JP2014089413A - 液晶表示パネルおよびその製造方法 - Google Patents

液晶表示パネルおよびその製造方法 Download PDF

Info

Publication number
JP2014089413A
JP2014089413A JP2012240512A JP2012240512A JP2014089413A JP 2014089413 A JP2014089413 A JP 2014089413A JP 2012240512 A JP2012240512 A JP 2012240512A JP 2012240512 A JP2012240512 A JP 2012240512A JP 2014089413 A JP2014089413 A JP 2014089413A
Authority
JP
Japan
Prior art keywords
liquid crystal
region
display panel
crystal display
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012240512A
Other languages
English (en)
Inventor
Yuichi Kawahira
雄一 川平
Toshihiro Matsumoto
俊寛 松本
Masayuki Kanehiro
昌行 兼弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012240512A priority Critical patent/JP2014089413A/ja
Publication of JP2014089413A publication Critical patent/JP2014089413A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

【課題】立ち下がり応答特性を向上させた液晶表示パネルを提供する。
【解決手段】液晶表示パネル(100)は、マトリクス状に配列された複数の画素領域(PD)を有する液晶表示パネルであって、液晶分子および高分子ネットワークを含む液晶層(10)と、液晶層(10)を介して互いに対向する第1基板(21a)および第2基板(21b)と、液晶層(10)に電圧を印加するように構成された一対の電極(23a、23b)と、一対の電極(23a、23b)のうちの少なくとも一方の電極と液晶層(10)との間に設けられた配向膜(25a、25b)とを備える。液晶層(10)は、高分子ネットワーク(13)を有しない第1領域(R1)および高分子ネットワーク(13)を有する第2領域(R2)を含む。複数の画素領域(PD)のそれぞれは、第1領域(R1)を含み、第1領域(R1)は、第2領域(R2)の少なくとも一部分と隣接している。
【選択図】図1

Description

本発明は、液晶表示パネルおよびその製造方法に関する。
現在、Multi Domain Vertical Alignment(MVA)モードの液晶表示装置が広く利用されている。MVAモードの液晶表示装置は、画素ごとに液晶分子のプレチルト方位が異なる複数の種類のドメインを有するので、視野角特性に優れる。典型的には、MVAモードの液晶表示装置は、画素ごとに4種類のドメインを有する。4種類のドメインのディレクター(ドメイン内の液晶分子の平均の配向方向を示すベクトル)は、クロスニコルに配置された偏光板の偏光軸を二等分する4つの方向を向くように設定されている。このような4種類のドメインを形成する方法として、従来は、線状に延びるリブ(誘電体突起)および/または電極に形成されたスリット(線状に延びる開口部)が利用されていた。ここでは、これらを総称して、「線状配向規制構造体」という。線状配向規制構造体(すなわち、リブまたはスリット)の両側に形成される2つのドメインのディレクターは、線状配向規制構造体の延びる方位に直交し、互いに反平行になる。直交する2つの方位に延びる線状配向規制構造体を画素内に形成することによって4種類のドメインが形成される。
このようなMVAモードの液晶表示装置においては、線状配向規制構造体の近傍の液晶分子は、線状配向規制構造体によってプレチルト方位が規定される。MVAモードの液晶層に電圧を印加すると、線状配向規制構造体の近傍の液晶分子は、線状配向規制構造体によって規定されているプレチルト方位に倒れる。線状配向規制構造体から離れた位置の液晶分子は、線状配向規制構造体によってプレチルト方位が規制されている液晶分子の配向と整合するように配向する。したがって、電圧を印加した瞬間から、定常的な配向状態に達するまで、ドミノ倒しのように、液晶分子の配向が伝播することになる。そのため、MVAモードの液晶表示装置は、応答速度が遅いという問題があった。
そこで、本出願人は、UV2Aという技術を開発した。この技術によると、光配向膜に紫外線を照射することによって、画素内に4種類のドメインを形成することができる。例えば、特許文献1には、UV2A技術を用いて、画素内に4種類のドメインを形成した、Vertical Alignment Twisted Nematic(VATN)モードの液晶表示装置が開示されている。光配向膜に近接する液晶分子は、全て光配向膜からの配向規制力によって所定のプレチルト方位に配向している。UV2A技術による液晶表示装置の液晶層に電圧を印加すると、画素全体にわたって液晶分子が一斉に所定のプレチルト方位に倒れる。したがって、UV2A技術による液晶表示装置は、MVAモードの液晶表示装置よりも応答特性に優れる。
また、液晶表示装置の応答特性を向上させる技術として、Polymer Sustained Alignment Technology(以下、「PSA技術」という。)が開発されている(例えば、下記の特許文献2および3参照)。PSA技術は、少量の重合性材料(典型的には光重合性モノマー)が混合された液晶材料を一対の基板間に封入した後、液晶層に所定の電圧を印加した状態で光重合性化合物に活性エネルギー線(典型的には紫外線)を照射し、生成される重合体によって、液晶分子のプレチルト方位およびプレチルト角を制御する(以下、「液晶分子にプレチルトを付与する」ということがある)技術である。上記の重合体から構成される層は配向維持層(Alignment Sustaining Layer)と呼ばれることがある。PSA技術によると、例えば、複数のスリットを有する画素電極を用いて画素内の液晶層に電圧を印加し、上記4種類のドメインを形成した状態で、光照射し、重合体を生成することによって、4種類のドメインを形成するように液晶分子にプレチルトを付与する配向維持層を形成することができる。配向維持層は、スリットから離れた位置に存在する液晶分子に対してもプレチルトを付与するので、MVAモードの液晶表示装置よりも応答特性に優れる。
参考のために、特許文献1〜4の開示内容の全てを本明細書に援用する。
国際公開第2006/132369号(米国特許7995177号明細書) 特開2002−357830号公報(米国特許第6977704号明細書) 特開2009−175557号公報 特開2004−62146号公報(米国特許第6958791号明細書)
上述したように、UV2A技術やPSA技術を用いることによって、従来のリブやスリットを用いたMVAモードの液晶表示装置よりも、液晶層に電圧を印加したときの応答速度が増大された液晶表示装置を得ることができる。
しかしながら、液晶表示装置の応答速度には、液晶層に電圧を印加しときの応答速度だけでなく、印加していた電圧を解除したときの応答速度もある。ここで、電圧を印加したとき(印加電圧の絶対値を増大させるとき)の応答速度を立ち上がり応答速度ron、これに対応する応答時間を立ち上がり応答時間tonと呼び、印加していた電圧を解除したとき(印加電圧の絶対値を減少させるとき)の応答速度を立ち下がり応答速度roff、これに対応する応答時間を立ち下がり応答時間toffと呼ぶことにする。
立ち下がり応答速度roffは、印加された電圧によって配向していた液晶分子が、電圧が印加されていないときの配向状態に戻るときの速度であり、液晶分子の物性(粘度、弾性定数など)や配向膜のアンカリングエネルギーに依存することが知られている。例えば、液晶材料の粘度を小さくすれば、立ち下がり応答時間toffを短くできる。しかしながら、液晶材料に求められている他の物性を維持したままで、液晶材料の粘度のみを小さくすることは難しい。
上記では、Vertical Alignment(VA)モードの液晶表示装置を例示して、液晶表示装置における立ち下がり応答特性の問題を説明したが、これに限られず、例えば、Twisted Nematic(TN)モード、Super Twisted Nematic(STN)モード、Optical Compensated Bend(OCB)モード、さらには、In−Plane Switching(IPS)モードやFringe Field Switching(FFS)モードのような横電界モードにも共通の問題である。
本発明は、上記の問題を解決するためになされたものであり、立ち下がり応答特性を向上させた液晶表示パネルを提供することを目的とする。
本発明の実施形態による液晶表示パネルは、マトリクス状に配列された複数の画素領域を有する液晶表示パネルであって、液晶分子および高分子ネットワークを含む液晶層と、前記液晶層を介して互いに対向する第1基板および第2基板と、前記液晶層に電圧を印加するように構成された一対の電極と、前記一対の電極のうちの少なくとも一方の電極と前記液晶層との間に設けられた配向膜とを備え、前記液晶層は、高分子ネットワークを有しない第1領域および高分子ネットワークを有する第2領域を含み、前記複数の画素領域のそれぞれは、前記第1領域を含み、前記第1領域は、前記第2領域の少なくとも一部分と隣接している。前記液晶層の全面積に占める前記第2領域の面積の割合は、例えば20%以上92%以下である。前記高分子ネットワークは、メソゲン基を側鎖に有することが好ましい。
ある実施形態において、前記第2領域は、前記高分子ネットワークと、前記液晶分子の一部とを含み、前記高分子ネットワークは前記液晶分子の前記一部にプレチルトを付与している。
ある実施形態において、第2領域R2は、第1基板と第2基板とを連結する高分子ネットワークを有する。
ある実施形態において、前記第1基板の主面に垂直な方向から見たときに、前記第2領域は、前記複数の画素領域のそれぞれの外側の画素周辺領域に形成されている。
ある実施形態において、前記複数の画素領域のそれぞれは、前記第2領域の一部を含む。
ある実施形態において、前記第1基板の主面に垂直な方向から見たときに、前記複数の画素領域のそれぞれにおいて前記第2領域が占める面積の割合は40%以上90%以下である。
ある実施形態において、前記第1領域内の液晶分子は、前記配向膜によってプレチルト方位が規定されている。
ある実施形態において、前記配向膜は、光配向膜である。
ある実施形態において、前記液晶層は垂直配向型液晶層である。このとき、例えば、前記液晶表示パネルは、線状配向規制構造体を有しない。
本発明の実施形態による液晶表示パネルの製造方法は、上記のいずれかに記載の液晶表示パネルの製造方法であって、少なくとも一方が配向膜を有する第1基板および第2基板を準備する工程(a)と、前記第1基板および前記第2基板の間に、液晶化合物および光重合性モノマーを含む液晶混合物の層を形成する工程(b)であって、前記液晶混合物中の前記光重合性モノマーの含有率は、1.5mass%以上4.3mass%以下である工程(b)とを含む。
ある実施形態において、前記光重合性モノマーはメソゲン基を有するモノマーを含む。
ある実施形態において、前記光重合性モノマーは、多官能モノマーを含む。
ある実施形態による液晶表示パネルの製造方法は、前記工程(a)において、前記第1基板または前記第2基板のいずれかは、遮光部および複数の開口部を含むブラックマトリクスを有し、前記液晶表示パネルの製造方法は、前記遮光部に対応するように透光部が設けられたフォトマスクを介して前記層に光を照射し、前記層のうち、前記遮光部に対応する領域に高分子ネットワークを形成する工程(c)をさらに含む。
ある実施形態において、前記工程(c)は、前記層のうち、前記複数の開口部の少なくとも一部分に対応する領域に高分子ネットワークを形成する工程を含む。
ある実施形態において、前記工程(a)において、前記配向膜は、配向処理の施された光配向膜であり、前記工程(c)は、前記層に電圧を印加しない状態で行われる。
本発明の実施形態によれば、立ち下がり応答特性を向上させた液晶表示パネルおよびその製造方法を提供することができる。
(a)は、本発明の実施形態による液晶表示パネル100を模式的に示す断面図であり、(b)は、液晶表示パネル100の液晶層10における第1領域R1および第2領域R2の配置を模式的に示す平面図である。 (a)は、液晶表示パネル100の図1(b)のII−II線に沿った断面を模式的に示す断面図であり、(b)は、(a)における破線Xにより囲まれた部分を拡大して模式的に示す断面図である。 液晶表示パネル100の第1領域R1および第2領域R2の正面視角における電圧−透過率曲線を示すグラフである。 (a)は、液晶表示パネル100のTFT基板の模式的な平面図であり、(b)は、液晶表示パネル100の対向基板が有するブラックマトリクス27の模式的な平面図である。 (a)は、本発明の他の実施形態による液晶表示パネル200を模式的に示す断面図であり、(b)は、液晶表示パネル200の液晶層20における第1領域R1および第2領域R2の配置を模式的に示す平面図である。 液晶表示パネル200の図5(b)のVI−VI線に沿った断面を模式的に示す断面図である。 (a)は、斜め視角を表すベクトルKと、液晶分子の長軸の方向を表すベクトルとの間の関係を模式的に示す図であり、(b)は、第1領域R1および第2領域R2の正面視角における電圧−透過率曲線を示すグラフである。 正面視角および斜め視角における階調−透過率特性を表すグラフであり、(a)は画素領域の全体が第1領域R1の場合、(b)は第1領域R1が画素領域の30%を占め、第2領域R2が画素領域の70%を占める場合をそれぞれ示すグラフである。 第2領域R2が画素領域に占める割合Ar[%]と視角依存性評価値VDとの関係を示すグラフである。 (a)、(b)および(c)は、液晶表示パネル100の製造方法を示す模式的な断面図である。 (a)は、液晶表示パネル200の製造方法における光照射工程を示す模式図であり、(b)は、フォトマスク42の透光部42pと、ブラックマトリクス27の開口部Apとの配置関係を模式的に示す平面図である。 (a)は、光重合性モノマーの含有率Mと液晶表示パネルの立ち下がり応答時間toffとの関係を示すグラフであり、(b)は、光重合性モノマーの含有率Mと液晶表示パネルの透過率との関係を示すグラフである。
以下、図面を参照しながら、本発明の実施形態による液晶表示パネルおよび液晶表示パネルの製造方法を説明する。以下では、VAモードの液晶表示パネルを例示して、本発明の実施形態を説明するが、本発明はこれに限られず、TNモード、STNモード、OCBモード、さらには、IPSモードやFFSモードのような横電界モードの液晶表示パネルにも適用できる。
まず、図1〜図4を参照して、本発明の実施形態による液晶表示パネル100を説明する。図1(a)は、液晶表示パネル100を模式的に示す断面図であり、図1(b)は、液晶表示パネル100の液晶層10における第1領域R1および第2領域R2の配置を模式的に示す平面図である。
図1(a)および(b)に示すように、液晶表示パネル100は、マトリクス状に配列された複数の画素領域PDを有し、液晶分子および高分子ネットワークを含む液晶層10と、液晶層10を介して互いに対向する第1基板21aおよび第2基板21bと、液晶層10に電圧を印加するように構成された一対の電極23aおよび23bと、一対の電極23aおよび23bのそれぞれと液晶層10との間に設けられた配向膜25aおよび25bとを備える。
液晶層10は、高分子ネットワークを有しない第1領域R1および高分子ネットワークを有する第2領域R2を含む。画素領域PDは、第1領域R1を含み、第1領域R1は、第2領域R2の一部分と隣接している。液晶層10の第2領域R2は、画素領域PDの外側の画素周辺領域PMに形成されている。液晶表示パネル100の画素領域PD内の液晶層10は実質的に第1領域R1のみで構成されており、第1領域R1の周辺は、第2領域R2によって包囲されている。第2領域R2は、実質的に画素周辺領域PMにのみ形成されているので、液晶表示パネル100の表示に寄与しない。
なお、第2領域R2内の液晶分子は、高分子ネットワークによって強くアンカリングされた液晶分子だけでなく、電極23aと電極23bとの間に印加される電圧(対向電圧を基準とした表示電圧)に応答して配向方向を変化させる液晶分子を含んでいる。したがって、第2領域R2も表示に寄与することができるので、第2領域R2の一部が画素領域PD内に形成されてもよい。画素領域PDが第2領域R2の一部を含む実施形態は後述する。本発明による種々の実施形態の液晶表示パネルにおける液晶層10の全面積に占める第2領域R2の面積の割合は、例えば20%以上92%以下の範囲内にある。
液晶層10の第2領域R2は、液晶材料(ここでは、負の誘電異方性Δεを有するネマチック液晶材料)と高分子ネットワークとを有する。第2領域R2は、従来のPSA技術によって形成される配向維持層とは異なり、液晶層10の厚さ方向に広がっており、典型的には、図1(a)に示すように、液晶層10に接する2つの配向膜25aと配向膜25bとの間を埋めるように形成される。第2領域R2においては、高分子ネットワークによって液晶分子にプレチルトが付与されており、第2領域R2に接する第1領域R1の液晶分子に対して配向規制力を発揮する。高分子ネットワークは、後述するように、メソゲン基を側鎖に有することが好ましい。
上述したように、液晶層10の第1領域R1は、2つの配向膜25aおよび25bに挟まれ、第2領域R2に包囲されており、第1領域R1内の液晶分子は、配向膜25aおよび25bによる配向規制力と、第2領域R2からの配向規制力とを受ける。したがって、光配向膜または配向維持層からの配向規制力のみによって液晶分子にプレチルトが付与されていた、従来のUV2A技術やPSA技術によって製造されたVAモードの液晶表示パネルに比べて、液晶表示パネル100においては、第1領域R1の液晶分子が第2領域R2からも配向規制力を受けるので、立ち下がり応答速度roffが向上させられる。第2領域R2は、第1領域R1において配向膜25aおよび25bの配向規制力が直接的に及ばない液晶分子(「バルク状態の液晶分子」ということがある)に対して、配向規制力を直接的に発揮することができる。その結果、液晶層10の第1領域R1の液晶分子の立ち下がり応答速度roffが向上させられる。
ここでは、典型的な例として、第2領域R2が、液晶層10を介して対向する2つの配向膜25aおよび25bを完全に連結するように形成されている例を示したが、これに限られない。例えば、第1基板21aと第2基板21bとの間で第2領域R2に部分的に抜けがあってもよい。ここで、「部分的に抜けがある」とは、高分子ネットワークによって配向膜25aと配向膜25bとが繋がれていない部分が存在することを意味する。第1基板21aと第2基板21bとが高分子ネットワークによって連結されているか否かは、例えば、第1基板21aの主面に垂直な方向に沿って液晶表示パネル100を分断して、その断面をSEM(Scanning Electron Microscope)などで観察すれば確認することができる。なお、第2領域R2の構造およびその作用効果については、図2および図3を参照して後に詳述する。
液晶表示パネル100は、液晶層10が上記のような第1領域R1および第2領域R2を有している点を除けば、典型的なVAモードの液晶表示パネルと同様の構成を有し得る。例えば、第1基板(例えばガラス基板)21aと、第2基板(例えばガラス基板)21bと、これらの間に形成された垂直配向型の液晶層10を有する。第1基板21aには、マトリクス状に配列された複数の画素電極23aが形成されており、不図示のTFT(Thin Film Transistor)や各種配線(例えば、ゲートバスライン、ソースバスライン、CSバスライン)が形成されている。第2基板21bは、液晶層10を介して複数の画素電極23aと対向するように設けられた対向電極(共通電極)23bを有している。また、第2基板21bは、遮光部27sと開口部Apとを備えるブラックマトリクス27およびカラーフィルタ29を有する。カラーフィルタ29は、例えば、赤色フィルタ29r、緑色フィルタ29gおよび青色フィルタ29bを有し、これに対応する領域がカラー表示画素を構成する。もちろん、カラーフィルタの構成はこの例に限られず、また、省略され得ることは言うまでもない。
第1基板21aと第2基板21bとは不図示のシール部によって互いに貼りあわせられている。第1基板21aと第2基板21bとの間隙(液晶層10の厚さ)は、不図示のスペーサによって保持されている。液晶層10に接する2つの配向膜25aおよび25bは、例えば、特許文献1に記載されている光配向膜であり、UV2A技術によって光配向処理されている。すなわち、配向膜25aまたは25bに近接する液晶分子は、配向膜25aまたは25bによってプレチルト方位が規定されている。液晶表示パネル100は、従来のMVAモードの液晶表示パネルのように、線状配向規制体(例えば、電極のスリット、電極の液晶層側に形成された線状の誘電体突起)を有しない。液晶表示パネル100の配向膜25aおよび25bとして垂直配向膜(配向処理なし)を用い、上記の線状配向規制体を利用し、さらに、液晶層として、上記の第1領域R1および第2領域R2を有する液晶層を用いることもできる。ただし、応答速度の観点からは、光配向膜を利用した、上記の液晶表示パネル100の方が優れる。
なお、配向膜は、液晶層10の両側に設けられるのが一般的であるが、表示モードによっては一方を省略することができる。また、横電界モードの液晶表示パネルにおいては、画素電極および対向電極(共通電極)が同一の基板に形成されることがある。いずれの場合であっても、本発明の実施形態の液晶表示パネル100の液晶層10のように、配向膜による配向規制力が直接的に及ばない液晶分子(すなわち、液晶層の厚さ方向の中央付近に存在し、印加された電圧に応じて配向方向を変化させることができる液晶分子に直接的に配向規制力を発揮できる第2領域R2を形成することによって、立ち下がり応答速度roffを向上させることができる。
第1基板21aおよび第2基板21bの外側に偏光板31aおよび31bが設けられている。VAモードの液晶表示パネルでは、一般に、偏光板31aおよび31bはクロスニコルに配置され、ノーマリーブラックモードで表示を行うように構成されている。典型的には、観察者側に配置される偏光板31bの偏光軸(透過軸)は表示面の垂直方向(時計の文字盤の12時−6時方向)に配置され、他方の偏光板31aの偏光軸は表示面の水平方向(時計の文字盤の3時−9時方向)に配置される。このとき、画素領域PD内には、偏光板31aおよび31bの偏光軸を二等分する、4つの異なる方位にディレクターを有する4種類のドメインが形成されるように、配向処理することが好ましい。
次に、図2および図3を参照して、液晶表示パネル100の液晶層10の構造および作用をさらに詳細に説明する。図2(a)は、液晶表示パネル100の図1(b)のII−II線に沿った断面を模式的に示す断面図であり、図2(b)は、図2(a)における破線Xにより囲まれた部分を拡大して模式的に示す断面図であり、液晶層10に電圧を印加していない場合(しきい値電圧以下の電圧、すなわち、液晶分子が配向を変化させる電圧以下の電圧を印加している場合を含む。)の液晶分子の配向状態、すなわちプレチルト状態を模式的に図示している。図3は、液晶表示パネル100の第1領域R1および第2領域R2の電圧−透過率(V−T)曲線を示すグラフである。
図2(a)に示すように、第2領域R2は、表示に寄与しない画素周辺領域(図1(b)中の参照符号PM)に、2つの配向膜25aおよび25bを連結するように形成されている。
図2(b)に模式的に示すように、第2領域R2は、高分子ネットワーク13と、液晶分子11mとを含み、第1領域R1は、実質的に液晶分子11mのみを含む。なお、高分子ネットワーク13は、後述するように、ネマチック液晶材料(液晶分子)に混合された光重合性モノマーに光(典型的には紫外線UV)を照射し、光重合(典型的には紫外線重合)させることによって形成されるので、第1領域R1にわずかながら含まれることがある。高分子ネットワーク13は、液晶分子11mが配向膜25aおよび25bからの配向規制力によって所定の初期配向状態をとっている状態で、形成される。したがって、第2領域R2の液晶分子11mの初期配向状態は、第1領域R1の液晶分子11mの初期配向状態と実質的に同じである。言い換えると、第2領域R2に形成される高分子ネットワーク13は、液晶分子11mの初期配向状態を崩さないように形成される。そのためには、例えば、高分子ネットワーク13を形成するための光重合性モノマーはメソゲン基を有することが好ましい。メソゲン基を有する光重合性モノマーは、液晶分子11mの初期配向状態と整合するように配向し、そのような配向状態を保ったままで、重合し、高分子ネットワーク13を生成することができる。
第2領域R2に形成された高分子ネットワーク13は、空隙vを有する緩いネットワーク構造を有する。典型的には、空隙vは互いに連結されており、液晶材料は連続相を形成する。高分子ネットワーク13の空隙vの大きさ(網の目の大きさ)は例えば数μm以下程度である。例えば、高分子ネットワーク13が側鎖にメソゲン基を有すると、メソゲン基に近接する液晶分子11mをアンカリングする。したがって、第2領域R2の高分子ネットワーク13は、配向膜25aおよび25bの配向規制力が及ばない、第1領域R1内の液晶層10の厚さ方向の中央付近の液晶分子11mに対してもアンカリング力を発揮することができるので、第1領域R1の立ち下がり応答速度roffを向上させることができる。
また、高分子ネットワーク13の空隙v内には、高分子ネットワーク13によってアンカリングされた液晶分子11mだけでなく、印加された電圧に応じて配向方向を変化する液晶分子11mも含んでいる。この電圧に応答可能な液晶分子11mは、高分子ネットワーク13によってアンカリングされた液晶分子11mの影響を強く受ける。この液晶分子11mも、第1領域R1内の液晶層10の厚さ方向の中央付近の液晶分子11mの配向を規制するように作用するので、第1領域R1の立ち下がり応答速度roffの向上に寄与する。
例えば、液晶層10に白表示電圧(例えば10.0V)を印加すると、印加電圧に応答して配向を変化させる液晶分子11mは、基板の主面にほぼ平行になるように倒れる。一方、配向膜25aまたは25bにアンカリングされている液晶分子11mと、高分子ネットワーク13によってアンカリングされている液晶分子11mと、さらにこれらの液晶分子11mの影響を強く受けている液晶分子11mは、液晶層10に白表示電圧が印加されても、ほぼ初期の配向状態(基板の主面にほぼ垂直)を維持している。この状態から、液晶層10に印加する電圧を黒表示電圧(例えば0.5V)に切替ると、印加電圧に応答して配向を変化させていた液晶分子11mは、高分子ネットワーク13によるアンカリング作用を直接または間接的に受け、ほぼ初期の配向状態を維持している液晶分子11mと、配向状態が整合するように、初期の配向状態に戻ろうとする。液晶表示パネル100の液晶層10は、第2領域R2を有しているので、初期の配向状態を維持している液晶分子11mが、液晶層10の厚さ方向(配向膜25aおよび25bの表面から離れた位置)にも存在する。その結果、第1領域R1の立ち下がり応答速度roffを向上させることができる。もちろん、第2領域R2の立ち下がり応答速度roffは、第1領域の立ち下がり応答速度roffよりも大きい。
図3に、液晶表示パネル100の第1領域R1および第2領域R2の正面視角におけるV−T曲線を示す。正面視角とは、表示面に対して垂直な視角をいう。図3は、第2領域R2が画素周辺領域PMのみに形成された液晶表示パネル(図1の液晶表示パネル100参照)の正面視角におけるV−T特性の測定結果の一例を示している。図3の横軸は、液晶層10に印加した電圧の大きさ(絶対値)Va[V]を表しており、縦軸は、透過率Tを表している。透過率Tは、Va=10.0Vにおける第1領域R1の透過率で規格化されている。
図3からわかるように、高分子ネットワーク13を有する第2領域R2のV−T曲線における立ち上がり電圧(しきい値電圧ともいう)は、高分子ネットワーク13を有しない第1領域R1の立ち上がり電圧よりも大きい。これは、上述したように、第2領域R2が、高分子ネットワーク13のアンカリング作用を直接または間接的に受ける液晶分子11mを多く含むからである。また、第2領域R2において、液晶層10に印加した電圧の一部が、高分子ネットワーク13に分配され、空隙v内の液晶分子11mに印加される電圧が低下することもある。
また、図3からわかるように、第2領域R2の最大透過率(Va=10.0Vの時の透過率)は、第1領域R1の最大透過率の70%を越えるものの、80%下回る。液晶表示パネル100のように第2領域を画素領域PDの外側の画素周辺領域PMにのみ形成すれば、第2領域R2を形成することに伴う透過率の低下は表示に影響することがない。
ここで、図4(a)および(b)を参照して、典型的なTFT型液晶表示パネルを例に、本明細書における「画素領域」と、構成要素との関係を説明する。
図4(a)は、液晶表示パネル100のTFT基板の模式的な平面図である。図4(a)に示すように、第1基板21a(図1参照)上には、複数の画素電極23aが設けられている。図4(a)は、2行3列のマトリクス状に配列された6つの画素電極23aについて示している。画素電極23aは、対応するTFT33のドレイン電極に電気的に接続されている。また、第1基板21a上には、互いにほぼ平行に延びる複数のゲートバスライン35と、ゲートバスライン35に交差する方向に延びる複数のソースバスライン37とが形成されている。各TFT33は、対応するゲートバスライン35およびソースバスライン37に電気的に接続されている。なお、第1基板21a上には、必要に応じて補助容量を形成するための複数の補助容量ライン39が形成される。
図4(b)は、液晶表示パネル100の対向基板が有するブラックマトリクス27の模式的な平面図である。図4(b)における2点鎖線Peは、第1基板21a上に設けられた複数の画素電極23aのうちの1つの外形を模式的に示している。
本明細書における「画素領域」は、液晶表示装置が表示を行う最小単位を指す。カラー表示装置の画素領域は、個々の原色(典型的にはR、GまたはB)を表示する。画素領域は、画素開口部と呼ばれることもあり、ブラックマトリクス27の遮光部27sやバスライン等によって遮光されない領域をいう。画素領域は、典型的には、図4(b)に示すように、ブラックマトリクス27の開口部Apによって規定される。ここでは、VAモードを例示しているが、IPSモードやFFSモードの液晶表示パネルについても同様に画素領域を定義することができる。
「画素領域」に対し、液晶表示パネルの表示領域(額縁領域を除いた部分)を各画素領域に均等に割り振ったときの単位構造を「画素」ということにする。各画素は、1つの画素領域と、画素領域に関連付けられたTFT、ゲートバスラインの一部、ソースバスラインの一部、ブラックマトリクスの遮光部の一部を含む。簡単のために、ここでは、図4(a)および図4(b)に示すように、画素領域PDが、2本のゲートバスラインおよび2本のソースバスラインによって包囲されている例を示す。この場合、画素Prの外縁は、上記2本のゲートバスラインをそれぞれ二等分する線および上記2本のソースバスラインをそれぞれ二等分する線によって形成される四角形(Pr)で規定される。
以下、図5〜図9を参照して、本発明による他の実施形態の液晶表示パネル200の構成および効果を説明する。上述した液晶表示パネル100の構成要素と実質的に同じ機能を有する構成要素は共通の参照符号で示し、その説明を省略する。
上述した実施形態の液晶表示パネル100は、画素周辺領域PMにのみ第2領域R2を有するので、第2領域R2を形成することによる透過率の低下はなく、立ち下がり応答速度roffが向上させられる。これに対して、液晶表示パネル200は、画素領域PD内にも第2領域R2を有する。図3を参照して説明したように、第2領域R2の透過率は、第1領域R1の透過率よりは小さいものの、第2領域R2の最大透過率(Va=10.0Vの時の透過率)は、第1領域R1の最大透過率の70%を越えており、第2領域R2を透過した光を表示に用いることができる。第2領域R2を画素領域PD内に形成することによって、表示輝度は若干低下するものの、γ特性(入力階調−輝度特性)の視角依存性を向上させるという効果が得られる。もちろん、液晶表示パネル100と同様の理由で、立ち下がり応答速度roffを向上させることができる。
図5(a)は、液晶表示パネル200を模式的に示す断面図であり、図5(b)は、液晶表示パネル200の液晶層20における第1領域R1および第2領域R2の配置を模式的に示す平面図である。図6は、液晶表示パネル200の図5(b)のVI−VI線に沿った断面を模式的に示す断面図である。
図5(a)および(b)に示すように、液晶表示パネル200において、第2領域R2は、画素周辺領域PMと、画素領域PD内の一部とに形成されている。すなわち、液晶表示パネル200は、第2領域R2が、画素領域PD内にも形成されている点において、上述の液晶表示パネル100と異なっている。
したがって、液晶表示パネル200の画素領域PDのV−T曲線は、図3に示した2つのV−T曲線を2つの領域の面積比率で重みづけをした平均になる。図5(b)に例示したように、画素領域PD中の第1領域R1の面積と第2領域R2の面積とが等しいとき、画素領域PDのV−T曲線は、図3の2つのV−T曲線を二等分する曲線となる。
このように、1つの画素内に、2以上の異なるV−T特性を有する領域を設けると、γ特性の視角依存性を改善することができる。例えば、VAモードの液晶表示パネルにおいては、低階調の表示を斜め視角から観察すると、表示すべき階調よりも明るく(白っぽく)見えるという、いわゆる白浮き現象が起こる。そのため、VAモードの液晶表示パネルは、γ特性の視角依存性が大きいと言われている。この問題を解決する方法として、本出願人は、特許文献4に、1つの画素を明るさの異なる複数の副画素に分割することによりγ特性の視野角依存性、とりわけ白浮特性を改善することができる液晶表示装置および駆動方法を開示している。特許文献4に記載の技術は、マルチ画素駆動(Multi Pixel Drive(MPD))技術と呼ばれ、電気回路的に、画素毎に2つ以上の異なるV−T特性を有する副画素を形成する。液晶表示パネル200は、電気的な回路構成を複雑にすることなく、画素領域PD内に第2領域R2を形成するだけで、実質的にマルチ画素構造を得ることができる。
次に、画素領域PDを第2領域R2が占める面積の割合の好ましい範囲を説明する。
ここでは、画素領域PDを第2領域R2が占める面積の割合(第2領域面積比率Arということもある)を変えて、正面視角におけるγ特性と、斜め視角におけるγ特性とをシミュレーションで求め、これらの間の差で、γ特性の視角依存性を評価した。なお、シミュレーションには、シンテック株式会社製 LCDMasterを使用した。
このシミュレーションにおいて、図7(a)により模式的に示すように、斜め視角を表すベクトルKの基板表面への射影の方位角を0°(時計の文字盤の3時方向)とし、ベクトルKの基板法線からの極角を45°とした。また、液晶分子11mの長軸の方向を表すベクトルの基板表面への射影の方位角を180°(時計の文字盤の9時方向)とし、印加電圧に応じて、液晶分子11mの長軸の極角が変化することにした。
シミュレーションで得られた第1領域R1および第2領域R2の正面視角におけるV−T曲線を図7(b)に示す。第1領域R1の正面視角におけるV−T曲線のシミュレーションに用いた液晶材料のΔn(屈折率異方性、複屈折率)は0.11で、Δε(誘電異方性)は−5.0である。第2領域R2の正面視角におけるV−T曲線のシミュレーションでは、液晶材料の物性の内、Δnを0.06に、Δεを−1.0に変更した。図7(b)に示した2本のV−T曲線は、図3に示した2本のV−T曲線と近く、それぞれ第1領域R1および第2領域R2の正面視角におけるV−T曲線と見なした。なお、透過率Tは、図3と同様に、Va=10.0Vにおける第1領域R1の透過率で規格化されている。
次に、1画素領域PDの平均透過率Taveを下記の式(1)により定義し、正面視角についての平均透過率および斜め視角の平均透過率をそれぞれ求める。式(1)において、T1およびT2は、液晶層20に電圧Vaが印加された時の第1領域R1の透過率および第2領域R2の透過率をそれぞれ表している。また、式(1)において、S1は、画素領域PDにおける第1領域R1の面積を表し、S2は、画素領域PDにおける第2領域R2の面積を表している。
Figure 2014089413
次に、正面視角における平均透過率Taveの計算結果に基づいて、下記の式(2)により、印加電圧Vaに対応する階調Gを計算する。式(2)において、TaveWおよびTaveBは、白表示(Va=7.5V)に対応する平均透過率および黒表示(Va=0.5V)に対応する平均透過率をそれぞれ表している。
Figure 2014089413
図8は、正面視角および斜め視角におけるV−T特性を表すグラフであり、図8(a)は画素領域PDの全体が第1領域R1の場合、図8(b)は第1領域R1が画素領域PDの30%を占め、第2領域R2が画素領域PDの70%を占める場合をそれぞれ示す。なお、図8(a)および(b)に示す平均透過率Taveは、階調G=255において1.0となるように規格化されている。
図8(a)および(b)からわかるように、第2領域R2が画素領域PDの70%を占める場合の方が、画素領域PDの全てを第1領域R1とする場合と比較して、斜め視角におけるV−T曲線が、正面視角に関するV−T曲線に近づく。すなわち、画素領域PDの一部分に第2領域R2を設ける方が、正面視角から液晶表示パネルを観察したときのγ特性と、斜め視角から液晶表示パネルを観察したときのγ特性との間の差が小さくなる。
次に、正面視角から液晶表示パネルを観察したときのγ特性と、斜め視角から液晶表示パネルを観察したときのγ特性との差を定量的に評価するために、下記の式(3)で表される視角依存性評価値VDを定義する。式(3)における和は、各階調Gについてとる(例えば、i=0、1、2、…、255)。
Figure 2014089413
なお、式(3)における△Tiは、下記の式(4)により定義される。式(4)において、TO ave-iは、斜め視角における階調iの平均透過率を表し、TF ave-iは、正面視角における階調iの平均透過率を表している。Rの値が小さいほど、斜め視角における透過率と正面視角における透過率との差が小さく、γ特製の視角依存性が小さいことを示す。
Figure 2014089413
図9に、第2領域R2が画素領域に占める割合Ar[%]と視角依存性評価値VDとの関係を示すグラフを示す。図9において、視角依存性評価値VDは、Ar=0%(すなわち、画素領域PD内に第2領域R2が存在しない場合)のときの値で規格化されている。図9を参照すると、Arがおよそ70%の付近で、VDが極小となることがわかる。ここで、視角依存性評価値VDが0.5以下となるArの範囲を、γ特性の視角依存性の向上の効果が十分に得られる条件とすると、第2領域R2が画素領域PDを占める面積の比率を40%以上90%以下とすることにより、γ特性の視角依存性向上の効果が得られることがわかる。
このように、液晶表示パネル200のように、第2領域R2を画素領域PD内に形成することによって、表示輝度は若干低下するものの、γ特性の視角依存性を向上させるという効果が得られる。もちろん、液晶表示パネル200においても、液晶表示パネル100と同様の理由で、立ち下がり応答速度roffを向上させることができる。液晶表示パネル200の液晶層20に占める第1領域R1の面積比率は、液晶表示パネル100の液晶層10に占める第1領域R1の面積比率よりも大きいので、立ち下がり応答速度roffを向上さる効果は、液晶表示パネル200の方が大きい。
本発明の実施形態による液晶表示パネル100および200は、小型から大型まで、種々の用途の表示パネルとして利用できる。例えば、液晶表示パネル100または200の背面にバックライトを設けることによって、透過型の液晶表示装置を得ることができる。小型の表示装置の場合には、バックライトとして導光板を有するエッジライト型のバックライトが好適に用いられる。大型の表示装置の場合には、例えば、多数のLEDを有するアクティブ方式のバックライトが好適に用いられる。本発明の実施形態による液晶表示パネル100および200は、立ち下がり応答速度roffが優れているので、動画表示特性や、3D表示特性に優れた液晶表示装置を得ることができる。
(液晶表示パネルの製造方法)
次に、本発明の実施形態による液晶表示パネルの製造方法を説明する。ここでは、図10を参照して、液晶表示パネル100の製造方法を説明する。図10(a)、(b)および(c)は、液晶表示パネル100の製造方法を示す模式的な断面図である。
まず、図10(a)に示すように、公知の製造方法で、VAモード液晶表示パネル用の液晶セルを製造する。ここで液晶セルとは、液晶表示パネル100の液晶層10がまだ形成されておらず、かつ、第1基板21aおよび第2基板21bの外側に偏光板31aおよび31bが配置されていないものを指すことにする。
ここで、配向膜25aおよび配向膜25bは、垂直配向性を有する光配向膜であり、例えば、特許文献1に記載されているように、光配向処理されている。すなわち、配向膜25aおよび配向膜25bは、液晶層の液晶分子を予め決められた方位にプレチルトさせることができる。
第1基板21上にマトリクス状に配列された複数の画素電極23aのそれぞれの大きさは、例えば、列方向の長さが250μmで、行方向の長さが80μmである。隣接する画素電極23a間の距離は、例えば5μmである。行方向に連続する3つの画素電極23aに対応する3つの画素が、例えば、R画素、G画素およびB画素であり、これら3つの画素が1つのカラー表示画素を構成する。1つのカラー表示画素の大きさは255μm×255μmとなる。
第2基板21bは、遮光部27sおよび複数の開口部Apを備えるブラックマトリクス27を有する。ブラックマトリクス27の開口部Apは、画素電極23aと対応するように配置される。図4(b)に示したように、開口部Apは画素電極23aよりも少し小さく、画素領域PDを規定する。典型的には、第2基板21bは、ブラックマトリクス27の開口部Apに対応してカラーフィルタ29をさらに有する。
次に、図10(b)に示すように、液晶セルの第1基板21aおよび第2基板21bの間に、液晶化合物と光重合性モノマーとを含む液晶混合物の層11を形成する。第1基板21aと第2基板21bとの間隙は例えば、3.4μmである。液晶混合物は、例えば、真空注入法で液晶セルの間隙に注入される。あるいは、図10(a)に示した液晶セルを作製する際に、滴下注入法(ODF法)で、液晶混合物の層11を形成してもよい。この工程は、公知の液晶注入方法を用いて行われる。
ここで、液晶表示パネル100は、VAモードの液晶表示パネルであり、液晶混合物は、負の誘電異方性を有するネマチック液晶材料を含む。例えば、Δnが0.11で、Δεが−5.0のネマチック液晶材料を用いる。
液晶混合物は、さらに、光重合性モノマーを含む。光重合性モノマーは、ネマチック液晶材料の液晶分子とともに配向する分子構造を有していることが好ましく、光重合性モノマーは、メソゲン基を有していることが好ましい。光重合性モノマーは、液晶分子が光配向膜の配向規制力に従って初期配向した状態で、光照射によって重合し、初期配向状態を崩すことなく、高分子ネットワークを生成する。そのために、光重合性モノマーは、多官能性モノマーを含むことが好ましく、適度な大きさの網目を形成するために、単官能モノマーをさらに含んでもよい。多官能モノマーと単官能モノマーの配合比率は、各モノマーの分子量等に応じて適宜設定され得る。2官能モノマーだけを用いてもよい。光重合性モノマーは、例えば、アクリレートまたはメタクリレートである。例えば、メソゲン基を有するアクリレートは、重合することによって、側鎖にメソゲン基を有するポリアクリレートを生成する。
液晶混合物における光重合性モノマーの含有率は、1.5mass%以上4.3mass%以下であることが好ましい。重合開始剤を必要に応じてさらに混合してもよい。ここでは、光重合性モノマーとしてRMS03−015(メルク株式会社製)を用いた。なお、光重合開始剤は用いなかった。
次に、図10(c)に示すように、ブラックマトリクス27の遮光部27sに対応するように透光部41pが設けられたフォトマスク41を介して、第1基板21a側から、液晶混合物の層11に光を照射する(いわゆる、裏面照射)。例えば、フォトマスク41を介して、液晶混合物の層11に、波長360〜370nmの紫外線UVを約5分間照射する。紫外線強度は、約13.5mW/cm2である。紫外線強度を比較的高く設定し、照射時間を短くすることにより、架橋密度を高め、高分子ネットワーク13の空隙vの大きさを数μm以下程度とすることができる。
紫外線UVの照射の工程は、液晶混合物の層11に電圧を印加しない状態で行われる。紫外線UVの照射により、光重合性モノマーの光重合が進行し、液晶混合物の層11のうち、ブラックマトリクス27の遮光部27sに対応する領域に高分子ネットワークが形成される。
フォトマスク41を介しての紫外線UVの照射により、液晶分子および高分子ネットワークを含む液晶層10のうちの一部分を、第2領域R2とすることができる。ブラックマトリクス27の遮光部27sに対応するように透光部41pが設けられたフォトマスク41を使用すると、第1基板21aの主面に垂直な方向から見たときに、第2領域R2は、複数の画素領域PDのそれぞれの外側の画素周辺領域PMに形成される。
以上により、図1(a)に示した液晶表示パネル100が得られる。
上述した例では、ブラックマトリクス27の遮光部27sに対応する領域に高分子ネットワークが形成されたが、液晶混合物の層11のうち、ブラックマトリクス27の開口部Apの一部に対応する領域に高分子ネットワークを形成するようにしてもよい。例えば、図5に示した液晶表示パネル200は、図11(a)に示すように、紫外線UVの照射の工程において、ブラックマトリクス27の遮光部27sよりも大きな面積を有する透光部42pが設けられたフォトマスク42を使用すればよい。
図11(b)に、フォトマスク42の透光部42pと、ブラックマトリクス27の開口部Apとの配置関係を模式的に示す平面図を示す。図11(b)は、第1基板21aの主面に垂直な方向から見た状態を模式的に示している。フォトマスク42は、遮光部42sと透光部42pとを有しており、遮光部42sは、ブラックマトリクス27の開口部Apの一部だけに対応するように設けられている。言い換えると、ブラックマトリクス27の開口部Apの上記一部を除く部分にも、フォトマスク42の透光部42pが配置される。したがって、フォトマスク42を介して液晶混合物の層11に紫外線UVを照射することにより、画素領域内に第2領域R2(図11中の領域L)を形成することができる。すなわち、図5(a)に示した液晶表示パネル200が得られる。
なお、フォトマスクの透光部の形状を適宜変更して、液晶表示パネルが、画素周辺領域PMのみに第2領域R2が形成された画素と、画素領域PDの少なくとも一部分と重なるように第2領域R2が形成された画素とを含むようにしてもよい。
次に、図12を参照して、液晶混合物における、光重合性モノマーの含有率の好ましい範囲について説明する。図12(a)は、光重合性モノマーの含有率Mと液晶表示パネルの立ち下がり応答時間toffとの関係を示すグラフであり、図12(b)は、光重合性モノマーの含有率Mと液晶表示パネルの透過率との関係を示すグラフである。
図12(a)に示すグラフにおいて、横軸は、液晶混合物中の光重合性モノマーの含有率M[mass%]を表しており、縦軸は、液晶表示パネルの立ち下がり応答時間toff[ms]を表している。ここで、図12(a)における立ち下がり応答時間toffは、液晶層に印加されていた電圧が10.0Vから0.5Vに変化した時の透過率の応答波形において、透過率が90%から10%に低下するまでに要した時間を表している。図12(a)に示すグラフでは、液晶表示パネルの液晶層に印加される電圧が10.0Vのときの透過率の値を100%としている。なお、透過率の測定時における温度は、30℃である。
図12(a)に示したグラフは、第2領域R2が画素領域PDの外側の画素周辺領域PMのみに形成された液晶表示パネル(図1の液晶表示パネル100参照)における画素領域(すなわち第1領域R1)の立ち下がり応答時間toffの一例を示している。図12(a)に示す例では、液晶混合物中の光重合性モノマーの含有率を、0.4mass%、2.2mass%、4.4mass%としたときの立ち下がり応答時間toffがそれぞれプロットされている。また、比較のために、図12(a)に示したグラフには、液晶混合物中の光重合性モノマーの含有率が0mass%とされた液晶表示パネルに関する立ち下がり応答時間toffもプロットされている。図12(a)に示したように、液晶混合物中の光重合性モノマーの含有率Mが大きくなるほど、立ち下がり応答時間toffが短くなることがわかる。
図12(a)において横軸に平行に引かれた破線は、光重合性モノマーの含有率Mが0mass%とされたときの立ち下がり応答時間toffよりも15%小さい応答時間を示している。したがって、液晶表示パネルの立ち下がり応答時間toffを、液晶層中に高分子ネットワークを形成しない場合と比較して15%以上短くするには、液晶混合物中の光重合性モノマーの含有率Mを1.5mass%以上とすればよいことがわかる。このように、第2領域R2が画素周辺領域PMにのみ形成される場合であっても、液晶混合物中の光重合性モノマーの含有率Mを1.5mass%以上とすることにより、立ち下がり応答時間toffの向上の効果が得られる。
図12(b)に示すグラフにおいて、横軸は、液晶混合物中の光重合性モノマーの含有率M[mass%]を表しており、縦軸は、液晶層に10.0Vの電圧が印加された時の透過率Tを表している。なお、透過率Tは、光重合性モノマーの含有率Mが0mass%とされた液晶表示パネルにおける、液晶層に10.0Vの電圧が印加された時の透過率の値で規格化されている。
図12(b)には、液晶混合物中の光重合性モノマーの含有率を、0.4mass%、2.2mass%、4.4mass%としたときの透過率Tがそれぞれプロットされている。また、比較のために、図12(b)に示したグラフには、液晶混合物中の光重合性モノマーの含有率が0mass%とされた液晶表示パネルに関する透過率Tもプロットされている。図12(b)においては、第2領域R2を画素周辺領域PMのみに形成した液晶表示パネル(図1の液晶表示パネル100参照)についての結果を実線により示し、第2領域R2を画素領域PDの全体に形成した液晶表示パネルについての結果を比較例として破線により示している。図12(b)に示したように、液晶混合物中の光重合性モノマーの含有率Mが大きくなるほど、透過率Tが低くなることがわかる。
図12(b)において横軸に平行に引かれた破線は、光重合性モノマーの含有率Mが0mass%とされたときの透過率よりも20%小さい透過率を示している。したがって、液晶表示パネルの透過率が、液晶層中に高分子ネットワークを形成しない場合と比較して20%以上低くならないようにするには、液晶混合物中の光重合性モノマーの含有率Mを4.3mass%以下とすればよいことがわかる。ただし、光重合性モノマーの含有率Mは、他の特性(立ち下がり応答時間や、画素領域の一部に第2領域R2を形成する場合のγ特性の視角依存性)をも考慮して、適宜設定され得る。
本明細書は、以下の項目に記載の液晶表示パネルおよびその製造方法を開示している。
[項目1]
マトリクス状に配列された複数の画素領域を有する液晶表示パネルであって、
液晶分子および高分子ネットワークを含む液晶層と、
前記液晶層を介して互いに対向する第1基板および第2基板と、
前記液晶層に電圧を印加するように構成された一対の電極と、
前記一対の電極のうちの少なくとも一方の電極と前記液晶層との間に設けられた配向膜と
を備え、
前記液晶層は、高分子ネットワークを有しない第1領域および高分子ネットワークを有する第2領域を含み、
前記複数の画素領域のそれぞれは、前記第1領域を含み、
前記第1領域は、前記第2領域の少なくとも一部分と隣接している、液晶表示パネル。
項目1に記載の液晶表示パネルは、向上させられた立ち下がり応答特性を有する。
[項目2]
前記第2領域は、前記高分子ネットワークと、前記液晶分子の一部とを含み、前記高分子ネットワークは前記液晶分子の前記一部にプレチルトを付与している、項目1に記載の液晶表示パネル。
項目2に記載の液晶表示パネルによると、立ち下がり応答特性を効果的に向上させることができる。
[項目3]
前記第1基板の主面に垂直な方向から見たときに、前記第2領域は、前記複数の画素領域のそれぞれの外側の画素周辺領域に形成されている、項目1または2に記載の液晶表示パネル。
項目3に記載の液晶表示パネルは、表示に寄与しない画素周辺領域を有効に利用することができる。
[項目4]
前記複数の画素領域のそれぞれは、前記第2領域の一部を含む、項目1から3のいずれかに記載の液晶表示パネル。
項目4に記載の液晶表示パネルは、改善されたγ特性を有し得る。
[項目5]
前記第1基板の主面に垂直な方向から見たときに、前記複数の画素領域のそれぞれにおいて前記第2領域が占める面積の割合は40%以上90%以下である、項目4に記載の液晶表示パネル。
項目5に記載の液晶表示パネルは、γ特性を効果的に改善することができる。
[項目6]
前記第1領域内の液晶分子は、前記配向膜によってプレチルト方位が規定されている、項目1から5のいずれかに記載の液晶表示パネル。
項目6に記載の液晶表示パネルは、立ち上がり応答特性も優れる。
[項目7]
前記配向膜は、光配向膜である、項目1から6のいずれかに記載の液晶表示パネル。
項目7に記載の液晶表示パネルは、配向処理が容易で、特にVAモードの液晶表示パネルの量産性に優れる。
[項目8]
前記液晶層は垂直配向型液晶層であり、前記液晶表示パネルは、線状配向規制構造体を有しない、項目1から7のいずれかに記載の液晶表示パネル。
項目8に記載の液晶表示パネルは、量産性に優れる。特にVAモードの液晶表示パネルの量産性に優れる。
[項目9]
項目1から8のいずれかに記載の液晶表示パネルの製造方法であって、少なくとも一方が配向膜を有する第1基板および第2基板を準備する工程(a)と、前記第1基板および前記第2基板の間に、液晶化合物および光重合性モノマーを含む液晶混合物の層を形成する工程(b)であって、前記液晶混合物中の前記光重合性モノマーの含有率は、1.5mass%以上4.3mass%以下である工程(b)とを含む、製造方法。
項目9に記載の製造方法は、項目1から8のいずれかに記載の液晶表示パネルを簡単なプロセスで製造することができる。
[項目10]
前記光重合性モノマーはメソゲン基を有するモノマーを含む、項目9に記載の製造方法。
項目10に記載の製造方法は、液晶表示パネルにおける液晶分子の配向の安定性を向上させることができる。
[項目11]
前記光重合性モノマーは、多官能モノマーを含む、項目9または10に記載の製造方法。
項目11に記載の製造方法は、前記液晶表示パネルの第2領域の液晶分子の配向を安定に維持できる。
[項目12]
前記工程(a)において、前記第1基板または前記第2基板のいずれかは、遮光部および複数の開口部を含むブラックマトリクスを有し、前記液晶表示パネルの製造方法は、前記遮光部に対応するように透光部が設けられたフォトマスクを介して前記層に光を照射し、前記層のうち、前記遮光部に対応する領域に高分子ネットワークを形成する工程(c)をさらに含む、項目9から11のいずれかに記載の製造方法。
項目12に記載の製造方法は、前記液晶表示パネルの画素周辺領域に簡単に第2領域を形成することができる。
[項目13]
前記工程(c)は、前記層のうち、前記複数の開口部の一部に対応する領域に高分子ネットワークを形成する工程を含む、項目9から12のいずれかに記載の製造方法。
項目13に記載の製造方法は、前記液晶表示パネルの画素領域内に簡単に第2領域を形成することができる。
[項目14]
前記工程(a)において、前記配向膜は、配向処理の施された光配向膜であり、前記工程(c)は、前記層に電圧を印加しない状態で行われる、項目9から13のいずれかに記載の製造方法。
項目14に記載の製造方法は、量産性に優れる。
本発明の実施形態は、液晶表示パネルが適用された電子機器または電気機器に広く適用することができる。本発明の実施形態は、種々の表示モードの液晶表示パネルに対しても適用できる。例えば、VAモード、TNモード、STNモード、OCBモード、IPSモード、FFSモードなどの液晶表示パネルに対しても、本発明の実施形態を適用することができる。
100、200 液晶表示パネル
10、20 液晶層
13 高分子ネットワーク
21a 第1基板
21b 第2基板
23a 画素電極
23b 対向電極
25a、25b 配向膜
27 ブラックマトリクス
41、42 フォトマスク
R1 第1領域
R2 第2領域

Claims (14)

  1. マトリクス状に配列された複数の画素領域を有する液晶表示パネルであって、
    液晶分子および高分子ネットワークを含む液晶層と、
    前記液晶層を介して互いに対向する第1基板および第2基板と、
    前記液晶層に電圧を印加するように構成された一対の電極と、
    前記一対の電極のうちの少なくとも一方の電極と前記液晶層との間に設けられた配向膜と
    を備え、
    前記液晶層は、高分子ネットワークを有しない第1領域および高分子ネットワークを有する第2領域を含み、
    前記複数の画素領域のそれぞれは、前記第1領域を含み、
    前記第1領域は、前記第2領域の少なくとも一部分と隣接している、液晶表示パネル。
  2. 前記第2領域は、前記高分子ネットワークと、前記液晶分子の一部とを含み、前記高分子ネットワークは前記液晶分子の前記一部にプレチルトを付与している、請求項1に記載の液晶表示パネル。
  3. 前記第1基板の主面に垂直な方向から見たときに、前記第2領域は、前記複数の画素領域のそれぞれの外側の画素周辺領域に形成されている、請求項1または2に記載の液晶表示パネル。
  4. 前記複数の画素領域のそれぞれは、前記第2領域の一部を含む、請求項1から3のいずれかに記載の液晶表示パネル。
  5. 前記第1基板の主面に垂直な方向から見たときに、前記複数の画素領域のそれぞれにおいて前記第2領域が占める面積の割合は40%以上90%以下である、請求項4に記載の液晶表示パネル。
  6. 前記第1領域内の液晶分子は、前記配向膜によってプレチルト方位が規定されている、請求項1から5のいずれかに記載の液晶表示パネル。
  7. 前記配向膜は、光配向膜である、請求項1から6のいずれかに記載の液晶表示パネル。
  8. 前記液晶層は垂直配向型液晶層であり、前記液晶表示パネルは、線状配向規制構造体を有しない、請求項1から7のいずれかに記載の液晶表示パネル。
  9. 請求項1から8のいずれかに記載の液晶表示パネルの製造方法であって、少なくとも一方が配向膜を有する第1基板および第2基板を準備する工程(a)と、前記第1基板および前記第2基板の間に、液晶化合物および光重合性モノマーを含む液晶混合物の層を形成する工程(b)であって、前記液晶混合物中の前記光重合性モノマーの含有率は、1.5mass%以上4.3mass%以下である工程(b)とを含む、製造方法。
  10. 前記光重合性モノマーはメソゲン基を有するモノマーを含む、請求項9に記載の製造方法。
  11. 前記光重合性モノマーは、多官能モノマーを含む、請求項9または10に記載の製造方法。
  12. 前記工程(a)において、前記第1基板または前記第2基板のいずれかは、遮光部および複数の開口部を含むブラックマトリクスを有し、前記液晶表示パネルの製造方法は、前記遮光部に対応するように透光部が設けられたフォトマスクを介して前記層に光を照射し、前記層のうち、前記遮光部に対応する領域に高分子ネットワークを形成する工程(c)をさらに含む、請求項9から11のいずれかに記載の製造方法。
  13. 前記工程(c)は、前記層のうち、前記複数の開口部の一部に対応する領域に高分子ネットワークを形成する工程を含む、請求項9から12のいずれかに記載の製造方法。
  14. 前記工程(a)において、前記配向膜は、配向処理の施された光配向膜であり、前記工程(c)は、前記層に電圧を印加しない状態で行われる、請求項9から13のいずれかに記載の製造方法。
JP2012240512A 2012-10-31 2012-10-31 液晶表示パネルおよびその製造方法 Pending JP2014089413A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012240512A JP2014089413A (ja) 2012-10-31 2012-10-31 液晶表示パネルおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012240512A JP2014089413A (ja) 2012-10-31 2012-10-31 液晶表示パネルおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2014089413A true JP2014089413A (ja) 2014-05-15

Family

ID=50791324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012240512A Pending JP2014089413A (ja) 2012-10-31 2012-10-31 液晶表示パネルおよびその製造方法

Country Status (1)

Country Link
JP (1) JP2014089413A (ja)

Similar Documents

Publication Publication Date Title
US8786808B2 (en) Liquid crystal display and method of manufacturing the same
TWI303735B (en) Liquid crystal display and method of manufacturing the same
Hanaoka et al. 40.1: A new MVA‐LCD by polymer sustained alignment technology
JP4076362B2 (ja) 液晶表示装置
WO2014017329A1 (ja) 液晶表示装置
JP2011085738A (ja) 液晶表示装置
WO2013176159A1 (ja) 液晶表示装置
US20100085520A1 (en) Liquid crystal display apparatus and process for manufacturing the same
JP4551230B2 (ja) 液晶表示装置の製造方法
US10739645B2 (en) Liquid crystal display apparatus and manufacturing method of liquid crystal display apparatus
WO2013118779A1 (ja) 液晶表示パネル
JP4995942B2 (ja) 液晶表示装置
JP2013109366A (ja) 液晶表示装置およびその製造方法
JP2014089413A (ja) 液晶表示パネルおよびその製造方法
JP2009116194A (ja) 液晶表示装置の製造方法
JP2011013442A (ja) 液晶表示パネル