1 type, and may use 2 or more types together.
The blending amount of the polymerization initiator is preferably 0.01 to 20 parts by mass with respect to the total mass of the polymerizable monomers used for the suspension polymerization being 100 parts by mass, 0.05 to More preferably, it is 5 parts by mass.

(その他成分)
懸濁重合の際に使用できるその他成分としては、たとえば、単量体(a)及び単量体(b)以外の重合性単量体(以下「単量体(d)」ともいう)、重合調整剤、分散剤などが挙げられる。
単量体(a)及び単量体(b)以外の重合性単量体(単量体(d)):
単量体(d)としては、単量体(a)及び単量体(b)と共重合し得る不飽和化合物が挙げられ、反応性アクリル樹脂に要求される特性等によって適宜選択できる。単量体(d)を併用することにより、反応性アクリル樹脂の有機溶剤への溶解性、硬化物とした際の物性(粘着性等)などを制御できる。
単量体(d)として具体的には、(メタ)アクリロニトリル、酢酸ビニル、スチレンなどを使用できる。
単量体(d)は、1種単独で用いてもよいし、2種以上を併用してもよい。
単量体(d)を用いる場合、単量体(d)の配合量は、懸濁重合に用いる重合性単量体の総質量に対して1〜30質量%であることが好ましい。
(Other ingredients)
Other components that can be used in suspension polymerization include, for example, polymerizable monomers other than monomer (a) and monomer (b) (hereinafter also referred to as “monomer (d)”), polymerization Examples thereof include a regulator and a dispersant.
Polymerizable monomer other than monomer (a) and monomer (b) (monomer (d)):
Examples of the monomer (d) include unsaturated compounds that can be copolymerized with the monomer (a) and the monomer (b), and can be appropriately selected depending on the characteristics required for the reactive acrylic resin. By using the monomer (d) in combination, it is possible to control the solubility of the reactive acrylic resin in the organic solvent, the physical properties (such as adhesiveness) when the cured product is used.
Specifically, (meth) acrylonitrile, vinyl acetate, styrene and the like can be used as the monomer (d).
A monomer (d) may be used individually by 1 type, and may use 2 or more types together.
When using a monomer (d), it is preferable that the compounding quantity of a monomer (d) is 1-30 mass% with respect to the gross mass of the polymerizable monomer used for suspension polymerization.

重合調整剤:
懸濁重合の際に重合調整剤を用いることにより、工程(1)で得られるカルボキシ基含有アクリル樹脂の重合度を制御できる。
重合調整剤としては、たとえばt−ドデシルメルカプタン、n−ドデシルメルカプタン、n−オクタデシルメルカプタン等のメルカプタン類;α−メチルスチレンダイマーなどを使用できる。
重合調整剤は、1種単独で用いてもよいし、2種以上を併用してもよい。
重合調整剤を用いる場合、重合調整剤の配合量は、懸濁重合に用いる重合性単量体の総質量を100質量部とした際、これに対して10質量部以下であることが好ましく、5質量部以下であることがより好ましい。
Polymerization regulator:
The polymerization degree of the carboxy group-containing acrylic resin obtained in step (1) can be controlled by using a polymerization regulator during suspension polymerization.
As the polymerization regulator, for example, mercaptans such as t-dodecyl mercaptan, n-dodecyl mercaptan, n-octadecyl mercaptan; α-methylstyrene dimer and the like can be used.
A polymerization regulator may be used individually by 1 type, and may use 2 or more types together.
When a polymerization regulator is used, the blending amount of the polymerization regulator is preferably 10 parts by mass or less based on 100 parts by mass of the polymerizable monomer used for suspension polymerization. More preferably, it is 5 parts by mass or less.

分散剤:
懸濁重合の際に使用できる分散剤としては、たとえばデンプン、ゼラチン、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース等の水溶性高分子;炭酸カルシウム、ベントナイト、リン酸カルシウム、ピロリン酸マグネシウム、硫酸バリウム等の難溶性微粉末などが挙げられる。
分散剤は、1種単独で用いてもよいし、2種以上を併用してもよい。
分散剤を用いる場合、分散剤の配合量は、懸濁液中の濃度で0.0001〜30質量%であることが好ましい。分散剤の懸濁液中の濃度を0.0001質量%以上とすることで、懸濁重合時の分散安定性が良好となる傾向にある。一方、分散剤の懸濁液中の濃度を30質量%以下とすることで、反応性アクリル樹脂の洗浄性、脱水性、乾燥性が良好となる傾向にある。
Dispersant:
Examples of the dispersant that can be used in the suspension polymerization include water-soluble polymers such as starch, gelatin, polyvinyl alcohol, carboxymethylcellulose, and hydroxypropylmethylcellulose; difficulty such as calcium carbonate, bentonite, calcium phosphate, magnesium pyrophosphate, and barium sulfate. Examples thereof include soluble fine powders.
A dispersing agent may be used individually by 1 type, and may use 2 or more types together.
When using a dispersing agent, it is preferable that the compounding quantity of a dispersing agent is 0.0001-30 mass% in the density | concentration in suspension. By setting the concentration of the dispersant in the suspension to 0.0001% by mass or more, the dispersion stability during suspension polymerization tends to be good. On the other hand, by setting the concentration of the dispersant in the suspension to 30% by mass or less, the cleaning property, dewatering property, and drying property of the reactive acrylic resin tend to be improved.

(カルボキシ基含有アクリル樹脂)
懸濁重合の後、懸濁液から固液分離により、固体状のカルボキシ基含有アクリル樹脂を分離回収できる。
工程(1)においては、たとえば、酸価が5〜200KOHmg/g程度のカルボキシ基含有アクリル樹脂が容易に得られる。本発明において「酸価」は、JIS K 0070(中和滴定法)に準じて測定される値を示す。
(Carboxy group-containing acrylic resin)
After suspension polymerization, a solid carboxy group-containing acrylic resin can be separated and recovered from the suspension by solid-liquid separation.
In the step (1), for example, a carboxy group-containing acrylic resin having an acid value of about 5 to 200 KOHmg / g is easily obtained. In the present invention, “acid value” indicates a value measured according to JIS K 0070 (neutralization titration method).

懸濁重合の後は、該懸濁重合により生成するカルボキシ基含有アクリル樹脂を、懸濁液から固液分離し、取り出したカルボキシ基含有アクリル樹脂を単量体(c)と反応させてもよく(前者);懸濁重合後の懸濁液に、続けて単量体(c)を加えて反応を行ってもよい。
前者の場合、取り出したカルボキシ基含有アクリル樹脂を洗浄して乾燥した後、単量体(c)と反応させてもよく;取り出したカルボキシ基含有アクリル樹脂を洗浄も乾燥もせずに、単量体(c)と反応させてもよい。
After suspension polymerization, the carboxy group-containing acrylic resin produced by the suspension polymerization may be solid-liquid separated from the suspension, and the removed carboxy group-containing acrylic resin may be reacted with the monomer (c). (The former); The monomer (c) may be subsequently added to the suspension after suspension polymerization to carry out the reaction.
In the former case, the carboxy group-containing acrylic resin taken out may be washed and dried, and then reacted with the monomer (c); the carboxy group-containing acrylic resin taken out is not washed or dried; You may make it react with (c).

[工程(2)]
工程(2)では、前記工程(1)で得たカルボキシ基含有アクリル樹脂とエポキシ基含有ラジカル重合性単量体(単量体(c))とを水媒体中で反応させる。
たとえば、カルボキシ基含有アクリル樹脂と必要に応じて分散剤等とを水媒体に分散させた混合液に、単量体(c)を加え、加熱することで反応を行うことができる。又は、前記工程(1)での懸濁重合後の懸濁液に、もしくは該懸濁液に必要に応じて分散剤等を添加した混合液に、単量体(c)を加え、加熱することで反応を行うことができる。
かかる反応により、カルボキシ基含有アクリル樹脂中のカルボキシ基と、単量体(c)中のエポキシ基と、が結合して、カルボキシ基含有アクリル樹脂に、単量体(c)が有する重合性二重結合が導入され、分子内に重合性二重結合を有する反応性アクリル樹脂が得られる。
[Step (2)]
In the step (2), the carboxy group-containing acrylic resin obtained in the step (1) is reacted with the epoxy group-containing radical polymerizable monomer (monomer (c)) in an aqueous medium.
For example, the monomer (c) can be added to a mixed solution in which a carboxy group-containing acrylic resin and, if necessary, a dispersant and the like are dispersed in an aqueous medium, and the reaction can be performed by heating. Alternatively, the monomer (c) is added to the suspension after the suspension polymerization in the step (1) or to a mixed solution in which a dispersant or the like is added to the suspension as necessary, and heated. The reaction can be performed.
By this reaction, the carboxy group in the carboxy group-containing acrylic resin and the epoxy group in the monomer (c) are bonded to each other, and the polymerizable two-component monomer (c) has in the carboxy group-containing acrylic resin. A reactive acrylic resin having a double bond introduced therein and a polymerizable double bond in the molecule is obtained.

単量体(c)の配合量は、懸濁重合に用いた単量体(b)の1モルに対して0.01〜5モルであることが好ましい。
単量体(c)の配合量を0.01モル以上とすることで、分子内に所望の割合で重合性二重結合を有する反応性アクリル樹脂が得られやすい。一方、単量体(c)の配合量を5モル以下とすることで、未反応の単量体(c)をより低減できる。
カルボキシ基含有アクリル樹脂と単量体(c)との反応において、媒体として存在する水の量は、該反応に用いるカルボキシ基含有アクリル樹脂の質量の1〜10倍に相当する質量とすることが好ましい。
It is preferable that the compounding quantity of a monomer (c) is 0.01-5 mol with respect to 1 mol of the monomer (b) used for suspension polymerization.
By setting the blending amount of the monomer (c) to 0.01 mol or more, it is easy to obtain a reactive acrylic resin having a polymerizable double bond in the molecule at a desired ratio. On the other hand, an unreacted monomer (c) can be reduced more by making the compounding quantity of a monomer (c) into 5 mol or less.
In the reaction between the carboxy group-containing acrylic resin and the monomer (c), the amount of water present as a medium should be a mass corresponding to 1 to 10 times the mass of the carboxy group-containing acrylic resin used in the reaction. preferable.

前記の混合液に、又は、懸濁液に、単量体(c)を加えた後、温度を好ましくは0〜100℃の範囲に制御して反応系内の均質化を図ることが好ましい。これにより、カルボキシ基含有アクリル樹脂に単量体(c)が充分に接触(含浸)することで反応効率が高まる。
カルボキシ基含有アクリル樹脂と単量体(c)との反応を行う際の温度条件は、特に限定されないが、50〜100℃の範囲内とすることが好ましい。反応温度を50℃以上とすることで、比較的短時間で付加反応を行うことができ、反応温度を100℃以下とすることで、反応液の分散安定性がより良好に維持される。加えて、単量体(c)が有する重合性二重結合の安定性もより良好となり、反応性アクリル樹脂が安定に得られやすくなる。
カルボキシ基含有アクリル樹脂と単量体(c)との反応を行う際の反応時間は、温度条件や反応スケール等を考慮して適宜決定すればよく、たとえば1〜20時間とすることが好ましい。
It is preferable to homogenize the reaction system by adding the monomer (c) to the liquid mixture or the suspension and then controlling the temperature preferably in the range of 0 to 100 ° C. Thereby, the monomer (c) is sufficiently in contact (impregnated) with the carboxy group-containing acrylic resin, thereby increasing the reaction efficiency.
Although the temperature conditions at the time of performing reaction with a carboxyl group-containing acrylic resin and a monomer (c) are not specifically limited, It is preferable to set it as the range of 50-100 degreeC. By setting the reaction temperature to 50 ° C. or higher, the addition reaction can be carried out in a relatively short time, and by setting the reaction temperature to 100 ° C. or lower, the dispersion stability of the reaction liquid is maintained better. In addition, the stability of the polymerizable double bond of the monomer (c) becomes better, and the reactive acrylic resin is easily obtained stably.
What is necessary is just to determine suitably the reaction time at the time of reacting a carboxyl group-containing acrylic resin and a monomer (c) in consideration of a temperature condition, a reaction scale, etc. For example, it is preferable to set it as 1 to 20 hours.

カルボキシ基含有アクリル樹脂とともに必要に応じて用いてもよい分散剤としては、前述した分散剤と同様のものを用いることができる。
また、本工程(2)においては、カルボキシ基含有アクリル樹脂に導入された二重結合間の重合反応によって、最終的に得られる反応生成物がゲル化するのを抑制するため、重合禁止剤又は捕捉剤を用いることができる。この重合禁止剤又は捕捉剤としては、たとえばハイドロキノン、ハイドロキノンモノメチルエーテル、フェノチアジン、4−ターシャル−ブチルカテコール、ジブチルヒドロキシトルエンなどが挙げられる。
As the dispersant that may be used as needed together with the carboxyl group-containing acrylic resin, the same dispersants as those described above can be used.
Moreover, in this process (2), in order to suppress that the reaction product finally obtained is gelatinized by the polymerization reaction between the double bonds introduced into the carboxy group-containing acrylic resin, A scavenger can be used. Examples of the polymerization inhibitor or scavenger include hydroquinone, hydroquinone monomethyl ether, phenothiazine, 4-tert-butylcatechol, dibutylhydroxytoluene and the like.

前述したように、本発明の反応性アクリル樹脂の製造方法によれば、有機溶剤を用いずに、分子内に重合性二重結合を有する反応性アクリル樹脂を得ることができる。
また、工程(2)において、カルボキシ基含有アクリル樹脂と単量体(c)との反応後に得られる反応物は、反応生成物(反応性アクリル樹脂)の水分散液である。このため、反応性アクリル樹脂を、該反応物から固体状の樹脂として容易に分離回収することができる。加えて、従来、有機溶剤を溶媒とするアクリル樹脂溶液から有機溶剤を除去する操作が必要であったところ、本発明の製造方法によれば、該操作は不要である。さらに、前記アクリル樹脂溶液から有機溶剤を除去する際には、加熱等によって反応性アクリル樹脂内の二重結合間の重合反応が進んでしまうおそれがあったが、本発明の製造方法においては、水を媒体とした反応であることからそのおそれがなく、反応性アクリル樹脂を安定に得ることができる。
また、本発明の製造方法によれば、懸濁重合を採用していることにより、反応性アクリル樹脂の高分子量化を容易に図れる。
As described above, according to the method for producing a reactive acrylic resin of the present invention, a reactive acrylic resin having a polymerizable double bond in the molecule can be obtained without using an organic solvent.
In the step (2), the reaction product obtained after the reaction between the carboxy group-containing acrylic resin and the monomer (c) is an aqueous dispersion of a reaction product (reactive acrylic resin). For this reason, the reactive acrylic resin can be easily separated and recovered as a solid resin from the reaction product. In addition, conventionally, an operation for removing the organic solvent from the acrylic resin solution using the organic solvent as a solvent has been required. However, according to the production method of the present invention, the operation is not necessary. Furthermore, when removing the organic solvent from the acrylic resin solution, there is a possibility that the polymerization reaction between the double bonds in the reactive acrylic resin proceeds due to heating or the like, in the production method of the present invention, Since the reaction is carried out using water as a medium, there is no fear thereof, and a reactive acrylic resin can be obtained stably.
Moreover, according to the production method of the present invention, the high molecular weight of the reactive acrylic resin can be easily achieved by employing suspension polymerization.

本発明の反応性アクリル樹脂の製造方法は、前述した実施態様に限定されず、さらに、前記工程(1)及び/又は前記工程(2)でアミン化合物を用いることが好ましい。アミン化合物を用いることにより、工程(1)で得られるカルボキシ基含有アクリル樹脂と単量体(c)との反応効率が向上する。
アミン化合物は、工程(1)において、懸濁液を調製する際に単量体(a)及び単量体(b)とともに配合することが好ましい。また、工程(2)において、単量体(c)を配合する前に、又は単量体(c)と同時に配合することが好ましい。
The manufacturing method of the reactive acrylic resin of this invention is not limited to the embodiment mentioned above, Furthermore, it is preferable to use an amine compound at the said process (1) and / or the said process (2). By using an amine compound, the reaction efficiency of the carboxy group-containing acrylic resin obtained in the step (1) and the monomer (c) is improved.
In the step (1), the amine compound is preferably blended together with the monomer (a) and the monomer (b) when preparing the suspension. Moreover, in the step (2), it is preferable to mix before the monomer (c) or simultaneously with the monomer (c).

(アミン化合物)
本発明で使用できるアミン化合物としては、たとえば2−メチルイミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール等のイミダゾール化合物;エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン等の第1級アミン化合物;トリエチルアミン、ベンジルジメチルアミン、アミノエチルピペラジン等の第3級アミン化合物などが挙げられる。これらの中でも、低揮発性で毒性が少ない点から、イミダゾール化合物が特に好ましい。
アミン化合物は、1種単独で用いてもよいし、2種以上を併用してもよい。
アミン化合物を用いる場合、アミン化合物の配合量は、単量体(c)100質量部に対して1〜100質量部であることが好ましく、1〜20質量部であることがより好ましい。
アミン化合物の配合量を好ましい上限値以下とすることで、残存する未反応のアミン化合物をより低減でき、反応性アクリル樹脂の着色等を抑えることができる。一方、アミン化合物の配合量を好ましい下限値以上とすることで、カルボキシ基含有アクリル樹脂と単量体(c)との反応効率がより向上する。
(Amine compound)
Examples of amine compounds that can be used in the present invention include imidazole compounds such as 2-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, and 2-phenylimidazole; ethylenediamine, diethylenetriamine, triethylenetetramine, tetra Primary amine compounds such as ethylenepentamine; tertiary amine compounds such as triethylamine, benzyldimethylamine, and aminoethylpiperazine. Among these, an imidazole compound is particularly preferable from the viewpoint of low volatility and low toxicity.
An amine compound may be used individually by 1 type, and may use 2 or more types together.
When using an amine compound, it is preferable that the compounding quantity of an amine compound is 1-100 mass parts with respect to 100 mass parts of monomers (c), and it is more preferable that it is 1-20 mass parts.
By making the compounding quantity of an amine compound below a preferable upper limit, the remaining unreacted amine compound can be reduced more and coloring of a reactive acrylic resin etc. can be suppressed. On the other hand, the reaction efficiency of a carboxyl group-containing acrylic resin and a monomer (c) improves more by making the compounding quantity of an amine compound more than a preferable lower limit.

尚、本発明の製造方法では、反応性アクリル樹脂を製造するために有機溶剤を必要としないが、原材料に既に有機溶剤が含まれる場合、又は、カルボキシ基含有アクリル樹脂に単量体(c)が含浸し難い場合などには、有機溶剤を使用することも可能である。かかる場合、この有機溶剤を、工程(2)の反応中に蒸留して反応系外へ排出することで、又は乾燥除去することで、有機溶剤を含有しない反応性アクリル樹脂を製造できる。この際に使用できる有機溶剤としては、特に限定されないが、カルボキシ基含有アクリル樹脂及び単量体(c)との相溶性が高いものが好ましく、たとえばアセトン、メチルエチルケトン、トルエン、酢酸エチル、酢酸メチル、ヘキサン、ヘプタンなどが挙げられる。   In addition, in the manufacturing method of this invention, although an organic solvent is not required in order to manufacture a reactive acrylic resin, when an organic solvent is already contained in a raw material, or a monomer (c) in a carboxy-group containing acrylic resin In the case where it is difficult to impregnate, an organic solvent can be used. In such a case, the reactive acrylic resin containing no organic solvent can be produced by distilling the organic solvent during the reaction of step (2) and discharging it out of the reaction system, or by removing it by drying. Although it does not specifically limit as an organic solvent which can be used in this case, A thing with high compatibility with a carboxy-group-containing acrylic resin and a monomer (c) is preferable, for example, acetone, methyl ethyl ketone, toluene, ethyl acetate, methyl acetate, Examples include hexane and heptane.

(反応性アクリル樹脂)
前述した本発明に係る製造方法により製造される反応性アクリル樹脂は、その分子内に重合性二重結合を有するものである。
また、本発明に係る製造方法により、従来よりも高分子量の反応性アクリル樹脂が容易に得られる。このため、硬化させた際、より強靭な硬化物が得られやすい。得られる反応性アクリル樹脂の平均分子量は、好ましくは2万から100万程度である。特に平均分子量が7万から100万程度の反応性アクリル樹脂、さらには平均分子量が30万から100万程度の高分子量の反応性アクリル樹脂が容易に得られる。本発明において「平均分子量」は、JIS K 7252に準じて測定される質量平均分子量を示す。
また、本発明に係る製造方法により、たとえば、酸価が4〜190KOHmg/g程度の反応性アクリル樹脂が容易に得られる。
(Reactive acrylic resin)
The reactive acrylic resin produced by the production method according to the present invention described above has a polymerizable double bond in its molecule.
In addition, the production method according to the present invention makes it possible to easily obtain a reactive acrylic resin having a higher molecular weight than before. For this reason, when it hardens | cures, a tougher hardened | cured material is easy to be obtained. The average molecular weight of the obtained reactive acrylic resin is preferably about 20,000 to 1,000,000. In particular, a reactive acrylic resin having an average molecular weight of about 70,000 to 1,000,000, and a high-molecular weight reactive acrylic resin having an average molecular weight of about 300,000 to 1,000,000 can be easily obtained. In the present invention, the “average molecular weight” indicates a mass average molecular weight measured according to JIS K 7252.
Moreover, the reactive acrylic resin whose acid value is about 4-190 KOHmg / g is easily obtained by the manufacturing method which concerns on this invention, for example.

かかる反応性アクリル樹脂は、従来とは異なり、有機溶剤を除去する必要がなく、シート状などに容易に成型加工することができる。加えて、かかる反応性アクリル樹脂は、任意の有機溶剤に溶解させて用いることができる。このため、産業上の利用可能性が高い。
任意の有機溶剤としては、たとえばアセトン、トルエン、メチルエチルケトン、酢酸エチル、メチルアルコール、エチルアルコール;メタクリル酸メチルエステル、アクリル酸n−ブチルエステル等の(メタ)アクリル酸アルキルエステル;トリプロピレングリコールジアクリル酸エステル等の多官能アクリル系モノマーなどが挙げられる。
さらに、かかる反応性アクリル樹脂を、成型加工又は塗装した後、光照射又は加熱を施すことにより、二重結合間の重合反応が進行することで光硬化又は熱硬化して硬化物が得られる。たとえば、該反応性アクリル樹脂を任意の有機溶剤に溶解し、この溶液にラジカル重合開始剤を添加したものに対し、光照射又は加熱を施すことで、該反応性アクリル樹脂が重合することにより硬化物が得られる。
Unlike the conventional case, such a reactive acrylic resin does not require removal of the organic solvent, and can be easily molded into a sheet or the like. In addition, the reactive acrylic resin can be used by dissolving in an arbitrary organic solvent. For this reason, industrial applicability is high.
Optional organic solvents include, for example, acetone, toluene, methyl ethyl ketone, ethyl acetate, methyl alcohol, ethyl alcohol; (meth) acrylic acid alkyl esters such as methacrylic acid methyl ester and acrylic acid n-butyl ester; tripropylene glycol diacrylic acid Examples include polyfunctional acrylic monomers such as esters.
Further, the reactive acrylic resin is molded or painted, and then light irradiation or heating is performed, so that a polymerization reaction between double bonds proceeds, whereby photocuring or thermosetting is performed to obtain a cured product. For example, by dissolving the reactive acrylic resin in an arbitrary organic solvent and adding a radical polymerization initiator to this solution, it is cured by polymerizing the reactive acrylic resin by light irradiation or heating. A thing is obtained.

反応性アクリル樹脂の重合に使用できるラジカル重合開始剤としては、たとえば2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2−メチルブチロニトリル)等のアゾ系重合開始剤;ジベンゾイルパーオキサイド、ジラウロイルパーオキサイド、t−ブチルパーオキシピヴァレート、t−ブチルパーオキシ2−エチルヘキサノエート等の有機過酸化物系重合開始剤;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインn−プロピルエーテル、ベンゾインn−ブチルエーテル、ベンゾフェノン、アセトフェノン、1−ヒドロキシ−シクロヘキシル−フェニルケトン等の光重合開始剤などが挙げられる。
ラジカル重合開始剤は、1種単独で用いてもよいし、2種以上を併用してもよい。
ラジカル重合開始剤の配合量は、反応性アクリル樹脂100質量部に対して0.01〜20質量部とすることが好ましい。
Examples of the radical polymerization initiator that can be used for polymerization of the reactive acrylic resin include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), and 2,2′-. Azo polymerization initiators such as azobis (2-methylbutyronitrile); organics such as dibenzoyl peroxide, dilauroyl peroxide, t-butyl peroxypivalate, t-butyl peroxy 2-ethylhexanoate Peroxide-based polymerization initiators; photopolymerization initiators such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin n-propyl ether, benzoin n-butyl ether, benzophenone, acetophenone, and 1-hydroxy-cyclohexyl-phenyl ketone It is done.
A radical polymerization initiator may be used individually by 1 type, and may use 2 or more types together.
It is preferable that the compounding quantity of a radical polymerization initiator shall be 0.01-20 mass parts with respect to 100 mass parts of reactive acrylic resins.

また、本発明に係る製造方法により製造される反応性アクリル樹脂は、その用途に応じて、酸化防止剤、光安定剤、難燃剤、可塑剤、レベリング剤等の合成樹脂添加剤を併用することができる。該合成樹脂添加剤は、反応性アクリル樹脂を製造する際に添加してもよく、反応性アクリル樹脂を溶解した樹脂溶液に添加してもよく、反応性アクリル樹脂を熱溶融する際に添加してもよい。   In addition, the reactive acrylic resin produced by the production method according to the present invention may be used in combination with a synthetic resin additive such as an antioxidant, a light stabilizer, a flame retardant, a plasticizer, and a leveling agent, depending on the application. Can do. The synthetic resin additive may be added when producing the reactive acrylic resin, may be added to a resin solution in which the reactive acrylic resin is dissolved, or added when the reactive acrylic resin is melted by heat. May be.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。なお、本実施例中、断りがなければ「%」は質量%を示し、「部」は質量部を示す。   Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. In this example, “%” represents mass% and “part” represents mass part unless otherwise specified.

<反応性アクリル樹脂の製造例>
(実施例1)
工程(1):
メタクリル酸メチルエステル823.5部と、アクリル酸エチルエステル337.5部と、メタクリル酸189部と、n−ドデシルメルカプタン6.75部と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)4.725部と、を容器に採り、これらを予め40℃以下の温度で溶解させた(以下この溶液を「混合溶液A」という)。
そして、撹拌機を備えたガラス製の四口丸底5Lフラスコに、水3375部と、分散剤としてポリビニルアルコール14部と、を添加して溶解し、撹拌翼により400rpmで撹拌しつつ、そこへ、予め溶解しておいた前記混合溶液Aを一括投入して懸濁液を調製した。次いで、撹拌継続下に、この懸濁液の反応系内を65℃まで昇温させて3時間その温度を一定に保ちながら反応(懸濁重合)させた。その後、90℃まで昇温させて2時間その温度を一定に保ちながら反応(懸濁重合)させた。
その後、室温(約25℃)まで冷却した。次いで、反応生成物を固液分離し、水で充分に洗浄した後、乾燥機を用いて40℃で24時間乾燥した。乾燥の後、常温で粉末状のカルボキシ基含有アクリル樹脂を得た(不揮発分98.3%、酸価91.7KOHmg/g、得量1303.1部)。
<Production example of reactive acrylic resin>
Example 1
Step (1):
823.5 parts of methacrylic acid methyl ester, 337.5 parts of acrylic acid ethyl ester, 189 parts of methacrylic acid, 6.75 parts of n-dodecyl mercaptan, and 2,2′-azobis (2,4-dimethylvaleronitrile ) 4.725 parts were placed in a container and dissolved in advance at a temperature of 40 ° C. or lower (this solution is hereinafter referred to as “mixed solution A”).
Then, 3375 parts of water and 14 parts of polyvinyl alcohol as a dispersing agent are added to a glass four-necked round bottom 5 L flask equipped with a stirrer and dissolved, and the mixture is stirred at 400 rpm with a stirring blade. Then, the mixed solution A previously dissolved was added all at once to prepare a suspension. Next, while the stirring was continued, the reaction system of this suspension was heated to 65 ° C. and reacted (suspension polymerization) while keeping the temperature constant for 3 hours. Then, it heated up to 90 degreeC and was made to react (suspension polymerization), keeping the temperature constant for 2 hours.
Then, it cooled to room temperature (about 25 degreeC). Next, the reaction product was separated into solid and liquid, thoroughly washed with water, and then dried at 40 ° C. for 24 hours using a dryer. After drying, a powdery carboxy group-containing acrylic resin was obtained at room temperature (non-volatile content: 98.3%, acid value: 91.7 KOHmg / g, yield: 1303.1 parts).

工程(2):
次いで、撹拌機を備えたガラス製の四口丸底1Lフラスコに、水600部と、分散剤としてポリビニルアルコール2部と、を添加して溶解し、撹拌翼により400rpmで撹拌しつつ、そこへ、工程(1)で得たカルボキシ基含有アクリル樹脂200部を加えて分散させ、さらに、アミン化合物として2−メチルイミダゾール2部を添加して混合した。
その後、撹拌継続下に、この混合物の反応系内を50℃まで昇温させて1時間その温度を一定に保った。
次いで、メタクリル酸グリシジルエステル40部(工程(1)で用いたメタクリル酸の1モルに対して0.87モル)を投入し、反応系内を50℃として1時間その温度を一定に保ちながら該混合物にメタクリル酸グリシジルエステルを含浸させつつ、反応系内の均質化を図った。その後、90℃まで昇温させて3時間その温度を一定に保ちながら反応させた。
Step (2):
Next, 600 parts of water and 2 parts of polyvinyl alcohol as a dispersing agent are added to and dissolved in a glass 4-neck round bottom 1 L flask equipped with a stirrer. Then, 200 parts of the carboxy group-containing acrylic resin obtained in the step (1) was added and dispersed, and further 2 parts of 2-methylimidazole was added and mixed as an amine compound.
Thereafter, the temperature in the reaction system of the mixture was raised to 50 ° C. while stirring was continued, and the temperature was kept constant for 1 hour.
Next, 40 parts of glycidyl methacrylate ester (0.87 mol with respect to 1 mol of methacrylic acid used in step (1)) was added, and the reaction system was kept at 50 ° C. for 1 hour while keeping the temperature constant. While the mixture was impregnated with glycidyl methacrylate, the reaction system was homogenized. Then, it heated up to 90 degreeC and made it react, keeping the temperature constant for 3 hours.

その後、室温(約25℃)まで冷却した。次いで、反応生成物を固液分離し、水で充分に洗浄した後、乾燥機を用いて40℃で24時間乾燥し、粉末状の反応性アクリル樹脂を得た。   Then, it cooled to room temperature (about 25 degreeC). Next, the reaction product was separated into solid and liquid, thoroughly washed with water, and then dried at 40 ° C. for 24 hours using a dryer to obtain a powdery reactive acrylic resin.

(実施例2)
実施例1において、メタクリル酸グリシジルエステル40部を20部に変更した以外は、実施例1と同様にして粉末状の反応性アクリル樹脂を得た。
(Example 2)
A powdered reactive acrylic resin was obtained in the same manner as in Example 1 except that 40 parts of glycidyl methacrylate was changed to 20 parts in Example 1.

(比較例1)
実施例1において、メタクリル酸グリシジルエステル40部を0部(配合せず)に変更した以外は、実施例1と同様にして粉末状の反応性アクリル樹脂を得た。
(Comparative Example 1)
In Example 1, a powdery reactive acrylic resin was obtained in the same manner as in Example 1 except that 40 parts of glycidyl methacrylate was changed to 0 part (not blended).

(実施例3)
工程(1):
アクリル酸n−ブチルエステル116部と、アクリル酸エチルエステル50部と、アクリロニトリル20部と、メタクリル酸14部と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.7部と、を容器に採り、これらを予め40℃以下の温度で溶解させた(以下この溶液を「混合溶液B」という)。
そして、撹拌機を備えたガラス製の四口丸底1Lフラスコに、水600部と、分散剤としてポリビニルアルコール2部と、を添加して溶解し、撹拌翼により400rpmで撹拌しつつ、そこへ、予め溶解しておいた前記混合溶液Bを一括投入して懸濁液を調製した。次いで、撹拌継続下に、この懸濁液の反応系内を65℃まで昇温させて3時間その温度を一定に保ちながら反応(懸濁重合)させた。その後、90℃まで昇温させて2時間その温度を一定に保ちながら反応(懸濁重合)させた。
(Example 3)
Step (1):
116 parts of acrylic acid n-butyl ester, 50 parts of acrylic acid ethyl ester, 20 parts of acrylonitrile, 14 parts of methacrylic acid, 0.7 part of 2,2′-azobis (2,4-dimethylvaleronitrile), Were taken in a container and dissolved in advance at a temperature of 40 ° C. or lower (this solution is hereinafter referred to as “mixed solution B”).
Then, 600 parts of water and 2 parts of polyvinyl alcohol as a dispersing agent are added to and dissolved in a glass 4-neck round bottom 1 L flask equipped with a stirrer, and the mixture is stirred there at 400 rpm while being stirred there. The mixed solution B, which had been previously dissolved, was added all at once to prepare a suspension. Next, while the stirring was continued, the reaction system of this suspension was heated to 65 ° C. and reacted (suspension polymerization) while keeping the temperature constant for 3 hours. Then, it heated up to 90 degreeC and was made to react (suspension polymerization), keeping the temperature constant for 2 hours.

工程(2):
次いで、室温(約25℃)まで冷却した後、アミン化合物として2−メチルイミダゾール2部を添加して混合した。
その後、撹拌継続下に、この混合物の反応系内を50℃まで昇温させて1時間その温度を一定に保った。
次いで、メタクリル酸グリシジルエステル40部(工程(1)で用いたメタクリル酸の1モルに対して1.73モル)を投入し、反応系内を50℃として1時間その温度を一定に保ちながら懸濁重合物にメタクリル酸グリシジルエステルを含浸させつつ、反応系内の均質化を図った。その後、90℃まで昇温させて3時間その温度を一定に保ちながら反応させた。
Step (2):
Subsequently, after cooling to room temperature (about 25 degreeC), 2 parts of 2-methylimidazole was added and mixed as an amine compound.
Thereafter, the temperature in the reaction system of the mixture was raised to 50 ° C. while stirring was continued, and the temperature was kept constant for 1 hour.
Next, 40 parts of glycidyl methacrylate (1.73 moles per mole of methacrylic acid used in step (1)) was added, and the reaction system was kept at 50 ° C. for 1 hour while keeping the temperature constant. While the suspended polymer was impregnated with glycidyl methacrylate, the reaction system was homogenized. Then, it heated up to 90 degreeC and made it react, keeping the temperature constant for 3 hours.

その後、室温(約25℃)まで冷却した。次いで、反応生成物を固液分離し、水で充分に洗浄した。
該洗浄の後、反応生成物を、ポリエチレンフィルム上に、均一な厚さとなるように手で押し広げ、乾燥機を用いて40℃で24時間乾燥し、シート状の反応性アクリル樹脂を得た。
Then, it cooled to room temperature (about 25 degreeC). Next, the reaction product was separated into solid and liquid and washed thoroughly with water.
After the washing, the reaction product was spread on a polyethylene film by hand so as to have a uniform thickness, and dried at 40 ° C. for 24 hours using a dryer to obtain a sheet-like reactive acrylic resin. .

(実施例4)
実施例3において、メタクリル酸グリシジルエステル40部を20部に変更した以外は、実施例3と同様にしてシート状の反応性アクリル樹脂を得た。
(Example 4)
In Example 3, a sheet-like reactive acrylic resin was obtained in the same manner as in Example 3 except that 40 parts of glycidyl methacrylate was changed to 20 parts.

(比較例2)
実施例3において、メタクリル酸グリシジルエステル40部を0部(配合せず)に変更した以外は、実施例3と同様にしてシート状のアクリル樹脂を得た。
(Comparative Example 2)
In Example 3, a sheet-like acrylic resin was obtained in the same manner as in Example 3 except that 40 parts of glycidyl methacrylate was changed to 0 part (not blended).

(実施例5)
実施例1において、メタクリル酸グリシジルエステル40部を、アリルグリシジルエーテル40部(工程(1)で用いたメタクリル酸の1モルに対して1.08モル)に変更した以外は、実施例1と同様にして粉末状の反応性アクリル樹脂を得た。
(Example 5)
In Example 1, 40 parts of glycidyl methacrylates were changed to 40 parts of allyl glycidyl ether (1.08 moles relative to 1 mole of methacrylic acid used in step (1)). Thus, a powdery reactive acrylic resin was obtained.

(実施例6)
実施例1において、2−メチルイミダゾール2部を、ジエチレントリアミン2部に変更した以外は、実施例1と同様にして粉末状の反応性アクリル樹脂を得た。
(Example 6)
A powdery reactive acrylic resin was obtained in the same manner as in Example 1 except that 2 parts of 2-methylimidazole was changed to 2 parts of diethylenetriamine in Example 1.

(実施例7)
実施例1において、2−メチルイミダゾール2部を0部(配合せず)に変更した以外は、実施例1と同様にして粉末状の反応性アクリル樹脂を得た。
(Example 7)
In Example 1, a powdery reactive acrylic resin was obtained in the same manner as in Example 1 except that 2 parts of 2-methylimidazole was changed to 0 part (not blended).

(実施例8)
工程(1):
メタクリル酸メチルエステル244部と、アクリル酸エチルエステル100部と、アクリル酸56部と、n−ドデシルメルカプタン2部と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)1.4部と、を容器に採り、これらを予め40℃以下の温度で溶解させた(以下この溶液を「混合溶液C」という)。
そして、撹拌機を備えたガラス製の四口丸底2Lフラスコに、水1200部と、分散剤としてポリビニルアルコール4部と、を添加して溶解し、撹拌翼により400rpmで撹拌しつつ、そこへ、予め溶解しておいた前記混合溶液Cを一括投入して懸濁液を調製した。次いで、撹拌継続下に、この懸濁液の反応系内を65℃まで昇温させて3時間その温度を一定に保ちながら反応(懸濁重合)させた。その後、90℃まで昇温させて2時間その温度を一定に保ちながら反応(懸濁重合)させた。
その後、室温(約25℃)まで冷却した。次いで、反応生成物を固液分離し、水で充分に洗浄した後、乾燥機を用いて40℃で24時間乾燥した。乾燥の後、常温で粉末状のカルボキシ基含有アクリル樹脂を得た(不揮発分97.3%、酸価69.0KOHmg/g、得量360.7部)。
(Example 8)
Step (1):
244 parts of methyl methacrylate, 100 parts of ethyl acrylate, 56 parts of acrylic acid, 2 parts of n-dodecyl mercaptan, 1.4 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) Were taken in a container and dissolved in advance at a temperature of 40 ° C. or lower (this solution is hereinafter referred to as “mixed solution C”).
Then, 1200 parts of water and 4 parts of polyvinyl alcohol as a dispersing agent are added to a glass four-necked round bottom 2 L flask equipped with a stirrer and dissolved, and the mixture is stirred at 400 rpm with a stirring blade. The mixed solution C, which had been previously dissolved, was added all at once to prepare a suspension. Next, while the stirring was continued, the reaction system of this suspension was heated to 65 ° C. and reacted (suspension polymerization) while keeping the temperature constant for 3 hours. Then, it heated up to 90 degreeC and was made to react (suspension polymerization), keeping the temperature constant for 2 hours.
Then, it cooled to room temperature (about 25 degreeC). Next, the reaction product was separated into solid and liquid, thoroughly washed with water, and then dried at 40 ° C. for 24 hours using a dryer. After drying, a powdery carboxy group-containing acrylic resin was obtained at room temperature (nonvolatile content: 97.3%, acid value: 69.0 KOHmg / g, yield: 360.7 parts).

工程(2):
次いで、撹拌機を備えたガラス製の四口丸底1Lフラスコに、水600部と、分散剤としてポリビニルアルコール2部と、を添加して溶解し、撹拌翼により400rpmで撹拌しつつ、そこへ、工程(1)で得たカルボキシ基含有アクリル樹脂200部を加えて分散させ、さらに、アミン化合物として2−メチルイミダゾール2部を添加して混合した。
その後、撹拌継続下に、この混合物の反応系内を50℃まで昇温させて1時間その温度を一定に保った。
次いで、メタクリル酸グリシジルエステル40部(工程(1)で用いたアクリル酸の1モルに対して0.72モル)を投入し、反応系内を50℃として1時間その温度を一定に保ちながら該混合物にメタクリル酸グリシジルエステルを含浸させつつ、反応系内の均質化を図った。その後、90℃まで昇温させて3時間その温度を一定に保ちながら反応させた。
Step (2):
Next, 600 parts of water and 2 parts of polyvinyl alcohol as a dispersing agent are added to and dissolved in a glass 4-neck round bottom 1 L flask equipped with a stirrer. Then, 200 parts of the carboxy group-containing acrylic resin obtained in the step (1) was added and dispersed, and further 2 parts of 2-methylimidazole was added and mixed as an amine compound.
Thereafter, the temperature in the reaction system of the mixture was raised to 50 ° C. while stirring was continued, and the temperature was kept constant for 1 hour.
Next, 40 parts of glycidyl methacrylate ester (0.72 mol relative to 1 mol of acrylic acid used in step (1)) was added, and the reaction system was kept at 50 ° C. for 1 hour while keeping the temperature constant. While the mixture was impregnated with glycidyl methacrylate, the reaction system was homogenized. Then, it heated up to 90 degreeC and made it react, keeping the temperature constant for 3 hours.

その後、室温(約25℃)まで冷却した。次いで、反応生成物を固液分離し、水で充分に洗浄した後、乾燥機を用いて40℃で24時間乾燥し、粉末状の反応性アクリル樹脂を得た。   Then, it cooled to room temperature (about 25 degreeC). Next, the reaction product was separated into solid and liquid, thoroughly washed with water, and then dried at 40 ° C. for 24 hours using a dryer to obtain a powdery reactive acrylic resin.

(実施例9)
工程(1):
メタクリル酸メチルエステル122部と、アクリル酸エチルエステル50部と、メタクリル酸28部と、n−ドデシルメルカプタン1部と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.7部と、アミン化合物として2−メチルイミダゾール2部と、を容器に採り、これらを予め40℃以下の温度で溶解させた(以下この溶液を「混合溶液D」という)。
そして、撹拌機を備えたガラス製の四口丸底1Lフラスコに、水600部と、分散剤としてポリビニルアルコール2部と、を添加して溶解し、撹拌翼により400rpmで撹拌しつつ、そこへ、予め溶解しておいた前記混合溶液Dを一括投入して懸濁液を調製した。次いで、撹拌継続下に、この懸濁液の反応系内を65℃まで昇温させて3時間その温度を一定に保ちながら反応(懸濁重合)させた。その後、90℃まで昇温させて2時間その温度を一定に保ちながら反応(懸濁重合)させた。
Example 9
Step (1):
122 parts of methacrylic acid methyl ester, 50 parts of acrylic acid ethyl ester, 28 parts of methacrylic acid, 1 part of n-dodecyl mercaptan, 0.7 part of 2,2′-azobis (2,4-dimethylvaleronitrile) Then, 2 parts of 2-methylimidazole as an amine compound were placed in a container and dissolved in advance at a temperature of 40 ° C. or less (hereinafter, this solution is referred to as “mixed solution D”).
Then, 600 parts of water and 2 parts of polyvinyl alcohol as a dispersing agent are added to and dissolved in a glass 4-neck round bottom 1 L flask equipped with a stirrer, and the mixture is stirred there at 400 rpm while being stirred there. The mixed solution D, which had been previously dissolved, was added all at once to prepare a suspension. Next, while the stirring was continued, the reaction system of this suspension was heated to 65 ° C. and reacted (suspension polymerization) while keeping the temperature constant for 3 hours. Then, it heated up to 90 degreeC and was made to react (suspension polymerization), keeping the temperature constant for 2 hours.

工程(2):
次いで、室温(約25℃)まで冷却した後、メタクリル酸グリシジルエステル40部(工程(1)で用いたメタクリル酸の1モルに対して0.87モル)を投入し、反応系内を50℃まで昇温させて1時間その温度を一定に保ちながら懸濁重合物にメタクリル酸グリシジルエステルを含浸させつつ、反応系内の均質化を図った。その後、90℃まで昇温させて3時間その温度を一定に保ちながら反応させた。
Step (2):
Next, after cooling to room temperature (about 25 ° C.), 40 parts of glycidyl methacrylate (0.87 mol with respect to 1 mol of methacrylic acid used in step (1)) was added, and the reaction system was heated to 50 ° C. The suspension was impregnated with glycidyl methacrylate while maintaining the temperature constant for 1 hour, and the reaction system was homogenized. Then, it heated up to 90 degreeC and made it react, keeping the temperature constant for 3 hours.

その後、室温(約25℃)まで冷却した。次いで、反応生成物を固液分離し、水で充分に洗浄した後、乾燥機を用いて40℃で24時間乾燥し、粉末状の反応性アクリル樹脂を得た。   Then, it cooled to room temperature (about 25 degreeC). Next, the reaction product was separated into solid and liquid, thoroughly washed with water, and then dried at 40 ° C. for 24 hours using a dryer to obtain a powdery reactive acrylic resin.

<反応性アクリル樹脂の物性測定>
得られた各アクリル樹脂について、以下に示す物性測定を行った。その結果を表1、2に示す。
[加熱減量(%)]
105℃で2時間の加熱処理前後の質量変化の割合を、JIS K 5101−15−1に準じて測定した。
[酸価(KOHmg/g)]
JIS K 0070(中和滴定法)に準じて測定した。
[粘度(mPa・s)]
JIS K 5101−6−2(回転粘度計法)に準じて測定した。具体的には、固形分30%のアセトン溶液の粘度を25℃にて測定した。
[質量平均分子量]
JIS K 7252に準じて測定した。
[未反応の単量体(c)(%)]
JIS K 0114に準じて、未反応のメタクリル酸グリシジルエステル、又は未反応のアリルグリシジルエーテルを測定した。表1、2中、「ND」は、検出限界以下であったことを示す。
<Measurement of physical properties of reactive acrylic resin>
About each obtained acrylic resin, the physical-property measurement shown below was performed. The results are shown in Tables 1 and 2.
[Heating loss (%)]
The ratio of the mass change before and after the heat treatment at 105 ° C. for 2 hours was measured according to JIS K 5101-15-1.
[Acid value (KOHmg / g)]
The measurement was performed according to JIS K 0070 (neutralization titration method).
[Viscosity (mPa · s)]
It measured according to JISK5101-6-2 (rotary viscometer method). Specifically, the viscosity of an acetone solution having a solid content of 30% was measured at 25 ° C.
[Mass average molecular weight]
Measurement was performed according to JIS K 7252.
[Unreacted monomer (c) (%)]
In accordance with JIS K 0114, unreacted glycidyl methacrylate or unreacted allyl glycidyl ether was measured. In Tables 1 and 2, “ND” indicates that it was below the detection limit.

Figure 2014091792
Figure 2014091792

表1から、メタクリル酸グリシジルエステルの配合により、工程(1)で得られたカルボキシ基含有アクリル樹脂の側鎖に存在するカルボキシル基とエポキシ基とが結合するため、実施例1、2は比較例1に比べて、実施例3、4は比較例2に比べて、それぞれ得量は高い値を、酸価は低い値を示していることが確認できる。   From Table 1, since the carboxyl group and epoxy group which exist in the side chain of the carboxy group containing acrylic resin obtained at the process (1) couple | bond with the mixing | blending of glycidyl methacrylate ester, Example 1, 2 is a comparative example. Compared to 1, Examples 3 and 4 can be confirmed to have higher yields and lower acid values than Comparative Example 2, respectively.

Figure 2014091792
Figure 2014091792

実施例1と実施例7との対比から、アミン化合物を用いていない実施例7は、アミン化合物を用いた実施例1に比べて、得量は低い値を、酸価は高い値を示していることが確認できる。これより、アミン化合物を用いることで、カルボキシ基含有アクリル樹脂とエポキシ基含有ラジカル重合性単量体との反応効率が高まっていることが分かる。   From a comparison between Example 1 and Example 7, Example 7 that does not use an amine compound shows a lower value and a higher acid value than Example 1 that uses an amine compound. It can be confirmed. This shows that the reaction efficiency of the carboxy group-containing acrylic resin and the epoxy group-containing radical polymerizable monomer is increased by using the amine compound.

<反応性アクリル樹脂中の重合性二重結合の存在についての評価>
得られたアクリル樹脂(実施例1〜9、比較例1〜2)及び比較試料について、以下に示す赤外分光分析を行った。その結果を図1〜7に示す。
[赤外分光分析]
JIS K 0117に準じて、アクリル樹脂中の重合性二重結合の有無について確認した。
赤外分光分析に用いた比較試料:
・828(三菱化学株式会社製、ビスフェノールA型液状エポキシ樹脂)。
・メタクリル酸グリシジルエステル(GMA)。
・エチレングリコールジメタクリル酸エステル。
・828/GMA=200/30(質量比)の混合物。
・アリルグリシジルエーテル
・828/アリルグリシジルエーテル=200/40(質量比)の混合物。
<Evaluation of presence of polymerizable double bond in reactive acrylic resin>
The infrared spectroscopy shown below was performed about the obtained acrylic resin (Examples 1-9, Comparative Examples 1-2) and a comparative sample. The results are shown in FIGS.
[Infrared spectroscopy]
According to JIS K 0117, the presence or absence of polymerizable double bonds in the acrylic resin was confirmed.
Comparative sample used for infrared spectroscopy:
828 (Mitsubishi Chemical Corporation bisphenol A liquid epoxy resin).
-Methacrylic acid glycidyl ester (GMA).
-Ethylene glycol dimethacrylate.
A mixture of 828 / GMA = 200/30 (mass ratio).
A mixture of allyl glycidyl ether and 828 / allyl glycidyl ether = 200/40 (mass ratio).

図1は、828(上側)、及び、828とGMAとの混合物(下側)の赤外吸収スペクトルを示している。図2は、GMA(上側)、及び、エチレングリコールジメタクリル酸エステル(下側)の赤外吸収スペクトルを示している。
図2におけるGMA及びエチレングリコールジメタクリル酸エステルの赤外吸収スペクトルにおいて、1638cm−1付近に、重合性二重結合に由来するピークが認められる。したがって、実施例1〜4、6〜9では、赤外吸収スペクトルにおける1638cm−1付近のピークの有無を確認することにより、アクリル樹脂中の重合性二重結合の存在について評価した。
FIG. 1 shows infrared absorption spectra of 828 (upper side) and a mixture of 828 and GMA (lower side). FIG. 2 shows infrared absorption spectra of GMA (upper side) and ethylene glycol dimethacrylate (lower side).
In the infrared absorption spectra of GMA and ethylene glycol dimethacrylate in FIG. 2, a peak derived from a polymerizable double bond is observed in the vicinity of 1638 cm −1 . Therefore, in Examples 1-4 and 6-9, the presence of a polymerizable double bond in the acrylic resin was evaluated by confirming the presence or absence of a peak near 1638 cm −1 in the infrared absorption spectrum.

図3は、上から順に、実施例1、実施例2、比較例1でそれぞれ得られたアクリル樹脂の赤外吸収スペクトルを示している。図4は、上から順に、実施例3、実施例4、比較例2でそれぞれ得られたアクリル樹脂の赤外吸収スペクトルを示している。
図3及び図4において、GMAの配合部数に相応して1638cm−1付近にピークが認められる。すなわち、図3において、実施例1、実施例2については、1638cm−1付近にピークが認められ、比較例1についてはピークが認められなかった。図4において、実施例3、実施例4については、1638cm−1付近にピークが認められ、比較例2についてはピークが認められなかった。これより、実施例1〜4で得られたアクリル樹脂は重合性二重結合を有していること、が確認された。
加えて、実施例1〜4については、GMAの配合部数が多いほど、1638cm−1付近のピーク強度が高い。これより、GMAの配合部数が多いほど、アクリル樹脂中に重合性二重結合が多く存在していることが分かる。
FIG. 3 shows the infrared absorption spectra of the acrylic resins obtained in Example 1, Example 2, and Comparative Example 1 in order from the top. FIG. 4 shows the infrared absorption spectra of the acrylic resins obtained in Example 3, Example 4, and Comparative Example 2 in order from the top.
3 and 4, a peak is recognized in the vicinity of 1638 cm −1 corresponding to the number of blended parts of GMA. That is, in FIG. 3, for Example 1 and Example 2, a peak was recognized in the vicinity of 1638 cm −1 , and for Comparative Example 1, no peak was observed. In FIG. 4, for Example 3 and Example 4, a peak was observed near 1638 cm −1 , and for Comparative Example 2, no peak was observed. From this, it was confirmed that the acrylic resins obtained in Examples 1 to 4 have a polymerizable double bond.
In addition, about Examples 1-4, the peak intensity | strength of 1638 cm < -1 > vicinity is so high that there are many compounding parts of GMA. From this, it can be seen that the greater the number of GMA blended parts, the more polymerizable double bonds are present in the acrylic resin.

図5は、実施例6(上側)、及び、実施例7(下側)でそれぞれ得られたアクリル樹脂の赤外吸収スペクトルを示している。図6は、実施例8(上側)、及び、実施例9(下側)でそれぞれ得られたアクリル樹脂の赤外吸収スペクトルを示している。
図5及び図6において、実施例6〜9でそれぞれ得られた反応性アクリル樹脂についても、各赤外吸収スペクトルにて1638cm−1付近にピークが認められる。これより、実施例6〜9で得られたアクリル樹脂は重合性二重結合を有していること、が確認された。
FIG. 5 shows infrared absorption spectra of the acrylic resins obtained in Example 6 (upper side) and Example 7 (lower side), respectively. FIG. 6 shows infrared absorption spectra of the acrylic resins obtained in Example 8 (upper side) and Example 9 (lower side), respectively.
5 and 6, the reactive acrylic resins obtained in Examples 6 to 9 also have a peak in the vicinity of 1638 cm −1 in each infrared absorption spectrum. From this, it was confirmed that the acrylic resins obtained in Examples 6 to 9 have a polymerizable double bond.

図7は、上から順に、アリルグリシジルエーテル、828とアリルグリシジルエーテルとの混合物、実施例5で得られたアクリル樹脂の赤外吸収スペクトルを示している。
アリルグリシジルエーテルの赤外吸収スペクトルにおいて、1647cm−1付近に、重合性二重結合に由来するピークが認められる。また、アリルグリシジルエーテルの配合部数に相応して1647cm−1付近にピークが認められる。したがって、実施例5では、赤外吸収スペクトルにおける1647cm−1付近のピークの有無を確認することにより、アクリル樹脂中の重合性二重結合の存在について評価した。
図7において、実施例5については、1647cm−1付近にピークが認められる。これより、実施例5で得られたアクリル樹脂は重合性二重結合を有していること、が確認された。
FIG. 7 shows the infrared absorption spectra of allyl glycidyl ether, a mixture of 828 and allyl glycidyl ether, and the acrylic resin obtained in Example 5 in order from the top.
In the infrared absorption spectrum of allyl glycidyl ether, a peak derived from a polymerizable double bond is observed near 1647 cm −1 . Further, a peak is recognized in the vicinity of 1647 cm −1 according to the number of blended parts of allyl glycidyl ether. Therefore, in Example 5, the presence of a polymerizable double bond in the acrylic resin was evaluated by confirming the presence or absence of a peak near 1647 cm −1 in the infrared absorption spectrum.
In FIG. 7, for Example 5, a peak is observed in the vicinity of 1647 cm −1 . From this, it was confirmed that the acrylic resin obtained in Example 5 has a polymerizable double bond.

以上より、本発明の反応性アクリル樹脂の製造方法によれば、有機溶剤を用いずに、分子内に重合性二重結合を有する反応性アクリル樹脂が得られること、が確認できた。   As mentioned above, according to the manufacturing method of the reactive acrylic resin of this invention, it has confirmed that the reactive acrylic resin which has a polymerizable double bond in a molecule | numerator was obtained, without using an organic solvent.

<反応性アクリル樹脂の溶解性についての評価>
得られた反応性アクリル樹脂(実施例2、実施例4)について、以下に示す溶解性の評価を行った。その結果を表3、4に示す。
表3、4中、溶解性の評価結果を示す○、△、×は、○であるほど溶解性が良好であり、×であるほど難溶・不溶であることを意味する。
<Evaluation of solubility of reactive acrylic resin>
About the obtained reactive acrylic resin (Example 2, Example 4), the solubility evaluation shown below was performed. The results are shown in Tables 3 and 4.
In Tables 3 and 4, “◯”, “Δ”, and “X” indicating the results of solubility evaluation indicate that the better the solubility is, the less soluble / insoluble the better.

[実施例2で得られた粉末状の反応性アクリル樹脂についての溶解性]
(配合例1)
実施例2で得た反応性アクリル樹脂20部を150mLマヨネーズビンに採り、そこへアセトン80部を加えた。そして、このマヨネーズビンを40℃の温水浴に浸し、時々攪拌棒で攪拌しながら混合し、この混合物が溶解して均一な溶液となっているか否か、について確認した。
尚、かかる操作中は、混合物の合計が常に100部となるように、該確認の度にアセトン(他の配合例においては変更後の溶媒)を加えることで調整した。
[Solubility of Powdered Reactive Acrylic Resin Obtained in Example 2]
(Formulation example 1)
20 parts of the reactive acrylic resin obtained in Example 2 was placed in a 150 mL mayonnaise bottle, and 80 parts of acetone was added thereto. Then, this mayonnaise bottle was immersed in a warm water bath at 40 ° C. and mixed while occasionally stirring with a stir bar, and it was confirmed whether or not this mixture dissolved and became a uniform solution.
During this operation, adjustment was made by adding acetone (the solvent after change in other formulation examples) each time the confirmation was made so that the total amount of the mixture was always 100 parts.

(配合例2)
配合例1において、アセトン80部を、トルエン80部に変更した以外は、配合例1と同様にして溶解性を評価した。
(Formulation example 2)
In Formulation Example 1, solubility was evaluated in the same manner as Formulation Example 1 except that 80 parts of acetone was changed to 80 parts of toluene.

(配合例3)
配合例1において、アセトン80部を、メタクリル酸メチルエステル80部に変更した以外は、配合例1と同様にして溶解性を評価した。
(Formulation example 3)
In Formulation Example 1, the solubility was evaluated in the same manner as Formulation Example 1 except that 80 parts of acetone was changed to 80 parts of methyl methacrylate.

(配合例4)
配合例1において、アセトン80部を、アクリル酸n−ブチルエステル80部に変更した以外は、配合例1と同様にして溶解性を評価した。
(Formulation example 4)
In Formulation Example 1, the solubility was evaluated in the same manner as Formulation Example 1 except that 80 parts of acetone was changed to 80 parts of acrylic acid n-butyl ester.

(配合例5)
配合例1において、アセトン80部を、トリプロピレングリコールジアクリル酸エステル80部に変更した以外は、配合例1と同様にして溶解性を評価した。
(Formulation example 5)
In Formulation Example 1, the solubility was evaluated in the same manner as Formulation Example 1 except that 80 parts of acetone was changed to 80 parts of tripropylene glycol diacrylate.

[実施例4で得られたシート状の反応性アクリル樹脂についての溶解性]
(配合例6)
実施例4で得た反応性アクリル樹脂20部を150mLマヨネーズビンに採り、そこへアセトン80部を加えた。そして、このマヨネーズビンを40℃の温水浴に浸し、時々攪拌棒で攪拌しながら混合し、この混合物が溶解して均一な溶液となっているか否か、について確認した。
尚、かかる操作中は、混合物の合計が常に100部となるように、該確認の度にアセトン(他の配合例においては変更後の溶媒)を加えることで調整した。
[Solubility of the sheet-like reactive acrylic resin obtained in Example 4]
(Formulation example 6)
20 parts of the reactive acrylic resin obtained in Example 4 was taken in a 150 mL mayonnaise bottle, and 80 parts of acetone was added thereto. Then, this mayonnaise bottle was immersed in a warm water bath at 40 ° C. and mixed while occasionally stirring with a stir bar, and it was confirmed whether or not this mixture dissolved and became a uniform solution.
During this operation, adjustment was made by adding acetone (the solvent after change in other formulation examples) each time the confirmation was made so that the total amount of the mixture was always 100 parts.

(配合例7)
配合例6において、アセトン80部を、トルエン80部に変更した以外は、配合例6と同様にして溶解性を評価した。
(Formulation example 7)
In Formulation Example 6, the solubility was evaluated in the same manner as Formulation Example 6 except that 80 parts of acetone was changed to 80 parts of toluene.

(配合例8)
配合例6において、アセトン80部を、メタクリル酸メチルエステル80部に変更した以外は、配合例6と同様にして溶解性を評価した。
(Formulation example 8)
In Formulation Example 6, the solubility was evaluated in the same manner as Formulation Example 6 except that 80 parts of acetone was changed to 80 parts of methyl methacrylate.

(配合例9)
配合例6において、アセトン80部を、アクリル酸n−ブチルエステル80部に変更した以外は、配合例6と同様にして溶解性を評価した。
(Formulation example 9)
In Formulation Example 6, the solubility was evaluated in the same manner as Formulation Example 6 except that 80 parts of acetone was changed to 80 parts of acrylic acid n-butyl ester.

(配合例10)
配合例6において、アセトン80部を、トリプロピレングリコールジアクリル酸エステル80部に変更した以外は、配合例6と同様にして溶解性を評価した。
(Formulation example 10)
In Formulation Example 6, the solubility was evaluated in the same manner as Formulation Example 6 except that 80 parts of acetone was changed to 80 parts of tripropylene glycol diacrylate.

Figure 2014091792
Figure 2014091792

Figure 2014091792
Figure 2014091792

表3、4より、反応性アクリル樹脂を製造する際、(メタ)アクリル酸アルキルエステル、又はその他重合性単量体の種類を選択することにより、反応性アクリル樹脂の有機溶剤に対する溶解性を制御できることが分かる。   From Tables 3 and 4, when producing a reactive acrylic resin, the solubility of the reactive acrylic resin in an organic solvent is controlled by selecting the type of (meth) acrylic acid alkyl ester or other polymerizable monomer. I understand that I can do it.

<硬化試験>
得られた反応性アクリル樹脂(実施例2、実施例4)について、以下に示す硬化試験を行った。かかる硬化試験においては、光重合開始剤として、1−ヒドロキシ−シクロヘキシル−フェニルケトン(商品名:イルガキュア184)を用いた。その結果を表5に示す。
<Curing test>
About the obtained reactive acrylic resin (Example 2, Example 4), the hardening test shown below was done. In such a curing test, 1-hydroxy-cyclohexyl-phenyl ketone (trade name: Irgacure 184) was used as a photopolymerization initiator. The results are shown in Table 5.

[硬化試験(1)]
実施例2で得た粉末状の反応性アクリル樹脂の20%アセトン溶液(前記配合例1の溶液)10部をアルミシャーレに採り、そこへ光重合開始剤0.06g(反応性アクリル樹脂100質量部に対して3質量部)を添加して溶解し、25℃で24時間乾燥させた後、乾燥機を用いて80℃で2時間乾燥させた。その後、UVランプを用い、紫外線を照射して光硬化させた。紫外線の照射後、乾燥機を用い、80℃で2時間加熱して熱硬化させることにより硬化物を得た。
得られた硬化物1部を200mLビーカーに採り、さらにアセトン100mLを加え、25℃で48時間浸漬し続けたが、この硬化物はアセトンに溶解しなかった。
[Curing test (1)]
10 parts of a 20% acetone solution of the powdered reactive acrylic resin obtained in Example 2 (the solution of Formulation Example 1) was placed in an aluminum petri dish, and 0.06 g of a photopolymerization initiator (100 mass of reactive acrylic resin) was added thereto. 3 parts by mass) were added and dissolved, dried at 25 ° C. for 24 hours, and then dried at 80 ° C. for 2 hours using a dryer. After that, UV curing was performed by irradiating with ultraviolet rays and photocuring. After irradiation with ultraviolet rays, a cured product was obtained by heating at 80 ° C. for 2 hours and then thermally curing using a dryer.
1 part of the obtained cured product was taken in a 200 mL beaker, 100 mL of acetone was further added, and immersion was continued at 25 ° C. for 48 hours, but this cured product was not dissolved in acetone.

[硬化試験(2)]
前記硬化試験(1)において、前記配合例1の溶液10部を、実施例4で得たシート状の反応性アクリル樹脂の20%アセトン溶液(前記配合例6の溶液)10部に変更した以外は、前記硬化試験(1)と同様にして硬化物を得た。
得られた硬化物1部を200mLビーカーに採り、さらにアセトン100mLを加え、25℃で48時間浸漬し続けたが、この硬化物もアセトンに溶解しなかった。
[Curing test (2)]
In the curing test (1), except that 10 parts of the solution of Formulation Example 1 was changed to 10 parts of a 20% acetone solution (solution of Formulation Example 6) of the sheet-like reactive acrylic resin obtained in Example 4. Obtained the hardened | cured material like the said hardening test (1).
1 part of the obtained cured product was taken in a 200 mL beaker, further 100 mL of acetone was added, and the immersion was continued for 48 hours at 25 ° C., but this cured product was not dissolved in acetone.

Figure 2014091792
Figure 2014091792

Claims (2)

(メタ)アクリル酸アルキルエステルとカルボキシ基含有ラジカル重合性単量体とを、水を媒体とした懸濁重合により共重合させてカルボキシ基含有アクリル樹脂を得る工程(1)と、
該カルボキシ基含有アクリル樹脂とエポキシ基含有ラジカル重合性単量体とを水媒体中で反応させる工程(2)と、
を含む、分子内に重合性二重結合を有する反応性アクリル樹脂の製造方法。
A step (1) of obtaining a carboxy group-containing acrylic resin by copolymerizing a (meth) acrylic acid alkyl ester and a carboxy group-containing radical polymerizable monomer by suspension polymerization using water as a medium;
A step (2) of reacting the carboxy group-containing acrylic resin and the epoxy group-containing radical polymerizable monomer in an aqueous medium;
And a method for producing a reactive acrylic resin having a polymerizable double bond in the molecule.
前記工程(1)及び/又は前記工程(2)でアミン化合物を用いる、請求項1に記載の反応性アクリル樹脂の製造方法。   The method for producing a reactive acrylic resin according to claim 1, wherein an amine compound is used in the step (1) and / or the step (2).
JP2012243788A 2012-11-05 2012-11-05 Method for producing reactive acrylic resin Active JP6087586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012243788A JP6087586B2 (en) 2012-11-05 2012-11-05 Method for producing reactive acrylic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012243788A JP6087586B2 (en) 2012-11-05 2012-11-05 Method for producing reactive acrylic resin

Publications (2)

Publication Number Publication Date
JP2014091792A true JP2014091792A (en) 2014-05-19
JP6087586B2 JP6087586B2 (en) 2017-03-01

Family

ID=50936124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012243788A Active JP6087586B2 (en) 2012-11-05 2012-11-05 Method for producing reactive acrylic resin

Country Status (1)

Country Link
JP (1) JP6087586B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190041766A1 (en) * 2016-02-01 2019-02-07 Bridgestone Corporation Conductive roller, and production method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080106A (en) * 1998-07-10 2000-03-21 Mitsubishi Rayon Co Ltd Preparation of particulate vinyl polymer
JP2003040923A (en) * 2001-07-30 2003-02-13 Shinnakamura Kagaku Kogyo Kk Water-dispersible and ultraviolet-curable polymer, and use and production method thereof
JP2008501840A (en) * 2004-06-11 2008-01-24 ヌプレクス レジンズ ビー.ブイ. Waterborne multistage polymer dispersion
JP2009161589A (en) * 2007-12-28 2009-07-23 Mitsubishi Rayon Co Ltd Syrup composition, cured material of it, and coating method
JP2011006558A (en) * 2009-06-24 2011-01-13 Showa Denko Kk Photocurable resin composition dispersed in water-based medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080106A (en) * 1998-07-10 2000-03-21 Mitsubishi Rayon Co Ltd Preparation of particulate vinyl polymer
JP2003040923A (en) * 2001-07-30 2003-02-13 Shinnakamura Kagaku Kogyo Kk Water-dispersible and ultraviolet-curable polymer, and use and production method thereof
JP2008501840A (en) * 2004-06-11 2008-01-24 ヌプレクス レジンズ ビー.ブイ. Waterborne multistage polymer dispersion
JP2009161589A (en) * 2007-12-28 2009-07-23 Mitsubishi Rayon Co Ltd Syrup composition, cured material of it, and coating method
JP2011006558A (en) * 2009-06-24 2011-01-13 Showa Denko Kk Photocurable resin composition dispersed in water-based medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190041766A1 (en) * 2016-02-01 2019-02-07 Bridgestone Corporation Conductive roller, and production method therefor

Also Published As

Publication number Publication date
JP6087586B2 (en) 2017-03-01

Similar Documents

Publication Publication Date Title
KR100564331B1 (en) Polymer composition
AU2013215275A1 (en) Dispersion of adsorbing emulsion polymer particles
JP6633758B2 (en) Vinyl chloride resin composition and method for producing the same
CN103282340B (en) The 3-oxopentanoic acid ester replaced and purposes in the coating composition thereof
CN101006106A (en) Method for producing an (meth)acrylate syrup
JP6087586B2 (en) Method for producing reactive acrylic resin
JP2006225662A (en) Method for producing aqueous dispersion
ES2539355T3 (en) Photoreactive polymer
JP2018123061A (en) Polymeric antibacterial/antifungal agent, and use thereof
TWI824583B (en) Tackifier and adhesive compositions
JP7041989B1 (en) Monomer composition for resin modification
JP7413143B2 (en) thickener
JP2013511578A (en) Bulk polymerization of (meth) acrylate copolymers, soluble in aqueous alkali
US20070112154A1 (en) Method for producing an (meth)acrylate syrup
KR20230038769A (en) Thickener for cyanoacrylate-based adhesives
JP2004277660A (en) Thermosetting-type composition
JPS63258913A (en) Hardening water-based resin dispersion
JP7081486B2 (en) Photocurable resin compositions, inks and paints
JP5955735B2 (en) Benzotriazole compounds
JP6025019B2 (en) Method for producing reactive polymer solution
JP2010111731A (en) Curing agent for epoxy resin, epoxy resin composition and cured product of epoxy resin
CN117460803A (en) Tackifier and adhesive composition
JP2009001785A (en) Silane varnish comprising aminosilane and epoxy-functional polyacrylate
JP4918735B2 (en) Active energy ray-curable powder coating composition
JP2001310916A (en) Polymerizable resin composition and production method of the same, and its cured product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170202

R150 Certificate of patent or registration of utility model

Ref document number: 6087586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250