JP2014085219A - Position detection device, position detection method and drive support device - Google Patents
Position detection device, position detection method and drive support device Download PDFInfo
- Publication number
- JP2014085219A JP2014085219A JP2012234192A JP2012234192A JP2014085219A JP 2014085219 A JP2014085219 A JP 2014085219A JP 2012234192 A JP2012234192 A JP 2012234192A JP 2012234192 A JP2012234192 A JP 2012234192A JP 2014085219 A JP2014085219 A JP 2014085219A
- Authority
- JP
- Japan
- Prior art keywords
- shielding
- vehicle
- point
- gps
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Instructional Devices (AREA)
- Navigation (AREA)
- Traffic Control Systems (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
本発明は、位置検出装置、位置検出方法、及び運転支援装置に関する。 The present invention relates to a position detection device, a position detection method, and a driving support device.
従来、基地局や衛星からの電波途絶時に車両の位置を検出する技術が開発されている。例えば、特許文献1には、基地局から送信される電波のエリア端を検出して、車両の位置を検出する技術が開示されている。また、特許文献2には、遮蔽物に遮蔽されないGPS信号を衛星方位の一致信号と判断し、遮蔽物に遮蔽されたGPS信号の反射を衛星方位の不一致信号と判断し、不一致信号には補正値を加味することで、車両の位置を検出する技術が開示されている。
Conventionally, a technique for detecting the position of a vehicle when a radio wave from a base station or a satellite is interrupted has been developed. For example,
しかしながら、従来技術(特許文献1〜2等)は、例えば高層ビル等の建造物やトンネル等の地物など遮蔽物となり得る建築物が存在する領域では、GPS衛星からの電波の遮断や反射が不規則に発生するため、検出される車両の位置誤差が生じる可能性があった。そのため、従来技術においては、車両の位置を高精度に検出する点で更なる改善の余地があった。
However, in the conventional technology (
本発明は、上記の事情に鑑みてなされたものであって、検出される車両の位置誤差が生じる可能性を低減し、車両の位置を高精度に検出することができる位置検出装置、位置検出方法、及び運転支援装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a position detection device and position detection capable of detecting the position of a vehicle with high accuracy by reducing the possibility of occurrence of a detected position error of the vehicle. It is an object to provide a method and a driving support device.
本発明の位置検出装置は、複数のGPS衛星から送信されるGPS信号を受信し、受信したGPS信号から、各GPS信号の受信電力、および、各GPS衛星の衛星位置を取得するGPS受信機と、建築物の位置情報および形状情報を含む3次元地図データを記憶する記憶部と、前記GPS受信機により取得された前記各GPS衛星の衛星位置、および、前記記憶部に記憶された前記3次元地図データに基づいて、各GPS衛星から送信されるGPS信号が車両の走行経路周辺に存在する建築物により遮蔽される遮蔽区間を、前記車両の走行経路上で算出する遮蔽区間算出部と、前記遮蔽区間算出部により算出された前記遮蔽区間内で、前記GPS受信機により取得された前記各GPS信号の受信電力がそれぞれ所定閾値以下となった地点を遮蔽地点として測定する遮蔽地点測定部と、前記遮蔽地点測定部により測定された複数の遮蔽地点のうち任意の基点と他の各遮蔽地点との位置関係を、前記GPS信号に基づいた予測距離と、前記車両の距離に関する検出値に基づいた実測距離として求め、各遮蔽地点に対応する前記予測距離と前記実測距離との比較結果に基づいて信頼性が高いと判定された前記基点の遮蔽地点を前記車両の位置として検出する車両位置検出部と、を備えたことを特徴とする。 The position detection device of the present invention receives a GPS signal transmitted from a plurality of GPS satellites, and acquires a received power of each GPS signal and a satellite position of each GPS satellite from the received GPS signal; A storage unit for storing three-dimensional map data including position information and shape information of the building, a satellite position of each GPS satellite acquired by the GPS receiver, and the three-dimensional unit stored in the storage unit Based on the map data, a shielding section calculation unit that calculates a shielding section in which a GPS signal transmitted from each GPS satellite is shielded by a building existing around the traveling path of the vehicle on the traveling path of the vehicle; A point where the received power of each GPS signal acquired by the GPS receiver is equal to or less than a predetermined threshold within the shielding interval calculated by the shielding interval calculation unit. A predicted position based on the GPS signal, a shielding point measuring unit that measures as a shielding point, and a positional relationship between an arbitrary base point and each other shielding point among a plurality of shielding points measured by the shielding point measuring unit, The shielding point of the base point determined to be highly reliable based on a comparison result between the predicted distance corresponding to each shielding point and the actually measured distance is obtained as an actually measured distance based on a detection value related to the distance of the vehicle. And a vehicle position detection unit that detects the position of the vehicle.
上記位置検出装置において、前記車両位置検出部は、各遮蔽地点に対応する前記予測距離と前記実測距離との差分を求める比較部と、前記検出値に基づいた所定誤差以下となる差分の遮蔽地点の集合を信頼性が高いと判定し、前記所定誤差よりも大きくなる遮蔽地点を外れ値として信頼性が低いと判定する信頼性判定部と、前記信頼性判定部により前記信頼性が高いと判定された前記集合に含まれる各遮蔽地点の平均値を算出し、算出した当該平均値に対応する地点を、前記車両の位置として決定する車両位置決定部と、を更に備えたことが好ましい。 In the position detection device, the vehicle position detection unit includes a comparison unit that obtains a difference between the predicted distance corresponding to each shielding point and the actually measured distance, and a shielding point of a difference that is equal to or less than a predetermined error based on the detection value. A reliability determination unit that determines that the set is highly reliable and that the shielding point that is larger than the predetermined error is an outlier and determines that the reliability is low, and the reliability determination unit determines that the reliability is high It is preferable to further include a vehicle position determination unit that calculates an average value of each shielding point included in the set and determines a point corresponding to the calculated average value as the position of the vehicle.
上記位置検出装置において、前記車両位置決定部は、前記信頼性判定部により前記信頼性が高いと判定された前記集合に含まれる各遮蔽地点のうち、前記GPS受信機により取得された前記GPS信号の受信電力が、当該各遮蔽地点の受信電力と比較して受信電力が大きくなる遮蔽地点ほど重みを掛けて加重平均をとることで、前記平均値を算出することが好ましい。 In the position detection device, the vehicle position determination unit includes the GPS signal acquired by the GPS receiver among the shielding points included in the set determined to be high by the reliability determination unit. It is preferable that the average value is calculated by applying a weighted average to the shielded points where the received power is higher than the received power at the respective shielded points, and the received power is weighted.
上記位置検出装置において、前記車両位置決定部は、前記信頼性判定部により前記信頼性が高いと判定された前記集合に含まれる各遮蔽地点のうち、前記GPS受信機により取得された前記GPS信号の受信電力の電力変化が、当該各遮蔽地点の受信電力の電力変化と比較して電力変化が急激に変化する遮蔽地点ほど重みを掛けて加重平均をとることで、前記平均値を算出することが好ましい。 In the position detection device, the vehicle position determination unit includes the GPS signal acquired by the GPS receiver among the shielding points included in the set determined to be high by the reliability determination unit. The average value is calculated by applying a weighted average to the shielded points where the power change of the received power of the shielded power point changes more rapidly than the power change of the received power at each shielded point. Is preferred.
上記位置検出装置において、前記3次元地図データは、市街地または郊外を示す走行環境情報を更に含み、前記記憶部に記憶された前記3次元地図データ、および、前記GPS受信機により受信された前記GPS信号に基づく自車位置に基づいて、現在の走行環境が前記市街地または前記郊外であるかを判定し、前記現在の走行環境が前記郊外であると判定された場合、前記遮蔽区間算出部、前記遮蔽地点測定部、前記車両位置検出部の処理を停止する処理停止部、を更に備えたことが好ましい。 In the position detection device, the three-dimensional map data further includes traveling environment information indicating an urban area or a suburb, the three-dimensional map data stored in the storage unit, and the GPS received by the GPS receiver. Based on the position of the vehicle based on the signal, it is determined whether the current driving environment is the city area or the suburbs, and if the current driving environment is determined to be the suburbs, the shielding section calculation unit, It is preferable to further include a shielding point measurement unit and a processing stop unit that stops the processing of the vehicle position detection unit.
上記位置検出装置において、前記GPS受信機により取得された前記各GPS信号の受信電力が、それぞれ前記所定閾値以下の状態から当該所定閾値よりも大きくなった地点を回復地点として測定する回復地点測定部、を更に備え、前記車両位置検出部は、前記回復地点測定部により測定された複数の回復地点のうち任意の基点と他の各回復地点との位置関係を、前記GPS信号に基づいた予測距離と、前記車両の距離に関する検出値に基づいた実測距離として求め、各回復地点に対応する前記予測距離と前記実測距離との比較結果に基づいて信頼性が高いと判定された前記基点の回復地点を前記車両の位置として検出することが好ましい。 In the position detection device, a recovery point measurement unit that measures a point where the received power of each GPS signal acquired by the GPS receiver is greater than the predetermined threshold from a state equal to or less than the predetermined threshold, as a recovery point The vehicle position detection unit further includes a predicted distance based on the GPS signal based on the positional relationship between an arbitrary base point and each other recovery point among the plurality of recovery points measured by the recovery point measurement unit. And a recovery point of the base point determined to be highly reliable based on a comparison result between the predicted distance corresponding to each recovery point and the actual measurement distance. Is preferably detected as the position of the vehicle.
また、本発明の運転支援装置は、上記記載の位置検出装置により検出された前記車両の位置に基づいて、前記複数のGPS衛星から送信されるGPS信号が完全に遮蔽される完全遮蔽場所、またはGPS衛星捕捉数が所定数未満の場所における自車位置を計算し、当該計算した自車位置を用いて運転支援を実行することを特徴とする。 Further, the driving support device of the present invention is a completely shielded place where GPS signals transmitted from the plurality of GPS satellites are completely shielded based on the position of the vehicle detected by the position detector described above, or The present invention is characterized in that a vehicle position at a place where the number of GPS satellites captured is less than a predetermined number is calculated, and driving assistance is executed using the calculated vehicle position.
また、本発明の位置検出方法は、複数のGPS衛星から送信されるGPS信号を受信し、受信したGPS信号から、各GPS信号の受信電力、および、各GPS衛星の衛星位置を取得するGPS受信機と、建築物の位置情報および形状情報を含む3次元地図データを記憶する記憶部と、制御部と、を備えた位置検出装置において実行される位置検出方法であって、前記制御部において実行される、前記GPS受信機により取得された前記各GPS衛星の衛星位置、および、前記記憶部に記憶された前記3次元地図データに基づいて、各GPS衛星から送信されるGPS信号が車両の走行経路周辺に存在する建築物により遮蔽される遮蔽区間を、前記車両の走行経路上で算出する遮蔽区間算出ステップと、前記遮蔽区間算出ステップにて算出された前記遮蔽区間内で、前記GPS受信機により取得された前記各GPS信号の受信電力がそれぞれ所定閾値以下となった地点を遮蔽地点として測定する遮蔽地点測定ステップと、前記遮蔽地点測定ステップにて測定された複数の遮蔽地点のうち任意の基点と他の各遮蔽地点との位置関係を、前記GPS信号に基づいた予測距離と、前記車両の距離に関する検出値に基づいた実測距離として求め、各遮蔽地点に対応する前記予測距離と前記実測距離との比較結果に基づいて信頼性が高いと判定された前記基点の遮蔽地点を前記車両の位置として検出する車両位置検出ステップと、を含むことを特徴とする。 Further, the position detection method of the present invention receives GPS signals transmitted from a plurality of GPS satellites, and acquires the received power of each GPS signal and the satellite position of each GPS satellite from the received GPS signal. A position detection method that is executed in a position detection device that includes a machine, a storage unit that stores 3D map data including position information and shape information of a building, and a control unit, and is executed in the control unit On the basis of the satellite position of each GPS satellite acquired by the GPS receiver and the three-dimensional map data stored in the storage unit, the GPS signal transmitted from each GPS satellite is Calculated by a shielding section calculating step for calculating a shielding section shielded by a building existing around the route on the travel route of the vehicle and the shielding section calculating step. In the shielding section, a shielding point measuring step for measuring a point where the received power of each GPS signal acquired by the GPS receiver is a predetermined threshold value or less as a shielding point, and the shielding point measuring step The positional relationship between an arbitrary base point and the other shielding points among the plurality of shielding points measured is obtained as an estimated distance based on the GPS signal and an actually measured distance based on a detection value related to the distance of the vehicle. A vehicle position detecting step of detecting, as a position of the vehicle, a shielding point of the base point that is determined to be highly reliable based on a comparison result between the predicted distance corresponding to a shielding point and the actually measured distance. Features.
本発明にかかる位置検出装置、位置検出方法、及び運転支援装置は、検出される車両の位置誤差が生じる可能性を低減し、車両の位置を高精度に検出することができるという効果を奏する。 The position detection device, the position detection method, and the driving support device according to the present invention have an effect of reducing the possibility of occurrence of a detected position error of the vehicle and detecting the position of the vehicle with high accuracy.
以下に、本発明にかかる位置検出装置、位置検出方法、及び運転支援装置の実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記の実施形態における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。 Hereinafter, embodiments of a position detection device, a position detection method, and a driving support device according to the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.
〔実施形態〕
本発明にかかる位置検出システムの構成について図1〜図8を参照しながら説明する。図1は、本発明にかかる位置検出システムの構成の一例を示すブロック図である。図2は、車両の走行経路周辺に存在する建築物の一例を示す図である。図3は、GPS衛星から送信されるGPS信号が建築物により遮蔽される遮蔽区間の一例を示す図である。図4は、GPS信号の受信電力が所定閾値以下となる遮蔽地点の一例を示す図である。図5は、基点以外の各遮蔽地点を基点側へ移動させて作成される遮蔽地点の分布の一例を示す図である。図6は、信頼性が高いと判定される複数の遮蔽地点、および、信頼性が低いと判定される外れ値を含む遮蔽地点の分布の一例を示す図である。図7は、全ての遮蔽地点が信頼性が低いと判定される遮蔽地点の分布の一例を示す図である。図8は、GPS信号の受信電力が所定閾値より大きくなる回復地点の一例を示す図である。
Embodiment
The configuration of the position detection system according to the present invention will be described with reference to FIGS. FIG. 1 is a block diagram showing an example of the configuration of a position detection system according to the present invention. FIG. 2 is a diagram illustrating an example of a building existing around the travel route of the vehicle. FIG. 3 is a diagram illustrating an example of a shielding section in which a GPS signal transmitted from a GPS satellite is shielded by a building. FIG. 4 is a diagram illustrating an example of a shielding point where the received power of the GPS signal is equal to or less than a predetermined threshold. FIG. 5 is a diagram illustrating an example of the distribution of shielding points created by moving each shielding point other than the base point to the base point side. FIG. 6 is a diagram illustrating an example of a distribution of shielding points including a plurality of shielding points determined to have high reliability and outliers determined to have low reliability. FIG. 7 is a diagram illustrating an example of a distribution of shielding points at which all shielding points are determined to have low reliability. FIG. 8 is a diagram illustrating an example of a recovery point where the received power of the GPS signal is greater than a predetermined threshold.
図1において、符号10は車両であり、符号11はECU(制御部としての電子制御ユニット)であり、符号12はGPS信号を受信するGPS受信機であり、符号13は、車両10に搭載された各種センサに接続された伝送路から構成される車両情報網(CAN:Control Area Network)であり、符号14は画像情報を出力するディスプレイであり、符号15は音声情報を出力するスピーカであり、符号16はECU11の処理に必要な各種データを記憶する記憶部であり、符号20−1〜3は、車両10にGPS信号を配信するGPS(Global Positioning System:全地球測位システム)衛星である。また、図1において、符号11aは遮蔽区間算出部であり、符号11bは遮蔽地点測定部であり、符号11cは車両位置検出部であり、符号11dは比較部であり、符号11eは信頼性判定部であり、符号11fは車両位置決定部であり、符号11gは処理停止部であり、符号11hは回復地点測定部である。本実施形態において、位置検出装置は、ECU11、GPS受信機12、および、記憶部16から構成される。
In FIG. 1,
ここで、図1において、ECU11は、車両10に搭載された電子制御ユニットであり、GPS受信機12、車両情報網13、および、記憶部16等から得られる各種データに基づいて車両10の位置情報を少なくとも含む出力データを生成し、当該出力データをディスプレイ14およびスピーカ15等を介して出力する機能を有する。ここで、ECU11は、遮蔽区間算出部11a、遮蔽地点測定部11b、車両位置検出部11c、処理停止部11g、および、回復地点測定部11hを備える。車両位置検出部11cは、比較部11d、信頼性判定部11e、車両位置決定部11fを更に備える。
Here, in FIG. 1, an ECU 11 is an electronic control unit mounted on the
ECU11のうち、遮蔽区間算出部11aは、GPS受信機12により取得された各GPS衛星20−1〜3の衛星位置、および、記憶部16に記憶された、建築物の位置情報および形状情報を含む3次元地図データ16aに基づいて、各GPS衛星20−1〜3から送信されるGPS信号が車両10の走行経路周辺に存在する建築物により遮蔽される遮蔽区間を、車両10の走行経路上で算出する遮蔽区間算出手段である。本実施形態において、車両10の走行経路は、例えば後述する経路探索手段により探索される車両10の出発地から目的地までの経路を意味する。走行経路周辺に存在する建築物とは、当該走行経路から所定距離内に存在する建築物を意味し、例えば、高層ビル、トンネル等のGPS信号を遮蔽する遮蔽物となり得る建築物を含む。遮蔽区間算出部11aは、車両10とGPS衛星20とを結ぶ線上に建築物が存在するか否かを判定し、車両10とGPS衛星20とを結ぶ線上に建築物が存在する走行経路上の所定区間を、遮蔽区間として算出する。
In the ECU 11, the shielding section calculation unit 11 a obtains the satellite position of each GPS satellite 20-1 to 3 acquired by the GPS receiver 12, and the position information and shape information of the building stored in the storage unit 16. Based on the three-dimensional map data 16a included, the shielding section where the GPS signals transmitted from the GPS satellites 20-1 to 20-3 are shielded by the buildings existing around the traveling route of the
例えば、図2に示すように、遮蔽区間算出部11aは、3次元地図データ16aから車両10の走行経路周辺に存在する遮蔽物となり得る建築物として高層ビルやトンネルの存在を事前に確認する。そして、遮蔽区間算出部11aは、遮蔽区間の候補として、確認した高層ビルに囲まれた領域aやトンネル付近の領域bを抽出する。次いで、図3に示すように、建築物としてトンネルを一例に説明すると、遮蔽区間算出部11aは、抽出したトンネル付近の領域bについて、各GPS衛星20−1〜3の遮蔽区間を算出する。図3では、説明を簡単にするため、1つのGPS衛星20について遮蔽区間を算出する例について説明する。遮蔽区間算出部11aは、GPS受信機12により取得されたGPS衛星20の衛星位置と、車両10の走行経路上の領域b内に存在するトンネルの位置情報および形状情報に基づいて、GPS衛星20から送信されるGPS信号がトンネルにより遮蔽される遮蔽区間を走行経路上で幾何的に計算する。
For example, as shown in FIG. 2, the shielding section calculation unit 11a confirms in advance the existence of a high-rise building or tunnel as a building that can be a shielding object existing around the travel route of the
図1に戻り、遮蔽地点測定部11bは、遮蔽区間算出部11aにより算出された遮蔽区間内で、GPS受信機12により取得された各GPS信号の受信電力がそれぞれ所定閾値以下となった地点を遮蔽地点として測定する遮蔽地点測定手段である。本実施形態において、所定閾値は、予め測定された通常時の受信電力と遮蔽時の受信電力との中間値となる検出閾値であり、記憶部16に記憶されている。 Returning to FIG. 1, the shielding point measuring unit 11b determines a point where the received power of each GPS signal acquired by the GPS receiver 12 is equal to or less than a predetermined threshold within the shielding interval calculated by the shielding interval calculation unit 11a. It is a shielding point measuring means for measuring as a shielding point. In the present embodiment, the predetermined threshold is a detection threshold that is an intermediate value between the normal received power and the shielded received power measured in advance, and is stored in the storage unit 16.
例えば、図4に示すように、遮蔽地点測定部11bは、走行経路を走行中の車両10のGPS受信機12により取得された対象のGPS衛星20から送信されるGPS信号の受信電力を監視し、検出閾値として予め測定された所定閾値以下となった電力低下タイミングを検出する。つまり、遮蔽地点測定部11bは、GPS信号の受信電力が所定閾値以下となったか否かを監視することで、対象のGPS衛星20から送信されるGPS信号の直接波が遮蔽物により遮蔽されたか否かを判定する。そして、遮蔽地点測定部11bは、受信電力が所定閾値以下となった電力低下タイミングを遮蔽区間に進入したタイミングと判断し、この遮蔽区間進入タイミングにて車両10が遮蔽区間に進入した地点を遮蔽地点として測定する。具体的には、遮蔽地点測定部11bは、遮蔽区間進入タイミングが検出された時点の直前で測定された、GPS信号に基づく車両10の位置を遮蔽地点として測定する。遮蔽地点測定部11bは、この遮蔽地点測定処理を各GPS衛星20−1〜3について実行することで、各GPS衛星20−1〜3にそれぞれ対応する複数の遮蔽地点を測定する。
For example, as shown in FIG. 4, the shielding point measurement unit 11b monitors the received power of the GPS signal transmitted from the
図1に戻り、車両位置検出部11cは、遮蔽地点測定部11bにより測定された複数の遮蔽地点のうち任意の基点と他の各遮蔽地点との位置関係を、GPS信号に基づいた予測距離と、車両10の距離に関する検出値に基づいた実測距離として求め、各遮蔽地点に対応する予測距離と実測距離との比較結果に基づいて信頼性が高いと判定された基点の遮蔽地点を車両10の位置として検出する車両位置検出手段である。本実施形態において、遮蔽地点測定部11bにより測定された複数の遮蔽地点から1つの遮蔽地点を基点として決定し、決定した基点以外の各遮蔽地点を基点側へ近づけた状態で、当該基点と各遮蔽地点との差分が所定誤差以下であるか否かを比較し、比較した結果に基づいて信頼性が高いと判定された基点の遮蔽地点を車両10の位置として検出する。車両位置検出部11cの処理の詳細については、以下、車両位置検出部11cが更に備える比較部11d、信頼性判定部11e、および、車両位置決定部11fの処理の順で説明する。
Returning to FIG. 1, the vehicle position detection unit 11 c determines the positional relationship between an arbitrary base point and each other shielding point among the plurality of shielding points measured by the shielding point measurement unit 11 b and the predicted distance based on the GPS signal. The measured shielding distance based on the detection value related to the distance of the
ここで、比較部11dは、各遮蔽地点に対応する予測距離と実測距離との差分を求める比較手段である。具体的には、比較部11dは、本実施形態において、遮蔽地点測定部11bにより測定された複数の遮蔽地点から1つの遮蔽地点を基点として決定し、決定した基点と当該基点以外の各遮蔽地点との間の距離を、GPS信号から予測距離として測定し、かつ、車両10の車速に関する検出値から実測距離として測定し、測定した各予測距離に対して対応する各実測距離を、基点以外の各遮蔽地点が基点側へ近づくように加算あるいは減算する。
Here, the comparison unit 11d is a comparison unit that obtains a difference between the predicted distance corresponding to each shielding point and the actually measured distance. Specifically, in this embodiment, the comparison unit 11d determines one shielding point as a base point from a plurality of shielding points measured by the shielding point measurement unit 11b, and each shielding point other than the determined base point and the base point. Is measured as a predicted distance from a GPS signal, and is measured as a measured distance from a detected value related to the vehicle speed of the
本実施形態において、比較部11dは、遮蔽地点測定部11bにより測定された複数の遮蔽地点から1つの遮蔽地点を基点として決定し、決定した基点と当該基点以外の各遮蔽地点との間の距離を、GPS信号から予測距離として測定し、かつ、車両10の車速に関する検出値として車速パルスから実測距離として測定し、当該測定した各予測距離に対して対応する各実測距離を、基点以外の各遮蔽地点が基点側へ近づくように加算あるいは減算することで、基点以外の各遮蔽地点を基点側へ移動させて、複数の遮蔽地点の分布を作成する。なお、車両10の車速に関する検出値(例えば、車速パルス等)は、車両情報網13に接続された車速センサ(図示せず)により取得されるものとする。
In the present embodiment, the comparison unit 11d determines one shielding point as a base point from the plurality of shielding points measured by the shielding point measurement unit 11b, and the distance between the determined base point and each shielding point other than the base point Is measured as a predicted distance from the GPS signal, and is measured as a measured distance from the vehicle speed pulse as a detected value related to the vehicle speed of the
より具体的には、遮蔽地点測定部11bにより3つの遮蔽地点が測定された場合を例に説明すると、比較部11dは、3つの遮蔽地点のうち車両10に最も近い遮蔽地点を基点とした場合、決定した基点と当該基点以外の2つの遮蔽地点との間の距離を予測距離および実測距離で測定して、当該測定した各予測距離に対して対応する各実測距離を減算することで、基点以外の2つの遮蔽地点を基点側へ移動させて、3つの遮蔽地点の分布を作成する。また、比較部11dは、3つの遮蔽地点のうち車両10に最も遠い遮蔽地点を基点とした場合、決定した基点と当該基点以外の2つの遮蔽地点との間の距離を予測距離および実測距離で測定して、当該測定した各予測距離に対して対応する各実測距離を加算することで、基点以外の2つの遮蔽地点を基点側へ移動させて、3つの遮蔽地点の分布を作成する。また、比較部11dは、3つの遮蔽地点のうち中間の遮蔽地点を基点とした場合、決定した基点と車両10に最も近い遮蔽地点との間の距離を予測距離および実測距離で測定して、当該測定した予測距離に対して実測距離を加算し、かつ、決定した基点と車両10に最も遠い遮蔽地点との間の距離を予測距離および実測距離で測定して、当該測定した予測距離に対して実測距離を減算することで、基点以外の2つの遮蔽地点を基点側へ移動させて、3つの遮蔽地点の分布を作成する。
More specifically, the case where three shielding points are measured by the shielding point measurement unit 11b will be described as an example. The comparison unit 11d uses the shielding point closest to the
例えば、図5に示すように、遮蔽地点測定部11bにより3つのGPS衛星20−1〜3にそれぞれ対応する3つの遮蔽地点1〜3が測定された場合を例に説明する。まず、比較部11dは、車両10の走行経路上で測定された3つの遮蔽地点1〜3のうち車両10に最も近い、GPS衛星20−1から送信されるGPS信号1がトンネルの建築物により遮蔽された遮蔽地点1を基点として決定する。そして、比較部11dは、この基点として決定した遮蔽地点1と、GPS衛星20−2から送信されるGPS信号2がトンネルの建築物により遮蔽された遮蔽地点2との間の遮蔽地点間距離を、GPS信号に基づき予測距離として測定し、かつ、車速パルスに基づき実測距離として測定する。また、比較部11dは、この基点として決定した遮蔽地点1と、GPS衛星20−3から送信されるGPS信号3がトンネルの建築物により遮蔽された遮蔽地点3との間の遮蔽地点間距離を、GPS信号に基づき予測距離として測定し、かつ、車速パルスに基づき実測距離として測定する。
For example, as illustrated in FIG. 5, a case where three
次いで、図5に示すように、遮蔽地点測定部11bは、遮蔽地点1と遮蔽地点2との間の遮蔽地点間距離に対応する車速パルスに基づく実測距離、および、遮蔽地点1と遮蔽地点3との間の遮蔽地点間距離に対応する車速パルスに基づく実測距離をそれぞれ、対応する各GPS信号に基づく予測距離から減算することで、2つの遮蔽地点2および遮蔽地点3を遮蔽地点1側へ移動させて、3つの遮蔽地点1〜3の分布を作成する。このように、比較部11dの処理により、各GPS衛星20−1〜3にそれぞれ対応する遮蔽地点1〜3を、遮蔽地点1を基点に揃えることで、仮想的に同じ地点で測定されたものとして次の処理において各遮蔽地点1〜3同士の差分を比較することができる。
Next, as shown in FIG. 5, the shielding point measurement unit 11 b performs the measurement distance based on the vehicle speed pulse corresponding to the distance between the shielding points between the
図1に戻り、信頼性判定部11eは、検出値に基づいた所定誤差以下となる差分の遮蔽地点の集合を信頼性が高いと判定し、所定誤差よりも大きくなる遮蔽地点を外れ値として信頼性が低いと判定する信頼性判定手段である。具体的には、信頼性判定部11eは、比較部11dにより基点以外の各遮蔽地点を基点側へ近づけた状態の複数の遮蔽地点に基づいて、基点と各遮蔽地点間の差分を比較し、当該差分が所定誤差以下となる遮蔽地点の集合を信頼性が高いと判定し、差分が所定誤差よりも大きくなる遮蔽地点を外れ値として信頼性が低いと判定する。本実施形態において、信頼性判定部11eは、比較部11dにより作成された複数の遮蔽地点の分布上で基点と各遮蔽地点間の差分を比較し、当該差分がパルス誤差以下の複数の遮蔽地点の集合を信頼性が高いと判定し、差分がパルス誤差よりも大きい遮蔽地点を外れ値として信頼性が低いと判定する信頼性判定手段である。ここで、車両10の車速に関する検出値の例を、車速パルスとした場合、検出値に基づいた所定誤差は、車速パルスを取得する際に想定される誤差であり、例えば、GPSによるスケール補正が完了している場合は1%未満程度である。
Returning to FIG. 1, the reliability determination unit 11 e determines that a set of difference shielding points that are equal to or less than a predetermined error based on the detection value is highly reliable, and trusts a shielding point that is larger than the predetermined error as an outlier. This is a reliability determination unit that determines that the reliability is low. Specifically, the reliability determination unit 11e compares the difference between the base point and each shielding point based on a plurality of shielding points in a state where each shielding point other than the base point is brought closer to the base point side by the comparison unit 11d. A set of shielding points where the difference is less than or equal to a predetermined error is determined to be highly reliable, and a shielding point where the difference is greater than a predetermined error is determined as an outlier and the reliability is determined to be low. In the present embodiment, the reliability determination unit 11e compares the difference between the base point and each shielding point on the distribution of the plurality of shielding points created by the comparison unit 11d, and a plurality of shielding points whose difference is equal to or less than the pulse error. Is a reliability determination unit that determines that the reliability of the set is high, and determines that the reliability is low by using a shielding point whose difference is larger than the pulse error as an outlier. Here, when the example of the detection value related to the vehicle speed of the
例えば、図6に示すように、信頼性判定部11eは、基点と各遮蔽地点間の差分を比較して、当該差分がパルス誤差以下の複数の遮蔽地点の集合のみを残し、当該差分がパルス誤差よりも大きい遮蔽地点については外れ値として除外する。通常、可視衛星は10個程度存在するため、分布上の遮蔽地点も10箇所程度存在する。そのため、本実施形態において、信頼性判定部11eは、全体の約半分に対応する各遮蔽地点と基点との間の差分がパルス誤差以下である場合は、集合を形成していると判断するものとする。このように、信頼性判定部11eの処理により、集合については想定どおり検出できたものとして信頼性が高いと判定して残す。一方、外れ値については反射波を誤検知したか意図しない場所での遮蔽があったもとのとして信頼性が低いと判定して除外する。また、図7に示すように、信頼性判定部11eは、全ての遮蔽地点がパルス誤差よりも大きい場合、遮蔽物の位置や形状が想定通りではなく、想定した場所で遮蔽されていないと判断する。この場合、信頼性判定部11eは、信頼性が低いと判定し、次の処理で行う車両位置検出処理を中止する。これにより、次の処理で検出される車両の位置誤差が生じる可能性を低減させることができる。 For example, as illustrated in FIG. 6, the reliability determination unit 11 e compares the difference between the base point and each shielding point, leaves only a set of a plurality of shielding points whose difference is equal to or less than the pulse error, and the difference is a pulse. Occlusion points larger than the error are excluded as outliers. Usually, there are about 10 visible satellites, so there are about 10 shielding points in the distribution. Therefore, in this embodiment, the reliability determination unit 11e determines that a set is formed when the difference between each shielding point and the base point corresponding to about half of the whole is equal to or less than the pulse error. And As described above, the process of the reliability determination unit 11e determines that the set has been detected as expected and determines that the reliability is high. On the other hand, outliers are excluded because they are judged to be low in reliability because the reflected wave is erroneously detected or there is shielding in an unintended place. Moreover, as shown in FIG. 7, when all the shielding points are larger than the pulse error, the reliability determination unit 11e determines that the position and shape of the shielding object are not as expected and are not shielded at the assumed location. To do. In this case, the reliability determination unit 11e determines that the reliability is low, and stops the vehicle position detection process performed in the next process. Thereby, possibility that the position error of the vehicle detected by the next processing will occur can be reduced.
図1に戻り、車両位置決定部11fは、信頼性判定部11eにより信頼性が高いと判定された集合に含まれる各複数の遮蔽地点の平均値を算出し、算出した当該平均値に対応する地点を、車両10の位置として決定する車両位置決定手段である。ここで、上述の図6に示したように、車両位置決定部11fは、信頼性判定部11eにより信頼性が高いと判定された集合が存在する場合、当該集合に含まれる各複数の遮蔽地点の平均値を算出する。一方、上述の図7に示したように、車両位置決定部11fは、集合が存在しない場合はこれらの処理を実行しない。これにより、検出される車両の位置誤差が生じる可能性が低い遮蔽地点の集合、すなわち信頼性が高いと判定された遮蔽地点の集合のみから、車両の位置を高精度に決定することができる。
Returning to FIG. 1, the vehicle
ここで、受信電力が大きい程、反射や回折波ではなく直接波を受信できている可能性が低いと考えられる。そこで、本実施形態において、車両位置決定部11fは、信頼性判定部11eにより信頼性が高いと判定された集合に含まれる各遮蔽地点のうち、GPS受信機12により取得されたGPS信号の受信電力が、当該各遮蔽地点の受信電力と比較して受信電力が大きくなる遮蔽地点ほど重みを掛けて加重平均をとることで、平均値を算出してもよい。これにより、受信電力が大きい遮蔽地点により近い平均値を車両の位置として決定することができ、車両位置検出の精度と信頼性を向上させることができる。
Here, it is considered that the higher the received power, the lower the possibility of receiving a direct wave rather than a reflected or diffracted wave. Therefore, in the present embodiment, the vehicle
また、電力変化が急峻なほど検出誤差分が小さいと考えられる。そこで、本実施形態において、車両位置決定部11fは、信頼性判定部11eにより信頼性が高いと判定された集合に含まれる各遮蔽地点のうち、GPS受信機12により取得されたGPS信号の受信電力の電力変化が、当該各遮蔽地点の受信電力の電力変化と比較して電力変化が急激に変化する遮蔽地点ほど重みを掛けて加重平均をとることで、平均値を算出してもよい。これにより、電力変化が急峻な遮蔽地点により近い平均値を車両の位置として決定することができ、車両位置検出の精度と信頼性を向上させることができる。
Further, it is considered that the detection error is smaller as the power change is steeper. Therefore, in the present embodiment, the vehicle
また、処理停止部11gは、記憶部16に記憶された、市街地または郊外を示す走行環境情報を更に含む3次元地図データ16a、および、GPS受信機12により受信されたGPS信号に基づく自車位置に基づいて、現在の走行環境が市街地または郊外であるかを判定し、現在の走行環境が郊外であると判定された場合、遮蔽区間算出部11a、遮蔽地点測定部11b、車両位置検出部11cの処理を停止する処理停止手段である。 In addition, the processing stop unit 11g includes the three-dimensional map data 16a further including travel environment information indicating a city area or a suburb stored in the storage unit 16, and the vehicle position based on the GPS signal received by the GPS receiver 12. Based on the above, it is determined whether the current driving environment is an urban area or a suburb, and when it is determined that the current driving environment is a suburb, the shielding section calculation unit 11a, the shielding point measurement unit 11b, and the vehicle position detection unit 11c This is a process stop means for stopping the process.
ここで、本実施形態における遮蔽区間算出部11a、遮蔽地点測定部11b、車両位置検出部11cによる位置検出処理の精度は、記憶部16に記憶された3次元地図データ16aの精度の高さに伴って上昇すると考えられる。通常、3次元地図データの整備は、都心等の市街地から行われ、また、市街地は地物等の遮蔽物が多く、GPS精度が劣化する傾向がある。一方、市街地から離れた郊外等の場所では、市街地とは逆の傾向になる。そのため、位置検出処理の精度は、郊外よりも市街地のほうが効果が高い。そこで、本実施形態においては、処理停止部11gの処理により、郊外等の位置検出処理の精度が低いと考えられる状況では実施しないように制御することで、効果が低い位置検出処理が実行される状況を低減することができる。 Here, the accuracy of the position detection processing by the shielding section calculation unit 11a, the shielding point measurement unit 11b, and the vehicle position detection unit 11c in the present embodiment is the high accuracy of the three-dimensional map data 16a stored in the storage unit 16. It is thought that it rises with it. Normally, the maintenance of 3D map data is performed from an urban area such as the center of a city, and there are many shielding objects such as features in the urban area, and the GPS accuracy tends to deteriorate. On the other hand, in a place such as a suburb away from the city area, the tendency is opposite to that in the city area. Therefore, the accuracy of the position detection process is more effective in the urban area than in the suburbs. Therefore, in the present embodiment, the position detection process having a low effect is executed by performing control so as not to be performed in a situation where the accuracy of the position detection process in the suburbs or the like is considered to be low by the process of the process stop unit 11g. The situation can be reduced.
また、回復地点測定部11hは、GPS受信機12により取得された各GPS信号の受信電力が、それぞれ所定閾値以下の状態から当該所定閾値よりも大きくなった地点を回復地点として測定する回復地点測定手段である。 Further, the recovery point measurement unit 11h measures a recovery point as a recovery point by measuring a point where the received power of each GPS signal acquired by the GPS receiver 12 is greater than the predetermined threshold value from a state below the predetermined threshold value. Means.
例えば、図8に示すように、回復地点測定部11hは、走行経路を走行中の車両10のGPS受信機12により取得された対象のGPS衛星20から送信されるGPS信号の受信電力を監視し、検出閾値として予め測定された所定閾値より大きくなった電力上昇タイミングを検出する。つまり、回復地点測定部11hは、GPS信号の受信電力が所定閾値より大きくなったか否かを監視することで、対象のGPS衛星20から送信されるGPS信号の直接波を受信できたか否かを判定する。そして、遮蔽地点測定部11bは、受信電力が所定閾値より大きくなった電力上昇タイミングを遮蔽区間を退出したタイミングと判断し、この遮蔽区間退出タイミングにて車両10が遮蔽区間に退出した地点を回復地点として測定する。具体的には、回復地点測定部11hは、遮蔽区間退出タイミングが検出された時点の直後で測定された、GPS信号に基づく車両10の位置を回復地点として測定する。回復地点測定部11hは、この回復地点測定処理を各GPS衛星20−1〜3について実行することで、各GPS衛星20−1〜3にそれぞれ対応する複数の回復地点を測定する。これにより、上述の車両位置検出部11cは、回復地点測定部11hにより測定された複数の回復地点のうち任意の基点と他の各回復地点との位置関係を、GPS信号に基づいた予測距離と、車両10の距離に関する検出値に基づいた実測距離として求め、各回復地点に対応する予測距離と実測距離との比較結果に基づいて信頼性が高いと判定された基点の回復地点を車両10の位置として検出することができる。その結果、位置検出処理を、複数の遮蔽地点の分布だけでなく、複数の回復地点の分布に基づいても実行することができるので、位置検出処理の実行機会が増加し、車両位置検出の精度および信頼性を更に向上させることができる。
For example, as shown in FIG. 8, the recovery point measurement unit 11h monitors the received power of the GPS signal transmitted from the
その他、ECU11は、出発地と目的地とを少なくとも含む経路探索条件に基づいて、道路ネットワークデータを更に含む3次元地図データ16aを用いて、出発地から目的地までの車両10の走行経路を探索する経路探索手段を備えていてもよい。
In addition, the ECU 11 searches for a travel route of the
また、図1において、GPS受信機(GNSS受信機)12は、GPS衛星20−1〜3から配信されるGPS信号を受信する通信手段である。本実施形態において、GPS受信機12は、複数のGPS衛星20−1〜3から送信されるGPS信号を受信し、受信したGPS信号から、各GPS信号の受信電力、および、各GPS衛星の衛星位置を取得する。そして、GPS受信機12は、取得した各GPS信号の受信電力および各GPS衛星の衛星位置を、ECU11に提供する。 In FIG. 1, a GPS receiver (GNSS receiver) 12 is a communication unit that receives GPS signals distributed from GPS satellites 20-1 to 20-3. In the present embodiment, the GPS receiver 12 receives GPS signals transmitted from the plurality of GPS satellites 20-1 to 20-3, and receives the received power of each GPS signal and the satellite of each GPS satellite from the received GPS signal. Get the position. Then, the GPS receiver 12 provides the ECU 11 with the received power of each acquired GPS signal and the satellite position of each GPS satellite.
車両情報網13は、車両10に搭載された各種センサに接続された伝送路から構成される車載ネットワークである。車両情報網13は、各種センサにて検知される車両10の状態を示す車両状態情報を、ECU11に提供する。ここで、各種センサは、例えば、方位センサ、車速センサ、アクセル開度センサ、ブレーキセンサ、周辺監視センサ、方向指示スイッチなどを含む。
The
ディスプレイ14は、ECU11により提供される情報を表示する表示手段である。例えば、ディスプレイ14は、機器メータやナビゲーションを表示するディスプレイであってもよい。スピーカ15は、ECU11の処理により提供される情報を音声出力する音声出力手段である。本実施形態において、これらディスプレイ14およびスピーカ15は、ECU11とともに、運転支援装置として構成されてもよい。例えば、運転支援装置は、上述のように位置検出装置により検出された車両10の位置に基づいて、複数のGPS衛星20−1〜3から送信されるGPS信号が完全に遮蔽される完全遮蔽場所における自車位置を計算し、当該計算した自車位置を用いて運転支援を実行する。運転支援は、例えば、計算した自車位置に基づき車両10に対する障害物(先行車や対向車等)に関して注意喚起を促す情報を提供する支援であってもよいし、計算した自車位置に基づき周囲の走行環境等を地図上でナビゲーションする支援であってもよい。また、ECU11は、図示しない車両制御装置と接続されていてもよく、車両制御装置はECU11とともに運転支援装置として構成されてもよい。この場合、運転支援は、計算した自車位置に基づき障害物を回避するための車両制御する支援であってもよい。
The display 14 is a display unit that displays information provided by the ECU 11. For example, the display 14 may be a display that displays a device meter or navigation. The
記憶部16は、データを記憶するためのものであり、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、またはハードディスクなどである。本実施形態において、記憶部16は、建築物の位置情報および形状情報を含む3次元地図データ16aを少なくとも記憶する。建築物の位置情報は、緯度および経度により建築物の位置を示す情報である。建築物の形状情報は、高さおよび幅により建築物の形状を示す情報である。ここで、3次元地図データ16aは、市街地または郊外を示す走行環境情報を更に含んでいてもよい。また、3次元地図データ16aは、複数ノードおよび当該ノードを接続するリンクから構成される道路ネットワークデータを更に含んでいてもよい。本実施形態において、記憶部16に記憶される3次元地図データ16aは、車両10と通信可能に接続された外部機器(地図データベースサーバ等)から定期的に取得されて情報更新される。
The storage unit 16 is for storing data, and is, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), or a hard disk. In this embodiment, the memory | storage part 16 memorize | stores at least the three-dimensional map data 16a containing the positional information and shape information of a building. The position information of the building is information indicating the position of the building by latitude and longitude. The shape information of the building is information indicating the shape of the building by the height and the width. Here, the three-dimensional map data 16a may further include traveling environment information indicating an urban area or a suburb. The three-dimensional map data 16a may further include road network data including a plurality of nodes and links connecting the nodes. In the present embodiment, the three-dimensional map data 16 a stored in the storage unit 16 is periodically acquired and updated from an external device (such as a map database server) connected to be communicable with the
また、図1において、GPS衛星20−1〜3は、所定時間ごとまたは車両10からの要求に応じて車両10にGPS信号を配信する人工衛星である。図1において、GPS衛星が3個存在する例を説明したが、GPS衛星の個数はこれに限定されない。なお、実際は10個程度の可視衛星が存在する。
In FIG. 1, GPS satellites 20-1 to 20-3 are artificial satellites that deliver GPS signals to the
以下、図9〜図12を参照し、上述した構成の位置検出システムで実行される位置検出処理について説明する。図9は、本発明にかかる位置検出システムにより実行される位置検出処理の一例を示すフローチャートである。図10は、車両位置検出処理の一例を示すフローチャートである。図11は、回復地点に基づく位置検出処理の一例を示すフローチャートである。図12は、走行環境に応じて位置検出処理の実行要否を判定する処理の一例を示すフローチャートである。なお、図9〜図12に示す各処理は、ECU11により並行して繰り返し実行されるものとする。 Hereinafter, the position detection process executed by the position detection system having the above-described configuration will be described with reference to FIGS. FIG. 9 is a flowchart showing an example of position detection processing executed by the position detection system according to the present invention. FIG. 10 is a flowchart illustrating an example of the vehicle position detection process. FIG. 11 is a flowchart illustrating an example of the position detection process based on the recovery point. FIG. 12 is a flowchart illustrating an example of processing for determining whether or not position detection processing is necessary in accordance with the traveling environment. Each process shown in FIGS. 9 to 12 is repeatedly executed by the ECU 11 in parallel.
図9に示すように、遮蔽区間算出部11aは、GPS受信機12により取得された各GPS衛星20−1〜3の衛星位置、および、記憶部16に記憶された、建築物の位置情報および形状情報を含む3次元地図データ16aに基づいて、各GPS衛星20−1〜3から送信されるGPS信号が車両10の走行経路周辺に存在する建築物により遮蔽される遮蔽区間(図3参照)を、車両10の走行経路上で算出する(ステップST−10)。 As shown in FIG. 9, the shielding section calculation unit 11 a includes the satellite positions of the GPS satellites 20-1 to 3 acquired by the GPS receiver 12, and the building position information stored in the storage unit 16 and Based on the three-dimensional map data 16a including the shape information, the GPS signal transmitted from each of the GPS satellites 20-1 to 20-3 is shielded by a building existing around the travel route of the vehicle 10 (see FIG. 3). Is calculated on the travel route of the vehicle 10 (step ST-10).
そして、遮蔽地点測定部11bは、ステップST−10において遮蔽区間算出部11aの処理により算出された遮蔽区間内で、GPS受信機12により取得された各GPS信号の受信電力がそれぞれ所定閾値以下となった地点を遮蔽地点(図4参照)として測定する(ステップST−20)。 Then, the shielding point measurement unit 11b determines that the reception power of each GPS signal acquired by the GPS receiver 12 is equal to or less than a predetermined threshold within the shielding interval calculated by the processing of the shielding interval calculation unit 11a in step ST-10. The measured point is measured as a shielding point (see FIG. 4) (step ST-20).
そして、車両位置検出部11cは、ステップST−20において遮蔽地点測定部11bの処理により測定された複数の遮蔽地点のうち任意の基点と他の各遮蔽地点との位置関係を、GPS信号に基づいた予測距離と、車両10の距離に関する検出値に基づいた実測距離として求め、各遮蔽地点に対応する予測距離と実測距離との比較結果に基づいて信頼性が高いと判定された基点の遮蔽地点を車両10の位置として検出する(ステップST−30)。その後、図9に示す位置検出処理を終了する。
And the vehicle position detection part 11c is based on the GPS signal about the positional relationship of arbitrary base points and each other shielding point among several shielding points measured by the process of the shielding point measurement part 11b in step ST-20. The shielding point of the base point determined to be highly reliable based on the comparison result between the predicted distance and the measured distance corresponding to each shielding point, which is obtained as an actually measured distance based on the predicted distance and the detected value related to the distance of the
ここで、ステップST−30において車両位置検出部11cにより実行される車両位置検出処理の詳細について、図10を参照して説明する。図10に示すように、比較部11dは、各遮蔽地点に対応する予測距離と実測距離との差分を求めることで、比較結果を生成する(ステップST−31)。具体的には、ステップST−31において、比較部11dは、本実施形態において、遮蔽地点測定部11bの処理により測定された複数の遮蔽地点から1つの遮蔽地点を基点として決定し、決定した基点と当該基点以外の各遮蔽地点との間の距離を、GPS信号から予測距離として測定し、かつ、車両10の車速に関する検出値から実測距離として測定し、測定した各予測距離に対して対応する各実測距離を、基点以外の各遮蔽地点が基点側へ近づくように加算あるいは減算することで、比較結果として複数の遮蔽地点の分布(図5参照)を生成する。
Here, the detail of the vehicle position detection process performed by the vehicle position detection part 11c in step ST-30 is demonstrated with reference to FIG. As illustrated in FIG. 10, the comparison unit 11d generates a comparison result by obtaining a difference between the predicted distance and the actually measured distance corresponding to each shielding point (step ST-31). Specifically, in step ST-31, the comparison unit 11d determines, in the present embodiment, one shielding point as a base point from a plurality of shielding points measured by the processing of the shielding point measurement unit 11b, and the determined base point And the distance between each shielding point other than the base point is measured as a predicted distance from the GPS signal, and measured as a measured distance from the detected value related to the vehicle speed of the
そして、信頼性判定部11eは、ステップST−31において比較部11dの処理により作成された比較結果に基づいて、検出値に基づいた所定誤差以下となる差分の遮蔽地点の集合を信頼性が高いと判定し、所定誤差よりも大きくなる遮蔽地点を外れ値として信頼性が低いと判定する(ステップST−32)。具体的には、ステップST−32において、信頼性判定部11eは、ステップST−31において比較部11dの処理により作成された複数の遮蔽地点の分布上で基点と各遮蔽地点間の差分を比較し、当該差分がパルス誤差以下の複数の遮蔽地点の集合(図6参照)を信頼性が高いと判定し、差分がパルス誤差よりも大きい遮蔽地点を外れ値(図6参照)として信頼性が低いと判定する(ステップST−32)。 And the reliability determination part 11e has high reliability the set of the shielding points of the difference which becomes below the predetermined error based on a detection value based on the comparison result produced by the process of the comparison part 11d in step ST-31. Then, it is determined that the shielding point that is larger than the predetermined error is an outlier and the reliability is low (step ST-32). Specifically, in step ST-32, the reliability determination unit 11e compares the difference between the base point and each shielding point on the distribution of the plurality of shielding points created by the processing of the comparison unit 11d in step ST-31. Then, it is determined that the set of a plurality of shielding points whose difference is equal to or smaller than the pulse error (see FIG. 6) is highly reliable, and the shielding point whose difference is larger than the pulse error is regarded as an outlier (see FIG. 6). It is determined that the value is low (step ST-32).
そして、車両位置決定部11fは、ステップST−32において信頼性判定部11eの処理により信頼性が高いと判定された複数の遮蔽地点の集合があるか否かを判定する(ステップST−33)。
Then, the vehicle
ステップST−33において、信頼性が高いと判定された複数の遮蔽地点の集合(図6参照)があると判定された場合(ステップST−33:Yes)、車両位置決定部11fは、ステップST−33において信頼性判定部11eの処理により信頼性が高いと判定された集合に含まれる各複数の遮蔽地点の平均値を算出し、算出した当該平均値に対応する地点を、車両の位置として決定する(ステップST−34)。
In Step ST-33, when it is determined that there is a set of a plurality of shielding points determined to have high reliability (see FIG. 6) (Step ST-33: Yes), the vehicle
ステップST−34において、車両位置決定部11fは、ステップST−33において信頼性判定部11eの処理により信頼性が高いと判定された集合に含まれる各複数の遮蔽地点のうち、GPS受信機12により取得されたGPS信号の受信電力が、当該各遮蔽地点の受信電力と比較して受信電力が大きくなる遮蔽地点ほど重みを掛けて加重平均をとることで、平均値を算出してもよい。また、ステップST−34において、車両位置決定部11fは、ステップST−33において信頼性判定部11eの処理により信頼性が高いと判定された集合に含まれる各複数の遮蔽地点のうち、GPS受信機12により取得されたGPS信号の受信電力の電力変化が、当該各遮蔽地点の受信電力の電力変化と比較して電力変化が急激に変化する遮蔽地点ほど重みを掛けて加重平均をとることで、平均値を算出してもよい。その後、図10に示す車両位置検出処理を終了する。
In step ST-34, the vehicle
ステップST−33に戻り、信頼性が高いと判定された複数の遮蔽地点の集合がない(図7参照)と判定された場合(ステップST−33:No)、車両位置決定部11fは、車両の位置を決定せずに、図10に示す車両位置検出処理を終了する。
Returning to step ST-33, when it is determined that there is no set of a plurality of shielding points determined to have high reliability (see FIG. 7) (step ST-33: No), the vehicle
続いて、図11を参照して、回復地点に基づく位置検出処理について説明する。図11に示す処理は上述の図9および図10の示した処理が実行された後に行われる。図11に示すように、回復地点測定部11hは、GPS受信機12により取得された各GPS信号の受信電力が、それぞれ所定閾値以下の状態から当該所定閾値よりも大きくなった地点を回復地点として測定する(ステップST−25)。そして、車両位置検出部11cは、ステップST−25において回復地点測定部11hの処理により測定された複数の回復地点のうち任意の基点と他の各回復地点との位置関係を、GPS信号に基づいた予測距離と、車両10の距離に関する検出値に基づいた実測距離として求め、各回復地点に対応する予測距離と実測距離との比較結果に基づいて信頼性が高いと判定された基点の回復地点を車両10の位置として検出する(ステップST−30)。具体的には、ステップST−30において、比較部11dは、ステップST−25において回復地点測定部11hの処理により測定された複数の回復地点から1つの回復地点を基点として決定し、決定した基点以外の各回復地点を基点側へ近づけた状態で、当該基点と各回復地点との差分が所定誤差以下であるか否かを比較し、比較した結果に基づいて信頼性が高いと判定された基点の回復地点を車両10の位置として検出する。
Next, the position detection process based on the recovery point will be described with reference to FIG. The process shown in FIG. 11 is performed after the process shown in FIGS. 9 and 10 is executed. As shown in FIG. 11, the recovery point measurement unit 11 h sets a point where the received power of each GPS signal acquired by the GPS receiver 12 is greater than the predetermined threshold value from a state below the predetermined threshold value as a recovery point. Measure (Step ST-25). And the vehicle position detection part 11c is based on the GPS signal about the positional relationship of arbitrary base points and each other recovery point among several recovery points measured by the process of the recovery point measurement part 11h in step ST-25. The recovery point of the base point that is obtained as an actual measurement distance based on the predicted distance and the detected value related to the distance of the
より具体的には、ステップST−30において、比較部11dは、各回復地点に対応する予測距離と実測距離との差分を求める。そして、信頼性判定部11eは、検出値に基づいた所定誤差以下となる差分の回復地点の集合を信頼性が高いと判定し、所定誤差よりも大きくなる回復地点を外れ値として信頼性が低いと判定する。そして、車両位置決定部11fは、信頼性判定部11eの処理により信頼性が高いと判定された複数の回復地点の集合があるか否かを判定する。
More specifically, in step ST-30, the comparison unit 11d obtains a difference between the predicted distance and the actually measured distance corresponding to each recovery point. Then, the reliability determination unit 11e determines that the set of recovery points of differences that are equal to or smaller than the predetermined error based on the detection value is high in reliability, and uses a recovery point that is larger than the predetermined error as an outlier and has low reliability. Is determined. Then, the vehicle
ここで、信頼性が高いと判定された複数の回復地点の集合があると判定された場合、車両位置決定部11fは、信頼性判定部11eの処理により信頼性が高いと判定された集合に含まれる各複数の回復地点の平均値を算出し、算出した当該平均値に対応する地点を、車両の位置として決定する。ここで、車両位置決定部11fは、信頼性判定部11eの処理により信頼性が高いと判定された集合に含まれる各複数の回復地点のうち、GPS受信機12により取得されたGPS信号の受信電力が、当該各回復地点の受信電力と比較して受信電力が大きくなる回復地点ほど重みを掛けて加重平均をとることで、平均値を算出してもよい。また、車両位置決定部11fは、信頼性判定部11eの処理により信頼性が高いと判定された集合に含まれる各複数の回復地点のうち、GPS受信機12により取得されたGPS信号の受信電力の電力変化が、当該各回復地点の受信電力の電力変化と比較して電力変化が急激に変化する回復地点ほど重みを掛けて加重平均をとることで、平均値を算出してもよい。その後、車両位置検出処理を終了する。一方、信頼性が高いと判定された複数の回復地点の集合がないと判定された場合、車両位置決定部11fは、車両の位置を決定せずに、車両位置検出処理を終了する。
Here, when it is determined that there is a set of a plurality of recovery points that are determined to be highly reliable, the vehicle
続いて、図12を参照して、走行環境に応じて位置検出処理の実行要否を判定する処理について説明する。図11に示す処理は、上述の図9〜図11に示した位置検出処理が実行される前に行われてもよいし、当該位置検出処理を実行中に行われてもよい。図12に示すように、処理停止部11gは、記憶部16に記憶された、市街地または郊外を示す走行環境情報を更に含む3次元地図データ16a、および、GPS受信機12により受信されたGPS信号に基づく自車位置に基づいて、現在の走行環境を判定する(ステップST−40)。そして、処理停止部11gは、ステップST−40において判定した結果に基づいて、現在の走行環境が、市街地または郊外であるかを判定する(ステップST−50)。ここで、ステップST−50において現在の走行環境が市街地であると判定された場合(ステップST−50:市街地)、処理停止部11gは、位置検出処理を停止せずに、位置検出処理を実行させる(ステップST−60)。つまり、この場合、上述の図9等に示したような、遮蔽区間算出部11a、遮蔽地点測定部11b、車両位置検出部11cによる位置検出処理が実行される。一方、ステップST−50において現在の走行環境が郊外であると判定された場合(ステップST−50:郊外)、遮蔽区間算出部11a、遮蔽地点測定部11b、車両位置検出部11cにより位置検出処理を停止する(ステップST−70)。その後、図12に示す処理を終了する。 Next, with reference to FIG. 12, a process for determining whether or not the position detection process is necessary according to the traveling environment will be described. The process illustrated in FIG. 11 may be performed before the position detection process illustrated in FIGS. 9 to 11 described above is performed, or may be performed while the position detection process is being performed. As illustrated in FIG. 12, the processing stop unit 11 g includes the three-dimensional map data 16 a further including traveling environment information indicating a city area or a suburb stored in the storage unit 16, and the GPS signal received by the GPS receiver 12. The current traveling environment is determined based on the vehicle position based on (ST40). And the process stop part 11g determines whether the present driving | running | working environment is a city area or a suburb based on the result determined in step ST-40 (step ST-50). Here, when it is determined in step ST-50 that the current traveling environment is an urban area (step ST-50: urban area), the process stop unit 11g executes the position detection process without stopping the position detection process. (Step ST-60). That is, in this case, the position detection process by the shielding section calculation unit 11a, the shielding point measurement unit 11b, and the vehicle position detection unit 11c as illustrated in FIG. On the other hand, when it is determined in step ST-50 that the current driving environment is a suburb (step ST-50: suburb), the position detection process is performed by the shielding section calculation unit 11a, the shielding point measurement unit 11b, and the vehicle position detection unit 11c. Is stopped (step ST-70). Then, the process shown in FIG.
以上説明したように、本実施形態によれば、従来技術と比較して、検出される車両の位置誤差が生じる可能性を低減し、車両の位置を高精度に検出することができる。例えば、従来技術では、ある基地局が発する電波のエリアを定義して、電波が途絶する地点を定めているものの、電波の遮蔽や反射により電波の途絶地点は変動するため、検出される車両の位置に誤差が生じていた。これは、車両が走行するエリアには、建物等の地物や他車両等の移動体が存在することが多く、このような場所では電波の遮蔽や反射が不規則に発生するため、電波の途絶地点が変動してしまうからである。一方、本実施形態によれば、電波の信頼性判定により電波エリア端の位置検出の信頼性を向上させ、高精度に自車位置を検出することができる。その結果、特にトンネル進入時等、完全に遮蔽される直前の位置を精度よく検出できるため、トンネル等の完全に遮蔽された場所における自律航法基点の精度を高めることができ、位置精度を担保できる範囲を広げることができる。 As described above, according to the present embodiment, it is possible to reduce the possibility of occurrence of a detected vehicle position error and to detect the position of the vehicle with high accuracy as compared with the related art. For example, in the prior art, the area where radio waves emitted by a base station are defined and the points where radio waves are interrupted are determined. However, the location where radio waves are interrupted fluctuates due to radio wave shielding and reflection. There was an error in the position. This is because there are many features such as buildings and moving objects such as other vehicles in the area where the vehicle travels, and radio wave shielding and reflection occur irregularly in such places. This is because the point of interruption changes. On the other hand, according to the present embodiment, the reliability of the position detection of the radio wave area end can be improved by the radio wave reliability determination, and the vehicle position can be detected with high accuracy. As a result, it is possible to accurately detect the position immediately before being completely shielded, such as when entering a tunnel, so the accuracy of the autonomous navigation base point in a completely shielded place such as a tunnel can be improved, and the position accuracy can be ensured. The range can be expanded.
10 車両
11 ECU
11a 遮蔽区間算出部
11b 遮蔽地点測定部
11c 車両位置検出部
11d 比較部
11e 信頼性判定部
11f 車両位置決定部
11g 処理停止部
11h 回復地点測定部
12 GPS受信機
13 車両情報網
14 ディスプレイ
15 スピーカ
16 記憶部
16a 3次元地図データ
20−1〜3 GPS衛星
10 Vehicle 11 ECU
11a Shielding interval calculation unit
11b Shielding point measurement unit
11c Vehicle position detector
11d comparator
11e Reliability judgment unit
11f Vehicle position determination unit
11g Processing stop
11h Recovery point measurement unit 12
16a 3D map data 20-1 to 3 GPS satellites
Claims (8)
建築物の位置情報および形状情報を含む3次元地図データを記憶する記憶部と、
前記GPS受信機により取得された前記各GPS衛星の衛星位置、および、前記記憶部に記憶された前記3次元地図データに基づいて、各GPS衛星から送信されるGPS信号が車両の走行経路周辺に存在する建築物により遮蔽される遮蔽区間を、前記車両の走行経路上で算出する遮蔽区間算出部と、
前記遮蔽区間算出部により算出された前記遮蔽区間内で、前記GPS受信機により取得された前記各GPS信号の受信電力がそれぞれ所定閾値以下となった地点を遮蔽地点として測定する遮蔽地点測定部と、
前記遮蔽地点測定部により測定された複数の遮蔽地点のうち任意の基点と他の各遮蔽地点との位置関係を、前記GPS信号に基づいた予測距離と、前記車両の距離に関する検出値に基づいた実測距離として求め、各遮蔽地点に対応する前記予測距離と前記実測距離との比較結果に基づいて信頼性が高いと判定された前記基点の遮蔽地点を前記車両の位置として検出する車両位置検出部と、
を備えたことを特徴とする位置検出装置。 A GPS receiver that receives GPS signals transmitted from a plurality of GPS satellites, and acquires the received power of each GPS signal and the satellite position of each GPS satellite from the received GPS signal;
A storage unit for storing three-dimensional map data including position information and shape information of the building;
Based on the satellite position of each GPS satellite acquired by the GPS receiver and the three-dimensional map data stored in the storage unit, a GPS signal transmitted from each GPS satellite is generated around the vehicle travel route. A shielding section calculating unit that calculates a shielding section shielded by an existing building on the travel route of the vehicle;
A shielding point measuring unit for measuring, as a shielding point, a point where the received power of each GPS signal acquired by the GPS receiver is equal to or less than a predetermined threshold within the shielding interval calculated by the shielding interval calculation unit; ,
The positional relationship between an arbitrary base point and other shielding points among the plurality of shielding points measured by the shielding point measuring unit is based on the predicted distance based on the GPS signal and the detection value related to the distance of the vehicle. A vehicle position detection unit that detects the measured shielding distance and detects the shielding point of the base point determined to be highly reliable based on the comparison result between the predicted distance and the measured distance corresponding to each shielding point, as the position of the vehicle When,
A position detection device comprising:
各遮蔽地点に対応する前記予測距離と前記実測距離との差分を求める比較部と、
前記検出値に基づいた所定誤差以下となる差分の遮蔽地点の集合を信頼性が高いと判定し、前記所定誤差よりも大きくなる遮蔽地点を外れ値として信頼性が低いと判定する信頼性判定部と、
前記信頼性判定部により前記信頼性が高いと判定された前記集合に含まれる各遮蔽地点の平均値を算出し、算出した当該平均値に対応する地点を、前記車両の位置として決定する車両位置決定部と、
を更に備えたことを特徴とする請求項1に記載の位置検出装置。 The vehicle position detector
A comparison unit for obtaining a difference between the predicted distance corresponding to each shielding point and the measured distance;
A reliability determination unit that determines that a set of shielding points having a difference equal to or smaller than a predetermined error based on the detection value is highly reliable, and determines that a shielding point that is larger than the predetermined error is an outlier and has low reliability. When,
A vehicle position for calculating an average value of each shielding point included in the set determined to be high by the reliability determination unit and determining a position corresponding to the calculated average value as the position of the vehicle A decision unit;
The position detecting device according to claim 1, further comprising:
前記信頼性判定部により前記信頼性が高いと判定された前記集合に含まれる各遮蔽地点のうち、前記GPS受信機により取得された前記GPS信号の受信電力が、当該各遮蔽地点の受信電力と比較して受信電力が大きくなる遮蔽地点ほど重みを掛けて加重平均をとることで、前記平均値を算出することを特徴とする請求項2に記載の位置検出装置。 The vehicle position determining unit
Among the shielding points included in the set determined to be highly reliable by the reliability determination unit, the reception power of the GPS signal acquired by the GPS receiver is the reception power of the shielding points. The position detection device according to claim 2, wherein the average value is calculated by applying a weighted average by applying a weight to a shielding point where the received power is higher in comparison.
前記信頼性判定部により前記信頼性が高いと判定された前記集合に含まれる各遮蔽地点のうち、前記GPS受信機により取得された前記GPS信号の受信電力の電力変化が、当該各遮蔽地点の受信電力の電力変化と比較して電力変化が急激に変化する遮蔽地点ほど重みを掛けて加重平均をとることで、前記平均値を算出することを特徴とする請求項2に記載の位置検出装置。 The vehicle position determining unit
Among the shielding points included in the set determined to be highly reliable by the reliability determination unit, the power change of the received power of the GPS signal acquired by the GPS receiver is The position detection device according to claim 2, wherein the average value is calculated by applying a weighted average to a shielding point where the power change changes more rapidly than the power change of the received power. .
前記記憶部に記憶された前記3次元地図データ、および、前記GPS受信機により受信された前記GPS信号に基づく自車位置に基づいて、現在の走行環境が前記市街地または前記郊外であるかを判定し、前記現在の走行環境が前記郊外であると判定された場合、前記遮蔽区間算出部、前記遮蔽地点測定部、前記車両位置検出部の処理を停止する処理停止部、
を更に備えたことを特徴とする請求項1から4のうちいずれか一項に記載の位置検出装置。 The three-dimensional map data further includes traveling environment information indicating an urban area or a suburb,
Based on the 3D map data stored in the storage unit and the vehicle position based on the GPS signal received by the GPS receiver, it is determined whether the current driving environment is the city area or the suburb. And when it is determined that the current driving environment is the suburb, a process stop unit that stops the processing of the shielding section calculation unit, the shielding point measurement unit, and the vehicle position detection unit,
The position detecting device according to any one of claims 1 to 4, further comprising:
を更に備え、
前記車両位置検出部は、
前記回復地点測定部により測定された複数の回復地点のうち任意の基点と他の各回復地点との位置関係を、前記GPS信号に基づいた予測距離と、前記車両の距離に関する検出値に基づいた実測距離として求め、各回復地点に対応する前記予測距離と前記実測距離との比較結果に基づいて信頼性が高いと判定された前記基点の回復地点を前記車両の位置として検出することを特徴とする請求項1から5のうちいずれか一項に記載の位置検出装置。 A recovery point measurement unit that measures, as a recovery point, a point where the received power of each GPS signal acquired by the GPS receiver is greater than the predetermined threshold value from a state below the predetermined threshold value,
Further comprising
The vehicle position detector
The positional relationship between an arbitrary base point and other recovery points among a plurality of recovery points measured by the recovery point measurement unit is based on a predicted distance based on the GPS signal and a detection value related to the distance of the vehicle. It is obtained as an actual distance, and the recovery point of the base point determined to be highly reliable based on a comparison result between the predicted distance corresponding to each recovery point and the actual distance is detected as the position of the vehicle. The position detection device according to any one of claims 1 to 5.
前記制御部において実行される、
前記GPS受信機により取得された前記各GPS衛星の衛星位置、および、前記記憶部に記憶された前記3次元地図データに基づいて、各GPS衛星から送信されるGPS信号が車両の走行経路周辺に存在する建築物により遮蔽される遮蔽区間を、前記車両の走行経路上で算出する遮蔽区間算出ステップと、
前記遮蔽区間算出ステップにて算出された前記遮蔽区間内で、前記GPS受信機により取得された前記各GPS信号の受信電力がそれぞれ所定閾値以下となった地点を遮蔽地点として測定する遮蔽地点測定ステップと、
前記遮蔽地点測定ステップにて測定された複数の遮蔽地点のうち任意の基点と他の各遮蔽地点との位置関係を、前記GPS信号に基づいた予測距離と、前記車両の距離に関する検出値に基づいた実測距離として求め、各遮蔽地点に対応する前記予測距離と前記実測距離との比較結果に基づいて信頼性が高いと判定された前記基点の遮蔽地点を前記車両の位置として検出する車両位置検出ステップと、
を含むことを特徴とする位置検出方法。 A GPS receiver that receives GPS signals transmitted from a plurality of GPS satellites, acquires the received power of each GPS signal and the satellite position of each GPS satellite from the received GPS signal, and the position information and shape of the building A position detection method executed in a position detection device including a storage unit that stores 3D map data including information, and a control unit,
Executed in the control unit,
Based on the satellite position of each GPS satellite acquired by the GPS receiver and the three-dimensional map data stored in the storage unit, a GPS signal transmitted from each GPS satellite is generated around the vehicle travel route. A shielding section calculating step of calculating a shielding section shielded by an existing building on the travel route of the vehicle;
A shielding point measuring step for measuring, as a shielding point, a point where the received power of each GPS signal acquired by the GPS receiver is equal to or less than a predetermined threshold within the shielding section calculated in the shielding section calculation step. When,
The positional relationship between an arbitrary base point and other shielding points among the plurality of shielding points measured in the shielding point measurement step is based on a predicted distance based on the GPS signal and a detection value related to the distance of the vehicle. Vehicle position detection for detecting the shielding point of the base point determined as highly reliable based on the comparison result between the predicted distance and the measured distance corresponding to each shielding point as the position of the vehicle Steps,
A position detection method comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012234192A JP2014085219A (en) | 2012-10-23 | 2012-10-23 | Position detection device, position detection method and drive support device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012234192A JP2014085219A (en) | 2012-10-23 | 2012-10-23 | Position detection device, position detection method and drive support device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014085219A true JP2014085219A (en) | 2014-05-12 |
Family
ID=50788406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012234192A Pending JP2014085219A (en) | 2012-10-23 | 2012-10-23 | Position detection device, position detection method and drive support device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014085219A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109856590A (en) * | 2018-12-10 | 2019-06-07 | 云南电网有限责任公司德宏供电局 | Method of calibration and device |
JP2021096129A (en) * | 2019-12-16 | 2021-06-24 | 国立大学法人東北大学 | Satellite positioning method, satellite positioning device, satellite positioning system, and construction machinery |
CN113221739A (en) * | 2021-05-12 | 2021-08-06 | 中国科学技术大学 | Monocular vision-based vehicle distance measuring method |
CN114509042A (en) * | 2020-11-17 | 2022-05-17 | 易图通科技(北京)有限公司 | Shielding detection method, shielding detection method of observation route and electronic equipment |
CN116592880A (en) * | 2023-07-06 | 2023-08-15 | 中国科学院空天信息创新研究院 | Autonomous integrity detection method for UWB-INS combined positioning system |
CN116659529A (en) * | 2023-05-26 | 2023-08-29 | 小米汽车科技有限公司 | Data detection method, device, vehicle and storage medium |
-
2012
- 2012-10-23 JP JP2012234192A patent/JP2014085219A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109856590A (en) * | 2018-12-10 | 2019-06-07 | 云南电网有限责任公司德宏供电局 | Method of calibration and device |
CN109856590B (en) * | 2018-12-10 | 2023-09-29 | 云南电网有限责任公司德宏供电局 | Verification method and device |
JP2021096129A (en) * | 2019-12-16 | 2021-06-24 | 国立大学法人東北大学 | Satellite positioning method, satellite positioning device, satellite positioning system, and construction machinery |
JP7421788B2 (en) | 2019-12-16 | 2024-01-25 | 国立大学法人東北大学 | Satellite positioning method, satellite positioning device, satellite positioning system and construction machinery |
CN114509042A (en) * | 2020-11-17 | 2022-05-17 | 易图通科技(北京)有限公司 | Shielding detection method, shielding detection method of observation route and electronic equipment |
CN114509042B (en) * | 2020-11-17 | 2024-05-24 | 易图通科技(北京)有限公司 | Shading detection method, shading detection method of observation route and electronic equipment |
CN113221739A (en) * | 2021-05-12 | 2021-08-06 | 中国科学技术大学 | Monocular vision-based vehicle distance measuring method |
CN113221739B (en) * | 2021-05-12 | 2023-04-14 | 中国科学技术大学 | Monocular vision-based vehicle distance measuring method |
CN116659529A (en) * | 2023-05-26 | 2023-08-29 | 小米汽车科技有限公司 | Data detection method, device, vehicle and storage medium |
CN116659529B (en) * | 2023-05-26 | 2024-02-06 | 小米汽车科技有限公司 | Data detection method, device, vehicle and storage medium |
CN116592880A (en) * | 2023-07-06 | 2023-08-15 | 中国科学院空天信息创新研究院 | Autonomous integrity detection method for UWB-INS combined positioning system |
CN116592880B (en) * | 2023-07-06 | 2023-11-17 | 中国科学院空天信息创新研究院 | Autonomous integrity detection method for UWB-INS combined positioning system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102075110B1 (en) | Apparatus of identificating vehicle based vehicle-to-vehicle communication, and method of thereof | |
JP6312304B2 (en) | Position measuring method, self-position measuring device, and vehicle-mounted device | |
JP2014085219A (en) | Position detection device, position detection method and drive support device | |
JP6451857B2 (en) | Method for controlling travel control device and travel control device | |
KR101343816B1 (en) | System for preventing collision of vehicle using mobile gps information and method thereof | |
US20200183002A1 (en) | System and method for fusing surrounding v2v signal and sensing signal of ego vehicle | |
US20120330527A1 (en) | Drive assist system and wireless communication device for vehicle | |
KR101952011B1 (en) | Method for estimating position of vehicle using v2v/v2i | |
US9465099B2 (en) | Method for measuring position of vehicle using cloud computing | |
KR20150051747A (en) | Method for determining location of vehicle | |
KR20200067506A (en) | Apparatus and method for performing omnidirectional sensor-fusion and vehicle including the same | |
CN106627670A (en) | Train protection system and method based on laser detection | |
US10571281B2 (en) | Information processing apparatus and method | |
CN103827633A (en) | Method for determining position data of vehicle | |
KR101795263B1 (en) | Alert system for laborer danger in tunnels and underground based-rtls | |
US10794706B2 (en) | Position detection system | |
US20170166113A1 (en) | Vehicle turning alarm method and vehicle turning alarm device | |
JP2016169974A (en) | Position measurement device, position measurement method, program, and position measurement system | |
US9797736B2 (en) | Drive assist system, method, and program | |
JP2019151227A (en) | Train location estimation device | |
US11383725B2 (en) | Detecting vehicle environment sensor errors | |
JP4906591B2 (en) | Position detection device | |
JP2013083532A (en) | Apparatus and method for detecting position information | |
JP2012168113A (en) | Information processor and information processing method | |
JP2011086139A (en) | Device for avoiding collision of vehicle |