JP2014089155A - Reprocessing system and reprocessing method of spent nuclear fuel - Google Patents

Reprocessing system and reprocessing method of spent nuclear fuel Download PDF

Info

Publication number
JP2014089155A
JP2014089155A JP2012240391A JP2012240391A JP2014089155A JP 2014089155 A JP2014089155 A JP 2014089155A JP 2012240391 A JP2012240391 A JP 2012240391A JP 2012240391 A JP2012240391 A JP 2012240391A JP 2014089155 A JP2014089155 A JP 2014089155A
Authority
JP
Japan
Prior art keywords
plutonium
nuclear fuel
reprocessing
nitrate solution
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012240391A
Other languages
Japanese (ja)
Other versions
JP6210477B2 (en
Inventor
Yuji Fukaya
裕司 深谷
Kuniyoshi Takamatsu
邦吉 高松
Minoru Goto
実 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2012240391A priority Critical patent/JP6210477B2/en
Publication of JP2014089155A publication Critical patent/JP2014089155A/en
Application granted granted Critical
Publication of JP6210477B2 publication Critical patent/JP6210477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reprocessing system and reprocessing method of a spent nuclear fuel capable of increasing the plutonium enrichment of a nuclear fuel without reducing the nuclear diffusion resistance.SOLUTION: The reprocessing system of a spent nuclear fuel extracted from a nuclear reactor includes: separating means for separating uranium from a nitric acid solution in which the spent nuclear fuel is dissolved and obtaining plutonium nitrate solution; and mixing means for mixing an inactive base material to the plutonium nitrate solution that is fed from the separating means to manufacturing means of a nuclear fuel by a sol-gel method.

Description

本発明は、使用済核燃料の再処理システムおよび再処理方法に関する。   The present invention relates to a spent nuclear fuel reprocessing system and a reprocessing method.

近年、燃焼後も安定した化合物となる不活性母材燃料(例えば、非特許文献1を参照)や、線量の高い物質を取扱い可能なセル内での遠隔燃料製造に適した振動充填法(例えば、非特許文献2を参照)の研究開発が行われている。   In recent years, an inert matrix fuel that becomes a stable compound even after combustion (for example, see Non-Patent Document 1) and a vibration filling method suitable for remote fuel production in a cell capable of handling a high-dose substance (for example, Research and development of non-patent document 2) are being conducted.

T. Shiratori, T. Yamashita, T. Ohmichi, A. Yasuda, K. Watarumi, "Preparation of rock-like oxide fuels for the irradiation test in the Japan Research Reactor No. 3", Journal of Nuclear Materials, 1999, Vol.274, p. 40-46.T. Shiratori, T. Yamashita, T. Ohmichi, A. Yasuda, K. Watarumi, "Preparation of rock-like oxide fuels for the irradiation test in the Japan Research Reactor No. 3", Journal of Nuclear Materials, 1999, Vol .274, p. 40-46. 紙谷 正仁, 小島 久雄, 篠田 佳彦, "先進湿式プラント設計研究(III)", 動力炉・核燃料開発事業団 東海事業所, 1998/03.Masaya Kamitani, Hisao Kojima, Yoshihiko Shinoda, "Advanced wet plant design research (III)", Tokai Works, Power Reactor and Nuclear Fuel Development Corporation, 1998/03. WILLIAM S. CHARLTON、他4名, "PROLIFERATION RESISTANCEASSESSMENT METHODOLOGY FOR NUCLEAR FUEL CYCLES", NUCLEAR TECHNOLOGY, 2007 FEB, VOL.157, p.143-156.WILLIAM S. CHARLTON and 4 others, "PROLIFERATION RESISTANCEASSESSMENT METHODOLOGY FOR NUCLEAR FUEL CYCLES", NUCLEAR TECHNOLOGY, 2007 FEB, VOL.157, p.143-156.

我が国は、NPT(核兵器の不拡散に関する条約)を締結しているため、保障措置上、プルトニウムを単体で存在させることができない。このため、現行の再処理法では最終製品がウランとプルトニウムの混合酸化物となるよう、脱硝前の硝酸プルトニウム溶液の硝酸ウラン溶液を混合している。よって、現行の再処理法から出る製品では、この混合比を超えるプルトニウム富化度の燃料を製造することができず、炉心設計の幅を狭めている。   Since Japan has concluded an NPT (Convention on Non-Proliferation of Nuclear Weapons), plutonium cannot exist alone for safeguards. For this reason, in the current reprocessing method, the uranium nitrate solution of the plutonium nitrate solution before denitration is mixed so that the final product becomes a mixed oxide of uranium and plutonium. Therefore, the product from the current reprocessing method cannot produce a plutonium-enriched fuel exceeding the mixing ratio, thereby narrowing the width of the core design.

そこで、本願は、核拡散抵抗性を低下させることなく、核燃料のプルトニウム富化度を高めることが可能な使用済核燃料の再処理システムおよび再処理方法を提供することを課題とする。   Then, this application makes it a subject to provide the reprocessing system and the reprocessing method of the spent nuclear fuel which can raise the plutonium enrichment degree of a nuclear fuel, without reducing proliferation resistance.

上記課題を解決するため、本発明では、ゾルゲル法が硝酸溶液を直接利用することができることに着目した。すなわち、本発明は、再処理で発生する硝酸プルトニウム溶液を脱硝することなく、ゾルゲル法による核燃料の製造手段へ導くこととし、核燃料の製造手段へ導く前に不活性母材を混合することにした。   In order to solve the above problems, the present invention focuses on the fact that the sol-gel method can directly use a nitric acid solution. That is, in the present invention, the plutonium nitrate solution generated in the reprocessing is guided to the means for producing nuclear fuel by the sol-gel method without denitration, and the inert base material is mixed before being led to the means for producing nuclear fuel. .

詳細には、本発明は、原子炉から取り出した使用済核燃料の再処理システムであって、前記使用済核燃料を溶解した硝酸溶液からウランを分離し、硝酸プルトニウム溶液を得る分離手段と、前記分離手段からゾルゲル法による核燃料の製造手段へ送られる前記硝酸プルトニウム溶液に不活性母材を混合する混合手段と、を備える。   Specifically, the present invention is a reprocessing system for spent nuclear fuel taken out from a nuclear reactor, separating uranium from a nitric acid solution in which the spent nuclear fuel is dissolved to obtain a plutonium nitrate solution, and the separation Mixing means for mixing an inert base material with the plutonium nitrate solution sent from the means to the means for producing nuclear fuel by the sol-gel method.

ここで、不活性母材とは、核拡散抵抗性の維持を目的として硝酸プルトニウム溶液に混合される材料であり、例えば、化学・核的に不活性な材料が好適である。   Here, the inert base material is a material mixed with the plutonium nitrate solution for the purpose of maintaining nuclear diffusion resistance, and for example, a chemically and nuclearly inert material is suitable.

上記再処理システムの場合、核燃料の製造手段へ送られる硝酸プルトニウム溶液に不活性母材を混合しているため、溶液中の硝酸が失われてもプルトニウム酸化物が単体で存在
せず、核拡散抵抗性が維持される。このため、上記再処理システムを用いることにより、核拡散抵抗性を低下させることなく、例えば、プルトニウム富化度が50%以上の燃料を製造することも可能である。
In the case of the above reprocessing system, the inert matrix is mixed with the plutonium nitrate solution sent to the means for producing nuclear fuel, so even if the nitric acid in the solution is lost, the plutonium oxide does not exist alone, and the nuclear diffusion Resistance is maintained. For this reason, by using the above-mentioned reprocessing system, it is possible to produce a fuel having a plutonium enrichment of 50% or more, for example, without reducing the proliferation resistance.

また、既存(現行)の再処理施設において発生する脱硝前の硝酸プルトニウム溶液の濃度は既に低減速領域の濃度なので、核燃料の製造手段の一種であるゾルゲル法が求める溶液濃度とするための濃縮処理を施すと増倍率が更に低下することになり、臨界性の観点からも安全性を高めることが可能である。   In addition, since the concentration of the plutonium nitrate solution before denitration generated in the existing (current) reprocessing facility is already in the reduced speed region, the concentration treatment is performed to obtain the solution concentration required by the sol-gel method, which is a kind of nuclear fuel production method. If applied, the multiplication factor is further lowered, and safety can be improved from the viewpoint of criticality.

なお、前記混合手段は、前記分離手段から前記製造手段へ送られる前記硝酸プルトニウム溶液の蒸発濃縮が行われる前に前記不活性母材を混合するものであってもよい。蒸発濃縮が行われる前に不活性母材を混合しておけば、蒸発濃縮により溶液中の硝酸が失われてもプルトニウム酸化物が単体で存在することが無いので、プルトニウム濃度の増加による核拡散抵抗性の低下を防ぐことが可能である。   The mixing unit may mix the inert base material before evaporating and concentrating the plutonium nitrate solution sent from the separating unit to the manufacturing unit. If inert matrix is mixed before evaporative concentration, plutonium oxide does not exist alone even if nitric acid in the solution is lost due to evaporative concentration, so nuclear diffusion due to increased plutonium concentration It is possible to prevent a decrease in resistance.

また、前記混合手段は、前記不活性母材を、前記製造手段へ送られた前記硝酸プルトニウム溶液が規定の核拡散抵抗性となる混合比で前記硝酸プルトニウム溶液に混合するものであってもよい。   The mixing unit may mix the inert base material with the plutonium nitrate solution at a mixing ratio at which the plutonium nitrate solution sent to the manufacturing unit has a prescribed nuclear diffusion resistance. .

ここで、規定の核拡散抵抗性とは、プルトニウムの核兵器への転用が困難となる値であり、例えば、保障措置上規定されている値等を適用することが可能である。混合手段が、不活性母材をこのような混合比で硝酸プルトニウム溶液に混合することにより、プルトニウムの核兵器への転用を防ぐことができる。   Here, the prescribed proliferation resistance is a value that makes it difficult to use plutonium for nuclear weapons, and for example, a value prescribed in safeguards can be applied. By mixing the inert base material with the plutonium nitrate solution at such a mixing ratio, the mixing means can prevent diversion of plutonium to a nuclear weapon.

また、前記混合手段は、前記分離手段において分離されたウランが溶解した硝酸ウラン溶液を、前記製造手段によって製造された前記核燃料が所望のプルトニウム富化度となる混合比で前記硝酸プルトニウム溶液に更に混合するものであってもよい。   In addition, the mixing means further converts the uranium nitrate solution in which the uranium separated in the separation means is dissolved into the plutonium nitrate solution at a mixing ratio at which the nuclear fuel produced by the production means has a desired plutonium enrichment. You may mix.

上記再処理システムでは、不活性母材の混合により核拡散抵抗性を確保しているため、所望のプルトニウム富化度の核燃料を製造することが可能であり、これにより、炉心設計の幅を広げることが可能である。   In the above reprocessing system, the proliferation resistance is ensured by mixing the inert base material, so that it is possible to produce nuclear fuel with a desired plutonium enrichment, thereby widening the range of core design. It is possible.

なお、本発明は、方法の側面から捉えることもできる。すなわち、本発明は、例えば、原子炉から取り出した使用済核燃料の再処理方法であって、前記使用済核燃料を溶解した硝酸溶液からウランを分離し、硝酸プルトニウム溶液を得る分離工程と、前記分離工程からゾルゲル法による核燃料の製造工程へ送られる前記硝酸プルトニウム溶液に不活性母材を混合する混合工程と、を行うものであってもよい。   The present invention can also be understood from the aspect of the method. That is, the present invention is a method for reprocessing spent nuclear fuel taken out of a nuclear reactor, for example, a separation step of separating uranium from a nitric acid solution in which the spent nuclear fuel is dissolved to obtain a plutonium nitrate solution, and the separation And a mixing step of mixing an inert base material with the plutonium nitrate solution sent from the step to the nuclear fuel production step by the sol-gel method.

本発明に係る使用済核燃料の再処理システムおよび再処理方法であれば、核拡散抵抗性を低下させることなく、核燃料のプルトニウム富化度を高めることが可能となる。   With the spent nuclear fuel reprocessing system and the reprocessing method according to the present invention, it is possible to increase the plutonium enrichment of the nuclear fuel without reducing the proliferation resistance.

すなわち、本発明に係る使用済核燃料の再処理システムおよび再処理方法であれば、再処理で発生する硝酸プルトニウム溶液を脱硝することなく、ゾルゲル法による核燃料の製造手段へ導くこととし、核燃料の製造手段へ導く前に不活性母材を混合しているので、核拡散抵抗性を低下させることなく、核燃料のプルトニウム富化度を高めることが可能となる。よって、例えば、プルトニウム富化度50%以上の燃料を、核拡散抵抗性を低下させることなく製造することが可能である。   That is, with the spent nuclear fuel reprocessing system and the reprocessing method according to the present invention, the plutonium nitrate solution generated in the reprocessing is guided to a means for producing nuclear fuel by the sol-gel method without denitration. Since the inert base material is mixed before being introduced to the means, it is possible to increase the plutonium enrichment of the nuclear fuel without reducing the proliferation resistance. Thus, for example, it is possible to produce a fuel with a plutonium enrichment of 50% or more without reducing the proliferation resistance.

実施形態に係る再処理システムの構成図の一例である。It is an example of the block diagram of the reprocessing system which concerns on embodiment. 再処理システムによって実現される再処理法のフロー図の一例である。It is an example of the flowchart of the reprocessing method implement | achieved by the reprocessing system. ゾルゲル法(外部ゲル化法)により燃料を製造する際のフロー図の一例である。It is an example of the flowchart at the time of manufacturing a fuel by the sol gel method (external gelation method). プルトニウム濃度と実効増倍率との関係を示したグラフの一例である。It is an example of the graph which showed the relationship between a plutonium density | concentration and an effective multiplication factor. 現行の再処理システムの構成図の一例である。It is an example of the block diagram of the present reprocessing system. 現行の再処理システムによって実現される再処理法のフロー図の一例である。It is an example of the flowchart of the reprocessing method implement | achieved by the present reprocessing system. 現行の再処理法を踏襲して単離プルトニウム燃料を製造する場合のフロー図の一例である。It is an example of the flowchart in the case of manufacturing an isolated plutonium fuel following the current reprocessing method. 核拡散抵抗性について比較を行ったグラフの一例である。It is an example of the graph which compared about proliferation resistance. 臨界性を比較したグラフの一例である。It is an example of the graph which compared the criticality. Pu−239の消滅率を比較したグラフの一例である。It is an example of the graph which compared the extinction rate of Pu-239. ゾルゲル法(内部ゲル化法)により燃料を製造する際のフロー図の一例である。It is an example of the flowchart at the time of manufacturing a fuel by the sol-gel method (internal gelation method).

以下、本願発明の実施形態について説明する。以下に示す実施形態は、本願発明の一態様であり、本願発明の技術的範囲を以下の態様に限定するものではない。   Hereinafter, embodiments of the present invention will be described. Embodiment shown below is one aspect | mode of this invention, and does not limit the technical scope of this invention to the following aspects.

図1は、本実施形態に係る再処理システムの構成図の一例である。再処理システム1は、使用済核燃料からウランおよびプルトニウムを回収するシステムである。再処理システム1は、受入・貯蔵工程、せん断・溶解工程、分離工程、精製工程、脱硝工程、製品貯蔵I工程、調整・製造工程、及び製品貯蔵II工程を司るシステムである。受入・貯蔵工程は
、使用済の燃料集合体2を貯蔵設備3に受け入れて貯蔵する工程である。せん断・溶解工程は、燃料集合体2をせん断設備4にてせん断した後、溶解設備5にて硝酸で溶解する工程である。分離工程は、FP(核分裂性生成物)分離設備6でFPを硝酸溶液から分離し、更に硝酸溶液をウラン・プルトニウム分離設備7(本願でいう「分離手段」の一例である)で硝酸ウラン溶液と硝酸プルトニウム溶液とに分離する工程である。精製工程は、硝酸ウラン溶液をウラン精製設備8で精製し、硝酸プルトニウム溶液をプルトニウム精製設備9で精製する工程である。脱硝工程は、ウラン脱硝設備10で硝酸ウラン溶液を脱硝する工程である。製品貯蔵I工程は、製品化したウラン酸化物をウラン貯蔵設備11にて貯
蔵する工程である。調整・製造工程は、プルトニウム調整・製造設備12(本願でいう「混合手段」の一例である)にて硝酸プルトニウム溶液を調整し、プルトニウム燃料を製品化する工程である。製品貯蔵II工程は、製品化したプルトニウム燃料を燃料貯蔵設備13にて貯蔵する工程である。
FIG. 1 is an example of a configuration diagram of a reprocessing system according to the present embodiment. The reprocessing system 1 is a system for recovering uranium and plutonium from spent nuclear fuel. The reprocessing system 1 is a system that manages an acceptance / storage process, a shearing / dissolution process, a separation process, a purification process, a denitration process, a product storage I process, an adjustment / manufacturing process, and a product storage II process. The acceptance / storage process is a process in which the spent fuel assembly 2 is received and stored in the storage facility 3. The shearing / dissolution process is a process in which the fuel assembly 2 is sheared by the shearing equipment 4 and then dissolved by the nitric acid by the melting equipment 5. In the separation step, the FP (fissionable product) separation facility 6 separates FP from the nitric acid solution, and the nitric acid solution is further separated from the uranium / plutonium separation facility 7 (an example of “separation means” in the present application). And a plutonium nitrate solution. The purification step is a step of purifying the uranium nitrate solution with the uranium purification facility 8 and purifying the plutonium nitrate solution with the plutonium purification facility 9. The denitration process is a process of denitrating the uranium nitrate solution with the uranium denitration facility 10. The product storage I process is a process of storing the commercialized uranium oxide in the uranium storage facility 11. The adjustment / manufacturing process is a process for preparing a plutonium fuel by adjusting a plutonium nitrate solution in the plutonium adjusting / manufacturing facility 12 (which is an example of the “mixing means” in the present application). The product storage II step is a step of storing the commercialized plutonium fuel in the fuel storage facility 13.

図2は、再処理システム1によって実現される再処理法のフロー図の一例である。再処理システム1は、軽水炉や高速炉から搬送された使用済核燃料を燃料集合体のまま受け入れ、貯蔵する(S101)。再処理システム1は、貯蔵した使用済の燃料集合体を細かくせん断し(S102)、せん断片を硝酸にて溶解する(S103)。硝酸に溶けない被覆管等の細片は、燃料が溶解した硝酸溶液中で分離される。再処理システム1は、ウランやプルトニウムが溶解した硝酸溶液の温度等を適当に調整し、ウランとプルトニウムとを分離する(S104)。   FIG. 2 is an example of a flowchart of a reprocessing method realized by the reprocessing system 1. The reprocessing system 1 receives and stores the spent nuclear fuel conveyed from the light water reactor or fast reactor as the fuel assembly (S101). The reprocessing system 1 finely shears the stored spent fuel assembly (S102), and dissolves the fissure fragments with nitric acid (S103). Strips such as cladding tubes that do not dissolve in nitric acid are separated in a nitric acid solution in which the fuel is dissolved. The reprocessing system 1 appropriately adjusts the temperature of the nitric acid solution in which uranium and plutonium are dissolved, and separates uranium and plutonium (S104).

再処理システム1は、ウランやプルトニウムが溶解した硝酸溶液からプルトニウムを分離した硝酸ウラン溶液を精製し(S105)、脱硝してウラン酸化物とした後(S106)、ウラン貯蔵設備11に貯蔵する(S107)。   The reprocessing system 1 purifies a uranium nitrate solution obtained by separating plutonium from a nitric acid solution in which uranium or plutonium is dissolved (S105), denitrates it into uranium oxide (S106), and stores it in the uranium storage facility 11 ( S107).

また、再処理システム1は、ウランやプルトニウムが溶解した硝酸溶液からウランを分
離した硝酸プルトニウム溶液を精製する(S108)。また、再処理システム1は、硝酸溶液に溶かして濃度等を適当に調整した不活性母材を用意する(S109)。再処理システム1は、精製した硝酸プルトニウム溶液に、所望のプルトニウム富化度となるように硝酸ウラン溶液を必要に応じて適当に混合し、更に、適当なプルトニウム濃度となるように不活性母材を混合する(S110)。不活性母材は、焼結等の処理を経ても消失することの無い材料であり、化学・核的に不活性な材料である。不活性母材の材料の具体例としては、例えば、イットリウムスタビライズドジルコニア等を挙げることができる。不活性母材としてイットリウムスタビライズドジルコニアを用いる場合には、硝酸溶液と混合しやすいよう、硝酸ジルコニウム溶液や硝酸イットリウム溶液を用意して混合する。なお、不活性母材の混合比は、燃料の製造設備へ送られる硝酸溶液が、例えば、製造設備に規定されている未臨界度となり、或いは、保障措置上規定されている核拡散抵抗性となるように適宜決定することができる。そして、再処理システム1は、ウランとプルトニウムと不活性母材とを混合した硝酸溶液に蒸発濃縮等の処理を施して濃度等を適当に調整し(S111)、ゾルゲル法による燃料製造を行う(S112)。
Further, the reprocessing system 1 purifies the plutonium nitrate solution obtained by separating uranium from the nitric acid solution in which uranium and plutonium are dissolved (S108). In addition, the reprocessing system 1 prepares an inert base material in which the concentration and the like are appropriately adjusted by dissolving in a nitric acid solution (S109). The reprocessing system 1 appropriately mixes a purified plutonium nitrate solution with a uranium nitrate solution as necessary to obtain a desired plutonium enrichment, and further, an inert matrix so as to obtain an appropriate plutonium concentration. Are mixed (S110). An inert base material is a material that does not disappear even after processing such as sintering, and is a chemically and nuclearly inactive material. Specific examples of the material of the inert base material include yttrium stabilized zirconia. When yttrium stabilized zirconia is used as the inert base material, a zirconium nitrate solution or a yttrium nitrate solution is prepared and mixed so as to be easily mixed with the nitric acid solution. Note that the mixing ratio of the inert base material is such that the nitric acid solution sent to the fuel production facility has, for example, the subcriticality defined in the production facility or the proliferation resistance defined in the safeguards. It can be determined as appropriate. Then, the reprocessing system 1 performs a process such as evaporation concentration on the nitric acid solution in which uranium, plutonium, and an inert base material are mixed to appropriately adjust the concentration and the like (S111), and performs fuel production by the sol-gel method ( S112).

上述の燃料製造工程(S112)は、具体的には、例えば、以下のような処理を適用可能である。図3は、ゾルゲル法(外部ゲル化法)により燃料を製造する際のフロー図の一例である。再処理システム1は、不活性母材を混合したウランとプルトニウムの混合硝酸溶液(以下、「U・Pu溶液」という)に増粘剤を混合し、粘度を調整する(S201)。増粘剤は、U・Pu溶液を、アンモニア水溶液に滴下させるためのノズルから適正に滴下させることが可能な粘度にするものであり、例えば、PVA(polyvinyl alcohol)を
適用可能である。なお、増粘剤としてPVAを用いる場合、ポリマー水溶液にTHFA(Tetrahydrofurfuryl alcohol)等の水溶性環状エーテルを予め混合しておくことにより、水溶液の表面にポリマーの皮膜が形成されるのを防止し、水溶液中のポリマーの均一な溶解状態を保つことが望ましい。
Specifically, for example, the following process can be applied to the above-described fuel production process (S112). FIG. 3 is an example of a flowchart for producing fuel by the sol-gel method (external gelation method). The reprocessing system 1 mixes a thickener with a mixed nitric acid solution of uranium and plutonium mixed with an inert base material (hereinafter referred to as “U / Pu solution”) to adjust the viscosity (S201). The thickener has a viscosity that allows the U · Pu solution to be appropriately dropped from a nozzle for dropping the aqueous ammonia solution. For example, PVA (polyvinyl alcohol) can be applied. When PVA is used as a thickener, a polymer film is prevented from being formed on the surface of the aqueous solution by previously mixing a water-soluble cyclic ether such as THFA (Tetrahydrofurfuryl alcohol) with the polymer aqueous solution. It is desirable to maintain a uniform dissolved state of the polymer in the aqueous solution.

再処理システム1は、増粘剤が混合されたU・Pu溶液を、振動させたノズルからアンモニア水へ向けて滴下する(S202)。ノズルから滴下したU・Pu溶液は、落下中に表面張力で球状化する。   The reprocessing system 1 drops the U / Pu solution mixed with the thickener toward the ammonia water from the vibrating nozzle (S202). The U / Pu solution dripped from the nozzle is spheroidized by surface tension during dropping.

ノズルから滴下したU・Pu溶液は、アンモニア水中に落下し、アンモニア水中を沈降する過程で液滴内部までゲル化が進行する(S203)。ノズルから滴下したU・Pu溶液は、落下中に表面張力で球状化しているため、アンモニア水中を沈降する過程で球状にゲル化する。   The U / Pu solution dropped from the nozzle falls into the ammonia water, and gelation proceeds to the inside of the droplets in the process of settling in the ammonia water (S203). Since the U / Pu solution dropped from the nozzle is spheroidized by the surface tension during the dropping, it is gelled into a spherical shape in the process of settling in the ammonia water.

再処理システム1は、アンモニア水中を沈降する過程で球状にゲル化したゲル玉を洗浄液で洗浄する(S204)。例えば、洗浄液として水やアルコールを使った場合、硝酸アンモニウムやアンモニア水が発生する。   The reprocessing system 1 wash | cleans the gel ball which gelatinized in the process of settling in ammonia water with a washing | cleaning liquid (S204). For example, when water or alcohol is used as the cleaning liquid, ammonium nitrate or ammonia water is generated.

再処理システム1は、洗浄によって湿潤状態にあるゲル玉を乾燥させる(S205)。ゲル玉は、あらゆる方法で乾燥させてよく、例えば、自然に乾燥させてもよいし温風(例えば、温度が350〜770K程度の空気)を当てて強制的に乾燥させてもよい。   The reprocessing system 1 dries the gel balls in a wet state by washing (S205). The gel balls may be dried by any method. For example, the gel balls may be naturally dried or may be forcibly dried by applying warm air (for example, air having a temperature of about 350 to 770 K).

再処理システム1は、乾燥させたゲル玉を焼結させる(S206)。ゲル玉は、あらゆる方法で焼結させてよく、例えば、ゲル玉が配置されている雰囲気を高温(例えば、1670K程度)にする他、焼結体の性質(気孔率等)が所望のものとなるよう、ゲル玉が配置されている雰囲気の圧力を減圧してもよい。ゲル玉を焼結させたものは、燃料核を構成する。   The reprocessing system 1 sinters the dried gel balls (S206). The gel balls may be sintered by any method. For example, the atmosphere in which the gel balls are arranged is set to a high temperature (for example, about 1670K), and the properties of the sintered body (porosity, etc.) are desired. The pressure of the atmosphere in which the gel balls are arranged may be reduced so as to be. Sintered gel balls constitute fuel nuclei.

再処理システム1は、上記一連の処理を行うことにより、プルトニウムを含有した燃料
核を完成させる。この燃料核には、上述のステップ(S110)において混合された不活性母材が、その後の焼結等の処理を経ても消失することなく残留している。また、硝酸プルトニウム溶液を脱硝する工程も行わない。よって、プルトニウム酸化物が単体で存在することがないので、核拡散抵抗性を維持可能である。
The reprocessing system 1 completes the fuel nucleus containing plutonium by performing the above-described series of processes. The inert base material mixed in the above-described step (S110) remains in the fuel core without disappearing even after subsequent processing such as sintering. Further, the process of denitrating the plutonium nitrate solution is not performed. Therefore, since plutonium oxide does not exist alone, it is possible to maintain nuclear diffusion resistance.

また、再処理工程と燃料製造工程とを配管で直結させることにより、プルトニウムは再処理工程から燃料製造工程へ至るまでの一連の過程において同一ラインにより最終的な酸化物燃料の焼結体まで加工可能である。このような工程は、ゾルゲル法による燃料製造では燃料物質は硝酸溶液に溶解させて用いるため、再処理によって発生する硝酸プルトニウム溶液を直接利用することにより実現できる。ただし、再処理により発生する硝酸プルトニウム溶液とゾルゲル法による燃料製造で必要になる硝酸プルトニウム溶液の成分は異なるため、調整工程が必要になる。さらに、上記再処理システム1では、不活性母材を混合後に蒸発濃縮を行う。例えば、ゾルゲル法による場合、燃料製造に用いる硝酸プルトニウム溶液、硝酸ウラン溶液、もしくはその混合物は2mol/lit.程度の濃度で得られる必要があり、そこに付加される不活性母材は硝酸ジルコニウムが7mol/lit.、硝酸イットリウムが2mol/lit.程度である。これらの組成は設計要求により異なる。現行(従来技術)の再処理法では精製工程後、脱硝工程に進む前に蒸留濃縮が行われる。代表的な施設においては、濃縮後のウラン濃度が約350gU/lit.、プルトニウム濃度が約250gPu/lit.程度であるが、上記再処理システム1では代表的な設計例に対して、不活性母材を混入した状態でプルトニウム濃度480g/lit.程度まで濃縮させる必要がある。   In addition, by connecting the reprocessing process and the fuel manufacturing process directly by piping, plutonium is processed to the final oxide fuel sintered body by the same line in a series of processes from the reprocessing process to the fuel manufacturing process. Is possible. Such a process can be realized by directly using a plutonium nitrate solution generated by reprocessing because the fuel substance is dissolved in a nitric acid solution and used in fuel production by the sol-gel method. However, since the components of the plutonium nitrate solution generated by reprocessing and the plutonium nitrate solution required for fuel production by the sol-gel method are different, an adjustment step is required. Further, in the reprocessing system 1, evaporation and concentration are performed after mixing the inert base material. For example, in the case of the sol-gel method, a plutonium nitrate solution, a uranium nitrate solution, or a mixture thereof used for fuel production is 2 mol / lit. The inert base material added thereto needs to have a zirconium nitrate concentration of 7 mol / lit. , Yttrium nitrate was 2 mol / lit. Degree. Their composition depends on the design requirements. In the current (prior art) reprocessing method, distillation and concentration are performed after the purification step and before proceeding to the denitration step. In a typical facility, the enriched uranium concentration is about 350 gU / lit. Plutonium concentration of about 250 g Pu / lit. However, the reprocessing system 1 has a plutonium concentration of 480 g / lit. With a inert base material mixed in a typical design example. It is necessary to concentrate to the extent.

ここで、臨界性についての評価を行った。図4は、プルトニウム濃度と実効増倍率との関係を示したグラフの一例である。本評価は、円環容器で高さは無限大(無限円環)、内半径は1mで、10cmの厚さの容器に溶液を格納した状態の体系を想定した。図7のグラフから明らかなように、臨界性は、100g/lit.の辺りではプルトニウム濃度に比例して増倍率の増加が見られるが、約210g/lit.の濃度でその傾向が逆転し下降する。この原因は、水溶液による中性子の減速の程度の違いによるもので、一般的な炉物理現象である。この210g/lit.の状態は最適減速とよばれ、それ以降は低減速領域であり、低減速領域においてはプルトニウム濃度に反比例して増倍率が低下する。上述したように、代表的な施設において、再処理によって発生する硝酸プルトニウム溶液のプルトニウム濃度は約250gPu/lit.程度であり、既に低減速領域の濃度である。よって、上記再処理システム1において発生するU・Pu溶液に、ゾルゲル法が求める溶液濃度(例えば、480gPu/lit.)とするための濃縮処理を施すと、増倍率が更に低下することになり、臨界性の観点からも安全性を高めることが可能である。   Here, the criticality was evaluated. FIG. 4 is an example of a graph showing the relationship between the plutonium concentration and the effective multiplication factor. This evaluation assumed a system in which the solution was stored in a 10 cm thick container having an annular container with an infinite height (infinite ring) and an inner radius of 1 m. As is clear from the graph of FIG. 7, the criticality is 100 g / lit. The multiplication factor increases in proportion to the plutonium concentration, but is about 210 g / lit. The concentration reverses the trend and falls. This is due to the difference in the degree of neutron deceleration by the aqueous solution, which is a general reactor physics phenomenon. This 210 g / lit. This state is called optimum deceleration, and after that is a reduction speed region, and in the reduction speed region, the multiplication factor decreases in inverse proportion to the plutonium concentration. As described above, in a typical facility, the plutonium concentration of the plutonium nitrate solution generated by reprocessing is about 250 gPu / lit. The concentration is already in the reduced speed region. Therefore, when the concentration treatment for obtaining the solution concentration required by the sol-gel method (for example, 480 g Pu / lit.) Is performed on the U / Pu solution generated in the reprocessing system 1, the multiplication factor is further reduced. It is possible to improve safety from the viewpoint of criticality.

また、上記実施形態に係る再処理システム1の場合、U・Pu溶液に不活性母材を混ぜてから蒸発濃縮を行っているため、U・Pu溶液に不活性母材を混ぜないで蒸発濃縮を行う場合に比べると、核拡散抵抗性の高い状態を維持しながら燃料製造を行うことができる。   Further, in the case of the reprocessing system 1 according to the above embodiment, since the evaporative concentration is performed after the inert base material is mixed with the U / Pu solution, the evaporative concentration is performed without mixing the inert base material with the U / Pu solution. Compared with the case of performing fuel, fuel can be produced while maintaining a state with high proliferation resistance.

例えば、ゾルゲル法に用いる硝酸溶液の組成の条件が、硝酸プルトニウム2mol/lit.、硝酸ジルコニウム7mol/lit.、硝酸イットリウム2mol/lit.であったと仮定する。なお、この組成割合は、最終的な燃料製造の要求により変更可能であり、固定された値ではない。   For example, the composition condition of the nitric acid solution used in the sol-gel method is plutonium nitrate 2 mol / lit. , Zirconium nitrate 7 mol / lit. Yttrium nitrate 2 mol / lit. Suppose that This composition ratio can be changed according to the final demand for fuel production, and is not a fixed value.

ここで、蒸発濃縮を行った後に不活性母材を混ぜようとする場合、混合前の蒸発濃縮において、硝酸プルトニウム溶液の濃度を2mol/lit.よりも高い濃度にする必要がある。仮に、硝酸プルトニウムと硝酸ジルコニウム・イットリウム混合溶液を1:1で混合する場合、それぞれの溶液は倍の規程数が必要となり、硝酸プルトニウム4mol/l
it.、硝酸ジルコニウム14mol/lit.、硝酸イットリウム4mol/lit.となる。このような溶液濃度の組み合わせ自体は複数考えられ、硝酸プルトニウム溶液の濃度は2mol/lit.から事実上の上限となる飽和濃度までの範囲内で存在することになる。不活性母材が混合されていない単体の硝酸プルトニウム溶液が高濃度で存在することは、核拡散抵抗性の観点から好ましくない。
Here, when the inert base material is to be mixed after evaporation concentration, the concentration of the plutonium nitrate solution is set to 2 mol / lit. Higher concentration is required. If the mixed solution of plutonium nitrate and zirconium nitrate / yttrium mixed solution is 1: 1, each solution requires twice as many regulations, and plutonium nitrate 4 mol / l.
it. , Zirconium nitrate 14 mol / lit. Yttrium nitrate 4 mol / lit. It becomes. A plurality of combinations of such solution concentrations are conceivable, and the concentration of the plutonium nitrate solution is 2 mol / lit. To the saturation concentration which is the practical upper limit. The presence of a single plutonium nitrate solution with no inert base material in a high concentration is not preferable from the viewpoint of resistance to proliferation.

また、プルトニウム濃度が2mol/lit.の硝酸プルトニウム溶液に不活性母材を混ぜ、不活性母材を混合したU・Pu溶液が2mol/lit.となるようにする為には、結晶の硝酸ジルコニウム、硝酸イットリウムが必要になるが、連続処理を行うプロセスにおいて固形物の取り扱いを行うことは難しく、また、溶解後の濃度管理も難しい。   The plutonium concentration was 2 mol / lit. The plutonium nitrate solution was mixed with an inert base material, and the U · Pu solution mixed with the inert base material was 2 mol / lit. In order to achieve this, crystalline zirconium nitrate and yttrium nitrate are required, but it is difficult to handle solids in a process of continuous treatment, and it is also difficult to control the concentration after dissolution.

しかし、上記再処理システム1であれば、U・Pu溶液に不活性母材を混ぜてから蒸発濃縮を行っているため、U・Pu溶液に不活性母材を混ぜないで蒸発濃縮を行う場合に比べると、核拡散抵抗性の高い状態を維持しながら燃料製造を行うことが可能であり、また、不活性母材を取扱いが容易な硝酸溶液の状態で用いることが可能である。   However, in the case of the reprocessing system 1, since the evaporative concentration is performed after the inert base material is mixed in the U / Pu solution, the evaporative concentration is performed without mixing the inert base material in the U / Pu solution. Compared to the above, it is possible to produce fuel while maintaining a state of high proliferation resistance, and it is possible to use an inert base material in a nitric acid solution that is easy to handle.

図5は、現行の再処理システムの構成図の一例である。現行の再処理システム101は、上記実施形態に係る再処理システム1と同様、受入・貯蔵工程、せん断・溶解工程、分離工程、精製工程、脱硝工程、及び製品貯蔵工程を司るシステムである。しかし、現行の再処理システム101の脱硝工程では、硝酸ウラン溶液の脱硝のみならず硝酸ウラン溶液と硝酸プルトニウム溶液との混合溶液についても脱硝を行う。また、現行の再処理システム101の製品貯蔵工程では、製品化したウラン酸化物のみならずウラン酸化物とプルトニウム酸化物の混合品についても製品として貯蔵する。   FIG. 5 is an example of a configuration diagram of the current reprocessing system. The current reprocessing system 101 is a system that controls the receiving / storage process, the shearing / dissolving process, the separation process, the refining process, the denitration process, and the product storage process, like the reprocessing system 1 according to the above embodiment. However, in the denitration process of the current reprocessing system 101, denitration is performed not only for denitration of a uranium nitrate solution but also for a mixed solution of a uranium nitrate solution and a plutonium nitrate solution. In addition, in the product storage process of the current reprocessing system 101, not only commercialized uranium oxide but also a mixture of uranium oxide and plutonium oxide is stored as a product.

図6は、現行の再処理システムによって実現される再処理法のフロー図の一例である。現行の再処理システム101は、軽水炉や高速炉から搬送された使用済核燃料を燃料集合体のまま受け入れ、貯蔵する(S1101)。再処理システム101は、貯蔵した使用済の燃料集合体を細かくせん断し(S1102)、せん断片を硝酸にて溶解する(S1103)。再処理システム101は、ウランやプルトニウムが溶解した硝酸溶液の温度等を適当に調整し、ウランとプルトニウムとを分離する(S1104)。   FIG. 6 is an example of a flowchart of the reprocessing method realized by the current reprocessing system. The current reprocessing system 101 receives and stores the spent nuclear fuel conveyed from the light water reactor or fast reactor as the fuel assembly (S1101). The reprocessing system 101 finely shears the stored spent fuel assembly (S1102), and dissolves the fissure fragments with nitric acid (S1103). The reprocessing system 101 appropriately adjusts the temperature of the nitric acid solution in which uranium or plutonium is dissolved, and separates uranium and plutonium (S1104).

再処理システム101は、硝酸溶液からプルトニウムを分離した硝酸ウラン溶液を精製し(S1105)、脱硝してウラン酸化物とした後(S1106)、貯蔵する(S1107)。   The reprocessing system 101 purifies the uranium nitrate solution obtained by separating plutonium from the nitric acid solution (S1105), denitrates it into uranium oxide (S1106), and stores it (S1107).

また、再処理システム101は、硝酸溶液からウランを分離した硝酸プルトニウム溶液を精製し(S1108)、精製した硝酸プルトニウム溶液に、プルトニウム富化度が50%以下となるように硝酸ウラン溶液を混合した硝酸溶液を脱硝してウラン・プルトニウム混合酸化物とした後(S1109)、貯蔵する(S1110)。   Further, the reprocessing system 101 purifies the plutonium nitrate solution from which uranium is separated from the nitric acid solution (S1108), and mixes the uranium nitrate solution with the purified plutonium nitrate solution so that the plutonium enrichment is 50% or less. The nitric acid solution is denitrated to form a uranium / plutonium mixed oxide (S1109) and then stored (S1110).

使用済核燃料の再処理によって製造される核燃料のプルトニウム富化度を高める際に、現行の再処理システム101の再処理法を踏襲した場合、例えば、以下のようなフローが考えられる。   When increasing the plutonium enrichment of nuclear fuel produced by reprocessing spent nuclear fuel, the following flow can be considered, for example, when the current reprocessing method of the reprocessing system 101 is followed.

図7は、現行の再処理法を踏襲して単離プルトニウム燃料を製造する場合のフロー図の一例である。図7に示すフロー図のS1201からS1207までの処理については、図6に示すフロー図のS1101からS1107までの処理と同様であるため、その説明を省略する。現行の再処理システム101が行う再処理法を踏襲して単離プルトニウム燃料を製造する場合、再処理システム101は、ウランやプルトニウムが溶解した硝酸溶液からウランを分離した硝酸プルトニウム溶液を精製した後(S1208)、精製した硝酸プ
ルトニウム溶液に硝酸ウラン溶液を混合することなく、硝酸プルトニウム溶液を脱硝することになる。そして、再処理システム101は、硝酸プルトニウム溶液を脱硝して得たプルトニウム酸化物を必要に応じて貯蔵、輸送した後、燃料製造を行うことになる(S1210)。
FIG. 7 is an example of a flowchart for producing isolated plutonium fuel following the current reprocessing method. The processing from S1201 to S1207 in the flowchart shown in FIG. 7 is the same as the processing from S1101 to S1107 in the flowchart shown in FIG. In the case of producing an isolated plutonium fuel by following the reprocessing method performed by the current reprocessing system 101, the reprocessing system 101 purifies a plutonium nitrate solution obtained by separating uranium from a nitric acid solution in which uranium or plutonium is dissolved. (S1208) The plutonium nitrate solution is denitrated without mixing the uranium nitrate solution with the purified plutonium nitrate solution. Then, the reprocessing system 101 performs fuel production after storing and transporting the plutonium oxide obtained by denitrating the plutonium nitrate solution as necessary (S1210).

なお、核拡散抵抗性に関しては、非特許文献3に示されるように、Charltonらによって定量的な評価手法が提案されている。この手法では、各工程における核拡散抵抗性を核燃料物質の兵器転用の観点からの利便性、発熱・放射線による取扱いの難しさ、接触・運搬に関する利便性等の観点から核拡散抵抗性を定量化している。各工程において定量化された核拡散抵抗性をそれぞれの工程で処理される物量と処理に要する時間の重みを掛けて合成を行うことによりシステム全体の核拡散抵抗性を評価することができる。   Regarding nuclear proliferation resistance, as shown in Non-Patent Document 3, a quantitative evaluation method is proposed by Charleston et al. In this method, the proliferation resistance in each process is quantified from the viewpoint of convenience from the perspective of diverting nuclear fuel materials to weapons, difficulty in handling heat and radiation, and convenience in contact and transportation. ing. The proliferation resistance of the entire system can be evaluated by performing the synthesis by multiplying the proliferation resistance quantified in each process by the amount of material processed in each process and the weight of the time required for the process.

図8は、上記評価法により、現行の再処理法を踏襲してプルトニウムの単離を行うケース(以下、ケース1という)と、現行の再処理法通りにウランとプルトニウムの混合を行うケース(以下、ケース2という)と、上記再処理システム1でプルトニウムを取り扱うケース(以下、ケース3という)のそれぞれの核拡散抵抗性について比較を行ったグラフの一例である。なお、核拡散抵抗性がケース毎に異なるのは分離工程以降であるため、図8では分離工程から燃料製造へ至るまでの核拡散抵抗性について示している。分離工程は、各ケースで共通であり、その核拡散抵抗性は0.4程度(最大で1)である。精製工程は、本実施形態(ケース3)の核拡散抵抗性が従来法の核拡散抵抗性と比較し若干(0.03程度)の低下が見られる。これは、精製工程においては、後に続く脱硝工程の前準備として蒸留濃縮を行うが、本実施形態においてはゾルゲル法へ接続するために480gU/lit.程度の高い濃度への濃縮を行うためである。また、本実施形態において精製工程の時間が800時間程度と従来法の倍程度に長いのは、硝酸プルトニウム溶液の濃度が倍程度になっているのに対し、貯蔵槽の体積が一定のため、濃縮後の貯蔵における滞在期間が長くなっているためであり、設計変更により短くすることができる。本実施形態(ケース3)ではこの精製工程後に燃料製造へ直結できる。   FIG. 8 shows a case where plutonium is isolated by following the current reprocessing method (hereinafter referred to as Case 1) and a case where uranium and plutonium are mixed according to the current reprocessing method ( Hereinafter, it is an example of the graph which compared about each proliferation resistance of the case (henceforth case 3) which handles plutonium by the said reprocessing system 1). In addition, since it is after the separation process that the proliferation resistance differs for each case, FIG. 8 shows the proliferation resistance from the separation process to fuel production. The separation process is common in each case, and its proliferation resistance is about 0.4 (1 at the maximum). In the purification step, the proliferation resistance of this embodiment (Case 3) is slightly decreased (about 0.03) compared to the proliferation resistance of the conventional method. In the purification step, distillation concentration is performed as a preparation for the subsequent denitration step, but in this embodiment, 480 gU / lit. This is to perform concentration to a high concentration. Further, in this embodiment, the time of the purification process is about 800 hours and about twice as long as that of the conventional method, because the concentration of the plutonium nitrate solution is about twice, while the volume of the storage tank is constant, This is because the stay period in storage after concentration is long, and can be shortened by design change. In this embodiment (Case 3), it can be directly connected to fuel production after this purification step.

一方で、従来法では脱硝工程によりプルトニウムとウランの酸化物粉末が出来、運搬可能な容器へと詰められ製品として貯蔵される。また、期間としては貯蔵期間が支配的であり、一般的な再処理施設では2年程度の貯蔵が可能な設計となっている。ここでは、貯蔵期間は1年としているが、仮に400時間程度に設定したとしても結果は変わらない。脱硝・貯蔵工程においては、核拡散抵抗性の低下が顕著に見られ、ケース2では0.24程度、ケース1では0.19程度に低下する。これは、ケース1やケース2では、精製工程までは、密閉された配管や容器に格納されていたプルトニウムが、脱硝工程以降においては運搬可能な容器に詰め替えられることにより持ち出しが可能になったことが原因である。特に、プルトニウム単体の分離を行うケース1は、ケース2に比べて核拡散抵抗性の低下が著しい。このように、従来法において核拡散抵抗性が低下するのはプルトニウム酸化物が持ち出し可能な形で存在するためであるが、本実施形態の手法(ケース3)においては、単離プルトニウムを扱えるにも関わらず、従来の手法(ケース1やケース2)に比べて高い核拡散抵抗性を担保できる。   On the other hand, in the conventional method, oxide powders of plutonium and uranium are produced by a denitration process, packed in a transportable container and stored as a product. In addition, the storage period is dominant as a period, and a general reprocessing facility is designed to be able to store for about two years. Here, the storage period is one year, but even if it is set to about 400 hours, the result does not change. In the denitration / storage process, the decrease in proliferation resistance is remarkably observed, and in case 2 it is reduced to about 0.24 and in case 1 it is reduced to about 0.19. In Case 1 and Case 2, plutonium stored in sealed pipes and containers until the refining process can be taken out by being refilled into a transportable container after the denitration process. Is the cause. In particular, in the case 1 in which plutonium is separated, the proliferation resistance is significantly reduced as compared with the case 2. Thus, in the conventional method, the diffusion resistance is lowered because the plutonium oxide exists in a form that can be taken out, but in the method of the present embodiment (case 3), the isolated plutonium can be handled. Nevertheless, high proliferation resistance can be ensured as compared with conventional methods (Case 1 and Case 2).

このように、本実施形態に係る再処理システム1であれば、燃料製造の際の核拡散抵抗性が高いため、ウランを混合する必要が無い。また、炉心設計からの要求があれば、プルトニウム富化度はプルトニウム単体の利用も含めて非常に幅広く設定が可能である。但し、単離したプルトニウムの利用が可能であるか否かは、最終的に製造された燃料の核拡散抵抗性に依存する。ガス冷却炉に用いられる被覆燃料粒子は再処理の難しさから核拡散抵抗性の高い燃料であるため、単離したプルトニウムを単体で用いた燃料であっても、保障措置上の制限を受けることなく、製造が許容される蓋然性が高い。また、単離したプルトニウムの使用による核拡散抵抗性に問題がある場合は、上記実施形態に係る再処理システ
ム1のように、イットリウムスタビライズドジルコニアやトリウム等の不活性母材を硝酸ウラン溶液の代わりに混合することで、現行の軽水炉燃料の再処理法及びMOX燃料よりも核拡散抵抗性が非常に高いプルトニウム富化度100%の燃料の製造も可能である。また、上記実施形態に係る再処理システム1は、現行の再処理法の一部を変更したものであるが、改良型再処理(Co−processing法)の一部を改造して本発明の実施形態とした場合であっても同様の効果を得られる。
Thus, if it is the reprocessing system 1 which concerns on this embodiment, since the proliferation resistance at the time of fuel manufacture is high, it is not necessary to mix uranium. Moreover, if there is a demand from the core design, the plutonium enrichment can be set very widely including the use of plutonium alone. However, whether or not the isolated plutonium can be used depends on the proliferation resistance of the finally produced fuel. Because coated fuel particles used in gas-cooled reactors are highly proliferation-resistant fuel due to the difficulty of reprocessing, even if they use isolated plutonium alone, they are subject to restrictions on safeguards. There is a high probability that manufacturing is acceptable. If there is a problem with the proliferation resistance due to the use of isolated plutonium, an inert base material such as yttrium stabilized zirconia or thorium is used in the uranium nitrate solution as in the reprocessing system 1 according to the above embodiment. Instead, it is possible to produce a 100% plutonium enriched fuel that has a much higher proliferation resistance than the current light water reactor fuel reprocessing and MOX fuel. Further, the reprocessing system 1 according to the above embodiment is a modification of a part of the current reprocessing method. However, the reprocessing system 1 according to the present embodiment is modified to a part of the improved reprocessing (Co-processing method). Even if it is a form, the same effect can be obtained.

例えば、現行の軽水炉燃料の再処理法では、保障措置に基づきプルトニウムとウランが1対1となるように硝酸プルトニウム溶液と硝酸ウラン溶液とを混合した後、脱硝工程を行う。この理由は、酸化プルトニウムが、核拡散抵抗性の低い単体の状態で存在することを防ぐためにある。よって、現行の軽水炉燃料の再処理法では、製造可能な混合酸化物(MOX)燃料のプルトニウム富化度が最大でも50%に限られてしまい、炉心設計の幅を狭めている。この制限は、改良型再処理(Co-processing)法を用いた場合にも適用され
る。よって、プルトニウム富化度が50%を超える燃料を製造するためには、核拡散抵抗性が高い状態で再処理や燃料製造を行うことが可能なシステムが求められる。上記実施形態に係る再処理システム1であれば、核拡散抵抗性を低下させること無く、硝酸プルトニウム溶液あるいはU・Pu溶液を再処理工程から燃料製造工程へ送り出すことが可能である。よって、例えば、保障措置に抵触することなくプルトニウム富化度50%以上の燃料を製造することも可能となる。
For example, in the current reprocessing method of light water reactor fuel, a denitration process is performed after mixing a plutonium nitrate solution and a uranium nitrate solution so that plutonium and uranium are in a one-to-one relationship based on safeguards. The reason for this is to prevent plutonium oxide from being present in a single state with low proliferation resistance. Therefore, in the current reprocessing method of light water reactor fuel, the plutonium enrichment of the mixed oxide (MOX) fuel that can be produced is limited to 50% at the maximum, which narrows the width of the core design. This restriction also applies when using the improved Co-processing method. Therefore, in order to produce a fuel having a plutonium enrichment exceeding 50%, a system capable of performing reprocessing and fuel production with high proliferation resistance is required. With the reprocessing system 1 according to the embodiment, it is possible to send the plutonium nitrate solution or the U / Pu solution from the reprocessing process to the fuel manufacturing process without reducing the proliferation resistance. Thus, for example, it is possible to produce a fuel with a plutonium enrichment of 50% or more without violating safeguards.

上記実施形態に係る再処理システム1により、核拡散抵抗性を維持しながらプルトニウム富化度50%以上の核燃料が製造可能となることにより、例えば、高温ガス炉を用いたプルトニウム専焼炉の性能は格段に向上する。このようなプルトニウム専焼炉概念としてDeep Burnと呼ばれる炉型が存在するが、この炉型においては単離プルトニウムの使用を想定している。この炉型の設計諸元の概要としては、4バッチ炉心、1バッチ当たりのプルトニウム装荷量は約300kg、取出し燃焼度は約550GWd/tである。装荷したPu−239の約97%を消滅出来る。   With the reprocessing system 1 according to the above embodiment, nuclear fuel having a plutonium enrichment of 50% or more can be produced while maintaining the proliferation resistance. For example, the performance of a plutonium-burning furnace using a high temperature gas furnace is Greatly improved. There exists a furnace type called Deep Burn as such a plutonium-only firing furnace concept, and the use of isolated plutonium is assumed in this furnace type. As an outline of the design specifications of this reactor type, the plutonium loading per batch is about 300 kg, and the removal burnup is about 550 GWd / t. About 97% of loaded Pu-239 can be eliminated.

図9は、Deep Burn炉心概念において、使用した燃料の違いによる臨界性を比較したグラフの一例である。解析手法は積分型中性子輸送方程式を衝突確率法により解いたものを用いている。図9のグラフに示すDeep Burn・USは、本来のDeep
Burnと同様に単離プルトニウムを用いた場合の臨界性を示している。図9のグラフに示すDeep Burn・JPは、現行の日本の再処理により得られる最大のプルトニウム富化度50%のMOX燃料を用いた場合の臨界性を示している。図9のグラフに示すDeep Burn・IMFは、上記実施形態に係る再処理システム1で製造した燃料の臨界性を示しており、ウランを混合する代わりに不活性母材であるイットリウムスタビライズドジルコニアを混入したものである。この時のプルトニウムインベントリ自体はDeep Burn・JPと同様である。Deep Burn・USとDeep Burn・JPとの比較ではDeep Burn・JPの無限増倍率が大幅に低下していることが確認できる。これは、ウランを混合することによって、U−238による中性子捕獲反応が増大し、臨界性を大きく損ねていることによるものである。一方で、Deep Burn・IMFは高い無限増倍率を示している。これは、ウランを混合しないため、上記の臨界性の低下が回避されるためである。この評価においてDeep Burn・IMFはDeep Burn・JPと同様、Deep Burn・USと比較してプルトニウムインベントリが半分程度になっている。それでも、Deep Burn・IMFがDeep Burn・USと比較して無限増倍率が高いのは、中性子の減速が不足している体系であるためであり、設計対応により同等の無限増倍率を得ることができる。しかし、Deep Burn・JPに示されているU−238の中性子捕獲反応による臨界性の低下は避けられないものである。実際は、複数バッチ炉心であるため、直接的な比較はできないが、図9において増倍率が1となる値を比較すると、Deep Burn・JPの到達燃焼度は
Deep Burn・USの半分以下になると推測される。
FIG. 9 is an example of a graph comparing the criticality due to the difference in fuel used in the Deep Burn core concept. The analysis method uses the integral neutron transport equation solved by the collision probability method. Deep Burn · US shown in the graph of FIG.
Similar to Burn, the criticality is shown when isolated plutonium is used. Deep Burn · JP shown in the graph of FIG. 9 shows the criticality when MOX fuel with the maximum plutonium enrichment of 50% obtained by the current reprocessing in Japan is used. Deep Burn · IMF shown in the graph of FIG. 9 shows the criticality of the fuel manufactured by the reprocessing system 1 according to the above embodiment. Instead of mixing uranium, yttrium stabilized zirconia, which is an inert base material, is used. It is mixed. The plutonium inventory itself at this time is the same as Deep Burn · JP. A comparison between Deep Burn · US and Deep Burn · JP confirms that the infinite multiplication factor of Deep Burn · JP is significantly reduced. This is because the neutron capture reaction by U-238 is increased by mixing uranium, and the criticality is greatly impaired. On the other hand, Deep Burn · IMF shows a high infinite multiplication factor. This is because uranium is not mixed, so that the above-described decrease in criticality is avoided. In this evaluation, Deep Burn · IMF has about half the plutonium inventory as compared to Deep Burn · US, as does Deep Burn · JP. Still, Deep Burn • IMF has a higher infinite multiplication factor than Deep Burn • US because it is a system that lacks neutron deceleration, and it is possible to obtain an equivalent infinite multiplication factor by design support. it can. However, the decrease in criticality due to the neutron capture reaction of U-238 shown in Deep Burn · JP is inevitable. Actually, since it is a multi-batch core, direct comparison is not possible. However, when comparing values at which the multiplication factor is 1 in FIG. 9, the ultimate burnup of Deep Burn • JP is estimated to be less than half that of Deep Burn • US. Is done.

結論として、臨界性の観点からは、現行のウラン混合によるプルトニウム富化度50%のMOX燃料を用いることにより、Deep Burn炉心概念の燃焼度は半分以下に減少すると言える。   In conclusion, from the viewpoint of criticality, it can be said that the burnup of the Deep Burn core concept is reduced to less than half by using the current MOX fuel with a plutonium enrichment of 50% by uranium mixing.

一方で、Pu−239の消滅率は次のようになる。図10は、Pu−239の消滅率を比較したグラフの一例である。Deep Burn・US及びDeep Burn・IMFについては、上記の臨界性に関する比較により、Deep Burnの設計諸元である、取出し燃焼度550GWd/tを達成できるものとしている。一方で、Deep Burn・JPはプルトニウム富化度が50%であり、プルトニウムインベントリがDeep
Burn炉心概念と比較し半分程度であるため、達成可能な燃焼度は275GWd/t
となっている。しかし、ウラン添加による臨界性の低下を考えると実際には燃焼度の275GWd/tの達成は難しいと思われる。この条件において、Pu−239の消滅率を比
較すると、Deep Burn・JPはPu−239の消滅率が80%程度であり、Deep Burn炉心概念と比較し15%程度低下する。燃焼度は半分程度であるが、プルトニウムのインベントリも半分程度であり、プルトニウムが優先的に燃焼しているのであれば、Deep Burn・JPについてもPu−239の消滅率は変わらないはずである。しかし、このようにPu−239の消滅率が低下しているのは、U−238の中性子捕獲反応により発生するPu−239が原因である。プルトニウムの消滅を行う際には、プルトニウムの発生源となるウランの混合は避けるべきである。また、ウランを混合する代わりに不活性母材を混合した際には、Deep Burn炉心概念と同等のプルトニウム消滅率が期待できる。
On the other hand, the extinction rate of Pu-239 is as follows. FIG. 10 is an example of a graph comparing the disappearance rates of Pu-239. About Deep Burn * US and Deep Burn * IMF, the burn-up burnup 550 GWd / t, which is the design specification of Deep Burn, can be achieved by the above-mentioned comparison regarding criticality. On the other hand, Deep Burn · JP has a plutonium enrichment of 50%, and the plutonium inventory is deep.
Since it is about half that of the Burn core concept, the achievable burnup is 275 GWd / t.
It has become. However, in view of the decrease in criticality due to the addition of uranium, it seems that it is actually difficult to achieve a burnup of 275 GWd / t. Under this condition, when the extinction rate of Pu-239 is compared, Deep Burn • JP has an extinction rate of Pu-239 of about 80%, which is about 15% lower than that of the Deep Burn core concept. Although the burn-up is about half, the plutonium inventory is also about half, and if plutonium is preferentially burning, the extinction rate of Pu-239 should not change for Deep Burn · JP. However, the Pu-239 annihilation rate is reduced due to Pu-239 generated by the neutron capture reaction of U-238. When plutonium is extinguished, mixing of uranium, the source of plutonium, should be avoided. Moreover, when an inert base material is mixed instead of mixing uranium, a plutonium annihilation rate equivalent to the Deep Burn core concept can be expected.

このように、現行再処理によるウランの混合により、プルトニウム専焼炉の概念であるDeep Burnの臨界性及びプルトニウム消滅率が損なわれることが分かる。一方、単離プルトニウムの使用が可能となれば、Deep Burn本来の炉心性能が達成できる。また、単離プルトニウムの使用が保障措置上困難な場合であっても、上記再処理システム1により、ウランを混合する代わりに不活性母材を混合した燃料を用いれば、Deep Burnとほぼ同等の炉心性能を達成できることが分かる。   Thus, it can be seen that the criticality and plutonium annihilation rate of Deep Burn, which is the concept of a plutonium burning furnace, are impaired by the mixing of uranium by the current reprocessing. On the other hand, if isolated plutonium can be used, the core performance of Deep Burn can be achieved. Even if it is difficult to use isolated plutonium due to safeguards, if the reprocessing system 1 uses a fuel mixed with an inert base material instead of mixing uranium, it is almost equivalent to Deep Burn. It can be seen that the core performance can be achieved.

また、Deep Burnにはアクチノイド核種の完全消滅を目的とした加速器を併用した消滅炉概念も存在する。その際は、現行再処理において、プルトニウムと同等のウランを混合することは非常に非効率的であり、上記再処理システム1であればより効率的な消滅が達成できる。   Deep Burn also has an extinction reactor concept that uses an accelerator for the complete extinction of actinide nuclides. In that case, in the current reprocessing, mixing uranium equivalent to plutonium is very inefficient, and the reprocessing system 1 can achieve more efficient extinction.

<変形例>
なお、上述の燃料製造工程(S112)は、例えば、以下のような処理を適用してもよい。図11は、ゾルゲル法(内部ゲル化法)により燃料を製造する際のフロー図の一例である。再処理システム1は、不活性母材を混合したU・Pu溶液にアンモニアドナー等を混合し、U・Pu溶液を調整する(S201)。
<Modification>
For example, the following process may be applied to the above-described fuel manufacturing process (S112). FIG. 11 is an example of a flowchart for producing fuel by the sol-gel method (internal gelation method). The reprocessing system 1 mixes an ammonia donor or the like with the U / Pu solution mixed with the inert base material to adjust the U / Pu solution (S201).

再処理システム1は、不活性母材やアンモニアドナーを添加したU・Pu溶液を、高温(例えば、362〜363K程度)のパラフィンオイルやシリコンオイル等のオイルに滴下することにより、液滴内部をオイルで加熱してゲル化する(S302)。   The reprocessing system 1 drops the inside of a droplet by dropping a U / Pu solution to which an inert base material and an ammonia donor are added into oil such as paraffin oil or silicon oil at a high temperature (for example, about 362 to 363 K). Gelling by heating with oil (S302).

再処理システム1は、球状にゲル化したゲル玉を洗浄液で洗浄した後(S303)、洗浄によって湿潤状態にあるゲル玉を乾燥させる(S304)。ゲル玉は、あらゆる方法で乾燥させてよく、例えば、温風(例えば、温度が333〜343K程度の空気)を当てて強制的に乾燥させることが可能である。   The reprocessing system 1 wash | cleans the gel ball which gelatinized into the spherical shape with a washing | cleaning liquid (S303), and dries the gel ball in a wet state by washing | cleaning (S304). The gel balls may be dried by any method. For example, the gel balls can be forcibly dried by applying hot air (for example, air having a temperature of about 333 to 343 K).

再処理システム1は、乾燥させたゲル玉を高温の温風(例えば、温度が573〜673K程度の空気)で加熱する(S305)。   The reprocessing system 1 heats the dried gel balls with high-temperature hot air (for example, air having a temperature of about 573 to 673 K) (S305).

再処理システム1は、加熱したゲル玉を焼結させる(S306)。ゲル玉は、あらゆる方法で焼結させてよく、例えば、ゲル玉が配置されている雰囲気を高温(例えば、1623K程度)にする他、焼結体の性質(気孔率等)が所望のものとなるよう、雰囲気中の高温空気を減圧したり、ゲル玉が配置されている箇所を水素やアルゴン等の雰囲気にしてもよい。ゲル玉を焼結させたものは、燃料核を構成する。   The reprocessing system 1 sinters the heated gel balls (S306). The gel balls may be sintered by any method. For example, the atmosphere in which the gel balls are arranged is set to a high temperature (for example, about 1623 K), and the properties of the sintered body (porosity, etc.) are desired. The high-temperature air in the atmosphere may be depressurized, or the place where the gel balls are arranged may be an atmosphere of hydrogen, argon, or the like. Sintered gel balls constitute fuel nuclei.

再処理システム1は、このように内部ゲル化法を用いて燃料核を完成させることも可能である。この燃料核には、上述のステップ(S110)において混合された不活性母材が、その後の焼結等の処理を経ても消失することなく残留している。よって、不活性母材が燃料核中に存在することにより、プルトニウムの密度上昇による臨界量の低下が抑制され、また、硝酸プルトニウム溶液を脱硝する工程を行わないため、プルトニウム酸化物が単体で存在することによる核拡散抵抗性の低下が抑制される。   The reprocessing system 1 can also complete the fuel nucleus using the internal gelation method. The inert base material mixed in the above-described step (S110) remains in the fuel core without disappearing even after subsequent processing such as sintering. Therefore, the presence of the inert base material in the fuel core suppresses the decrease in the critical amount due to the increase in the density of plutonium, and the plutonium oxide exists alone because the process of denitrating the plutonium nitrate solution is not performed. As a result, the decrease in the resistance to proliferation is suppressed.

1,101・・・再処理システム
2・・・燃料集合体
3・・・貯蔵設備
4・・・せん断設備
5・・・溶解設備
6・・・FP分離設備
7・・・ウラン・プルトニウム分離設備
8・・・ウラン精製設備
9・・・プルトニウム精製設備
10・・・ウラン脱硝設備
11・・・ウラン貯蔵設備
12・・・プルトニウム調整・製造設備
13・・・燃料貯蔵設備
DESCRIPTION OF SYMBOLS 1,101 ... Reprocessing system 2 ... Fuel assembly 3 ... Storage equipment 4 ... Shear equipment 5 ... Melting equipment 6 ... FP separation equipment 7 ... Uranium / plutonium separation equipment 8 ... Uranium refining equipment 9 ... Plutonium refining equipment 10 ... Uranium denitration equipment 11 ... Uranium storage equipment 12 ... Plutonium adjustment / manufacturing equipment 13 ... Fuel storage equipment

Claims (10)

原子炉から取り出した使用済核燃料の再処理システムであって、
前記使用済核燃料を溶解した硝酸溶液からウランを分離し、硝酸プルトニウム溶液を得る分離手段と、
前記分離手段からゾルゲル法による核燃料の製造手段へ送られる前記硝酸プルトニウム溶液に不活性母材を混合する混合手段と、を備える、
使用済核燃料の再処理システム。
A reprocessing system for spent nuclear fuel removed from a nuclear reactor,
Separation means for separating uranium from the nitric acid solution in which the spent nuclear fuel is dissolved to obtain a plutonium nitrate solution;
Mixing means for mixing an inert base material with the plutonium nitrate solution sent from the separation means to the means for producing nuclear fuel by the sol-gel method,
Spent nuclear fuel reprocessing system.
前記混合手段は、前記分離手段から前記製造手段へ送られる前記硝酸プルトニウム溶液の蒸発濃縮が行われる前に前記不活性母材を混合する、
請求項1に記載の使用済核燃料の再処理システム。
The mixing means mixes the inert matrix before evaporative concentration of the plutonium nitrate solution sent from the separating means to the manufacturing means;
The spent nuclear fuel reprocessing system according to claim 1.
前記混合手段は、前記不活性母材を、前記製造手段へ送られた前記硝酸プルトニウム溶液が規定の核拡散抵抗性となる混合比で前記硝酸プルトニウム溶液に混合する、
請求項1または2に記載の使用済核燃料の再処理システム。
The mixing means mixes the inert base material with the plutonium nitrate solution at a mixing ratio at which the plutonium nitrate solution sent to the manufacturing means has a prescribed diffusion resistance.
The spent nuclear fuel reprocessing system according to claim 1 or 2.
前記混合手段は、前記分離手段において分離されたウランが溶解した硝酸ウラン溶液を、前記製造手段によって製造された前記核燃料が所望のプルトニウム富化度となる混合比で前記硝酸プルトニウム溶液に更に混合する、
請求項1から3の何れか一項に記載の使用済核燃料の再処理システム。
The mixing means further mixes the uranium nitrate solution in which the uranium separated in the separation means is dissolved into the plutonium nitrate solution at a mixing ratio at which the nuclear fuel produced by the production means has a desired plutonium enrichment. ,
The spent nuclear fuel reprocessing system according to any one of claims 1 to 3.
前記不活性母材は、化学・核的に不活性な材料である、
請求項1から4の何れか一項に記載の使用済核燃料の再処理システム。
The inert base material is a chemically and nuclearly inert material,
The spent nuclear fuel reprocessing system according to any one of claims 1 to 4.
原子炉から取り出した使用済核燃料の再処理方法であって、
前記使用済核燃料を溶解した硝酸溶液からウランを分離し、硝酸プルトニウム溶液を得る分離工程と、
前記分離工程からゾルゲル法による核燃料の製造工程へ送られる前記硝酸プルトニウム溶液に不活性母材を混合する混合工程と、を行う、
使用済核燃料の再処理方法。
A method for reprocessing spent nuclear fuel removed from a nuclear reactor,
A separation step of separating uranium from the nitric acid solution in which the spent nuclear fuel is dissolved to obtain a plutonium nitrate solution;
A mixing step of mixing an inert base material with the plutonium nitrate solution sent from the separation step to a nuclear fuel production step by a sol-gel method,
Reprocessing method of spent nuclear fuel.
前記混合工程は、前記分離工程から前記製造工程へ送られる前記硝酸プルトニウム溶液の蒸発濃縮が行われる前に前記不活性母材を混合する、
請求項6に記載の使用済核燃料の再処理方法。
The mixing step mixes the inert matrix before evaporating and concentrating the plutonium nitrate solution sent from the separation step to the manufacturing step.
The method for reprocessing spent nuclear fuel according to claim 6.
前記混合工程は、前記不活性母材を、前記製造工程へ送られた前記硝酸プルトニウム溶液が規定の核拡散抵抗性となる混合比で前記硝酸プルトニウム溶液に混合する、
請求項6または7に記載の使用済核燃料の再処理方法。
In the mixing step, the inert base material is mixed with the plutonium nitrate solution at a mixing ratio at which the plutonium nitrate solution sent to the manufacturing step has a prescribed diffusion resistance.
The method for reprocessing spent nuclear fuel according to claim 6 or 7.
前記混合工程は、前記分離工程において分離されたウランが溶解した硝酸ウラン溶液を、前記製造工程によって製造された前記核燃料が所望のプルトニウム富化度となる混合比で前記硝酸プルトニウム溶液に更に混合する、
請求項6から8の何れか一項に記載の使用済核燃料の再処理方法。
In the mixing step, the uranium nitrate solution in which the uranium separated in the separation step is dissolved is further mixed into the plutonium nitrate solution at a mixing ratio at which the nuclear fuel produced in the production step has a desired plutonium enrichment. ,
The method for reprocessing spent nuclear fuel according to any one of claims 6 to 8.
前記不活性母材は、化学・核的に不活性な材料である、
請求項6から9の何れか一項に記載の使用済核燃料の再処理方法。
The inert base material is a chemically and nuclearly inert material,
The method for reprocessing spent nuclear fuel according to any one of claims 6 to 9.
JP2012240391A 2012-10-31 2012-10-31 Spent nuclear fuel reprocessing system and reprocessing method Active JP6210477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012240391A JP6210477B2 (en) 2012-10-31 2012-10-31 Spent nuclear fuel reprocessing system and reprocessing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012240391A JP6210477B2 (en) 2012-10-31 2012-10-31 Spent nuclear fuel reprocessing system and reprocessing method

Publications (2)

Publication Number Publication Date
JP2014089155A true JP2014089155A (en) 2014-05-15
JP6210477B2 JP6210477B2 (en) 2017-10-11

Family

ID=50791158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012240391A Active JP6210477B2 (en) 2012-10-31 2012-10-31 Spent nuclear fuel reprocessing system and reprocessing method

Country Status (1)

Country Link
JP (1) JP6210477B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115795917A (en) * 2023-01-30 2023-03-14 中国人民解放军国防科技大学 Nuclear biochemical combat protection method, electronic equipment and storage medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828275B1 (en) * 1969-10-06 1973-08-30
US4344912A (en) * 1980-06-16 1982-08-17 The United States Of America As Represented By The United States Department Of Energy Method of increasing the deterrent to proliferation of nuclear fuels
JPH1164560A (en) * 1997-08-13 1999-03-05 Japan Atom Energy Res Inst Rock type plutonium nuclear fuel
GB2330685A (en) * 1997-10-25 1999-04-28 British Nuclear Fuels Plc Production of plutonium containing products
JP2001166086A (en) * 1999-12-09 2001-06-22 Advanced Reactor Technology Co Ltd Reprocessing method for spent nuclear fuel
JP2005249692A (en) * 2004-03-05 2005-09-15 Mitsubishi Heavy Ind Ltd Method and device for regulating enrichment degree of spent nuclear fuel, and reprocessing facility therefor
JP2006078401A (en) * 2004-09-10 2006-03-23 Nuclear Fuel Ind Ltd Pebble bed type nuclear fuel for high-temperature gas-cooled reactor and its manufacturing method
JP2010190717A (en) * 2009-02-18 2010-09-02 Japan Atomic Energy Agency Method for manufacturing nuclear fuel pellet for fast breeder reactors in fast breeder reactor cycle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828275B1 (en) * 1969-10-06 1973-08-30
US4344912A (en) * 1980-06-16 1982-08-17 The United States Of America As Represented By The United States Department Of Energy Method of increasing the deterrent to proliferation of nuclear fuels
JPH1164560A (en) * 1997-08-13 1999-03-05 Japan Atom Energy Res Inst Rock type plutonium nuclear fuel
GB2330685A (en) * 1997-10-25 1999-04-28 British Nuclear Fuels Plc Production of plutonium containing products
JP2001166086A (en) * 1999-12-09 2001-06-22 Advanced Reactor Technology Co Ltd Reprocessing method for spent nuclear fuel
JP2005249692A (en) * 2004-03-05 2005-09-15 Mitsubishi Heavy Ind Ltd Method and device for regulating enrichment degree of spent nuclear fuel, and reprocessing facility therefor
JP2006078401A (en) * 2004-09-10 2006-03-23 Nuclear Fuel Ind Ltd Pebble bed type nuclear fuel for high-temperature gas-cooled reactor and its manufacturing method
JP2010190717A (en) * 2009-02-18 2010-09-02 Japan Atomic Energy Agency Method for manufacturing nuclear fuel pellet for fast breeder reactors in fast breeder reactor cycle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115795917A (en) * 2023-01-30 2023-03-14 中国人民解放军国防科技大学 Nuclear biochemical combat protection method, electronic equipment and storage medium

Also Published As

Publication number Publication date
JP6210477B2 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
KR101793896B1 (en) Fully ceramic nuclear fuel and related methods
WO2009128250A1 (en) Method for production of nuclear fuel pellet, fuel assembly, method for production of the fuel assembly, and uranium powder
RU2735243C2 (en) Completely ceramic microencapsulated fuel, made with burnable absorber as a sintering intensifier
US11049625B2 (en) Nuclear fuel pellet with central burnable absorber
JP6836992B2 (en) How to make pellets of at least one type of metal oxide
Couland et al. Novel production route of yttria‐stabilized zirconia fuel kernels and pellets for nuclear fuel applications
Troyanov et al. Prospects for using nitride fuel in fast reactors with a closed nuclear fuel cycle
RU2014111058A (en) METHOD FOR PRODUCING POROUS NUCLEAR FUEL
TW201901696A (en) Nuclear fuel pellets, fuel rods and fuel assemblies
CN111933310A (en) High-thermal-conductivity uranium dioxide single crystal composite fuel pellet and preparation method thereof
JP6197264B2 (en) Neutron absorber, method for producing the same, and method for treating molten fuel
JP6210477B2 (en) Spent nuclear fuel reprocessing system and reprocessing method
CN106448749B (en) fuel pellet and preparation method thereof
JP2016522780A (en) New substances made from uranium, gadolinium and oxygen and their use as depleting neutron poisons
Ganguly Sol-gel microsphere pelletization: A powder-free advanced process for fabrication of ceramic nuclear fuel pellets
US8130896B2 (en) Method of controlling criticality of nuclear fuel cycle facility, method of producing uranium dioxide powder, reactor fuel rod, and fuel assembly
Nagarajan et al. Sol-gel processes for nuclear fuel fabrication
US20170271034A1 (en) Method of making a nuclear fuel pellet for a nuclear power reactor
EP3192077B1 (en) Method of making a nuclear fuel pellet for a nuclear power reactor
JP2017096653A (en) Nuclear fuel compact, method for forming the nuclear fuel compact, and nuclear fuel rod
KR20000068512A (en) Nuclear reactor fuel element with high burn-up and method of producing the same
JP2007084376A (en) Apparatus for manufacturing ammonium diuranate particle
Wang et al. Research on the grain growth and the mechanism of (U, Ti) O2 dispersion fuel microspheres
CN111710443B (en) Diamond composite nuclear fuel pellet and preparation method thereof
Zimmer et al. Reprocessing and refabrication of thorium-based fuel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170905

R150 Certificate of patent or registration of utility model

Ref document number: 6210477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250