JP2014085429A - Optical system and image capturing device having the same - Google Patents

Optical system and image capturing device having the same Download PDF

Info

Publication number
JP2014085429A
JP2014085429A JP2012232686A JP2012232686A JP2014085429A JP 2014085429 A JP2014085429 A JP 2014085429A JP 2012232686 A JP2012232686 A JP 2012232686A JP 2012232686 A JP2012232686 A JP 2012232686A JP 2014085429 A JP2014085429 A JP 2014085429A
Authority
JP
Japan
Prior art keywords
lens
optical system
lis
lens group
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012232686A
Other languages
Japanese (ja)
Other versions
JP2014085429A5 (en
JP6057663B2 (en
Inventor
Takashi Shirasago
貴司 白砂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012232686A priority Critical patent/JP6057663B2/en
Publication of JP2014085429A publication Critical patent/JP2014085429A/en
Publication of JP2014085429A5 publication Critical patent/JP2014085429A5/ja
Application granted granted Critical
Publication of JP6057663B2 publication Critical patent/JP6057663B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical system which has a wide view angle but easily provides high quality images in the entire screen and easily maintains good optical performance even when an anti-vibration mechanism is in action.SOLUTION: An optical system has a focal length shorter than a back focal length and includes an aperture stop and a lens group Lis which shifts an image forming position in a direction perpendicular to the optical axis by moving in a direction having a component perpendicular to the optical axis. The lens group Lis includes one or more positive lenses and one or more negative lenses. A focal length f of the entire system, a focal length fis of the lens group Lis, a distance Dis along the optical axis between the aperture stop and a surface of a lens of the anti-vibration lens group Lis located farthest from the aperture stop, and a distance DL between a surface of a lens on the most object side and a surface of a lens on the most image side are each set appropriately.

Description

本発明は、光学系に関し、例えば銀塩フィルム用カメラ、デジタルスチルカメラ、ビデオカメラ、デジタルビデオカメラ、監視用カメラ、TVカメラ等の撮像装置に用いられる撮像光学系に好適なものである。   The present invention relates to an optical system, and is suitable for an imaging optical system used in an imaging apparatus such as a silver salt film camera, a digital still camera, a video camera, a digital video camera, a surveillance camera, and a TV camera.

近年、デジタルカメラやビデオカメラ等の撮像装置には、高画素の撮像素子が用いられている。このような高画素の撮像素子を備える撮像装置に用いられる撮像光学系には、諸収差が良好に補正され、画面全体にわたり高い光学性能を有することが要求されている。また、より高精細な画像を得るために、撮影時の手ぶれ等の振動の影響による画像の劣化を抑制する防振機構を有することが求められている。防振機構としては、光学系の一部のレンズ群を光軸に対して垂直方向の成分を含む方向に移動させることによって手ぶれ等に起因する像位置の変動を補正する方式が知られている。   In recent years, imaging devices such as digital cameras and video cameras have used high-pixel imaging elements. An imaging optical system used in an imaging apparatus including such a high-pixel imaging element is required to have various aberrations corrected well and to have high optical performance over the entire screen. In addition, in order to obtain a higher-definition image, it is required to have an anti-vibration mechanism that suppresses image deterioration due to the influence of vibration such as camera shake during shooting. As an anti-vibration mechanism, there is known a method of correcting a change in image position caused by camera shake or the like by moving a part of a lens group of an optical system in a direction including a component perpendicular to the optical axis. .

従来、焦点距離がバックフォーカスより短い、所謂レトロフォーカスタイプの広角レンズにおいて、防振機構を用いることが知られている(特許文献1)。特許文献1では、物体側から順に、負の屈折力を有するレンズ群と、正の屈折力を有するレンズ群GLで構成される広角レンズにおいて、レンズ群GLを構成する最も像側の2枚の正レンズを光軸上の点を中心に回転移動させて防振を行うことが開示されている。   Conventionally, it is known to use an anti-vibration mechanism in a so-called retrofocus type wide-angle lens whose focal length is shorter than the back focus (Patent Document 1). In Patent Document 1, in order from the object side, in a wide-angle lens including a lens group having a negative refractive power and a lens group GL having a positive refractive power, the two most image-side lenses constituting the lens group GL are used. It is disclosed that image stabilization is performed by rotating a positive lens around a point on the optical axis.

特開平8−220427号公報JP-A-8-220427

レトロフォーカス型の撮像光学系では、前方に負の屈折力のレンズ群が配置され、後方に正の屈折力のレンズ群が配置されており、長いバックフォーカスを確保しつつ広画角の撮影を容易にしている。広画角の撮像光学系においても、撮像光学系が振動すると像ぶれが発生するため、良好なる画像を得るためには防振機能を用いるのが有効である。   In the retrofocus imaging optical system, a lens group with negative refractive power is arranged in the front and a lens group with positive refractive power is arranged in the rear, so that shooting with a wide angle of view is possible while ensuring a long back focus. Making it easy. Even in an imaging optical system with a wide angle of view, image blurring occurs when the imaging optical system vibrates. Therefore, it is effective to use an image stabilization function in order to obtain a good image.

光学系(撮像光学系)が振動したときの像ぶれを補正して、良好なる光学性能を得るためには、撮像光学系の光路中の適切なる位置に防振機構(防振レンズ群)を配置することが重要になってくる。特許文献1では、最も像面側に近い位置に配置した2つのレンズを防振レンズ群としている。このため、防振レンズ群に入射する軸外光線の主光線の入射位置が高くなり、軸外光線において防振時に偏心収差の変動が生じ防振時の収差補正が困難になる傾向がある。また防振レンズ群に入射する軸外光線の入射高が高くなり、防振レンズ群が大型化する傾向がある。   In order to correct image blur when the optical system (imaging optical system) vibrates and obtain good optical performance, an anti-vibration mechanism (anti-vibration lens group) is placed at an appropriate position in the optical path of the imaging optical system. Placement is important. In Patent Document 1, two lenses arranged at a position closest to the image plane side are used as an anti-vibration lens group. For this reason, the incident position of the principal ray of the off-axis ray incident on the vibration-proof lens group becomes high, and there is a tendency that the eccentric aberration fluctuates in the off-axis ray at the time of vibration prevention, and it becomes difficult to correct the aberration at the time of vibration prevention. In addition, the incident height of off-axis rays incident on the image stabilizing lens group increases, and the image stabilizing lens group tends to increase in size.

光学系が振動したときの像ぶれを、光学性能を良好に維持しつつ、補正するには、防振レンズ群のレンズ構成や屈折力、防振レンズ群の開口絞りからの距離等を適切に設定することが重要である。特に広画角化を図りつつ、画面全体にわたり高い光学性能を得ることを目的とした広画角の撮像光学系では重要である。これらの要素が不適切であると防振時に偏心収差が多く発生し、光学性能が大きく低下してくる。   In order to correct image blurring when the optical system vibrates while maintaining good optical performance, the lens configuration and refractive power of the anti-vibration lens group, the distance from the aperture stop of the anti-vibration lens group, etc. are appropriate. It is important to set. In particular, it is important for an imaging optical system having a wide angle of view for the purpose of obtaining high optical performance over the entire screen while widening the angle of view. If these elements are inappropriate, a large amount of decentration aberration occurs during image stabilization, and the optical performance is greatly deteriorated.

本発明は、広画角でありながら画面全域で高画質の画像を得るのが容易で、防振時においても光学性能を良好に維持することが容易な光学系の提供を目的とする。   An object of the present invention is to provide an optical system that can easily obtain a high-quality image over the entire screen while having a wide angle of view and that can easily maintain good optical performance even during image stabilization.

本発明の光学系は、焦点距離がバックフォーカスより短い光学系において、前記光学系は、開口絞りと、光軸に対して垂直方向の成分を持つ方向に移動して結像位置を光軸に対して垂直方向に移動するレンズ群Lisを有し、前記レンズ群Lisは正レンズと負レンズの1枚以上を含んでおり、全系の焦点距離をf、前記レンズ群Lisの焦点距離をfis、前記開口絞りから、前記レンズ群Lisの該開口絞りから最も遠いレンズ面までの光軸上の長さをDis、最も物体側のレンズ面から最も像側のレンズ面までの光軸上の長さをDLとするとき、
0.08<f/|fis|<0.50
−0.7<Dis/DL<0.4
なる条件式を満足することを特徴としている。
The optical system of the present invention is an optical system in which the focal length is shorter than the back focus, and the optical system moves in a direction having a component perpendicular to the aperture stop and the optical axis to set the imaging position as the optical axis. The lens unit Lis moves in the vertical direction, and the lens unit Lis includes at least one of a positive lens and a negative lens. The focal length of the entire system is f, and the focal length of the lens group Lis is fis. The length on the optical axis from the aperture stop to the lens surface farthest from the aperture stop of the lens unit Lis is Dis, and the length on the optical axis from the most object side lens surface to the most image side lens surface. When DL is DL
0.08 <f / | fis | <0.50
-0.7 <Dis / DL <0.4
It satisfies the following conditional expression.

本発明によれば、広画角でありながら画面全域で高画質の画像を得るのが容易で、防振時においても光学性能を良好に維持することが容易な光学系が得られる。   According to the present invention, it is easy to obtain a high-quality image over the entire screen while having a wide angle of view, and an optical system that can easily maintain good optical performance even during image stabilization is obtained.

実施例1のレンズ断面図Lens sectional view of Example 1 実施例1の縦収差図Longitudinal aberration diagram of Example 1 (A)、(B) 本発明の実施例1の基準状態と0.5°の防振補正をした時の横収差図(A), (B) Lateral aberration diagrams when the reference state of Example 1 of the present invention and 0.5 ° image stabilization are corrected 実施例2のレンズ断面図Lens sectional view of Example 2 実施例2の縦収差図Longitudinal aberration diagram of Example 2 (A)、(B) 本発明の実施例2の基準状態と0.5°の防振補正をした時の横収差図(A), (B) Lateral aberration diagrams when the reference state of Example 2 of the present invention and 0.5 ° image stabilization correction are performed 実施例3のレンズ断面図Lens sectional view of Example 3 実施例3の縦収差図Longitudinal aberration diagram of Example 3 (A)、(B) 本発明の実施例3の基準状態と0.5°の防振補正をした時の横収差図(A), (B) Lateral aberration diagram when the reference state of Example 3 of the present invention and the image stabilization correction of 0.5 ° are performed 実施例4のレンズ断面図Lens sectional view of Example 4 実施例4の縦収差図Longitudinal aberration diagram of Example 4 (A)、(B) 本発明の実施例4の基準状態と0.5°の防振補正をした時の横収差図(A), (B) Lateral aberration diagram when the reference state of Example 4 of the present invention and the image stabilization correction of 0.5 ° are performed 実施例5のレンズ断面図Lens sectional view of Example 5 実施例5の縦収差図Longitudinal aberration diagram of Example 5 (A)、(B) 本発明の実施例5の基準状態と0.5°の防振補正をした時の横収差図(A), (B) Lateral aberration diagrams when the reference state of Example 5 of the present invention and 0.5 ° image stabilization are corrected 本発明の撮像装置の要部概略図Schematic diagram of main parts of an imaging apparatus of the present invention

以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。本発明の光学系は焦点距離がバックフォーカスより短い広画角の撮像光学系である。光学系は、開口絞りと光軸に対して垂直方向の成分を持つ方向に移動して結像位置を光軸に対して垂直方向に移動するレンズ群Lisを有している。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The optical system of the present invention is an imaging optical system with a wide field angle whose focal length is shorter than the back focus. The optical system includes a lens group Lis that moves in a direction having a component perpendicular to the aperture stop and the optical axis to move the imaging position in a direction perpendicular to the optical axis.

図1は本発明の実施例1のレンズ断面図、図2は実施例1の無限遠物体にフォーカスしているときの縦収差図である。図3(A)、(B)は本発明の実施例1における基準状態と0.5°の防振補正をしたときの横収差図である。図4は本発明の実施例2のレンズ断面図、図5は実施例2の無限遠物体にフォーカスしているときの縦収差図である。図6(A)、(B)は本発明の実施例2における基準状態と0.5°の防振補正をしたときの横収差図である。   FIG. 1 is a lens cross-sectional view of Embodiment 1 of the present invention, and FIG. 2 is a longitudinal aberration diagram when focusing on an object at infinity of Embodiment 1. FIGS. 3A and 3B are lateral aberration diagrams when the reference state and the image stabilization correction of 0.5 ° are performed in Example 1 of the present invention. FIG. 4 is a lens cross-sectional view of Embodiment 2 of the present invention, and FIG. 5 is a longitudinal aberration diagram when focusing on an object at infinity of Embodiment 2. 6A and 6B are lateral aberration diagrams when the reference state and the image stabilization correction of 0.5 ° in Example 2 of the present invention are performed.

図7は本発明の実施例3のレンズ断面図、図8は実施例3の無限遠物体にフォーカスしているときの縦収差図である。図9(A)、(B)は本発明の実施例3における基準状態と0.5°の防振補正をしたときの横収差図である。図10は本発明の実施例4のレンズ断面図、図11は実施例4の無限遠物体にフォーカスしているときの縦収差図である。図12(A)、(B)は本発明の実施例4における基準状態と0.5°の防振補正をしたときの横収差図である。   FIG. 7 is a lens cross-sectional view of Embodiment 3 of the present invention, and FIG. 8 is a longitudinal aberration diagram when focusing on an object at infinity of Embodiment 3. FIGS. 9A and 9B are lateral aberration diagrams when the reference state and the image stabilization correction of 0.5 ° are performed in Example 3 of the present invention. FIG. 10 is a lens cross-sectional view of Embodiment 4 of the present invention, and FIG. 11 is a longitudinal aberration diagram when focusing on an object at infinity of Embodiment 4. FIGS. 12A and 12B are lateral aberration diagrams when the reference state and the image stabilization correction of 0.5 ° are performed in Example 4 of the present invention.

図13は本発明の実施例5のレンズ断面図、図14は実施例5の無限遠物体にフォーカスしているときの縦収差図である。図15(A)、(B)は本発明の実施例5における基準状態と0.5°の防振補正をしたときの横収差図である。図16は本発明の光学系を備える一眼レフカメラ(撮像装置)の要部概略図である。   FIG. 13 is a lens cross-sectional view of Embodiment 5 of the present invention, and FIG. 14 is a longitudinal aberration diagram when focusing on an object at infinity of Embodiment 5. FIGS. 15A and 15B are lateral aberration diagrams when the reference state and the image stabilization correction of 0.5 ° are performed in the fifth embodiment of the present invention. FIG. 16 is a schematic diagram of a main part of a single-lens reflex camera (imaging device) including the optical system of the present invention.

各実施例の光学系は、デジタルスチルカメラ、ビデオカメラ、銀塩フィルム用カメラ等の撮像装置(光学装置)に用いられる撮像光学系である。レンズ断面図において、左方が物体側(前方)で、右方が像側(後方)である。尚、各実施例の光学系をプロジェクターなどの投射レンズとして用いても良い。このときは左方がスクリーン、右方が被投射画像となる。   The optical system of each embodiment is an imaging optical system used for an imaging apparatus (optical apparatus) such as a digital still camera, a video camera, and a silver salt film camera. In the lens cross-sectional view, the left side is the object side (front), and the right side is the image side (rear). In addition, you may use the optical system of each Example as projection lenses, such as a projector. At this time, the left side is the screen and the right side is the projected image.

各実施例の光学系を光路中で最も広い空気間隔を境に2つのレンズ群に分けたとき、又は一部のレンズ群を移動させてフォーカシングをするレンズ群があるときは、フォーカシングに際して移動するレンズ群と不動のレンズ群で2つのレンズ群に分ける。このとき物体側を前群、像側を後群と称する。   When the optical system of each embodiment is divided into two lens groups with the widest air interval in the optical path as a boundary, or when there is a lens group that performs focusing by moving some lens groups, it moves during focusing. The lens group and the stationary lens group are divided into two lens groups. At this time, the object side is referred to as a front group, and the image side is referred to as a rear group.

レンズ断面図において、LAは光学系である。LFは複数のレンズを有する負の屈折力の前群、LRは複数のレンズを有する正の屈折力の後群である。SPは開口絞りである。Lisは光軸に対して垂直方向の成分を持つ方向に移動して結像位置を光軸に対して垂直方向に移動する防振用のレンズ群(防振レンズ群)である。IPは像面であり、ビデオカメラやデジタルスチルカメラの撮影光学系として使用する際にはCCDセンサやCMOSセンサなどの固体撮像素子(光電変換素子)の撮像面が、銀塩フィルム用カメラのときはフィルム面に相当する。   In the lens cross-sectional view, LA is an optical system. LF is a front group of negative refractive power having a plurality of lenses, and LR is a rear group of positive refractive power having a plurality of lenses. SP is an aperture stop. Lis is an anti-vibration lens group (anti-vibration lens group) that moves in a direction having a component perpendicular to the optical axis and moves the imaging position in a direction perpendicular to the optical axis. IP is an image plane. When the imaging optical system of a video camera or digital still camera is used, the imaging surface of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor is a silver salt film camera. Corresponds to the film surface.

それぞれの縦収差図は、左から順に、球面収差、非点収差、歪曲、倍率色収差を表している。球面収差と倍率色収差を示す図において、実線はd線(587.6nm)、破線はg線(435.8nm)を表している。また、非点収差を示す図において、実線のSはd線のサジタル方向、破線のMはd線のメリディオナル方向を表している。また、歪曲を示す図は、d線における歪曲を表している。横収差図において、実線はd線のメリディオナル方向、破線はd線のサジタル方向、2点鎖線はg線のメリディオナル方向を表している。FnoはFナンバー、ωは撮影画角の半画角(度)、hgtは像高である。   Each longitudinal aberration diagram shows spherical aberration, astigmatism, distortion, and lateral chromatic aberration in order from the left. In the diagrams showing spherical aberration and lateral chromatic aberration, the solid line represents the d line (587.6 nm), and the broken line represents the g line (435.8 nm). In the diagram showing astigmatism, the solid line S represents the sagittal direction of the d line, and the broken line M represents the meridional direction of the d line. Moreover, the figure which shows distortion represents the distortion in d line | wire. In the lateral aberration diagram, the solid line represents the meridional direction of the d line, the broken line represents the sagittal direction of the d line, and the two-dot chain line represents the meridional direction of the g line. Fno is the F number, ω is the half angle of view (degrees) of the shooting angle of view, and hgt is the image height.

本発明の光学系LAは、前群LFが負の屈折力のレンズ群であり、後群LRが正の屈折力のレンズ群である所謂レトロフォーカスタイプの光学系である。このような光学系では像側主点を全系の最終面(最終レンズ面)より像側に位置させることが容易であり、全系の最終面から像面までの距離(バックフォーカス)より全系の焦点距離が小さい広画角の撮像光学系を実現することが容易である。またこのような光学系は特に、最終面の像面側にクイックリターンミラーを配置する一眼レフカメラなど長いバックフォーカスが必要となる広画角用の撮像光学系として有用である。   The optical system LA of the present invention is a so-called retrofocus type optical system in which the front group LF is a lens group having a negative refractive power and the rear group LR is a lens group having a positive refractive power. In such an optical system, it is easy to position the image-side principal point on the image side from the final surface (final lens surface) of the entire system, and the entire distance from the final surface of the entire system to the image surface (back focus) It is easy to realize an imaging optical system having a wide field angle with a small focal length of the system. Such an optical system is particularly useful as an imaging optical system for a wide angle of view that requires a long back focus, such as a single-lens reflex camera in which a quick return mirror is disposed on the image plane side of the final surface.

本発明の光学系は、このようなレトロフォーカスタイプを採用し、開口絞りSPを光学系の中央付近に配置し、且つその近傍に防振用のレンズ群Lisを配置している。一般的に撮像光学系において、最大画角の軸外光線の光軸からの高さは開口絞りからの距離が離れるにつれ高くなる。本発明の光学系はその傾向がより顕著となる。そのため、開口絞りSPから離れた位置に配置するレンズは光線有効径が大きくなってくる。軸外光線は開口絞りSP中心付近を通る光線束からなっているため、開口絞りSP近傍のレンズでは光線有効径は軸外光線の画角の影響を受けにくい。   The optical system of the present invention employs such a retrofocus type, and the aperture stop SP is disposed near the center of the optical system, and the vibration-proof lens group Lis is disposed in the vicinity thereof. In general, in an imaging optical system, the height of an off-axis light beam with the maximum field angle increases as the distance from the aperture stop increases. The tendency becomes more remarkable in the optical system of the present invention. For this reason, the lens disposed at a position away from the aperture stop SP has a large effective beam diameter. Since the off-axis light beam is made up of a light beam that passes near the center of the aperture stop SP, the effective beam diameter is less affected by the angle of view of the off-axis light beam in the lens near the aperture stop SP.

一方、軸上光線は光学系のF値(Fナンバー)を決める光線であり、焦点距離が比較的短いレトロフォーカスタイプの広画角レンズでは、光学系の光線有効径を決める上で支配的要因にはならない。そのため、開口絞りSPを光学系の中央付近に配置することで開口絞りSP前後のレンズ径のバランスを取ることができ、全体としてレンズ径の大型化を抑えることが容易となる。この時、開口絞りSPから離れた最も物体側のレンズや最も像側のレンズは有効径が大きくなるが、レンズ中央付近に配置した開口絞りSP近傍のレンズは有効径が小さくなる。   On the other hand, the axial ray is a ray that determines the F value (F number) of the optical system, and in the case of a retrofocus type wide field angle lens having a relatively short focal length, it is a dominant factor in determining the effective ray diameter of the optical system. It will not be. Therefore, by arranging the aperture stop SP near the center of the optical system, the lens diameters before and after the aperture stop SP can be balanced, and it becomes easy to suppress the increase in the lens diameter as a whole. At this time, the effective diameter of the most object-side lens and the most image-side lens far from the aperture stop SP is large, but the lens near the aperture stop SP arranged near the center of the lens has a small effective diameter.

本発明の光学系は、全系の中でも開口絞りSPに比較的近い位置のレンズ群を光軸に対し垂直方向の成分を持つように移動する防振用のレンズ群Lisとしている。これによりレンズ群Lis内を通る軸外光線の入射高さを低くし、防振時の軸外光線の収差変動が少なくなるようにしている。そして更に、レンズ群Lisを少なくとも正レンズと、負レンズを各々1枚以上を含むようにして、防振時の色収差の補正や軸外光線の収差補正を容易にしている。   In the optical system of the present invention, a lens group located relatively close to the aperture stop SP in the entire system is a vibration-proof lens group Lis that moves so as to have a component perpendicular to the optical axis. As a result, the incident height of off-axis rays passing through the lens group Lis is lowered so that aberration fluctuations of off-axis rays during image stabilization are reduced. Further, the lens group Lis includes at least a positive lens and at least one negative lens, respectively, to facilitate correction of chromatic aberration during vibration isolation and correction of off-axis ray aberration.

各実施例では、レンズ群Lisを光軸に対し垂直方向の成分を持つように移動させることにより結像位置を光軸に対して垂直方向に移動させている。即ち手振れ等に起因する像位置の変動を補正(防振)している。   In each embodiment, the imaging position is moved in the direction perpendicular to the optical axis by moving the lens group Lis so as to have a component in the direction perpendicular to the optical axis. In other words, image position fluctuations caused by camera shake or the like are corrected (anti-vibration).

各実施例において、全系の焦点距離をf、レンズ群Lisの焦点距離をfisとする。開口絞りSPから、防振レンズ群Lisの開口絞りSPから最も遠いレンズ面までの光軸上の長さをDisとする。最も物体側のレンズ面から最も像側のレンズ面までの光軸上の長さ(光学長)をDLとする。このとき、
0.08<f/|fis|<0.50 ・・・(1)
−0.7<Dis/DL<0.4 ・・・(2)
なる条件式を満足している。
In each embodiment, the focal length of the entire system is f, and the focal length of the lens unit Lis is fis. The length on the optical axis from the aperture stop SP to the lens surface farthest from the aperture stop SP of the anti-vibration lens group Lis is defined as Dis. The length (optical length) on the optical axis from the lens surface closest to the object side to the lens surface closest to the image side is defined as DL. At this time,
0.08 <f / | fis | <0.50 (1)
-0.7 <Dis / DL <0.4 (2)
The following conditional expression is satisfied.

このとき、光軸上の長さは物体側から像面側に向かう方向を正の符号で表し、像面側から物体側に向かう方向を負の符号で表すこととする。   At this time, the length on the optical axis represents the direction from the object side to the image plane side with a positive sign, and the direction from the image plane side to the object side with a negative sign.

条件式(1)は、全系の焦点距離に対する防振用のレンズ群Lisの屈折力(焦点距離の逆数)を適切にし、レンズ群Lisを光軸と垂直方向に移動させた時の収差変動の敏感度と像位置補正の敏感度をバランス良く維持するためのものである。条件式(1)の上限を超えてレンズ群Lisの屈折力が強くなると、防振の際に偏心収差が多く発生し、光学性能が劣化してくる。   Conditional expression (1) shows the aberration fluctuation when the refractive power (the reciprocal of the focal length) of the anti-vibration lens unit Lis with respect to the focal length of the entire system is made appropriate and the lens unit Lis is moved in the direction perpendicular to the optical axis. This is to maintain a good balance between the sensitivity of the image and the sensitivity of the image position correction. If the upper limit of conditional expression (1) is exceeded and the refracting power of the lens unit Lis increases, a large amount of decentration aberrations occur during image stabilization and optical performance deteriorates.

また、レンズ群Lisの変移量に対する像位置の補正量(防振敏感度)が大きくなってくるため、一定の防振効果を得る際のレンズ群Lisの変移量(移動量)が小さくなり過ぎて、その移動量を電気的又は機械的に精度良く駆動させるのが困難になってくる。また、条件式(1)の下限を超えてレンズ群Lisの屈折力が弱くなると、防振敏感度が低くなり過ぎ、防振時に光軸と垂直成分を持つ方向に駆動させる量が大きくなって駆動機構が大型化してくるので好ましくない。更に好ましくは条件式(1)の数値範囲を次の如く設定するのが良い。   Further, since the correction amount (anti-shake sensitivity) of the image position with respect to the shift amount of the lens unit Lis increases, the shift amount (movement amount) of the lens unit Lis when obtaining a certain anti-shake effect becomes too small. Therefore, it becomes difficult to drive the movement amount with high accuracy in electrical or mechanical manner. Further, when the refractive power of the lens unit Lis becomes weaker beyond the lower limit of the conditional expression (1), the anti-vibration sensitivity becomes too low, and the amount of driving in the direction having the vertical component with respect to the optical axis at the time of anti-vibration becomes large. This is not preferable because the drive mechanism becomes large. More preferably, the numerical range of conditional expression (1) is set as follows.

0.1<f/|fis|<0.4 ・・・(1a)
条件式(2)は、開口絞りSPから、レンズ群Lis内の開口絞りSPから一番遠い側のレンズ面までの光軸上の距離Disを適切にし、レンズ群Lisの大型化を防止しつつ防振時の光学性能の劣化を防ぐためのものである。条件式(2)の上限を超えてレンズ群Lisが開口絞りSPから離れすぎて像面側に近づくと、レンズ群Lisが大型化するので好ましくない。また、レンズ群Lisを通る軸外光線の光軸からの入射高さが高くなり、防振時の軸外光線の収差補正が難しくなる。
0.1 <f / | fis | <0.4 (1a)
Conditional expression (2) sets an appropriate distance Dis on the optical axis from the aperture stop SP to the lens surface farthest from the aperture stop SP in the lens unit Lis, and prevents an increase in the size of the lens unit Lis. This is to prevent deterioration of optical performance during vibration isolation. If the upper limit of conditional expression (2) is exceeded and the lens unit Lis is too far from the aperture stop SP and approaches the image plane side, the lens unit Lis is enlarged, which is not preferable. Further, the incident height from the optical axis of the off-axis light beam passing through the lens group Lis becomes high, and it becomes difficult to correct the aberration of the off-axis light beam at the time of image stabilization.

条件式 (2)の下限を超えてレンズ群Lisが開口絞りSPから離れすぎて物体側に近づくと、同様にレンズ群Lisが大型化するので好ましくない。また、レンズ群Lisを通る軸外光線の光軸からの入射高さが高くなり、防振時の軸外光線の収差補正が難しくなる。更に好ましくは条件式(2)の数値範囲を次の如く設定するのが良い。   If the lower limit of conditional expression (2) is exceeded and the lens unit Lis is too far from the aperture stop SP and approaches the object side, the lens unit Lis is similarly enlarged, which is not preferable. Further, the incident height from the optical axis of the off-axis light beam passing through the lens group Lis becomes high, and it becomes difficult to correct the aberration of the off-axis light beam during vibration isolation. More preferably, the numerical range of conditional expression (2) is set as follows.

−0.60<Dis/DL<0.35 ・・・(2a)
各実施例によれば、以上のようにレンズ構成を特定することによって高い光学性能を持ちながらも、防振時の収差補正も良好に行ない、且つ防振用のレンズ群Lisの大型化を抑制した広画角の光学系が容易に得られる。
-0.60 <Dis / DL <0.35 (2a)
According to each embodiment, by specifying the lens configuration as described above, while having high optical performance, the aberration correction at the time of image stabilization is performed well, and an increase in the size of the lens group Lis for image stabilization is suppressed. An optical system with a wide angle of view can be easily obtained.

各実施例において、防振時の光学性能を良好に維持しつつ、高い光学性能を得るには、以下の条件式のうち1以上を満足することが望ましい。レンズ群Lisの横倍率をβis、レンズ群Lisよりも像側に位置するレンズ成分の横倍率βrとする。但し横倍率は無限遠物体にフォーカスしたときの値である。レンズ群Lisの中で正の屈折力が最も強いレンズlpの焦点距離をfp、レンズ群Lisの中で負の屈折力が最も強いレンズlnの焦点距離をfnとする。レンズlpの材料のアッベ数をνp、レンズlnの材料のアッベ数をνnとする。   In each embodiment, it is desirable to satisfy one or more of the following conditional expressions in order to obtain high optical performance while maintaining good optical performance during vibration isolation. The lateral magnification of the lens group Lis is βis, and the lateral magnification βr of the lens component located on the image side of the lens group Lis. However, the horizontal magnification is a value when focusing on an object at infinity. Let fp be the focal length of the lens lp having the strongest positive refractive power in the lens group Lis, and fn be the focal length of the lens ln having the strongest negative refractive power in the lens group Lis. The Abbe number of the material of the lens lp is νp, and the Abbe number of the material of the lens ln is νn.

レンズ群lpまたはレンズlnのうちレンズ群Lisの屈折力と同符号のレンズの材料のアッベ数をνisとする。レンズ群Lisの光軸上の長さ(最も物体側のレンズ面から最も像側のレンズ面までの長さ)をTisとする。最も物体側のレンズ面から像面までの光軸上の長さ(レンズ全長)をTLとする。このとき次の条件式のうち1以上を満足するのが良い。   The Abbe number of the lens material having the same sign as the refractive power of the lens group Lis in the lens group lp or lens ln is denoted by νis. The length on the optical axis of the lens group Lis (the length from the most object-side lens surface to the most image-side lens surface) is defined as Tis. The length on the optical axis from the lens surface closest to the object side to the image plane (lens total length) is defined as TL. At this time, one or more of the following conditional expressions should be satisfied.

0.1<|(1−βis)βr|<0.7 ・・・(3)
0.25<|fp/fn|<4.00 ・・・(4)
5<|νp−νn| ・・・(5)
35<νis ・・・(6)
0.03<Tis/DL<0.30 ・・・(7)
2.0<TL/f<5.0 ・・・(8)
次に各条件式の技術的意味について説明する。
0.1 <| (1-βis) βr | <0.7 (3)
0.25 <| fp / fn | <4.00 (4)
5 <| νp−νn | (5)
35 <νis (6)
0.03 <Tis / DL <0.30 (7)
2.0 <TL / f <5.0 (8)
Next, the technical meaning of each conditional expression will be described.

条件式(3)は防振用のレンズ群Lisの光軸に対する垂直方向成分の移動量と、これに伴い発生する結像面上の光軸に対する垂直方向の像点移動量の比に関する。条件式(3)の値が大きいほど少ない移動量で像点移動が可能となる。以下、条件式(3)で規定する値を防振敏感度と称する。条件式(3)の上限を超えて防振敏感度が高すぎると一定の防振効果を得る時の防振用のレンズ群Lisの変位量(移動量)が小さくなり過ぎて、その移動量を電気的又は機械的に精度良く駆動させるのが困難になってくる。   Conditional expression (3) relates to the ratio of the amount of movement of the vertical component with respect to the optical axis of the vibration-proof lens unit Lis and the ratio of the amount of movement of the image point in the vertical direction with respect to the optical axis on the image plane. As the value of conditional expression (3) is larger, the image point can be moved with a smaller amount of movement. Hereinafter, the value defined by the conditional expression (3) is referred to as anti-vibration sensitivity. If the upper limit of the conditional expression (3) is exceeded and the anti-vibration sensitivity is too high, the displacement amount (movement amount) of the anti-vibration lens unit Lis when obtaining a certain anti-vibration effect becomes too small, and the movement amount thereof. It becomes difficult to drive the device electrically or mechanically with high accuracy.

また、条件式(3)の下限値を超えて防振敏感度が低すぎると、防振時の光軸に対する垂直方向成分の変位量が大きくなって駆動機構の負荷が大きくなり好ましくない。
更に好ましくは条件式(3)の数値範囲を次の如く設定するのが良い。
On the other hand, if the vibration sensitivity is too low beyond the lower limit of conditional expression (3), the amount of displacement of the component in the vertical direction with respect to the optical axis at the time of vibration reduction becomes large, which is not preferable.
More preferably, the numerical range of conditional expression (3) is set as follows.

0.12<|(1−βis)βr|<0.60 ・・・(3a)
条件式(4)は防振用のレンズ群Lisの中で正の屈折力が最も強い(大きい)レンズlpと、負の屈折力(負の屈折力の絶対値)が最も強いレンズlnの焦点距離の比に規定している。条件式(4)の上限または下限の範囲を超えて、レンズlpとレンズlnのどちらかの屈折力が弱すぎると、レンズ群Lis内での収差補正が困難となり、防振時の収差変動が大きくなってくる。
0.12 <| (1-βis) βr | <0.60 (3a)
Conditional expression (4) is the focal point of the lens lp having the strongest (large) positive refractive power and the lens ln having the strongest negative refractive power (absolute value of the negative refractive power) in the anti-vibration lens group Lis. It is specified in the ratio of distance. If the refractive power of either the lens lp or the lens ln is too weak beyond the upper limit or lower limit range of the conditional expression (4), it is difficult to correct aberrations in the lens unit Lis, and aberration fluctuations during image stabilization occur. It gets bigger.

レンズ群Lisが正の屈折力を持つレンズ群である場合、更に好ましくは条件式(4)の数値範囲を次の如く設定するのが良い。   When the lens group Lis is a lens group having a positive refractive power, it is more preferable to set the numerical range of the conditional expression (4) as follows.

0.25<|fp/fn|<3.00 ・・・(4a)
レンズ群Lisが負の屈折力を持つレンズ群である場合、更に好ましくは条件式(4)の数値範囲を次の如く設定するのが良い。
0.25 <| fp / fn | <3.00 (4a)
When the lens group Lis is a lens group having a negative refractive power, it is more preferable to set the numerical range of the conditional expression (4) as follows.

0.3<|fp/fn|<4.0 ・・・(4b)
条件式(5)は防振用のレンズ群Lisの中で正の屈折力が最も強いレンズlnを構成する材料の分散と、負の屈折力が最も強いレンズlnを構成する材料の分散の差を規定している。
0.3 <| fp / fn | <4.0 (4b)
Conditional expression (5) is the difference between the dispersion of the material constituting the lens ln having the strongest positive refractive power and the dispersion of the material constituting the lens ln having the strongest negative refracting power in the vibration-proof lens group Lis. Is stipulated.

防振時の色収差の変動を小さくするためには、全系での色収差が良好に補正されていることに加えて、レンズ群Lis内でも色収差が良好に補正されていることが望ましい。条件式(5)の範囲を超えてレンズlpとレンズlnを構成する材料の分散の差が小さいとレンズ群Lis内での色収差補正が不十分となり、特に防振時の色収差の変動が大きくなってくる。特に前述の条件式(2)において絶対値が大きくなるような位置にレンズ群Lisを配置する場合、更に好ましくは条件式(5)の数値範囲を次の如く設定するのが良い。   In order to reduce the variation in chromatic aberration during image stabilization, it is desirable that the chromatic aberration is corrected well in the lens unit Lis in addition to the chromatic aberration corrected in the entire system. If the difference in the dispersion of the materials constituting the lens lp and the lens ln is small beyond the range of the conditional expression (5), the chromatic aberration correction in the lens unit Lis becomes insufficient, and the variation of chromatic aberration particularly during image stabilization becomes large. Come. In particular, when the lens unit Lis is arranged at a position where the absolute value in the conditional expression (2) is large, it is more preferable to set the numerical range of the conditional expression (5) as follows.

10<|νp−νn| ・・・(5a)
具体的には、条件式(2)の値が
−0.7<Dis/DL<−0.3
若しくは
0.2<Dis/DL<0.4 ・・・(2b)
の範囲にあるような場合は、上記条件式(5a)を満足することが望ましい。
10 <| νp−νn | (5a)
Specifically, the value of conditional expression (2) is −0.7 <Dis / DL <−0.3.
Or 0.2 <Dis / DL <0.4 (2b)
In such a case, it is desirable that the conditional expression (5a) is satisfied.

条件式(2b)の範囲を取るような位置にレンズ群Lisを配置した場合、レンズ群Lisを通る軸外光線の光軸からの入射高さがやや高くなり、特に防振時の倍率色収差の変動が発生しやすい。そのため、レンズ群Lis内での色収差の変動を充分に補正しておく為に、上記(5a)の条件を満足することが望ましい。   When the lens unit Lis is arranged at a position that takes the range of the conditional expression (2b), the incident height from the optical axis of the off-axis light beam passing through the lens unit Lis is slightly high, and particularly the lateral chromatic aberration during vibration isolation Fluctuation is likely to occur. Therefore, it is desirable to satisfy the above condition (5a) in order to sufficiently correct the variation of chromatic aberration in the lens unit Lis.

条件式(6)は、防振用のレンズ群Lisを構成するレンズの内、レンズ群Lisの屈折力を最も多く担っているレンズを構成する材料に関して、その分散の値の適正な範囲を規定している。条件式(6)の範囲を超えて、レンズ群Lisと同符号の屈折力を有するレンズを材料のアッベ数が小さくなる(分散が大きくなる)と、防振時の色収差の変動が大きくなってくる。更に好ましくは条件式(6)の数値範囲を次の如く設定するのが良い。   Conditional expression (6) defines an appropriate range of dispersion values for the material constituting the lens that has the most refractive power of the lens group Lis among the lenses that constitute the vibration-proof lens group Lis. doing. If the Abbe number of the material of the lens having the same refractive power as that of the lens unit Lis exceeds the range of the conditional expression (6), the variation in chromatic aberration during image stabilization increases. come. More preferably, the numerical range of conditional expression (6) is set as follows.

40<νd ・・・(6a)
条件式(7)は防振用のレンズ群Lisの光軸上の長さTisと第一レンズ面(最も物体側のレンズ面)から最終レンズ面までの光軸上の長さ(光学長)DLの比に関して適切な範囲を規定している。条件式(7)の上限を超えてレンズ群Lisの光軸上の長さが長過ぎると、レンズ群Lisが大型化し、駆動機構の負荷が過大となってくる。条件式(7)の下限を超えてレンズ群Lisの光軸上の長さが短過ぎると、加工が困難なレンズ形状になってくるので良くない。更に好ましくは条件式(7)の数値範囲を次の如く設定するのが良い。
40 <νd (6a)
Conditional expression (7) is the length Tis on the optical axis of the lens group Lis for vibration isolation and the length on the optical axis from the first lens surface (most object side lens surface) to the final lens surface (optical length). An appropriate range is specified for the ratio of DL. If the upper limit of the conditional expression (7) is exceeded and the length of the lens group Lis on the optical axis is too long, the lens group Lis becomes large and the load on the drive mechanism becomes excessive. If the length on the optical axis of the lens unit Lis is too short exceeding the lower limit of the conditional expression (7), the lens shape is difficult to process, which is not good. More preferably, the numerical range of conditional expression (7) is set as follows.

0.04<Tis/DL<0.20 ・・・(7a)
条件式(8)は、全系の焦点距離に対する好適なレンズ全長の割合を規定する。条件式(8)の上限を超えると、光学系及びそれを保持する鏡筒が大型化し、撮影時の持ち運びが不便になってくる。逆に、条件式(8)の下限を超えると、バックフォーカスを十分確保しつつ良好な光学性能を達成するのが困難になってくる。更に好ましくは条件式(8)の数値範囲を次の如く設定するのが良い。
0.04 <Tis / DL <0.20 (7a)
Conditional expression (8) defines a preferable ratio of the total lens length to the focal length of the entire system. If the upper limit of conditional expression (8) is exceeded, the optical system and the lens barrel that holds it will become large, and it will be inconvenient to carry during shooting. On the other hand, if the lower limit of conditional expression (8) is exceeded, it will be difficult to achieve good optical performance while ensuring sufficient back focus. More preferably, the numerical range of conditional expression (8) should be set as follows.

2.5<TL/f<4.5 ・・・(8a)
次に各実施例のレンズ構成について説明する。図1の実施例1、図4の実施例2において光学系LAは、物体側から像側へ順に、最も広い空気間隔を境に負の屈折力の前群LFと正の屈折力の後群LRよりなる。
2.5 <TL / f <4.5 (8a)
Next, the lens configuration of each example will be described. In Example 1 of FIG. 1 and Example 2 of FIG. 4, the optical system LA is arranged in order from the object side to the image side, with a front group LF having a negative refractive power and a rear group having a positive refractive power at the widest air interval. It consists of LR.

前群LFは物体側から像側へ順に正レンズ、負レンズ、負レンズからなる。後群LRは物体側から像側へ順に光軸に対して垂直方向の成分を持つ方向に移動して結像位置を光軸に対して垂直方向に移動するレンズ群Lis、正レンズ、開口絞り、負レンズ、正レンズ、正レンズからなる。フォーカシングは光学系全体を移動して行っている。   The front group LF includes a positive lens, a negative lens, and a negative lens in order from the object side to the image side. The rear group LR sequentially moves from the object side to the image side in a direction having a component perpendicular to the optical axis to move the imaging position in the direction perpendicular to the optical axis, a positive lens, and an aperture stop. A negative lens, a positive lens, and a positive lens. Focusing is performed by moving the entire optical system.

図7の実施例3において光学系LAは、物体側から像側へ順に、最も広い空気間隔を境に負の屈折力の前群LFと正の屈折力の後群LRよりなる。前群LFは物体側から像側へ順に、正レンズ、負レンズ、負レンズ、正レンズからなる。後群LRは正レンズ、開口絞り、負レンズ、光軸に対して垂直方向の成分を持つ方向に移動して結像位置を光軸に対して垂直方向に移動するレンズ群Lis、正レンズ、正レンズからなる。フォーカシングは光学系全体を移動して行っている。   In Example 3 of FIG. 7, the optical system LA includes, in order from the object side to the image side, a front group LF having a negative refractive power and a rear group LR having a positive refractive power with the widest air gap as a boundary. The front group LF includes a positive lens, a negative lens, a negative lens, and a positive lens in order from the object side to the image side. The rear group LR is a positive lens, an aperture stop, a negative lens, a lens group Lis that moves in a direction having a component perpendicular to the optical axis, and moves an imaging position in a direction perpendicular to the optical axis, a positive lens, Consists of a positive lens. Focusing is performed by moving the entire optical system.

図10の実施例4において光学系LAは、物体側から像側へ順に、フォーカシングに際して不動の負の屈折力の前群LFとフォーカシングに際して移動する正の屈折力の後群LRよりなる。前群LFは物体側から像側へ順に正レンズ、負レンズ、正レンズよりなる。後群LRは物体側から像側へ順に、負レンズ、正レンズ、負レンズ、開口絞り、正レンズ、負レンズ、光軸に対して垂直方向の成分を持つ方向に移動して結像位置を光軸に対して垂直方向に移動するレンズ群Lis、正レンズよりなる。   In Example 4 of FIG. 10, the optical system LA includes, in order from the object side to the image side, a front group LF having a negative refractive power that does not move during focusing and a rear group LR having a positive refractive power that moves during focusing. The front group LF includes a positive lens, a negative lens, and a positive lens in order from the object side to the image side. The rear lens group LR moves in order from the object side to the image side in the direction having a component perpendicular to the optical axis by moving the negative lens, the positive lens, the negative lens, the aperture stop, the positive lens, the negative lens, and the optical axis. The lens unit Lis moves in the direction perpendicular to the optical axis, and includes a positive lens.

図13の実施例5において光学系LAは、物体側から像側へ順に、最も広い空気間隔を境に負の屈折力の前群LFと正の屈折力の後群LRよりなる。前群は物体側から像側へ順に負レンズ、光軸に対して垂直方向の成分を持つ方向に移動して結像位置を光軸に対して垂直方向に移動するレンズ群Lis、負レンズよりなる。前記後群は負レンズ、正レンズ、開口絞り、正レンズ、負レンズ、正レンズ、正レンズよりなる。フォーカシングは光学系全体を移動して行っている。   In Example 5 of FIG. 13, the optical system LA includes, in order from the object side to the image side, a front group LF having a negative refractive power and a rear group LR having a positive refractive power with the widest air interval as a boundary. The front group consists of a negative lens in order from the object side to the image side, a lens group Lis that moves in a direction having a component perpendicular to the optical axis, and moves the imaging position in a direction perpendicular to the optical axis. Become. The rear group includes a negative lens, a positive lens, an aperture stop, a positive lens, a negative lens, a positive lens, and a positive lens. Focusing is performed by moving the entire optical system.

次に、本発明の光学系を用いた一眼レフカメラシステム(撮像装置)の実施例を、図16を用いて説明する。図16において、10は一眼レフカメラ本体、11は本発明による光学系を搭載した交換レンズである。12は交換レンズ11を通して得られる被写体像を記録するフィルムや撮像素子などの記録手段である。13は交換レンズ11からの被写体像を観察するファインダー光学系、14は交換レンズ11で形成された被写体像を記録手段12とファインダー光学系13に切り替えて伝送するための回動するクイックリターンミラーである。   Next, an embodiment of a single-lens reflex camera system (imaging device) using the optical system of the present invention will be described with reference to FIG. In FIG. 16, 10 is a single-lens reflex camera body, and 11 is an interchangeable lens equipped with an optical system according to the present invention. Reference numeral 12 denotes a recording unit such as a film or an image sensor for recording a subject image obtained through the interchangeable lens 11. Reference numeral 13 denotes a finder optical system for observing a subject image from the interchangeable lens 11, and reference numeral 14 denotes a rotating quick return mirror for switching the subject image formed by the interchangeable lens 11 to the recording means 12 and the finder optical system 13 for transmission. is there.

ファインダーで被写体像を観察する場合は、クイックリターンミラー14を介してピント板15に結像した被写体像をペンタプリズム16で正立像としたのち、接眼光学系17で拡大して観察する。撮影時にはクイックリターンミラー14が矢印方向に回動して被写体像は記録手段12に結像して記録される。18はサブミラー、19は焦点検出装置である。このように本発明の光学系を一眼レフカメラ等の交換レンズ等の撮像装置に適用することにより、高い光学性能を有した撮像装置を実現している。   When observing the subject image with the finder, the subject image formed on the focusing plate 15 via the quick return mirror 14 is made into an erect image with the pentaprism 16 and then magnified and observed with the eyepiece optical system 17. At the time of shooting, the quick return mirror 14 rotates in the direction of the arrow, and the subject image is formed and recorded on the recording means 12. Reference numeral 18 denotes a submirror, and 19 denotes a focus detection device. Thus, by applying the optical system of the present invention to an imaging device such as an interchangeable lens such as a single-lens reflex camera, an imaging device having high optical performance is realized.

尚、本発明はクイックリターンミラーのないカメラにも同様に適用することができる。また、プロジェクター用の投射レンズにも同様に適用することができる。   The present invention can be similarly applied to a camera without a quick return mirror. Further, the present invention can be similarly applied to a projection lens for a projector.

以下に、実施例1〜5に各々対応する数値実施例1〜5を示す。各数値実施例において、iは物体側からの面の順番を示し、riは第i番目(第i面)の曲率半径である。diは第i面と第i+1面との間の間隔である。ndi、νdiはそれぞれd線を基準とした屈折率、アッベ数を示す。BFはバックフォーカスである。*はその面が非球面であることを示す。(非球面データ)には、非球面を次式で表した場合の非球面係数を示す。   In the following, numerical examples 1 to 5 corresponding to the first to fifth examples will be described. In each numerical example, i indicates the order of the surfaces from the object side, and ri is the i-th (i-th surface) radius of curvature. di is an interval between the i-th surface and the i + 1-th surface. ndi and νdi denote a refractive index and an Abbe number based on the d line, respectively. BF is a back focus. * Indicates that the surface is aspherical. (Aspheric data) shows the aspheric coefficient when the aspheric surface is expressed by the following equation.

x=(h2/R)/[1+{1−(1+k)(h/R)21/2+B・h4+C・h6+D・h8+E・h10
但し、
x:光軸方向の基準面からの変位量である。
h:光軸に対して垂直な方向の高さである。
R:ベースとなる2次曲面の半径である。
x = (h 2 / R) / [1+ {1− (1 + k) (h / R) 2 } 1/2 + B · h 4 + C · h 6 + D · h 8 + E · h 10
However,
x: A displacement amount from the reference plane in the optical axis direction.
h: Height in the direction perpendicular to the optical axis.
R: radius of a quadric surface as a base.

B、C、D、Eはそれぞれ4次、6次、8次、10次の非球面係数である。なお、「e−Z」の表示は「10-Z」を意味する。又前述の各条件式と数値実施例における諸数値との関係を表1に示す。 B, C, D, and E are fourth-order, sixth-order, eighth-order, and tenth-order aspherical coefficients, respectively. In addition, the display of “e-Z” means “10 −Z ”. Table 1 shows the relationship between the above-described conditional expressions and numerical values in the numerical examples.

(数値実施例1)
単位 mm
面データ
面番号 r d nd νd
1 70.710 2.90 1.51633 64.1
2 152.571 0.20
4 17.124 6.15
5 206.476 1.50 1.51633 64.1
6 19.419 12.79
7 61.632 3.00 1.83481 42.7
8 -44.559 1.40 1.62004 36.3
9 47.336 2.00
10 19.758 4.85 1.65412 39.7
11 -110.713 2.34
12(絞り) ∞ 4.00
13 -26.943 2.35 1.80518 25.4
14 45.710 0.70
15 50.202 3.40 1.58913 61.1
16 -60.706 0.79
17* -174.022 3.15 1.58313 59.4
18 -19.740
像面 ∞

非球面データ
第17面
B=-4.56928e-05 C= 1.05395e-08 D=-9.32716e-10 E= 0.0
各種データ
焦点距離 27.70
Fナンバー 2.86
半画角ω(度)38.00
像高 21.64
レンズ全長 91.72
BF 38.70

防振レンズ群(第7面〜9面)データ
fis 176.80
βis 1.264
βr -0.805
fp 31.38
fn -36.80
νp 42.7
νn 36.3
(Numerical example 1)
Unit mm
Surface data surface number rd nd νd
1 70.710 2.90 1.51633 64.1
2 152.571 0.20
4 17.124 6.15
5 206.476 1.50 1.51633 64.1
6 19.419 12.79
7 61.632 3.00 1.83481 42.7
8 -44.559 1.40 1.62004 36.3
9 47.336 2.00
10 19.758 4.85 1.65412 39.7
11 -110.713 2.34
12 (Aperture) ∞ 4.00
13 -26.943 2.35 1.80518 25.4
14 45.710 0.70
15 50.202 3.40 1.58913 61.1
16 -60.706 0.79
17 * -174.022 3.15 1.58313 59.4
18 -19.740
Image plane ∞

Aspheric data 17th surface
B = -4.56928e-05 C = 1.05395e-08 D = -9.32716e-10 E = 0.0
Various data focal length 27.70
F number 2.86
Half angle of view ω (degrees) 38.00
Statue height 21.64
Total lens length 91.72
BF 38.70

Anti-vibration lens group (7th to 9th surfaces) data fis 176.80
βis 1.264
βr -0.805
fp 31.38
fn -36.80
νp 42.7
νn 36.3

(数値実施例2)
単位 mm
面データ
面番号 r d nd νd
1 68.237 2.99 1.51633 64.1
2 160.754 0.20
3 52.637 1.50 1.51633 64.1
4 18.406 5.06
5 81.357 1.50 1.58913 61.1
6 18.954 14.34
7 43.097 2.34 1.80400 46.6
8 -138.167 0.60
9 -226.375 1.00 1.61293 37.0
10 35.059 2.00
11 19.707 5.13 1.65412 39.7
12 -78.719 2.74
13(絞り) ∞ 4.00
14 -23.416 1.00 1.80518 25.4
15 48.743 0.92
16 52.996 2.61 1.58913 61.1
17 -47.986 1.99
18* -139.826 3.09 1.58313 59.4
19 -20.055
像面 ∞

非球面データ
第18面
B=-4.52781e-05 C=-2.25788e-08 D=-6.86526e-10 E= 0.0


焦点距離 27.59
Fナンバー 2.86
半画角ω(度)38.10
像高 21.64
レンズ全長 91.85
BF 38.83

防振レンズ群(第7面〜10面)データ
fis 193.69
βis 1.211
βr -0.867
fp 41.10
fn -49.46
νp 46.6
νn 37.0
(Numerical example 2)
Unit mm
Surface data surface number rd nd νd
1 68.237 2.99 1.51633 64.1
2 160.754 0.20
3 52.637 1.50 1.51633 64.1
4 18.406 5.06
5 81.357 1.50 1.58913 61.1
6 18.954 14.34
7 43.097 2.34 1.80 400 46.6
8 -138.167 0.60
9 -226.375 1.00 1.61293 37.0
10 35.059 2.00
11 19.707 5.13 1.65412 39.7
12 -78.719 2.74
13 (Aperture) ∞ 4.00
14 -23.416 1.00 1.80518 25.4
15 48.743 0.92
16 52.996 2.61 1.58913 61.1
17 -47.986 1.99
18 * -139.826 3.09 1.58313 59.4
19 -20.055
Image plane ∞

Aspheric data 18th surface
B = -4.52781e-05 C = -2.25788e-08 D = -6.86526e-10 E = 0.0


Focal length 27.59
F number 2.86
Half angle of view ω (degrees) 38.10
Statue height 21.64
Total lens length 91.85
BF 38.83

Anti-vibration lens group (7th-10th surfaces) data fis 193.69
βis 1.211
βr -0.867
fp 41.10
fn -49.46
νp 46.6
νn 37.0

(数値実施例3)
単位 mm
面データ
面番号 r d nd νd
1 77.184 3.28 1.51633 64.1
2 230.985 0.10
3 40.584 1.50 1.51633 64.1
4 16.912 6.65
5 137.144 1.50 1.51633 64.1
6 18.110 7.99
7 32.844 3.41 1.83400 37.2
8 -1157.221 9.46
9 48.745 2.82 1.72916 54.7
10 -38.501 0.86
11(絞り) ∞ 1.97
12 -27.330 1.60 1.84666 23.8
13 63.253 1.90
14 -60.483 1.76 1.78590 44.2
15 -20.152 1.00 1.62230 53.2
16 464.380 1.20
17 105.809 3.57 1.58913 61.1
18 -23.419 0.20
19* -112.098 2.29 1.58313 59.4
20 -39.160
像面 ∞

非球面データ
第19面
B=-1.49085e-05 C= 1.57058e-08 D=-4.27129e-10 E= 1.51433e-12
焦点距離 28.42
Fナンバー 2.86
半画角ω(度)37.28
像高 21.64
レンズ全長 90.84
BF 37.80

防振レンズ群(第14面〜16面)データ
fis -163.07
βis 0.596
βr -0.543
fp 37.73
fn -31.01
νp 44.2
νn 53.2
(Numerical Example 3)
Unit mm
Surface data surface number rd nd νd
1 77.184 3.28 1.51633 64.1
2 230.985 0.10
3 40.584 1.50 1.51633 64.1
4 16.912 6.65
5 137.144 1.50 1.51633 64.1
6 18.110 7.99
7 32.844 3.41 1.83400 37.2
8 -1157.221 9.46
9 48.745 2.82 1.72916 54.7
10 -38.501 0.86
11 (Aperture) ∞ 1.97
12 -27.330 1.60 1.84666 23.8
13 63.253 1.90
14 -60.483 1.76 1.78590 44.2
15 -20.152 1.00 1.62230 53.2
16 464.380 1.20
17 105.809 3.57 1.58913 61.1
18 -23.419 0.20
19 * -112.098 2.29 1.58313 59.4
20 -39.160
Image plane ∞

Aspheric data 19th surface
B = -1.49085e-05 C = 1.57058e-08 D = -4.27129e-10 E = 1.51433e-12
Focal length 28.42
F number 2.86
Half angle of view ω (degrees) 37.28
Statue height 21.64
Total lens length 90.84
BF 37.80

Anti-vibration lens group (14th to 16th surfaces) data fis -163.07
βis 0.596
βr -0.543
fp 37.73
fn -31.01
νp 44.2
νn 53.2

(数値実施例4)
単位 mm
面データ
面番号 r d nd νd
1 66.998 3.75 1.48749 70.2
2 197.486 0.10
3 40.664 2.00 1.65160 58.5
4 17.649 4.64
5 46.839 2.60 1.77250 49.6
6 100.511 3.13
7 26.865 1.60 1.65160 58.5
8 9.583 3.59
9 81.025 2.50 1.84666 23.8
10 554.320 0.21
11 42.536 7.90 1.84666 23.8
12 34.328 1.57
13(絞り) ∞ 2.50
14 74.525 3.75 1.79952 42.2
15 -17.110 2.04
16 -31.690 1.60 1.80518 25.4
17 63.141 1.08
18* 136.755 3.60 1.63930 44.9
19 -18.630 1.20 1.80000 29.8
20 -51.939 1.45
21* -53.318 3.20 1.67790 55.3
22 -18.616
像面 ∞

非球面データ
第18面
B= 3.12785e-06 C =-6.65485e-08 D= 5.91710e-10 E=-1.60210e-12

第21面
B=-2.73568e-05 C= 3.68829e-08 D=-3.83418e-10 E=0.0

焦点距離 24.50
Fナンバー 2.86
半画角ω(度)41.45
像高 21.64
レンズ全長 91.91
BF 37.90

防振レンズ群(第18面〜20面)データ
焦点距離
fis 87.55
βis -3.614
βr 0.093
fp 25.88
fn -36.91
νp 44.9
νn 29.8
(Numerical example 4)
Unit mm
Surface data surface number rd nd νd
1 66.998 3.75 1.48749 70.2
2 197.486 0.10
3 40.664 2.00 1.65 160 58.5
4 17.649 4.64
5 46.839 2.60 1.77250 49.6
6 100.511 3.13
7 26.865 1.60 1.65 160 58.5
8 9.583 3.59
9 81.025 2.50 1.84666 23.8
10 554.320 0.21
11 42.536 7.90 1.84666 23.8
12 34.328 1.57
13 (Aperture) ∞ 2.50
14 74.525 3.75 1.79952 42.2
15 -17.110 2.04
16 -31.690 1.60 1.80518 25.4
17 63.141 1.08
18 * 136.755 3.60 1.63930 44.9
19 -18.630 1.20 1.80000 29.8
20 -51.939 1.45
21 * -53.318 3.20 1.67790 55.3
22 -18.616
Image plane ∞

Aspheric data 18th surface
B = 3.12785e-06 C = -6.65485e-08 D = 5.91710e-10 E = -1.60210e-12

21st page
B = -2.73568e-05 C = 3.68829e-08 D = -3.83418e-10 E = 0.0

Focal length 24.50
F number 2.86
Half angle of view ω (degrees) 41.45
Statue height 21.64
Total lens length 91.91
BF 37.90

Anti-vibration lens group (18th-20th surfaces) data Focal length
fis 87.55
βis -3.614
βr 0.093
fp 25.88
fn -36.91
νp 44.9
νn 29.8

(数値実施例5)
単位 mm
面番号 r d nd νd
1* 40.777 1.80 1.65100 56.2
2 18.414 8.03
3* 41.792 1.20 1.83400 37.2
4 24.123 5.40 1.51633 64.1
5 -245.518 1.00
6 16.493 1.24 1.62041 60.3
7 9.902 9.00
8 -39.271 1.60 1.51633 64.1
9 53.179 0.20
10 26.595 3.40 1.84666 23.8
11 189.806 2.71
12(絞り) ∞ 1.00
13 39.449 3.74 1.69680 55.5
14 -23.883 3.66
15 -18.260 1.80 1.84666 23.8
16 61.382 0.42
17 180.550 3.17 1.69680 55.5
18 -19.247 0.54
19* -28.376 2.00 1.72916 54.7
20 -19.797
像面 ∞

非球面データ
第1面
B= 3.10251e-06 C=-5.18081e-09 D= 1.06929e-11 E=-5.02984e-15

第3面
B= 1.85875e-06 C= 6.78623e-09 D=-6.34644e-12 E=0.0

第19面
B=-3.02320e-05 C= 8.08892e-08 D=-2.62288e-09 E= 1.22172e-11


焦点距離 23.50
Fナンバー 2.86
半画角ω(度)42.63
像高 21.64
レンズ全長 89.80
BF 37.90

防振レンズ群(第3面〜5面)データ
fis 111.32
βis 2.186
βr -0.202
fp 42.83
fn -70.60
νp 64.1
νn 37.2

(Numerical example 5)
Unit mm
Surface number rd nd νd
1 * 40.777 1.80 1.65 100 56.2
2 18.414 8.03
3 * 41.792 1.20 1.83400 37.2
4 24.123 5.40 1.51633 64.1
5 -245.518 1.00
6 16.493 1.24 1.62041 60.3
7 9.902 9.00
8 -39.271 1.60 1.51633 64.1
9 53.179 0.20
10 26.595 3.40 1.84666 23.8
11 189.806 2.71
12 (Aperture) ∞ 1.00
13 39.449 3.74 1.69680 55.5
14 -23.883 3.66
15 -18.260 1.80 1.84666 23.8
16 61.382 0.42
17 180.550 3.17 1.69680 55.5
18 -19.247 0.54
19 * -28.376 2.00 1.72916 54.7
20 -19.797
Image plane ∞

Aspheric data 1st surface
B = 3.10251e-06 C = -5.18081e-09 D = 1.06929e-11 E = -5.02984e-15

Third side
B = 1.85875e-06 C = 6.78623e-09 D = -6.34644e-12 E = 0.0

19th page
B = -3.02320e-05 C = 8.08892e-08 D = -2.62288e-09 E = 1.22172e-11


Focal length 23.50
F number 2.86
Half angle of view ω (degrees) 42.63
Statue height 21.64
Total lens length 89.80
BF 37.90

Anti-vibration lens group (3rd to 5th surfaces) data fis 111.32
βis 2.186
βr -0.202
fp 42.83
fn -70.60
νp 64.1
νn 37.2

LA 光学系 L1 第1レンズ群 L2 第2レンズ群
Gis 防振レンズ群 SP 開口絞り
LA optical system L1 1st lens group L2 2nd lens group Gis Anti-vibration lens group SP Aperture stop

Claims (12)

焦点距離がバックフォーカスより短い光学系において、前記光学系は、開口絞りと、光軸に対して垂直方向の成分を持つ方向に移動して結像位置を光軸に対して垂直方向に移動するレンズ群Lisを有し、前記レンズ群Lisは正レンズと負レンズの1枚以上を含んでおり、全系の焦点距離をf、前記レンズ群Lisの焦点距離をfis、前記開口絞りから、前記レンズ群Lisの該開口絞りから最も遠いレンズ面までの光軸上の長さをDis、最も物体側のレンズ面から最も像側のレンズ面までの光軸上の長さをDLとするとき、
0.08<f/|fis|<0.50
−0.7<Dis/DL<0.4
なる条件式を満足することを特徴とする光学系。
In an optical system whose focal length is shorter than the back focus, the optical system moves in a direction having a component perpendicular to the aperture stop and the optical axis to move the imaging position in the direction perpendicular to the optical axis. The lens group Lis includes one or more of a positive lens and a negative lens, the focal length of the entire system is f, the focal length of the lens group Lis is fis, When the length on the optical axis from the aperture stop of the lens unit Lis to the farthest lens surface is Dis, and the length on the optical axis from the most object side lens surface to the most image side lens surface is DL,
0.08 <f / | fis | <0.50
-0.7 <Dis / DL <0.4
An optical system that satisfies the following conditional expression:
前記レンズ群Lisの横倍率をβis、前記レンズ群Lisよりも像側に位置するレンズ成分の横倍率βrとするとき、
0.1<|(1−βis)βr|<0.7
なる条件式を満足することを特徴とする請求項1に記載の光学系。
When the lateral magnification of the lens group Lis is βis, and the lateral magnification βr of the lens component located on the image side of the lens group Lis,
0.1 <| (1-βis) βr | <0.7
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記レンズ群Lisの中で正の屈折力が最も強いレンズlpの焦点距離をfp、前記レンズ群Lisの中で負の屈折力が最も強いレンズlnの焦点距離をfnとするとき、
0.25<|fp/fn|<4.00
なる条件式を満足することを特徴とする請求項1または2に記載の光学系。
When the focal length of the lens lp having the strongest positive refractive power in the lens group Lis is fp and the focal length of the lens ln having the strongest negative refractive power in the lens group Lis is fn,
0.25 <| fp / fn | <4.00
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記レンズ群Lisの中で正の屈折力が最も強いレンズlpの材料のアッベ数をνp、前記レンズ群Lisの中で負の屈折力が最も強いレンズlnの材料のアッベ数をνnとするとき、
5<|νp−νn|
なる条件式を満足することを特徴とする請求項1乃至3のいずれか1項に記載の光学系。
When the Abbe number of the material of the lens lp having the strongest positive refractive power in the lens group Lis is νp, and the Abbe number of the material of the lens ln having the strongest negative refractive power in the lens group Lis is νn. ,
5 <| νp−νn |
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記レンズ群Lisの中で正の屈折力が最も大きいレンズlpまたは前記レンズ群Lisの中で負の屈折力が最も大きいレンズlnのうち前記レンズ群Lisの屈折力と同符号のレンズの材料のアッベ数をνisとするとき、
35<νis
なる条件式を満足することを特徴とする請求項1乃至4のいずれか1項に記載の光学系。
Of the lens lp having the largest positive refractive power in the lens group Lis or the lens ln having the largest negative refractive power in the lens group Lis, the lens material having the same sign as the refractive power of the lens group Lis. When Abbe number is νis,
35 <νis
5. The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記レンズ群Lisの光軸上の長さをTisとするとき、
0.03<Tis/DL<0.30
なる条件式を満足することを特徴とする請求項1乃至5のいずれか1項に記載の光学系。
When the length of the lens group Lis on the optical axis is Tis,
0.03 <Tis / DL <0.30
The optical system according to claim 1, wherein the following conditional expression is satisfied.
最も物体側のレンズ面から像面までの光軸上の長さをTLとするとき、
2.0<TL/f<5.0
なる条件式を満足することを特徴とする請求項1乃至6のいずれか1項に記載の光学系。
When the length on the optical axis from the lens surface closest to the object side to the image plane is TL,
2.0 <TL / f <5.0
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記レンズ群Lisは正レンズと負レンズよりなることを特徴とする請求項1乃至7のいずれか1項に記載の光学系。   The optical system according to claim 1, wherein the lens group Lis includes a positive lens and a negative lens. 前記光学系は、物体側から像側へ順に、最も広い空気間隔を境に、負の屈折力の前群と正の屈折力の後群よりなり、前記前群は複数のレンズを有し、前記後群は前記レンズ群Lisと複数のレンズと前記開口絞りを有することを特徴とする請求項1乃至8のいずれか1項に記載の光学系。   The optical system includes, in order from the object side to the image side, a front group having a negative refractive power and a rear group having a positive refractive power, with the widest air interval as a boundary, and the front group includes a plurality of lenses. The optical system according to any one of claims 1 to 8, wherein the rear group includes the lens group Lis, a plurality of lenses, and the aperture stop. 前記光学系は、物体側から像側へ順に、フォーカシングに際して不動の負の屈折力の前群とフォーカシングに際して移動する正の屈折力の後群よりなり、
前記前群は複数のレンズを有し、前記後群は前記レンズ群Lisと複数のレンズと前記開口絞りを有することを特徴とする請求項1乃至8のいずれか1項に記載の光学系。
The optical system comprises, in order from the object side to the image side, a front group of negative refractive power that does not move during focusing and a rear group of positive refractive power that moves during focusing,
The optical system according to any one of claims 1 to 8, wherein the front group includes a plurality of lenses, and the rear group includes the lens group Lis, a plurality of lenses, and the aperture stop.
前記光学系は、物体側から像側へ順に、最も広い空気間隔を境に、負の屈折力の前群と正の屈折力の後群よりなり、
前記前群は前記レンズ群Lisと複数のレンズを有し、前記後群は複数のレンズと前記開口絞りを有することを特徴とする請求項1乃至8のいずれか1項に記載の光学系。
The optical system, in order from the object side to the image side, consists of a front group of negative refractive power and a rear group of positive refractive power, with the widest air interval as a boundary
The optical system according to any one of claims 1 to 8, wherein the front group includes the lens group Lis and a plurality of lenses, and the rear group includes a plurality of lenses and the aperture stop.
請求項1乃至11のいずれか1項に記載の光学系を有することを特徴とする撮像装置。   An imaging apparatus comprising the optical system according to claim 1.
JP2012232686A 2012-10-22 2012-10-22 Optical system and imaging apparatus having the same Active JP6057663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012232686A JP6057663B2 (en) 2012-10-22 2012-10-22 Optical system and imaging apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012232686A JP6057663B2 (en) 2012-10-22 2012-10-22 Optical system and imaging apparatus having the same

Publications (3)

Publication Number Publication Date
JP2014085429A true JP2014085429A (en) 2014-05-12
JP2014085429A5 JP2014085429A5 (en) 2015-12-03
JP6057663B2 JP6057663B2 (en) 2017-01-11

Family

ID=50788554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012232686A Active JP6057663B2 (en) 2012-10-22 2012-10-22 Optical system and imaging apparatus having the same

Country Status (1)

Country Link
JP (1) JP6057663B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018052113A1 (en) 2016-09-16 2018-03-22 株式会社nittoh Optical system for image capturing and image capturing device
CN109975950A (en) * 2017-12-27 2019-07-05 宁波舜宇车载光学技术有限公司 Optical lens

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220427A (en) * 1995-02-10 1996-08-30 Nikon Corp Wide angle lens having vibration proof function
JPH08327907A (en) * 1995-06-01 1996-12-13 Tochigi Nikon:Kk Zoom lens
JPH1152245A (en) * 1997-08-04 1999-02-26 Canon Inc Zoom lens having vibration compensating function
JPH1152228A (en) * 1997-08-05 1999-02-26 Nikon Corp Wide angle lens
JP2007286596A (en) * 2006-03-23 2007-11-01 Nikon Corp Retrofocus lens and imaging apparatus
JP2010014897A (en) * 2008-07-02 2010-01-21 Nikon Corp Lens system and optical device
JP2010176015A (en) * 2009-01-30 2010-08-12 Nikon Corp Wide-angle lens, imaging apparatus, and method for manufacturing the wide angle-lens
JP2010181518A (en) * 2009-02-04 2010-08-19 Nikon Corp Zoom lens, optical apparatus with the zoom lens, and method for manufacturing zoom lens
JP2012083703A (en) * 2010-09-17 2012-04-26 Nikon Corp Optical system, optical instrument with the same, and method for producing optical system
JP2012173730A (en) * 2011-02-24 2012-09-10 Nikon Corp Zoom lens, optical device, and manufacturing method for zoom lens

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220427A (en) * 1995-02-10 1996-08-30 Nikon Corp Wide angle lens having vibration proof function
JPH08327907A (en) * 1995-06-01 1996-12-13 Tochigi Nikon:Kk Zoom lens
JPH1152245A (en) * 1997-08-04 1999-02-26 Canon Inc Zoom lens having vibration compensating function
JPH1152228A (en) * 1997-08-05 1999-02-26 Nikon Corp Wide angle lens
JP2007286596A (en) * 2006-03-23 2007-11-01 Nikon Corp Retrofocus lens and imaging apparatus
JP2010014897A (en) * 2008-07-02 2010-01-21 Nikon Corp Lens system and optical device
JP2010176015A (en) * 2009-01-30 2010-08-12 Nikon Corp Wide-angle lens, imaging apparatus, and method for manufacturing the wide angle-lens
JP2010181518A (en) * 2009-02-04 2010-08-19 Nikon Corp Zoom lens, optical apparatus with the zoom lens, and method for manufacturing zoom lens
JP2012083703A (en) * 2010-09-17 2012-04-26 Nikon Corp Optical system, optical instrument with the same, and method for producing optical system
JP2012173730A (en) * 2011-02-24 2012-09-10 Nikon Corp Zoom lens, optical device, and manufacturing method for zoom lens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018052113A1 (en) 2016-09-16 2018-03-22 株式会社nittoh Optical system for image capturing and image capturing device
CN109975950A (en) * 2017-12-27 2019-07-05 宁波舜宇车载光学技术有限公司 Optical lens
CN109975950B (en) * 2017-12-27 2021-06-04 宁波舜宇车载光学技术有限公司 Optical lens

Also Published As

Publication number Publication date
JP6057663B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP5064837B2 (en) Zoom lens with anti-vibration function
JP5582913B2 (en) Single focus lens with anti-vibration function
US8830597B2 (en) Zoom lens and image pickup apparatus including the same
US8264779B2 (en) Zoom lens and image pickup apparatus including same
JP6667297B2 (en) Optical system and imaging apparatus having the same
JP2014228734A (en) Zoom lens and imaging apparatus having the same
JP2015102620A (en) Optical system and image capturing device having the same
JP5448574B2 (en) Zoom lens and imaging apparatus having the same
JP2017076041A (en) Optical system and imaging apparatus including the same
JP2013182246A (en) Zoom lens and image pickup device having the same
JP2017076040A (en) Optical system and imaging apparatus including the same
JP2019184968A (en) Imaging optical system and image capturing device having the same
JP6406870B2 (en) Optical system and imaging apparatus having the same
JP2014228733A (en) Zoom lens and imaging apparatus having the same
JP2019066694A (en) Zoom optical system and image capturing device having the same
JP2012226091A (en) Zoom lens and imaging device having the same
US8351128B2 (en) Zoom lens and image pickup apparatus using the same
JP2011033867A (en) Zoom lens and image pickup apparatus including the same
JP6526992B2 (en) Photographing lens and photographing device
JP2008070411A (en) Zoom lens
US9625688B2 (en) Optical system and imaging apparatus including the same
JP5932268B2 (en) Optical system and imaging apparatus having the same
JP2005062211A (en) Photographic lens and imaging apparatus having the same
JP2014041223A (en) Zoom lens
JP5907606B2 (en) Optical system and imaging apparatus having the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161206

R151 Written notification of patent or utility model registration

Ref document number: 6057663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03