JP2014089997A - Imaging device and illumination device - Google Patents

Imaging device and illumination device Download PDF

Info

Publication number
JP2014089997A
JP2014089997A JP2012237526A JP2012237526A JP2014089997A JP 2014089997 A JP2014089997 A JP 2014089997A JP 2012237526 A JP2012237526 A JP 2012237526A JP 2012237526 A JP2012237526 A JP 2012237526A JP 2014089997 A JP2014089997 A JP 2014089997A
Authority
JP
Japan
Prior art keywords
light
unit
light emitting
periphery
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012237526A
Other languages
Japanese (ja)
Inventor
Satoshi Yamamoto
学志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2012237526A priority Critical patent/JP2014089997A/en
Publication of JP2014089997A publication Critical patent/JP2014089997A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Studio Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the amount of light produced by a light-emitting unit.SOLUTION: An imaging device 100 comprises a light-receiving unit 10 in which a plurality of light-receiving elements 14 are arranged; and a light source unit 36 disposed between the light-receiving unit 10 and a subject 200. In the light source unit 36, light-emitting units 50 for irradiating the subject 200 with light, and transmission units 60 for transmitting light originating from the subject 200 to the light-receiving unit 10 side are arranged in a planar configuration. At least a part of the rim of the light-emitting unit 50 has a shape that conforms to the rim of the transmission unit 60 in plan view. Specifically, the rim of the transmission units 60 has a circular shape, and the rim of the light-emitting unit 50 has an arcuate shape concentric to the rim of the transmission unit 60.

Description

本発明は、物体を照明する技術に関する。   The present invention relates to a technique for illuminating an object.

生体認証のために生体の静脈像を撮像する各種の技術が従来から提案されている。例えば特許文献1には、光源層と検出層とを基板の表面に積層した構造の撮像装置が開示されている。特許文献1の技術においては、光源層の光源素子により被写体を照明し、被写体側から到来する光が、光源層の透過部を透過した後に検出層の各受光素子で検出される。   Various techniques for capturing a vein image of a living body for biometric authentication have been proposed. For example, Patent Document 1 discloses an imaging device having a structure in which a light source layer and a detection layer are stacked on a surface of a substrate. In the technique of Patent Document 1, the subject is illuminated by the light source element of the light source layer, and light coming from the subject side is detected by each light receiving element of the detection layer after passing through the transmission part of the light source layer.

特開2009−3821号公報JP 2009-3821 A

特許文献1の技術のもとで被写体を鮮明に撮像するには、各光源素子から被写体に照射される光量を充分に確保することが重要である。各光源素子に供給される電気エネルギーを増加させれば光量を増加させることは可能であるが、消費電力が増大するという問題がある。なお、以上の説明では、撮像装置が撮像する被写体の照明に着目したが、照明対象となる物体から到来する光の受光側と物体との間に照明装置(いわゆるフロントライト)が設置される任意の構成のもとで同様の問題が発生し得る。以上の事情を考慮して、本発明は、物体の照明に利用可能な光量を充分に確保することを目的とする。   In order to clearly capture a subject under the technique of Patent Document 1, it is important to secure a sufficient amount of light emitted from each light source element to the subject. If the electric energy supplied to each light source element is increased, the amount of light can be increased, but there is a problem that the power consumption increases. In the above description, the illumination of the subject imaged by the imaging device is focused. However, an illumination device (so-called front light) is arbitrarily installed between the light receiving side of light coming from the object to be illuminated and the object. A similar problem may occur under the configuration. In view of the above circumstances, an object of the present invention is to ensure a sufficient amount of light that can be used for illumination of an object.

以上の課題を解決するために、本発明の撮像装置は、複数の受光素子が配置された受光部と、受光部と被写体との間に配置された光源部とを具備し、光源部には、被写体に光を照射する発光部と、被写体から到来する光を受光部側に透過させる透過部とが平面状に配置され、発光部の周縁の少なくとも一部は、平面視で透過部の周縁に沿う形状である。以上の構成では、発光部の周縁の少なくとも一部が平面視で透過部の周縁に沿う形状とされるから、例えば平面視で透過部に重ならないように矩形状の発光部を形成する場合(対比例)と比較して、発光部の面積が拡大される。したがって、充分な光量を被写体の照明に利用することが可能である。換言すると、電気エネルギーの増加により対比例と同等の光量を確保する場合と比較して消費電力を低減することが可能である。   In order to solve the above problems, an imaging apparatus of the present invention includes a light receiving unit in which a plurality of light receiving elements are disposed, and a light source unit disposed between the light receiving unit and the subject. The light emitting unit for irradiating the subject with light and the transmission unit for transmitting the light coming from the subject to the light receiving unit side are arranged in a planar shape, and at least a part of the periphery of the light emitting unit is the periphery of the transmission unit in plan view It is a shape along. In the above configuration, since at least a part of the periphery of the light emitting unit is shaped along the periphery of the transmission unit in plan view, for example, when forming a rectangular light emission unit so as not to overlap the transmission unit in plan view ( In comparison with (proportional), the area of the light emitting part is enlarged. Therefore, it is possible to use a sufficient amount of light for illuminating the subject. In other words, it is possible to reduce power consumption as compared with the case where a light amount equivalent to the proportionality is secured by an increase in electrical energy.

本発明の好適な態様において、光源部は、複数の透過部を含み、発光部の周縁の少なくとも一部は、この発光部の周囲に位置する複数の透過部の各々の周縁に沿う形状である。以上の構成では、発光部の周縁の少なくとも一部が、この発光部の周囲に位置する複数の透過部の各々の周縁に沿う形状とされるから、対比例と比較して発光部の面積を充分に確保できるという効果は格別に顕著である。   In a preferred aspect of the present invention, the light source unit includes a plurality of transmission parts, and at least a part of the periphery of the light emitting part has a shape along the periphery of each of the plurality of transmission parts located around the light emission part. . In the above configuration, since at least a part of the periphery of the light emitting unit is shaped along the periphery of each of the plurality of transmission units located around the light emitting unit, the area of the light emitting unit is reduced compared to the comparative example. The effect that it can be secured sufficiently is particularly remarkable.

本発明の好適な態様において、透過部の周縁は円形状であり、発光部の周縁の一部は、透過部の周縁と同心な円弧形状である。以上の構成では、発光部の周縁の一部が、平面視で透過部の円形状の周縁に沿う円弧形状とされるから、対比例と比較して発光部の面積を充分に確保できるという効果は格別に顕著である。   In a preferred aspect of the present invention, the periphery of the transmission part is circular, and a part of the periphery of the light emitting part is arcuate and concentric with the periphery of the transmission part. In the above configuration, since a part of the periphery of the light emitting part is formed in an arc shape along the circular periphery of the transmission part in a plan view, the effect that the area of the light emitting part can be sufficiently secured as compared with the comparative example. Is particularly prominent.

本発明の好適な態様において、被写体から到来する光を集光して受光部側に出射する集光部を具備する。以上の構成においては、被写体からの反射光が集光部で集光されたうえで受光部に到達するから、被写体から受光部に到達する光量を充分に確保できるという利点がある。   In a preferred aspect of the present invention, a condensing unit that condenses light coming from the subject and emits the light to the light receiving unit side is provided. In the above configuration, since the reflected light from the subject is collected by the light collecting unit and reaches the light receiving unit, there is an advantage that a sufficient amount of light reaching the light receiving unit from the subject can be secured.

本発明の好適な態様において、光源部には、複数の発光部が平面状に配置され、一の発光部に電流を供給する配線と他の発光部に電流を供給する配線とが相互に間隔をあけて形成されている。例えば、複数の発光部は、相互に交差する第1方向(例えばX方向)および第2方向(例えばY方向)に沿って行列状に配列し、第2方向に相互に間隔をあけて第1方向に延在する複数の配線の各々が、第1方向に配列する2以上の発光部に電気的に接続される。以上の構成によれば、例えば、全部の発光部にわたる配線(例えば、複数の発光部の行列状の配列に対応する格子状の配線)を形成した場合と比較して、1個の発光部に発生し得る欠陥(例えば電極間の短絡)の影響が波及する範囲を制限できるという利点がある。   In a preferred aspect of the present invention, the light source unit includes a plurality of light emitting units arranged in a plane, and a wiring that supplies current to one light emitting unit and a wiring that supplies current to another light emitting unit are spaced from each other. It is formed with a gap. For example, the plurality of light emitting units are arranged in a matrix along a first direction (for example, the X direction) and a second direction (for example, the Y direction) that intersect each other, and the first light emitting units are spaced apart from each other in the second direction. Each of the plurality of wirings extending in the direction is electrically connected to two or more light emitting units arranged in the first direction. According to the above configuration, for example, compared to a case where wirings extending over all the light emitting units (for example, a grid-like wiring corresponding to a matrix arrangement of a plurality of light emitting units) are formed in one light emitting unit. There is an advantage that the range in which the influence of a defect (for example, a short circuit between electrodes) that can occur can be limited.

以上の各態様に係る撮像装置は、各種の電子機器に好適に利用される。電子機器の具体例としては、撮像装置が撮像した静脈像を利用して生体認証を実行する生体認証装置や、撮像装置が撮影した画像(例えば静脈像)から血中アルコール濃度や血糖値等の生体情報を推定する医療機器(血中アルコール濃度推定装置や血糖値推定装置等の生体情報推定装置)が例示され得る。   The imaging device according to each aspect described above is suitably used for various electronic devices. Specific examples of electronic devices include a biometric authentication device that performs biometric authentication using a vein image captured by an imaging device, and blood alcohol concentration, blood glucose level, and the like from an image (for example, a vein image) captured by the imaging device. Medical devices (biological information estimation devices such as blood alcohol concentration estimation devices and blood glucose level estimation devices) that estimate biological information can be exemplified.

また、本発明は、物体を照明する照明装置としても特定される。本発明の照明装置は、光を照射する発光部と光を透過する透過部とが平面状に配置された光源部を具備し、発光部の周縁の少なくとも一部は、平面視で透過部の周縁に沿う形状である。本発明の照明装置は、前述の各形態で例示した撮像装置のほか、各種の電子機器の表示装置を照明する光源(フロントライト)として好適に利用され得る。   Moreover, this invention is specified also as an illuminating device which illuminates an object. An illumination device of the present invention includes a light source unit in which a light emitting unit that emits light and a transmission unit that transmits light are arranged in a planar shape, and at least a part of the periphery of the light emitting unit is a plan view of the transmission unit. It is a shape along the periphery. The illumination device of the present invention can be suitably used as a light source (front light) for illuminating display devices of various electronic devices, in addition to the imaging devices exemplified in the above-described embodiments.

本発明の実施形態に係る撮像装置の断面図である。It is sectional drawing of the imaging device which concerns on embodiment of this invention. 撮像装置の分解断面図である。It is an exploded sectional view of an imaging device. 撮像装置の各要素の位置関係を示す平面図である。It is a top view which shows the positional relationship of each element of an imaging device. 配線層および光源部の断面図である。It is sectional drawing of a wiring layer and a light source part. 光源部の平面図である。It is a top view of a light source part. 発光部および透過部の平面形状を説明する平面図である。It is a top view explaining the planar shape of a light emission part and a permeation | transmission part. 第1実施形態の効果を説明するための平面図である。It is a top view for demonstrating the effect of 1st Embodiment. 第2実施形態における照明部の平面図である。It is a top view of the illumination part in 2nd Embodiment. 図8におけるIX−IX線の断面図である。It is sectional drawing of the IX-IX line in FIG.

<第1実施形態>
図1は、本発明の第1実施形態に係る撮像装置100の断面図であり、図2は、撮像装置100の分解断面図である。本実施形態の撮像装置100は、特定の波長の光(以下「撮像光」という)を照射した状態で被写体200を撮像するセンシング装置であり、例えば生体(典型的には人間の手指)の静脈像を撮像する生体認証装置(静脈センサー)に好適に利用される。したがって、例えば生体を透過する近赤外光が撮像光として好適である。
<First Embodiment>
FIG. 1 is a cross-sectional view of the imaging apparatus 100 according to the first embodiment of the present invention, and FIG. 2 is an exploded cross-sectional view of the imaging apparatus 100. The imaging apparatus 100 according to the present embodiment is a sensing apparatus that captures an image of the subject 200 in a state where light of a specific wavelength (hereinafter referred to as “imaging light”) is irradiated. For example, a vein of a living body (typically, a human finger). It is suitably used for a biometric authentication device (venous sensor) that captures an image. Therefore, for example, near-infrared light that passes through a living body is suitable as imaging light.

図1および図2に示すように、本実施形態の撮像装置100は、受光部10と集光部20と照明部30とを具備する。照明部30は受光部10の被写体200側(受光部10と被写体200との間)に配置され、集光部20は照明部30の被写体200側(照明部30と被写体200との間)に配置される。すなわち、照明部30は受光部10と集光部20との間に位置する。概略的には、照明部30から出射した撮像光で照明された被写体200からの入射光が集光部20にて集光されたうえで照明部30を透過して受光部10に到達する。   As shown in FIGS. 1 and 2, the imaging apparatus 100 of the present embodiment includes a light receiving unit 10, a light collecting unit 20, and an illumination unit 30. The illumination unit 30 is disposed on the subject 200 side of the light receiving unit 10 (between the light receiving unit 10 and the subject 200), and the light collecting unit 20 is disposed on the subject 200 side of the illumination unit 30 (between the illumination unit 30 and the subject 200). Be placed. That is, the illumination unit 30 is located between the light receiving unit 10 and the light collecting unit 20. Schematically, incident light from the subject 200 illuminated by the imaging light emitted from the illumination unit 30 is collected by the light collection unit 20, then passes through the illumination unit 30 and reaches the light receiving unit 10.

受光部10は、被写体200を撮像する要素であり、基板12と複数の受光素子14とを含んで構成される。基板12は、例えば半導体材料で形成された板状部材である。複数の受光素子14は、基板12の被写体200側の表面(受光面)121に形成され、図3に示すように、平面視で(すなわち表面121に垂直な方向からみて)、相互に交差するX方向およびY方向に沿って行列状に配列する。各受光素子14は、受光量に応じた検出信号を生成する。各受光素子14が生成した検出信号を画像処理することで被写体200の画像が生成される。例えば公知のCMOS(Complementary Metal Oxide Semiconductor)センサーやCCD(Charge Coupled Device)センサーが受光部10として好適に利用される。   The light receiving unit 10 is an element that captures an image of the subject 200 and includes a substrate 12 and a plurality of light receiving elements 14. The substrate 12 is a plate-like member made of, for example, a semiconductor material. The plurality of light receiving elements 14 are formed on a surface (light receiving surface) 121 on the subject 200 side of the substrate 12 and intersect each other in a plan view (that is, viewed from a direction perpendicular to the surface 121) as shown in FIG. They are arranged in a matrix along the X and Y directions. Each light receiving element 14 generates a detection signal corresponding to the amount of received light. An image of the subject 200 is generated by performing image processing on the detection signal generated by each light receiving element 14. For example, a known CMOS (Complementary Metal Oxide Semiconductor) sensor or CCD (Charge Coupled Device) sensor is suitably used as the light receiving unit 10.

図1の集光部20は、被写体200側から到来する撮像光を集光する要素であり、基板22と複数のレンズ24(マイクロレンズ)とを含んで構成される。図2に示すように、基板22は、被写体200に対向する表面221と表面221の反対側の表面222とを含む光透過性(撮像光を透過させる性質)の板状部材である。例えばガラス基板や石英基板が基板22として好適に採用される。複数のレンズ24は、基板22の表面222に形成される。各レンズ24は、被写体200から基板22の表面221に入射して基板22を透過した撮像光を集光する凸レンズである。   The condensing unit 20 in FIG. 1 is an element that condenses imaging light coming from the subject 200 side, and includes a substrate 22 and a plurality of lenses 24 (microlenses). As shown in FIG. 2, the substrate 22 is a light-transmitting (a property that transmits imaging light) plate-shaped member that includes a surface 221 that faces the subject 200 and a surface 222 opposite to the surface 221. For example, a glass substrate or a quartz substrate is preferably used as the substrate 22. The plurality of lenses 24 are formed on the surface 222 of the substrate 22. Each lens 24 is a convex lens that collects imaging light that has entered the surface 221 of the substrate 22 from the subject 200 and has transmitted through the substrate 22.

図1から図3に示すように、集光部20の各レンズ24と受光部10の各受光素子14とは1対1に対応する。具体的には、図1に示すように、各レンズ24の光軸L0は、そのレンズ24に対応する受光素子14(典型的には受光素子14の中心)を通過する。したがって、複数のレンズ24は、図3に示す通り、各受光素子14と同様に平面視でX方向およびY方向に沿って行列状に配列する。   As shown in FIGS. 1 to 3, each lens 24 of the light collecting unit 20 and each light receiving element 14 of the light receiving unit 10 correspond one-to-one. Specifically, as shown in FIG. 1, the optical axis L0 of each lens 24 passes through the light receiving element 14 (typically the center of the light receiving element 14) corresponding to the lens 24. Therefore, as shown in FIG. 3, the plurality of lenses 24 are arranged in a matrix along the X direction and the Y direction in a plan view like the respective light receiving elements 14.

図1の照明部30は、撮像光を生成して被写体200を照明するとともに各レンズ24が集光した撮像光を各受光素子14側に透過させる要素であり、基板32と遮光層33と配線層35と光源部36と保護層37とを含んで構成される。図2に示すように、基板32は、集光部20(各レンズ24)に対向する表面321と表面321の反対側の表面322とを含む光透過性の板状部材(例えばガラス基板や石英基板)である。遮光層33は、基板32の表面322に形成された遮光性(撮像光を吸収または反射させる性質)の膜体である。図1から図3に示すように、遮光層33には、各受光素子14に対応する複数の円形状の開口部34が形成される。   The illumination unit 30 in FIG. 1 is an element that generates imaging light to illuminate the subject 200 and transmits the imaging light condensed by each lens 24 toward each light receiving element 14, and includes a substrate 32, a light shielding layer 33, and wiring. The layer 35 includes a light source unit 36 and a protective layer 37. As shown in FIG. 2, the substrate 32 is a light-transmissive plate member (for example, a glass substrate or quartz) that includes a surface 321 that faces the light collecting unit 20 (each lens 24) and a surface 322 opposite to the surface 321. Substrate). The light shielding layer 33 is a film body having a light shielding property (a property of absorbing or reflecting imaging light) formed on the surface 322 of the substrate 32. As shown in FIGS. 1 to 3, a plurality of circular openings 34 corresponding to the respective light receiving elements 14 are formed in the light shielding layer 33.

図1の配線層35は、基板32の表面321に形成され、光源部36に電流を供給するための配線を含んで構成される。光源部36は、配線層35の表面に形成され、被写体200を照明するとともに被写体200側からの撮像光を各受光素子14側に透過させる。図2および図3に示すように、光源部36は、平面視(すなわち基板32の表面321に垂直な方向からみた状態)で複数の発光部50と複数の透過部60とに区分される。図3では、各発光部50の領域に便宜的にハッチングが付されている。   The wiring layer 35 in FIG. 1 is formed on the surface 321 of the substrate 32 and includes a wiring for supplying a current to the light source unit 36. The light source unit 36 is formed on the surface of the wiring layer 35 and illuminates the subject 200 and transmits imaging light from the subject 200 side to each light receiving element 14 side. As shown in FIGS. 2 and 3, the light source unit 36 is divided into a plurality of light emitting units 50 and a plurality of transmission units 60 in a plan view (that is, a state viewed from a direction perpendicular to the surface 321 of the substrate 32). In FIG. 3, the area of each light emitting unit 50 is hatched for convenience.

各発光部50は、被写体200を照明する撮像光を生成して被写体200側に出射する。各透過部60は、被写体200側からの入射光を各受光素子14側に透過させる。図3に示すように、各透過部60は平面視で円形状に形成される。光源部36の各透過部60と集光部20の各レンズ24(または受光部10の各受光素子14)とは1対1に対応する。具体的には、図1に示すように、各レンズ24の光軸L0は、そのレンズ24に対応する透過部60(典型的には透過部60の中心)を通過する。したがって、各透過部60は、図3に示す通り、各レンズ24や各受光素子14と同様に平面視でX方向およびY方向に沿って行列状に配列する。各発光部50は、図3に示す通り、周囲を各透過部60で包囲された領域に形成される。したがって、各発光部50も各レンズ24や各受光素子14と同様に平面視でX方向およびY方向に沿って行列状に配列する。図1の保護層37は、光源部36を封止して外気や水分から保護する要素(封止層)であり、光透過性の絶縁材料(例えば樹脂材料)で形成される。   Each light emitting unit 50 generates imaging light for illuminating the subject 200 and emits it to the subject 200 side. Each transmitting unit 60 transmits incident light from the subject 200 side to each light receiving element 14 side. As shown in FIG. 3, each transmission part 60 is formed in a circular shape in plan view. Each transmission part 60 of the light source part 36 and each lens 24 (or each light receiving element 14 of the light receiving part 10) of the light collecting part 20 correspond one-to-one. Specifically, as shown in FIG. 1, the optical axis L 0 of each lens 24 passes through a transmission part 60 (typically the center of the transmission part 60) corresponding to the lens 24. Therefore, as shown in FIG. 3, the transmission parts 60 are arranged in a matrix along the X direction and the Y direction in a plan view like the lenses 24 and the light receiving elements 14. As shown in FIG. 3, each light emitting unit 50 is formed in a region surrounded by each transmitting unit 60. Accordingly, the light emitting units 50 are also arranged in a matrix along the X direction and the Y direction in a plan view like the lenses 24 and the light receiving elements 14. The protective layer 37 in FIG. 1 is an element (sealing layer) that seals the light source unit 36 and protects it from the outside air and moisture, and is formed of a light-transmissive insulating material (for example, a resin material).

受光部10と照明部30とは、例えば光透過性の接着剤18で相互に間隔をあけて固定される。また、集光部20と照明部30とは、各々の外周部が相互に固定される。図1では、集光部20の各レンズ24の表面と照明部30の保護層37の表面とが接触するように集光部20と照明部30とを接合した構成が例示されている。ただし、各レンズ24の表面と保護層37の表面とが相互に間隔をあけて対向するように集光部20と照明部30とを相互に固定することも可能である。   The light receiving unit 10 and the illumination unit 30 are fixed to each other with a light-transmitting adhesive 18, for example. Moreover, as for the condensing part 20 and the illumination part 30, each outer peripheral part is mutually fixed. In FIG. 1, the structure which joined the condensing part 20 and the illumination part 30 so that the surface of each lens 24 of the condensing part 20 and the surface of the protective layer 37 of the illumination part 30 may contact is illustrated. However, it is also possible to fix the light collecting unit 20 and the illumination unit 30 to each other so that the surface of each lens 24 and the surface of the protective layer 37 face each other with a space therebetween.

以上に説明した構成において、光源部36の発光部50から出射した撮像光が集光部20(基板22および各レンズ24)を透過して被写体200に照射されるとともに被写体200の内部の静脈にて散乱または反射して集光部20に入射し、各レンズ24で集光されたうえで光源部36の透過部60と基板32と遮光層33の開口部34とを通過して受光素子14に到達する。したがって、被写体200の静脈像が撮像される。以上の構成では、光源部36により照明された被写体200からの撮像光が集光部20の各レンズ24で集光されたうえで受光素子14に到達するから、撮像光を集光する要素が存在しない特許文献1の技術と比較して、被写体200から各受光素子14に到達する光量を充分に確保できるという利点がある。   In the configuration described above, the imaging light emitted from the light emitting unit 50 of the light source unit 36 is transmitted through the condensing unit 20 (the substrate 22 and each lens 24) to be irradiated on the subject 200 and to the veins inside the subject 200. Then, the light is scattered or reflected to be incident on the condensing unit 20, collected by each lens 24, and then passes through the transmission unit 60 of the light source unit 36, the substrate 32, and the opening 34 of the light shielding layer 33. To reach. Therefore, a vein image of the subject 200 is captured. In the above configuration, since the imaging light from the subject 200 illuminated by the light source unit 36 is collected by each lens 24 of the light collecting unit 20 and reaches the light receiving element 14, an element for collecting the imaging light is provided. Compared with the technique of Patent Document 1 that does not exist, there is an advantage that a sufficient amount of light reaching each light receiving element 14 from the subject 200 can be secured.

図4は、配線層35および光源部36を拡大した断面図である。図4に示すように、配線層35は、基板32の表面321に形成された配線351と、表面321の全域に形成されて配線351を覆う光透過性の絶縁層352とを含んで構成される。配線層35の配線351は、平面視で発光部50に重複する領域内に形成され、各透過部60とは重複しない。例えば、配線351は、相互に間隔をあけてX方向に延在する複数の部分と相互に間隔をあけてY方向に延在する複数の部分とを交差させた格子状に形成される。図4に示すように、光源部36は、反射層361と絶縁層362と第1電極層363と絶縁層364と発光層365と第2電極層366とを含んで構成される。   FIG. 4 is an enlarged cross-sectional view of the wiring layer 35 and the light source unit 36. As shown in FIG. 4, the wiring layer 35 includes a wiring 351 formed on the surface 321 of the substrate 32 and a light-transmissive insulating layer 352 that is formed over the entire surface 321 and covers the wiring 351. The The wiring 351 of the wiring layer 35 is formed in a region overlapping with the light emitting unit 50 in a plan view and does not overlap with each transmission unit 60. For example, the wiring 351 is formed in a lattice shape in which a plurality of portions extending in the X direction with a space between each other and a plurality of portions extending in the Y direction with a space between each other are crossed. As shown in FIG. 4, the light source unit 36 includes a reflective layer 361, an insulating layer 362, a first electrode layer 363, an insulating layer 364, a light emitting layer 365, and a second electrode layer 366.

反射層361は、配線層35(絶縁層352)の表面のうち発光部50に対応する領域に形成され、発光層365が生成する光を被写体200側に反射させる光反射性の薄膜である。反射層361は、例えば銀やアルミニウムなどの導電材料で形成される。図4および図5に示すように、反射層361は透過部60には形成されない。図4の絶縁層362は、光透過性の絶縁材料で配線層35の面上に形成されて各反射層361を覆う。   The reflection layer 361 is a light-reflective thin film that is formed in a region corresponding to the light emitting unit 50 on the surface of the wiring layer 35 (insulating layer 352) and reflects light generated by the light emitting layer 365 toward the subject 200. The reflective layer 361 is formed of a conductive material such as silver or aluminum. As shown in FIGS. 4 and 5, the reflective layer 361 is not formed in the transmissive portion 60. The insulating layer 362 of FIG. 4 is formed on the surface of the wiring layer 35 with a light transmissive insulating material and covers each reflective layer 361.

第1電極層363は、絶縁層362の表面のうち発光部50に対応する領域に形成される。図4および図5に示すように、第1電極層363は、絶縁層362と絶縁層352とを貫通するコンタクトホール353を介して配線層35の配線351に電気的に接続され、発光層365に電流を供給する電極(陽極)として機能する。第1電極層363は、例えばITO(Indium Tin Oxide)等の光透過性の導電材料で形成される。第1電極層363が形成された絶縁層362の面上には、絶縁層364が形成される。   The first electrode layer 363 is formed in a region corresponding to the light emitting unit 50 on the surface of the insulating layer 362. As shown in FIGS. 4 and 5, the first electrode layer 363 is electrically connected to the wiring 351 of the wiring layer 35 through the contact hole 353 that penetrates the insulating layer 362 and the insulating layer 352, and the light emitting layer 365. It functions as an electrode (anode) for supplying a current. The first electrode layer 363 is formed of a light transmissive conductive material such as ITO (Indium Tin Oxide). An insulating layer 364 is formed on the surface of the insulating layer 362 on which the first electrode layer 363 is formed.

発光層365は、第1電極層363および絶縁層364を覆うように発光部50および透過部60の双方にわたり略一定の膜厚に形成される。図4に示すように、発光層365は、電流を供給することにより発光する電気光学層であり、例えば有機EL(Electroluminescence)材料で形成される。なお、図4では便宜的に発光層365を単層として図示したが、発光層365の発光効率を向上するための電荷輸送層(正孔輸送層,電子輸送層)や電荷注入層(正孔注入層,電子注入層)を形成することも可能である。また、発光層365の材料は有機EL材料に限定されない。   The light emitting layer 365 is formed to have a substantially constant film thickness over both the light emitting unit 50 and the transmission unit 60 so as to cover the first electrode layer 363 and the insulating layer 364. As shown in FIG. 4, the light emitting layer 365 is an electro-optical layer that emits light when supplied with an electric current, and is formed of, for example, an organic EL (Electroluminescence) material. Note that although the light emitting layer 365 is illustrated as a single layer for convenience in FIG. 4, a charge transport layer (hole transport layer, electron transport layer) or a charge injection layer (hole transport) for improving the light emission efficiency of the light emitting layer 365 is shown. It is also possible to form an injection layer or an electron injection layer. Further, the material of the light emitting layer 365 is not limited to the organic EL material.

第2電極層366は、発光層365の表面の全域にわたり連続に形成された光透過性の膜体であり、第1電極層363との間で発光層365に電流を供給する電極(陰極)として機能する。前述の保護層37は、第2電極層366を覆うように形成される。   The second electrode layer 366 is a light-transmitting film body that is continuously formed over the entire surface of the light emitting layer 365, and is an electrode (cathode) that supplies current to the light emitting layer 365 with the first electrode layer 363. Function as. The protective layer 37 described above is formed so as to cover the second electrode layer 366.

絶縁層364は、図5に示すように、複数の第1部分71と複数の第2部分72とを含んで構成される。各第1部分71は、平面視で円環状の部分であり、各レンズ24に対応してX方向およびY方向に沿って行列状に配列する。すなわち、各レンズ24の光軸L0は、そのレンズ24に対応する第1部分71の内側(典型的には第1部分71の中心)を通過する。各第2部分72は、X方向またはY方向に相互に隣合う各第1部分71を連結する直線状の部分である。第1電極層363を配線351に導通させるコンタクトホール353は、絶縁層364の第2部分72で覆われる。   As shown in FIG. 5, the insulating layer 364 includes a plurality of first portions 71 and a plurality of second portions 72. Each first portion 71 is an annular portion in plan view, and is arranged in a matrix along the X direction and the Y direction corresponding to each lens 24. That is, the optical axis L0 of each lens 24 passes through the inside of the first portion 71 corresponding to the lens 24 (typically, the center of the first portion 71). Each second portion 72 is a linear portion connecting the first portions 71 adjacent to each other in the X direction or the Y direction. A contact hole 353 for conducting the first electrode layer 363 to the wiring 351 is covered with the second portion 72 of the insulating layer 364.

各第1部分71の外周縁と第2部分72の周縁とで包囲された領域内では、第1電極層363と第2電極層366とが両者間の発光層365に接触する。したがって、光源部36のうち平面視で各第1部分71の外周縁と第2部分72の周縁とで包囲された領域が発光部50として機能する。他方、透過部60は、光源部36のうち各第1部分71の内周縁で包囲された領域である。透過部60には第1電極層363が形成されないから、透過部60内の発光層365は発光しない。以上に説明した通り、絶縁層364は、各発光部50と各透過部60とを画定する要素(両者を隔離する要素)として機能する。   In the region surrounded by the outer periphery of each first portion 71 and the periphery of the second portion 72, the first electrode layer 363 and the second electrode layer 366 are in contact with the light emitting layer 365 therebetween. Therefore, a region surrounded by the outer periphery of each first portion 71 and the periphery of the second portion 72 in the plan view in the light source unit 36 functions as the light emitting unit 50. On the other hand, the transmission part 60 is an area surrounded by the inner peripheral edge of each first portion 71 in the light source part 36. Since the first electrode layer 363 is not formed in the transmissive part 60, the light emitting layer 365 in the transmissive part 60 does not emit light. As described above, the insulating layer 364 functions as an element that defines each light emitting section 50 and each transmission section 60 (an element that separates both).

図6は、発光部50および透過部60の平面形状を説明する平面図である。図6から理解される通り、透過部60の周縁は、平面視で点P(レンズ24の光軸L0上の点)を中心とする半径rの円C1である。円C1は、絶縁層364の第1部分71の内周縁に相当する。レンズ24による集光後の光束が光軸L0を中心線とする円錐状であることを考慮して、透過部60(円C1)は、以上のように、光軸L0を中心として光束の断面形状に相似な円形状に形成される。   FIG. 6 is a plan view illustrating the planar shapes of the light emitting unit 50 and the transmissive unit 60. As understood from FIG. 6, the periphery of the transmission part 60 is a circle C1 having a radius r centered on a point P (a point on the optical axis L0 of the lens 24) in plan view. The circle C1 corresponds to the inner peripheral edge of the first portion 71 of the insulating layer 364. Considering that the light beam collected by the lens 24 has a conical shape centered on the optical axis L0, the transmission part 60 (circle C1) has a cross section of the light beam centered on the optical axis L0 as described above. It is formed in a circular shape similar to the shape.

他方、図6には、透過部60の円C1と同心(中心P)で円C1の半径rを上回る半径Rの円C2が図示されている。円C2は、絶縁層364の第1部分71の外周縁に相当する。すなわち、半径Rと半径rとの差分が絶縁層364の第1部分71の幅に相当する。発光部50の周縁の一部は、円C2の円弧である。すなわち、発光部50は、図6に示すように、その発光部50の周囲に位置する4個の透過部60の各々(円C1)と同心の各円C2の円弧と各円弧を連結する各第2部分72の周縁とで画定される略十字形に形成される。以上の説明から理解される通り、第1実施形態における発光部50の周縁の一部は、平面視で透過部60の周縁(円C1)に沿う形状である。   On the other hand, FIG. 6 shows a circle C2 having a radius R that is concentric (center P) with the circle C1 of the transmission part 60 and exceeds the radius r of the circle C1. The circle C2 corresponds to the outer peripheral edge of the first portion 71 of the insulating layer 364. That is, the difference between the radius R and the radius r corresponds to the width of the first portion 71 of the insulating layer 364. A part of the periphery of the light emitting unit 50 is an arc of a circle C2. That is, as shown in FIG. 6, the light emitting unit 50 connects the arcs of the respective circles C <b> 2 concentric with each of the four transmission units 60 (circle C <b> 1) positioned around the light emitting unit 50. It is formed in a substantially cross shape defined by the periphery of the second portion 72. As understood from the above description, a part of the periphery of the light emitting unit 50 in the first embodiment has a shape along the periphery (circle C1) of the transmission unit 60 in plan view.

図7は、第1実施形態の効果を説明するための平面図である。図7では、第1実施形態に対する対比例の発光部50Aが、第1実施形態の発光部50および透過部60に重ねて破線で図示されている。図7に示すように、対比例では、平面視で各透過部60に重ならないように矩形状の発光部50Aが形成される。すなわち、対比例の発光部50の周縁は直線状であり、透過部60の円形状の周縁と平面視で沿う形状ではない。図7から理解される通り、本実施形態における発光部50は、その周縁の一部が平面視で透過部60の周縁に沿う形状であるから、対比例のように平面視で矩形状の発光部を形成する場合と比較して、発光部50の面積が拡大される。したがって、対比例と比較して充分な光量を被写体200の照明に利用することが可能である。   FIG. 7 is a plan view for explaining the effect of the first embodiment. In FIG. 7, the light emitting unit 50 </ b> A that is proportional to the first embodiment is illustrated by a broken line so as to overlap the light emitting unit 50 and the transmission unit 60 of the first embodiment. As shown in FIG. 7, rectangular light emitting portions 50 </ b> A are formed so as not to overlap each transmission portion 60 in a plan view in comparison. That is, the peripheral edge of the proportional light emitting part 50 is linear, and is not in a shape along the circular peripheral edge of the transmission part 60 in plan view. As understood from FIG. 7, the light emitting unit 50 according to the present embodiment has a shape in which a part of the periphery thereof is along the periphery of the transmission unit 60 in plan view, and thus has a rectangular light emission in plan view as compared with the light emitting unit 50. The area of the light emitting unit 50 is enlarged as compared with the case of forming the portion. Therefore, it is possible to use a sufficient amount of light for illumination of the subject 200 as compared with the comparative example.

<第2実施形態>
本発明の第2実施形態を以下に説明する。なお、以下に例示する各態様において作用や機能が第1実施形態と同等である要素については、第1実施形態の説明で参照した符号を流用して各々の詳細な説明を適宜に省略する。
Second Embodiment
A second embodiment of the present invention will be described below. In addition, about the element which an effect | action and a function are equivalent to 1st Embodiment in each aspect illustrated below, each reference detailed in description of 1st Embodiment is diverted, and each detailed description is abbreviate | omitted suitably.

図8は、第2実施形態における照明部30の平面図であり、図9は、図8におけるIX−IX線の断面図である。図8に示すように、第2実施形態においても、第1実施形態と同様に、複数の第1電極層363(複数の発光部50)は、X方向およびY方向に沿って行列状に配列する。   FIG. 8 is a plan view of the illumination unit 30 in the second embodiment, and FIG. 9 is a cross-sectional view taken along the line IX-IX in FIG. As shown in FIG. 8, in the second embodiment as well, in the same manner as in the first embodiment, the plurality of first electrode layers 363 (the plurality of light emitting units 50) are arranged in a matrix along the X direction and the Y direction. To do.

図8および図9に示すように、第2実施形態の配線層35は、X方向に延在する複数の配線351を含む。各配線351は、平面視でY方向に所定の間隔をあけて基板32の表面321に形成される。具体的には、各配線351は、Y方向に相互に隣合う各透過部60に平面視で挟まれた領域内に直線状に形成される。したがって、各配線351は、図8に示すように、X方向に配列する複数の第1電極層363に平面視で重複し、各透過部60とは重複しない。複数の配線351は、例えば各々の一端部または両端部において、所定の電位が供給される給電線に共通に接続される。   As shown in FIGS. 8 and 9, the wiring layer 35 of the second embodiment includes a plurality of wirings 351 extending in the X direction. Each wiring 351 is formed on the surface 321 of the substrate 32 at a predetermined interval in the Y direction in plan view. Specifically, each wiring 351 is formed linearly in a region sandwiched in plan view by the transmission parts 60 adjacent to each other in the Y direction. Therefore, as shown in FIG. 8, each wiring 351 overlaps with the plurality of first electrode layers 363 arranged in the X direction in a plan view and does not overlap with each transmission part 60. The plurality of wirings 351 are commonly connected to a power supply line to which a predetermined potential is supplied, for example, at one end or both ends of each.

第2実施形態においても、各第1電極層363は、コンタクトホール353を介して各配線351に電気的に接続される。具体的には、X方向に延在する任意の1本の配線351には、X方向に配列する複数の第1電極層363が共通に接続される。以上の説明から理解される通り、第2実施形態では、X方向に配列する任意の1行の各発光部50に電流を供給する配線351と、他の1行の各発光部50に電流を供給する配線351とが、相互に間隔をあけて形成される。   Also in the second embodiment, each first electrode layer 363 is electrically connected to each wiring 351 through a contact hole 353. Specifically, a plurality of first electrode layers 363 arranged in the X direction are commonly connected to any one wiring 351 extending in the X direction. As understood from the above description, in the second embodiment, a current is supplied to the wiring 351 that supplies current to each light emitting unit 50 in an arbitrary row arranged in the X direction, and to each light emitting unit 50 in the other row. Wirings 351 to be supplied are formed at intervals.

ところで、例えば発光層365の成膜不良(膜厚不足や欠陥)や経年劣化等に起因して発光部50の第1電極層363と第2電極層366とが電気的に短絡する可能性がある。第2電極層366は複数の発光部50にわたり連続するから、1個の発光部50にて第1電極層363と第2電極層366とが相互に短絡して両者間の電位差が低下する(したがって発光層に供給される電流が減少する)と、その1個の発光部50に加えて周囲の発光部50についても発光量の低下が発生し得る。   By the way, there is a possibility that the first electrode layer 363 and the second electrode layer 366 of the light emitting unit 50 may be electrically short-circuited due to, for example, a film formation failure (insufficient film thickness or defect) of the light emitting layer 365 or aged deterioration. is there. Since the second electrode layer 366 is continuous over the plurality of light emitting units 50, the first electrode layer 363 and the second electrode layer 366 are short-circuited with each other in one light emitting unit 50, and the potential difference therebetween is reduced ( Accordingly, when the current supplied to the light emitting layer is reduced), the light emitting amount of the surrounding light emitting units 50 may be decreased in addition to the single light emitting unit 50.

X方向に延在する複数の部分とY方向に延在する複数の部分とを相互に交差させた格子状に配線351を形成した構成(例えば第1実施形態)では、1個の発光部50における第1電極層363と第2電極層366との短絡に起因して、その発光部50を中心としてX方向およびY方向の双方にわたる周囲の発光部50の発光量が低下する。すなわち、1個の発光部50での短絡の影響がX方向およびY方向の双方に波及する。   In the configuration (for example, the first embodiment) in which the wirings 351 are formed in a lattice shape in which a plurality of portions extending in the X direction and a plurality of portions extending in the Y direction cross each other, one light emitting unit 50 is formed. Due to the short circuit between the first electrode layer 363 and the second electrode layer 366, the light emission amount of the surrounding light emitting unit 50 in both the X direction and the Y direction around the light emitting unit 50 decreases. That is, the influence of a short circuit in one light emitting unit 50 affects both the X direction and the Y direction.

他方、第2実施形態では、X方向に延在する複数の配線351がY方向に相互に間隔をあけて形成される。したがって、1個の発光部50における第1電極層363と第2電極層366との短絡に起因して各発光部50の発光量が低下する範囲はX方向に制限され、その発光部50とはY方向の位置が相違する範囲(短絡が発生した発光部50とは別個の配線351に接続された各発光部50)に短絡の影響は波及しない。すなわち、第2実施形態によれば、1個の発光部50における第1電極層363と第2電極層366との短絡に起因して各発光部50の発光量が低下する範囲の拡大が抑制されるという利点がある。   On the other hand, in the second embodiment, a plurality of wirings 351 extending in the X direction are formed at intervals in the Y direction. Therefore, the range in which the light emission amount of each light emitting unit 50 decreases due to a short circuit between the first electrode layer 363 and the second electrode layer 366 in one light emitting unit 50 is limited in the X direction. Are not affected by the short circuit in the range where the positions in the Y direction are different (each light emitting unit 50 connected to the wiring 351 different from the light emitting unit 50 in which the short circuit has occurred). That is, according to the second embodiment, the expansion of the range in which the light emission amount of each light emitting unit 50 decreases due to the short circuit between the first electrode layer 363 and the second electrode layer 366 in one light emitting unit 50 is suppressed. There is an advantage of being.

<変形例>
前述の各形態は多様に変形され得る。具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様は適宜に併合され得る。
<Modification>
Each of the above-described embodiments can be variously modified. Specific modifications are exemplified below. Two or more aspects arbitrarily selected from the following examples can be appropriately combined.

(1)前述の形態で例示した各要素は適宜に省略され得る。例えば、遮光層33や複数のレンズ24を省略することも可能である。また、前述の形態で例示した各要素の位置関係は適宜に変更され得る。例えば、前述の形態では、トップエミッション型の発光素子を発光部50として形成したが、ボトムエミッション型の発光素子を発光部50として利用すれば、光源部36を基板32の表面322に形成することも可能である。各レンズ24を光源部36と受光部10との間に配置した構成も採用され得る。また、前述の形態で例示した各要素間に任意の他の要素を介在させることも可能である。 (1) Each element illustrated with the above-mentioned form may be abbreviate | omitted suitably. For example, the light shielding layer 33 and the plurality of lenses 24 can be omitted. Moreover, the positional relationship of each element illustrated by the above-mentioned form can be changed suitably. For example, in the above-described embodiment, the top emission type light emitting element is formed as the light emitting unit 50. However, if the bottom emission type light emitting element is used as the light emitting unit 50, the light source unit 36 is formed on the surface 322 of the substrate 32. Is also possible. A configuration in which each lens 24 is disposed between the light source unit 36 and the light receiving unit 10 may be employed. It is also possible to interpose any other element between the elements exemplified in the above embodiment.

(2)前述の各形態では、平面視で相互に離間した複数の発光部50を行列状に配列した構成を例示したが、光源部36の全域にわたり発光部50を連続させる(例えば絶縁層364の第2部分72を省略する)ことも可能である。同様に、複数の透過部60を行列状に配列した構成は適宜に変更され得る。 (2) In each of the above-described embodiments, a configuration in which a plurality of light emitting units 50 that are spaced apart from each other in a plan view is arranged in a matrix is illustrated, but the light emitting units 50 are continuous over the entire area of the light source unit 36 (for example, the insulating layer 364 It is also possible to omit the second portion 72 of FIG. Similarly, the configuration in which the plurality of transmission parts 60 are arranged in a matrix can be changed as appropriate.

(3)前述の形態では、生体認証用の静脈像を撮像する撮像装置100(静脈センサー)を例示したが、本発明の用途は任意である。例えば、撮像装置100が撮像した生体の静脈像から血中アルコール濃度を推定するアルコール検出装置や、撮像装置100が撮像した生体の静脈像から血糖値を推定する血糖値推定装置等の医療機器にも本発明は適用され得る。撮像結果を利用した血中アルコール濃度の推定や撮像結果を利用した血糖値の推定には公知の技術が任意に採用され得る。また、印刷物から画像を読取る画像読取装置に本発明を適用することも可能である。なお、画像読取装置に本発明を適用する場合には可視光が撮像光として好適に利用される。 (3) In the above-described embodiment, the imaging apparatus 100 (vein sensor) that captures a biometric authentication vein image is illustrated, but the application of the present invention is arbitrary. For example, the medical device such as an alcohol detection device that estimates a blood alcohol concentration from a vein image of a living body imaged by the imaging device 100 or a blood glucose level estimation device that estimates a blood glucose level from a vein image of the living body imaged by the imaging device 100. The present invention can also be applied. A known technique can be arbitrarily employed for estimation of blood alcohol concentration using the imaging result and estimation of blood glucose level using the imaging result. The present invention can also be applied to an image reading apparatus that reads an image from a printed material. Note that when the present invention is applied to an image reading apparatus, visible light is suitably used as imaging light.

(4)前述の各形態では、本発明を撮像装置に適用した形態を例示したが、任意の物体(被照明体)を照明する照明装置としても本発明は実現され得る。照明装置は、観察者と被照明体との間に配置される。具体的には、照明装置は、被照明体に光を照射する発光部50と、被照明体から到来する光を観察者側に透過させる透過部とが平面状に配置された光源部36を具備する。前述の各形態と同様に、各発光部50の周縁は、平面視で透過部60の周縁に沿う形状である。 (4) In each of the above-described embodiments, the embodiment in which the present invention is applied to the imaging apparatus has been illustrated. However, the present invention can be realized as an illumination apparatus that illuminates an arbitrary object (illuminated body). The illumination device is disposed between the observer and the object to be illuminated. Specifically, the illumination device includes a light source unit 36 in which a light emitting unit 50 that irradiates light to an object to be illuminated and a transmission unit that transmits light arriving from the object to be illuminated to the viewer side are arranged in a planar shape. It has. As in the above-described embodiments, the periphery of each light emitting unit 50 has a shape along the periphery of the transmission unit 60 in plan view.

本発明の照明装置は、例えば、各種の電子機器の表示装置を照明する光源(フロントライト)として好適に利用される。本発明の照明装置を利用可能な電子機器としては、例えば、テレビ,コンピュータ,携帯電話機,携帯情報端末,ゲーム装置,電子ペーパー,デジタルスチルカメラ,ビデオカメラ,カーナビゲーション装置等が例示される。ただし、本発明の照明装置の用途は表示装置の照明に限定されない。例えば、任意の被照明体を照明する可搬型の照明装置(懐中電灯)としても本発明を利用することが可能である。観察者は、被照明体の手前側に照明装置(光源部)を配置し、照明装置を介して被照明体を視認する。なお、以上に例示した本発明の照明装置において、集光部20や遮光層33の有無は不問である。   The illumination device of the present invention is suitably used as a light source (front light) that illuminates display devices of various electronic devices, for example. Examples of electronic devices that can use the lighting device of the present invention include a television, a computer, a mobile phone, a portable information terminal, a game device, electronic paper, a digital still camera, a video camera, and a car navigation device. However, the use of the illumination device of the present invention is not limited to illumination of a display device. For example, the present invention can be used as a portable illumination device (flashlight) that illuminates an arbitrary object to be illuminated. An observer arrange | positions an illuminating device (light source part) in the near side of a to-be-illuminated body, and visually recognizes to-be-illuminated body through an illuminating device. In addition, in the illuminating device of this invention illustrated above, the presence or absence of the condensing part 20 and the light shielding layer 33 is not ask | required.

100……撮像装置、200……被写体、10……受光部、12……基板、14……受光素子、18……接着剤、20……集光部、22……基板、24……レンズ、30……照明部、32……基板、33……遮光層、34……開口部、35……配線層、351……配線、352……絶縁層、353……コンタクトホール、36……光源部、361……反射層、362……絶縁層、363……第1電極層、364……絶縁層、365……発光層、366……第2電極層、37……保護層、50……発光部、60……透過部、71……第1部分、72……第2部分 DESCRIPTION OF SYMBOLS 100 ... Imaging device, 200 ... Subject, 10 ... Light receiving part, 12 ... Substrate, 14 ... Light receiving element, 18 ... Adhesive, 20 ... Condensing part, 22 ... Substrate, 24 ... Lens , 30 .. Illumination part, 32 .. substrate, 33 .. light-shielding layer, 34 .. opening part, 35 .. wiring layer, 351 .. wiring, 352 .. insulating layer, 353. Light source section, 361 ... reflective layer, 362 ... insulating layer, 363 ... first electrode layer, 364 ... insulating layer, 365 ... light emitting layer, 366 ... second electrode layer, 37 ... protective layer, 50 ... Light-emitting part, 60 ... Transmission part, 71 ... First part, 72 ... Second part

Claims (6)

複数の受光素子が配置された受光部と、
前記受光部と被写体との間に配置された光源部とを具備し、
前記光源部には、前記被写体に光を照射する発光部と、前記被写体から到来する光を前記受光部側に透過させる透過部とが平面状に配置され、
前記発光部の周縁の少なくとも一部は、平面視で前記透過部の周縁に沿う形状である
撮像装置。
A light receiving section in which a plurality of light receiving elements are arranged;
A light source unit disposed between the light receiving unit and the subject,
In the light source unit, a light emitting unit that irradiates light to the subject and a transmission unit that transmits light arriving from the subject to the light receiving unit side are arranged in a plane,
At least a part of the periphery of the light emitting unit has a shape along the periphery of the transmission unit in plan view.
前記光源部は、複数の前記透過部を含み、
前記発光部の周縁の少なくとも一部は、当該発光部の周囲に位置する複数の透過部の各々の周縁に沿う形状である
請求項1の撮像装置。
The light source unit includes a plurality of the transmission units,
The imaging device according to claim 1, wherein at least a part of the periphery of the light emitting unit has a shape along the periphery of each of the plurality of transmission units located around the light emitting unit.
前記透過部の周縁は円形状であり、
前記発光部の周縁の一部は、前記透過部の周縁と同心な円弧形状である、
請求項1または請求項2の撮像装置。
The perimeter of the transmission part is circular,
A part of the periphery of the light emitting part has an arc shape concentric with the periphery of the transmission part.
The imaging device according to claim 1 or 2.
前記被写体から到来する光を集光して前記受光部側に出射する集光部
を具備する請求項1から請求項3の何れかの撮像装置。
The imaging apparatus according to claim 1, further comprising a condensing unit that condenses light coming from the subject and emits the light to the light receiving unit side.
前記光源部には、複数の前記発光部が平面状に配置され、
一の前記発光部に電流を供給する配線と他の前記発光部に電流を供給する配線とが相互に間隔をあけて形成されている
請求項1から請求項4の何れかの撮像装置。
In the light source unit, a plurality of the light emitting units are arranged in a planar shape,
5. The imaging device according to claim 1, wherein a wiring for supplying current to one of the light emitting units and a wiring for supplying current to the other light emitting unit are formed with a space therebetween.
光を照射する発光部と光を透過する透過部とが平面状に配置された光源部を具備し、
前記発光部の周縁の少なくとも一部は、平面視で前記透過部の周縁に沿う形状である
照明装置。
A light source unit that irradiates light and a light transmission unit that transmits light are provided in a planar shape, and a light source unit is provided.
At least a part of the periphery of the light emitting unit has a shape along the periphery of the transmission unit in plan view.
JP2012237526A 2012-10-29 2012-10-29 Imaging device and illumination device Pending JP2014089997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012237526A JP2014089997A (en) 2012-10-29 2012-10-29 Imaging device and illumination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012237526A JP2014089997A (en) 2012-10-29 2012-10-29 Imaging device and illumination device

Publications (1)

Publication Number Publication Date
JP2014089997A true JP2014089997A (en) 2014-05-15

Family

ID=50791696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012237526A Pending JP2014089997A (en) 2012-10-29 2012-10-29 Imaging device and illumination device

Country Status (1)

Country Link
JP (1) JP2014089997A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115862A (en) * 2014-12-17 2016-06-23 セイコーエプソン株式会社 Image acquisition device, biological information acquisition device, electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115862A (en) * 2014-12-17 2016-06-23 セイコーエプソン株式会社 Image acquisition device, biological information acquisition device, electronic apparatus

Similar Documents

Publication Publication Date Title
CN110062931B (en) Fingerprint identification device, fingerprint identification method and electronic equipment
CN106847872B (en) Display device
CN109416732B (en) Display capable of detecting fingerprint
JP6074981B2 (en) Imaging device
US10339359B2 (en) Display panel and display device
CN108734073B (en) Detection device and terminal equipment
WO2018024117A1 (en) Display device for surface texture recognition
WO2017206676A1 (en) Display screen
JP5712746B2 (en) Sensing device and electronic device
JP2014071800A (en) Imaging apparatus and medical equipment
US20210342566A1 (en) Under-display-type fingerprint authentication sensor module and under-display-type fingerprint authentication device
CN107480661B (en) Optical path of optical fingerprint sensor and optical fingerprint sensor with same
CN109752873B (en) Display screen and terminal
CN110720106B (en) Fingerprint identification device and electronic equipment
CN108875662B (en) Display panel and display device
US20170221960A1 (en) Contact image sensor
KR102412975B1 (en) Display capable of detecting finger-print
JP2012221141A (en) Image acquisition device, biometric authentication device, and electronic apparatus
CN210109828U (en) Fingerprint identification device and electronic equipment
JP2008233796A (en) Imaging apparatus
JP2012060362A (en) Camera module
JP2012222484A (en) Sensing device and electronic device
US20210286968A1 (en) Imaging device
CN111191613A (en) Fingerprint identification structure, fingerprint identification display substrate and manufacturing method thereof
TW202022693A (en) Image capturing device under screen and electronic equipment

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150403