JP2014084399A - Solid lubricant film - Google Patents

Solid lubricant film Download PDF

Info

Publication number
JP2014084399A
JP2014084399A JP2012233845A JP2012233845A JP2014084399A JP 2014084399 A JP2014084399 A JP 2014084399A JP 2012233845 A JP2012233845 A JP 2012233845A JP 2012233845 A JP2012233845 A JP 2012233845A JP 2014084399 A JP2014084399 A JP 2014084399A
Authority
JP
Japan
Prior art keywords
solid lubricant
film
solid
lubricating film
solid lubricating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012233845A
Other languages
Japanese (ja)
Inventor
Masahiro Suzuki
雅裕 鈴木
Kazuyoshi Yamakawa
和芳 山川
Toshiyuki Saito
利幸 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2012233845A priority Critical patent/JP2014084399A/en
Publication of JP2014084399A publication Critical patent/JP2014084399A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lubricants (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid lubricant film in which heat resistance is more excellent than that of a conventional one, and heat degradation hardly arises, thereby usable temperature is enlarged and application can be enlarged.SOLUTION: A solid lubricant film is that a base material resin as a film formation component is made to include sericite as solid lubricant and a carbon nano-tube.

Description

本発明は、例えば摺動部材等の表面に形成される固体潤滑膜に関するものである。   The present invention relates to a solid lubricating film formed on the surface of, for example, a sliding member.

例えば自動車のエンジン周り等の、高温環境下で用いられる機器類や、あるいは食品、医薬品などの製造工程等に用いられる機器類等の、基本的に潤滑油やグリースの使用が制限される機器類の摺動部材等の、主に金属製の部材(金属部材)の潤滑を確保するために、固体潤滑膜が利用される。
前記自動車のエンジン周り等で用いられる、摺動部材を含む機器類としては、エクスターナルスプライン部とインターナルスプライン部とからなるスプライン摺動部を介して、軸方向に伸縮可能で、かつ軸を中心とする回転方向に一体回転可能に結合された一対の軸部材を備え、ステアリング装置のステアリングシャフトとピニオン軸との間に配設されるインターミディエイトシャフト等が挙げられる。
Equipment that basically restricts the use of lubricating oil or grease, such as equipment used in high-temperature environments, such as around the engine of an automobile, or equipment used in the manufacturing process of food, medicine, etc. In order to ensure lubrication of a metal member (metal member) such as a sliding member, a solid lubricating film is used.
The equipment including the sliding member used around the engine of the automobile, etc., can be expanded and contracted in the axial direction through a spline sliding portion composed of an external spline portion and an internal spline portion, and is centered on the shaft. And an intermediate shaft that is disposed between the steering shaft and the pinion shaft of the steering device, and the like.

前記固体潤滑膜としては、例えば母材樹脂中に、二硫化モリブデン、黒鉛、フッ素樹脂、雲母等の固体潤滑剤を分散させて潤滑性を付与したものが一般的に用いられる(例えば特許文献1等参照)。
固体潤滑膜は、前記のように有機物である母材樹脂からなるため、固体潤滑剤を含むことで、ある程度の耐摩耗性を有しているものの、硬度が低くなる傾向がある。
As the solid lubricant film, for example, a lubricant obtained by dispersing a solid lubricant such as molybdenum disulfide, graphite, fluororesin, mica or the like in a base resin is generally used (for example, Patent Document 1). Etc.).
Since the solid lubricating film is made of a base resin that is an organic substance as described above, the solid lubricating film contains a solid lubricant and has a certain degree of wear resistance, but tends to have a low hardness.

また、耐熱性が低いという問題もある。
すなわち固体潤滑膜には、摺動の相手部材と繰り返し摺動されることによって生じる摩擦熱や、あるいは高温環境からの熱が蓄積されやすく、それによって膜全体が熱劣化して摩耗しやすいという問題がある。
前記硬度については、固体潤滑剤として無機系で母材樹脂等よりも硬いものを用いることで、ある程度は改善することができる。
There is also a problem that heat resistance is low.
In other words, the solid lubricating film tends to accumulate frictional heat caused by repeated sliding with a sliding counterpart member or heat from a high temperature environment, thereby causing the entire film to easily deteriorate due to thermal deterioration and wear. There is.
The hardness can be improved to some extent by using a solid lubricant that is inorganic and harder than the base resin.

また耐熱性に関しては、白色系等の赤外反射率の高い色味の固体潤滑剤を使用して、固体潤滑膜の熱吸収を妨げたり、薄片状や粒状等の、比較的粒径の大きな固体潤滑剤を使用することで、固体潤滑膜中に、前記固体潤滑剤を介する熱伝導の経路を構成して放熱性を高めて、吸収した熱を外部に逃がしたりすることが検討されている。   As for heat resistance, a solid lubricant with a high infrared reflectance such as white is used to prevent heat absorption of the solid lubricant film, or a relatively large particle size such as flakes or granules. By using a solid lubricant, it is considered that a heat conduction path through the solid lubricant is formed in the solid lubricant film to improve heat dissipation and to release the absorbed heat to the outside. .

特開2008-88416号公報JP 2008-88416 A 特開2009-242700号公報JP 2009-242700 A 特表2005-539094号公報JP 2005-539094 gazette

しかし、現状の材料を組み合わせて使用している以上、前記効果には限界がある。固体潤滑膜の使用可能温度を拡大して用途を広げるためには、耐熱性を現状よりも一層向上することが求められる。
本発明の目的は、現状よりも耐熱性に優れ、熱劣化しにくいため、使用可能温度を拡大して用途を広げることが可能な固体潤滑膜を提供することにある。
However, as long as the current materials are used in combination, the effect is limited. In order to expand the application temperature by expanding the usable temperature of the solid lubricant film, it is required to further improve the heat resistance from the current level.
An object of the present invention is to provide a solid lubricating film that has a higher heat resistance than the current state and is less likely to be thermally deteriorated, so that the usable temperature can be expanded to widen the application.

請求項1記載の発明は、母材樹脂、セリサイト、およびカーボンナノチューブ(以下「CNT」と略記する場合がある)を含むことを特徴とする固体潤滑膜である。
前記請求項1の構成によれば、CNTを含有させることで、固体潤滑膜中に、固体潤滑剤としてのセリサイトとCNTとを介した熱伝導の経路が構成される。しかも前記CNTは、熱伝導率の理論値がおよそ6000W/mKであって、高熱伝導体として一般に知られている銅(約380W/mK)等に比べても著しく高い熱伝導性を有している。
The invention according to claim 1 is a solid lubricating film comprising a base material resin, sericite, and carbon nanotubes (hereinafter sometimes abbreviated as “CNT”).
According to the first aspect of the present invention, by containing CNT, a heat conduction path through sericite and CNT as a solid lubricant is formed in the solid lubricating film. Moreover, the CNT has a theoretical value of thermal conductivity of about 6000 W / mK, and has a significantly higher thermal conductivity than copper (about 380 W / mK) generally known as a high thermal conductor. Yes.

したがって請求項1の構成によれば、前記固体潤滑膜に、従来にない高い放熱性を付与することができる。
そのため摩擦熱や、あるいは高温環境からの熱を、前記経路を介した熱伝導によって速やかに固体潤滑膜の外部、具体的には当該固体潤滑膜が形成される金属部材等へ逃がすことができ、熱の蓄積を防止して膜全体の耐熱性を向上することができる。
Therefore, according to the configuration of the first aspect, it is possible to impart unprecedented high heat dissipation to the solid lubricating film.
Therefore, frictional heat or heat from a high temperature environment can be quickly released to the outside of the solid lubricating film, specifically to the metal member on which the solid lubricating film is formed, by heat conduction through the path, Heat accumulation can be prevented and the heat resistance of the entire film can be improved.

また固体潤滑剤として、無機系で母材樹脂等よりも硬い(モース硬さ:2.5〜3.5程度)上、薄片状で配向性がよく潤滑性に優れたセリサイトを選択的に用いることによって、固体潤滑膜の耐摩耗性、および潤滑性をより一層向上することができる。
また前記セリサイトは融点が高く(1000℃以上)それ自体の耐熱性が高い上、白色系で赤外反射率が高く、熱吸収を妨げる機能にも優れるため、固体潤滑膜の耐熱性をより一層向上することもできる。
As solid lubricant, inorganic sericite that is harder than base resin (Mohs's hardness: about 2.5 to 3.5), flaky and has good orientation and excellent lubricity is selectively used. By using it, the wear resistance and lubricity of the solid lubricating film can be further improved.
In addition, the sericite has a high melting point (1000 ° C. or higher) and high heat resistance itself, and since it is white and has high infrared reflectance, and also has a function of preventing heat absorption, the heat resistance of the solid lubricating film is further improved. It can be further improved.

なお特許文献2には、冷間圧延用圧延油に含有させる粉末潤滑剤として、通常の固体潤滑剤とともにCNTが列記されている。しかしCNTは、特許文献2に記載の冷間圧延用圧延油等の液体中で、自由に移動可能な状態で存在しているときにのみ、ごくわずかに潤滑性を発揮しうるに過ぎない。CNTは、固体潤滑膜に対する固体潤滑剤として機能できるだけの高い潤滑性は有していない。したがってCNTは、一般に固体潤滑膜に対する固体潤滑剤としては認識されていない。   In Patent Document 2, CNTs are listed together with ordinary solid lubricants as powder lubricants to be contained in the rolling oil for cold rolling. However, CNTs can exhibit only a slight lubricity only when they exist in a freely movable state in a liquid such as rolling oil for cold rolling described in Patent Document 2. CNT does not have high lubricity sufficient to function as a solid lubricant for the solid lubricant film. Accordingly, CNTs are not generally recognized as solid lubricants for solid lubricant films.

しかも特許文献2には、前記CNTを、固体潤滑剤とともに固体潤滑膜中に配合することや、それによって固体潤滑膜に良好な熱伝導性、および耐熱性を付与すること等については一切記載されていない。
また特許文献3には、前記CNTを樹脂等に配合した組成物を用いて、熱伝導媒体を形成することが記載されている。しかし特許文献3には、前記熱伝導媒体に、さらに固体潤滑剤を配合することや、前記熱伝導媒体を膜状に形成して固体潤滑膜として使用すること等については一切記載されていない。
Moreover, Patent Document 2 describes nothing about blending the CNT into a solid lubricating film together with a solid lubricant, thereby imparting good thermal conductivity and heat resistance to the solid lubricating film. Not.
Patent Document 3 describes that a heat conductive medium is formed using a composition in which the CNT is blended with a resin or the like. However, Patent Document 3 does not describe at all about adding a solid lubricant to the heat conducting medium, forming the heat conducting medium into a film, and using it as a solid lubricating film.

請求項2記載の発明は、前記母材樹脂は熱硬化性樹脂の硬化物である請求項1に記載固体潤滑膜である。
前記請求項3の構成によれば、熱変形等を生じにくく耐熱性に優れた熱硬化性樹脂の硬化物によって母材樹脂を構成しているため、固体潤滑膜の耐熱性をさらに向上することができる。
The invention according to claim 2 is the solid lubricating film according to claim 1, wherein the base material resin is a cured product of a thermosetting resin.
According to the configuration of the third aspect, since the base material resin is constituted by the cured material of the thermosetting resin that hardly causes thermal deformation or the like and has excellent heat resistance, the heat resistance of the solid lubricating film is further improved. Can do.

本発明によれば、現状よりも耐熱性に優れ、熱劣化しにくいため、使用可能温度を拡大して用途を広げることが可能な固体潤滑膜を提供することが可能となる。   According to the present invention, it is possible to provide a solid lubricating film that has a higher heat resistance than the current state and is less likely to be thermally deteriorated, so that the usable temperature can be expanded to broaden the application.

実施例1、比較例1〜3の固体潤滑膜の表面温度の、基板の温度上昇に伴う推移を示すグラフである。It is a graph which shows transition with the temperature rise of the board | substrate of the surface temperature of the solid lubricating film of Example 1 and Comparative Examples 1-3. 実施例1、比較例3の固体潤滑膜について鋼球を用いた摩耗試験をした際の、前記固体潤滑膜、および鋼球の比摩耗量を示すグラフである。および前記固体旬滑膜It is a graph which shows the specific wear amount of the said solid lubricating film and the steel ball at the time of conducting the abrasion test using the steel ball about the solid lubricating film of Example 1 and Comparative Example 3. And said solid seasonal synovial membrane

本発明の固体潤滑膜は、母材樹脂、固体潤滑剤、およびCNTを含むことを特徴とする。
本発明によれば、固体潤滑膜中に、従来の、固体潤滑剤のみで構成される経路に比べて熱伝導性に優れた、固体潤滑剤とCNTとを介した熱伝導の経路を構成して、当該固体潤滑膜に高い放熱性を付与することができる。
The solid lubricant film of the present invention is characterized by containing a base material resin, a solid lubricant, and CNTs.
According to the present invention, in the solid lubricant film, a heat conduction path through the solid lubricant and the CNT is formed, which is superior in heat conductivity compared to the conventional path composed only of the solid lubricant. Thus, high heat dissipation can be imparted to the solid lubricating film.

そのため摩擦熱や、あるいは高温環境からの熱を、前記経路を介した熱伝導によって速やかに固体潤滑膜の外部、具体的には当該固体潤滑膜が形成される金属部材等へ逃がすことができ、熱の蓄積を防止して膜全体の耐熱性を向上することができる。
したがって、固体潤滑膜の使用可能温度を拡大して用途を広げることが可能となる。すなわち、より高温環境下で使用される用途に固体潤滑膜を適用したり、潤滑性メッキなどを置換したりすること等が可能となる。
Therefore, frictional heat or heat from a high temperature environment can be quickly released to the outside of the solid lubricating film, specifically to the metal member on which the solid lubricating film is formed, by heat conduction through the path, Heat accumulation can be prevented and the heat resistance of the entire film can be improved.
Accordingly, it is possible to expand the usage by expanding the usable temperature of the solid lubricant film. That is, it is possible to apply a solid lubricating film to a use that is used in a higher temperature environment, or to replace the lubricating plating.

〈CNT〉
CNTとしては、例えばグラファイトを1層、筒状に丸めた形状を有し、かつグラファイトのらせんの状態に応じてアームチェア型、ジグザグ型、カイラル型などに分類される種々の単層CNT(以下「SWCNT」とする)や、当該SWCNTを複数層、同芯筒状に重ねた形状を有する多層CNT(以下「MWCNT」とする)等の1種または2種以上を使用することができる。
<CNT>
As the CNT, for example, various single-wall CNTs (hereinafter referred to as “armchair type”, “zigzag type”, “chiral type”, etc.) having a shape in which one layer of graphite is rolled into a cylindrical shape and depending on the spiral state of the graphite 1 type or 2 types or more, such as "SWCNT") and multilayer CNT (hereinafter referred to as "MWCNT") having a shape in which the SWCNTs are stacked in a plurality of layers and concentric cylinders can be used.

前記CNTの含有割合は、固体潤滑膜の総量の0.5質量%以上であるのが好ましく、5質量%以下であるのが好ましい。
含有割合が前記範囲未満では、当該CNTを含有させることによる、先に説明した、固体潤滑剤とともに熱伝導の経路を構成して高い放熱性を付与する効果が不十分になって、固体潤滑膜の耐熱性が低下するおそれがある。
The content ratio of the CNT is preferably 0.5% by mass or more of the total amount of the solid lubricant film, and is preferably 5% by mass or less.
When the content ratio is less than the above range, the effect of providing a high heat dissipation property by forming a heat conduction path together with the solid lubricant described above by including the CNT becomes insufficient, and the solid lubricant film There is a risk that the heat resistance of the will decrease.

また、先に説明したようにCNTは、固体潤滑剤等と同等程度の高い潤滑性を有しないため、前記範囲を超えてCNTを含有させても、固体潤滑膜の潤滑性や耐摩耗性を向上する効果は得られない。
のみならず、相対的に、膜形成成分としての母材樹脂の割合が少なくなったり、膜の潤滑を担う固体潤滑剤の割合が少なくなったりして、固体潤滑膜の耐摩耗性や潤滑性が低下するおそれもある。
In addition, as described above, CNT does not have high lubricity equivalent to that of a solid lubricant or the like. Therefore, even if CNT is included exceeding the above range, the lubricity and wear resistance of the solid lubricant film are improved. The improvement effect cannot be obtained.
In addition, the ratio of the base resin as a film forming component is relatively reduced, and the ratio of the solid lubricant that is responsible for lubricating the film is decreased, so that the wear resistance and lubricity of the solid lubricating film are reduced. May decrease.

〈固体潤滑剤〉
固体潤滑剤としては、雲母の1種である絹雲母の精製物であるセリサイトが用いられる。前記セリサイトは、無機系で母材樹脂やPTFE等の有機系のものに比べて硬い上、薄片状で配向性がよく潤滑性に優れるため、固体潤滑膜の耐摩耗性、および潤滑性をより一層向上することができる。
<Solid lubricant>
As the solid lubricant, sericite, which is a purified product of sericite, which is a kind of mica, is used. The sericite is inorganic and harder than organic materials such as matrix resin and PTFE, and also has a flake shape and good orientation and excellent lubricity, so that the wear resistance and lubricity of the solid lubricating film are improved. This can be further improved.

また前記セリサイトは融点が高くそれ自体の耐熱性が高い上、白色系で赤外反射率が高く、熱吸収を妨げる機能にも優れるため、固体潤滑膜の耐熱性をより一層向上することもできる。
前記セリサイトは、固体潤滑膜中への分散性を向上すること等を考慮すると、平均粒径が0.5μm以上、8μm以下程度であるのが好ましい。またモース硬さは5以下であるのが好ましい。
In addition, the sericite has a high melting point, high heat resistance itself, white color, high infrared reflectance, and an excellent function of preventing heat absorption, so that the heat resistance of the solid lubricating film can be further improved. it can.
The sericite preferably has an average particle size of about 0.5 μm or more and about 8 μm or less in consideration of improving dispersibility in the solid lubricating film. The Mohs hardness is preferably 5 or less.

セリサイトの含有割合は、固体潤滑膜の総量の0.1質量%以上であるのが好ましく、5質量%以下であるのが好ましい。
含有割合が前記範囲未満では、当該固体潤滑剤による潤滑性が得られないため、固体潤滑膜の潤滑性や耐摩耗性が低下するおそれがある。
一方、前記範囲を超える場合には、相対的に、膜形成成分としての母材樹脂の割合が少なくなったり、膜の熱伝導を担うCNTの割合が少なくなったりして、固体潤滑膜の耐摩耗性や耐熱性が低下するおそれもある。
The content of sericite is preferably 0.1% by mass or more, and preferably 5% by mass or less, based on the total amount of the solid lubricant film.
If the content ratio is less than the above range, the lubricity by the solid lubricant cannot be obtained, so that the lubricity and wear resistance of the solid lubricant film may be lowered.
On the other hand, when the above range is exceeded, the ratio of the base material resin as a film forming component is relatively reduced, or the ratio of CNT that is responsible for the heat conduction of the film is relatively reduced. There is also a possibility that the wear and heat resistance may be reduced.

〈母材樹脂〉
母材樹脂としては、前記CNT、および固体潤滑剤を含む連続した膜を金属部材等の表面に形成するための膜形成成分として機能しうる、種々の樹脂がいずれも使用可能である。
特に熱硬化性樹脂の硬化物が好ましい。熱変形等を生じにくく耐熱性に優れた熱硬化性樹脂の硬化物によって母材樹脂を構成することで、固体潤滑膜の耐熱性をさらに向上できる。
<Base material resin>
As the base material resin, any of various resins that can function as a film forming component for forming a continuous film containing the CNT and the solid lubricant on the surface of a metal member or the like can be used.
A cured product of a thermosetting resin is particularly preferable. By forming the base material resin with a cured product of a thermosetting resin that hardly causes thermal deformation or the like and has excellent heat resistance, the heat resistance of the solid lubricating film can be further improved.

前記硬化物のもとになる熱硬化性樹脂としては、例えばアルキド樹脂、エポキシ樹脂、熱硬化性アクリル樹脂、ポリブタジエン樹脂等が挙げられる。
特に、前記耐熱性に優れる上、金属部材等の表面に対する密着性、良好な柔軟性、耐摩耗性等にも優れた固体潤滑膜を形成することを考慮すると、熱硬化性樹脂としてはアルキド樹脂が好ましい。
Examples of the thermosetting resin that is the basis of the cured product include alkyd resins, epoxy resins, thermosetting acrylic resins, polybutadiene resins, and the like.
In particular, considering the formation of a solid lubricating film having excellent heat resistance and excellent adhesion to the surface of a metal member or the like, good flexibility, wear resistance, etc., the alkyd resin is a thermosetting resin. Is preferred.

前記アルキド樹脂としては、例えば無水フタル酸等の多塩基酸と、グリセリン、ペンタエリスリット等の多価アルコールとの縮合物であるアルキド樹脂(純粋アルキド樹脂、線状アルキドである不飽和ポリエステル樹脂をも包含する)が挙げられる他、アルキド樹脂を、乾性油、不乾性油等で変性した油変性アルキド樹脂や、ロジン、フェノール樹脂、スチレン、アクリル、ウレタン、エポキシ樹脂、シリコーン樹脂、イソシアネート等で変性したり、マレイン化、もしくは無水物の付加等によって変性したりした、各種の変性アルキド樹脂等も使用可能である。   Examples of the alkyd resin include alkyd resins (pure alkyd resins, unsaturated polyester resins that are linear alkyds) that are condensates of polybasic acids such as phthalic anhydride and polyhydric alcohols such as glycerin and pentaerythritol. Alkyd resin modified with drying oil, non-drying oil, etc., modified with oil-modified alkyd resin, rosin, phenol resin, styrene, acrylic, urethane, epoxy resin, silicone resin, isocyanate, etc. It is also possible to use various modified alkyd resins that have been modified by maleation, addition of anhydride, or the like.

固体潤滑膜を形成する部材が、先に説明した摺動部材等の金属部材である場合には、前記アルキド樹脂等の母材樹脂の中から、後述する電着塗装が可能なグレードのものを採用して電着塗装をすることにより、前記金属部材の表面に、その立体形状にかかわらず厚みが均一な固体潤滑膜を形成することができる。
〈その他の成分〉
固体潤滑膜には、前記各成分に加えて、例えばポリテトラフルオロエチレン(PTFE)、グラファイト、hBN、ナノ金属(Au、Ag)粒子、MCA、MoS等を含有させてもよい。
When the member that forms the solid lubricating film is a metal member such as the sliding member described above, a material that is capable of electrodeposition coating, which will be described later, is selected from the base resin such as the alkyd resin. By adopting and electrodeposition coating, a solid lubricating film having a uniform thickness can be formed on the surface of the metal member regardless of its three-dimensional shape.
<Other ingredients>
In addition to the above components, the solid lubricating film may contain, for example, polytetrafluoroethylene (PTFE), graphite, hBN, nano metal (Au, Ag) particles, MCA, MoS 2 and the like.

〈固体潤滑膜の形成〉
前記固体潤滑膜を、金属部材の表面に、電着塗装によって形成する場合は、まず母材樹脂、固体潤滑剤、およびCNTを含む水性の電着塗料を調製する。
例えば母材樹脂が熱硬化性樹脂の硬化物からなる固体潤滑膜を形成する場合は、前記硬化物のもとになる熱硬化性樹脂、またはその前駆体であって、なおかつ電着塗装が可能なグレードのものの水溶液に、固体潤滑剤、CNT、および前記各種添加剤等と、さらに必要に応じて前記熱硬化性樹脂の硬化剤等とを配合して水性の電着塗料を調製する。
<Formation of solid lubricant film>
When the solid lubricant film is formed on the surface of the metal member by electrodeposition coating, first, an aqueous electrodeposition paint containing a base material resin, a solid lubricant, and CNTs is prepared.
For example, when forming a solid lubricating film made of a cured material of a thermosetting resin as a base material resin, it is a thermosetting resin that is the basis of the cured product, or a precursor thereof, and can be electrodeposition-coated. A water-based electrodeposition paint is prepared by blending a solid lubricant, CNT, the various additives, and the like with a curing agent for the thermosetting resin, if necessary, in an aqueous solution of a different grade.

この際、例えば固体潤滑剤としてセリサイトを使用する場合は、前記セリサイトとして、あらかじめ水性の電着塗料に対する分散性を向上する表面処理をしたものを用いるのが、当該セリサイトの凝集等のない電着塗料を効率的に調製する上で好ましい。
またCNTとしては、水に分散した分散液の状態で供給されているものを用いるのが、やはりCNTの凝集等のない電着塗料を効率的に調製する上で好ましい。
At this time, for example, when using sericite as a solid lubricant, it is preferable to use a sericite that has been previously surface-treated to improve dispersibility in a water-based electrodeposition paint. This is preferable for efficiently preparing a non-electrodeposition paint.
In addition, it is preferable to use a CNT that is supplied in the form of a dispersion dispersed in water in order to efficiently prepare an electrodeposition paint that does not cause aggregation of CNTs.

次いで前記電着塗料中に、金属部材と、対極となる電極とを浸漬して、この両者間に、一方を陽極、他方を陰極に設定した所定の直流電圧を加えることによって、電気泳動、電気凝集、電気浸透、ならびに電気分解により、前記金属部材の表面に、厚みが均一で水に不溶の塗膜を形成する。
金属部材と対極の極性は、使用する電着塗料の組成等に応じて任意に設定できるが、母材樹脂としてアルキド樹脂を使用するとともに固体潤滑剤としてセリサイトを使用し、なおかつCNTを配合した電着塗料の場合は、金属部材を陽極、対極を陰極とするアニオン電着塗装をするのが好ましい。
Next, a metal member and a counter electrode are immersed in the electrodeposition paint, and a predetermined DC voltage in which one is set as an anode and the other is set as a cathode is applied between the two. A film having a uniform thickness and insoluble in water is formed on the surface of the metal member by aggregation, electroosmosis, and electrolysis.
The polarity of the metal member and the counter electrode can be arbitrarily set according to the composition of the electrodeposition paint to be used, but alkyd resin is used as the base material resin, sericite is used as the solid lubricant, and CNT is blended. In the case of an electrodeposition paint, it is preferable to carry out anion electrodeposition coating using a metal member as an anode and a counter electrode as a cathode.

また前記金属部材の、固体潤滑膜を形成する表面は、あらかじめ脱脂処理、化学処理、ブラスト処理等をしておくのが好ましい。これにより固体潤滑膜の、金属部材に対する密着性を向上することができる。
対極としては、例えばステンレス鋼等の、耐蝕性を有する金属からなる電極を用いる。金属部材の特定の表面にのみ固体潤滑膜を形成する場合は、前記特定の表面のみを、電着塗料に浸漬して電着塗装したり、前記特定の表面のみ露出させ、それ以外の表面をマスキングした状態で電着塗装したりすればよい。
Moreover, it is preferable that the surface of the metal member on which the solid lubricant film is formed is previously subjected to degreasing treatment, chemical treatment, blast treatment, or the like. Thereby, the adhesiveness of the solid lubricant film to the metal member can be improved.
As the counter electrode, for example, an electrode made of a metal having corrosion resistance such as stainless steel is used. When a solid lubricating film is formed only on a specific surface of a metal member, only the specific surface is immersed in an electrodeposition paint to be electrodeposited, or only the specific surface is exposed, and other surfaces are exposed. Electrodeposition coating may be performed in a masked state.

電着処理の条件、すなわち電着塗料のpH、処理電圧、処理時間、処理温度等は、形成する固体潤滑膜の膜厚、金属部材の形状や大きさ等に講じて任意に設定できる。
次いで、部材を電着塗料中から引き上げて、必要に応じて乾燥させたのち、熱硬化性樹脂の硬化温度以上の温度で焼き付けて熱硬化性樹脂を硬化反応させることによって、固体潤滑膜が形成される。乾燥と焼き付けを同時に実施してもよい。
The conditions for the electrodeposition treatment, that is, the pH of the electrodeposition paint, the treatment voltage, the treatment time, the treatment temperature, and the like can be arbitrarily set depending on the thickness of the solid lubricating film to be formed, the shape and size of the metal member, and the like.
Next, the member is pulled up from the electrodeposition paint, dried as necessary, and then baked at a temperature equal to or higher than the curing temperature of the thermosetting resin to cause a curing reaction of the thermosetting resin, thereby forming a solid lubricating film. Is done. Drying and baking may be performed simultaneously.

なお本発明の固体潤滑膜は、前記電着塗装以外の塗装方法によって形成することもできる。
固体潤滑膜の厚みは、その用途等に応じて任意に設定できる。例えば前述したスプライン摺動部の潤滑用として用いる固体潤滑膜の厚みは、前記スプライン摺動部を構成するエクスターナルスプライン部とインターナルスプライン部との間のクリアランスに合わせて、前記クリアランスを超えず、かつ形を生じない範囲に設定すればよい。
The solid lubricating film of the present invention can also be formed by a coating method other than the electrodeposition coating.
The thickness of the solid lubricating film can be arbitrarily set according to its use. For example, the thickness of the solid lubricating film used for lubrication of the above-described spline sliding portion does not exceed the clearance according to the clearance between the external spline portion and the internal spline portion constituting the spline sliding portion, And it should be set in a range that does not produce a shape.

(実施例1)
母材樹脂としてのアルキド樹脂、固体潤滑剤としてのセリサイト、CNTの4%水分散液、および超純水を配合して電着塗料を調製した。
前記各成分のうちセリサイト、およびCNTの配合割合は、固体潤滑膜を形成する固形分の総量(=アルキド樹脂の硬化物量+セリサイト量+CNT量)に対してセリサイトが1質量%、CNTが1質量%となるように設定した。
Example 1
An electrodeposition paint was prepared by blending an alkyd resin as a base resin, sericite as a solid lubricant, a 4% aqueous dispersion of CNT, and ultrapure water.
The mixing ratio of sericite and CNT among the above components is such that sericite is 1% by mass with respect to the total amount of solid content forming the solid lubricating film (= hardened product of alkyd resin + sericite amount + CNT amount), CNT Was set to 1 mass%.

次に、金属部材のモデルとしての、縦30mm×横30mm×厚み6mmの矩形状の一般構造用圧延鋼(SS400)製の基板の表面を溶剤脱脂処理したのち、対極としてのステンレス鋼板とともに前記電着塗料中に浸漬して、処理電圧:40〜180(V)、処理時間:60〜300秒間、処理温度:20〜30℃の条件で、定電圧制御により電着塗装した後、電着塗料から引き上げ、水洗後、乾燥させて塗膜を形成した。そして塗膜を形成したSS400板を、予熱した電気炉中に入れ、大気中で温度230℃、処理時間20分の条件で焼成して固体潤滑膜を形成した。   Next, the surface of a rectangular general structural rolled steel (SS400) having a length of 30 mm, a width of 30 mm, and a thickness of 6 mm as a model of a metal member was subjected to solvent degreasing treatment, and then the above-mentioned electric electrode together with a stainless steel plate as a counter electrode. After dipping in the coating material, electrodeposition coating is performed under constant voltage control under conditions of processing voltage: 40 to 180 (V), processing time: 60 to 300 seconds, processing temperature: 20 to 30 ° C., then the electrodeposition coating material The film was pulled up, washed with water and dried to form a coating film. Then, the SS400 plate on which the coating film was formed was placed in a preheated electric furnace and fired in the atmosphere at a temperature of 230 ° C. for a treatment time of 20 minutes to form a solid lubricating film.

〈比較例1〉
CNTを配合しなかったこと以外は実施例1と同様にして電着塗料を調製し、固体潤滑膜を形成した。セリサイトの配合割合は、固体潤滑膜を形成する固形分の総量(=アルキド樹脂の硬化物量+セリサイト量)に対して1質量%となるように設定した。
〈比較例2〉
セリサイトを配合しなかったこと以外は実施例1と同様にして電着塗料を調製し、固体潤滑膜を形成した。CNTの配合割合は、固体潤滑膜を形成する固形分の総量(=アルキド樹脂の硬化物量+CNT量)に対して1質量%となるように設定した。
<Comparative example 1>
An electrodeposition paint was prepared in the same manner as in Example 1 except that CNT was not blended, and a solid lubricating film was formed. The blending ratio of sericite was set to be 1% by mass with respect to the total amount of solids forming the solid lubricating film (= the amount of alkyd resin cured product + the amount of sericite).
<Comparative example 2>
An electrodeposition paint was prepared in the same manner as in Example 1 except that sericite was not blended to form a solid lubricating film. The blending ratio of CNTs was set so as to be 1% by mass with respect to the total amount of solids forming the solid lubricating film (= hardened product of alkyd resin + CNT amount).

〈比較例3〉
セリサイト、およびCNTに代えてPTFE粉末を配合したこと以外は実施例1と同様にして電着塗料を調製し、固体潤滑膜を形成した。PTFE粉末の配合割合は、固体潤滑膜を形成する固形分の総量(=アルキド樹脂の硬化物量+PTFE粉末量)に対して10質量%となるように設定した。
<Comparative Example 3>
An electrodeposition paint was prepared in the same manner as in Example 1 except that PTFE powder was blended in place of sericite and CNT, and a solid lubricating film was formed. The blending ratio of the PTFE powder was set to be 10% by mass with respect to the total amount of solid content forming the solid lubricating film (= the amount of cured alkyd resin + the amount of PTFE powder).

〈熱伝導性評価〉
前記実施例1、および比較例1〜3の固体潤滑膜を形成した基板を、室温から700秒間かけて150℃まで加熱した際に、固体潤滑膜の表面温度の変化を測定した。結果を図1に示す。
図1より、表面温度の上昇率が高いことから、実施例1の固体潤滑膜は、比較例1〜3のものに比べて高い熱伝導性、すなわち放熱性を有しており、耐熱性に優れることが判った。
<Thermal conductivity evaluation>
When the substrate on which the solid lubricant film of Example 1 and Comparative Examples 1 to 3 was formed was heated from room temperature to 150 ° C. over 700 seconds, the change in the surface temperature of the solid lubricant film was measured. The results are shown in FIG.
From FIG. 1, since the rate of increase in the surface temperature is high, the solid lubricating film of Example 1 has higher thermal conductivity than that of Comparative Examples 1 to 3, that is, heat dissipation, and is heat resistant. It turned out to be excellent.

〈耐摩耗性試験〉
前記実施例1、および比較例3の固体潤滑膜の表面に、無潤滑環境下、3/16インチの鋼球(SUJ2製)を、5Nの荷重をかけて圧接させた状態で、前記表面上を転動させずに1Hzの速度で10分間連続的に往復動させた。
そして試験前後の、固体潤滑膜、および鋼球の質量の変化から求めたそれぞれの摩耗量V(mm)から、下記式(1):
<Abrasion resistance test>
On the surface of the solid lubricating film of Example 1 and Comparative Example 3 in a state where a 3/16 inch steel ball (manufactured by SUJ2) was pressed against the surface of the solid lubricating film in a non-lubricated environment under a load of 5N. Was reciprocated continuously at a rate of 1 Hz for 10 minutes without rolling.
And from each wear amount V (mm < 3 >) calculated | required from the change of the mass of a solid lubricating film and a steel ball before and behind a test, following formula (1):

Figure 2014084399
Figure 2014084399

〔式中Pは試験荷重(N)、Lは滑り距離(m)を示す。〕
により、比摩耗量Vs(mm/Nm)を求めた。また、両固体潤滑膜の表面を観察して摩耗痕の有無を確認した。結果を図2に示す。
図2より、実施例1の固体潤滑膜は、比較例3のものに比べて高い耐摩耗性を有していることも判った。
[In the formula, P represents a test load (N), and L represents a sliding distance (m). ]
Thus, the specific wear amount Vs (mm 3 / Nm) was obtained. In addition, the surfaces of both solid lubricant films were observed to confirm the presence or absence of wear marks. The results are shown in FIG.
2 that the solid lubricant film of Example 1 has higher wear resistance than that of Comparative Example 3.

Claims (2)

母材樹脂、セリサイト、およびカーボンナノチューブを含むことを特徴とする固体潤滑膜。   A solid lubricant film comprising a base material resin, sericite, and carbon nanotubes. 前記母材樹脂は熱硬化性樹脂の硬化物である請求項1に記載の固体潤滑膜。
The solid lubricant film according to claim 1, wherein the base material resin is a cured product of a thermosetting resin.
JP2012233845A 2012-10-23 2012-10-23 Solid lubricant film Pending JP2014084399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012233845A JP2014084399A (en) 2012-10-23 2012-10-23 Solid lubricant film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012233845A JP2014084399A (en) 2012-10-23 2012-10-23 Solid lubricant film

Publications (1)

Publication Number Publication Date
JP2014084399A true JP2014084399A (en) 2014-05-12

Family

ID=50787792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012233845A Pending JP2014084399A (en) 2012-10-23 2012-10-23 Solid lubricant film

Country Status (1)

Country Link
JP (1) JP2014084399A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020038263A1 (en) * 2018-08-22 2020-02-27 浙江长盛滑动轴承股份有限公司 Conductive self-lubricating composite plate for bearing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201898A (en) * 1982-05-18 1983-11-24 Hiroshi Kawarazuka Bearing
JPS59179660A (en) * 1983-03-31 1984-10-12 Bando Chem Ind Ltd Oil-containing synthetic resin composition
JP2006167689A (en) * 2004-12-20 2006-06-29 Asahi Glass Co Ltd Forming method of coating film of fluororesin and metal substrate having the coating film on surface
JP2008000287A (en) * 2006-06-21 2008-01-10 Terumo Corp Sliding composition for coating medical appliance and medical appliance with sliding coat
JP2010024380A (en) * 2008-07-22 2010-02-04 Toagosei Co Ltd Curable type coating material composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201898A (en) * 1982-05-18 1983-11-24 Hiroshi Kawarazuka Bearing
JPS59179660A (en) * 1983-03-31 1984-10-12 Bando Chem Ind Ltd Oil-containing synthetic resin composition
JP2006167689A (en) * 2004-12-20 2006-06-29 Asahi Glass Co Ltd Forming method of coating film of fluororesin and metal substrate having the coating film on surface
JP2008000287A (en) * 2006-06-21 2008-01-10 Terumo Corp Sliding composition for coating medical appliance and medical appliance with sliding coat
JP2010024380A (en) * 2008-07-22 2010-02-04 Toagosei Co Ltd Curable type coating material composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020038263A1 (en) * 2018-08-22 2020-02-27 浙江长盛滑动轴承股份有限公司 Conductive self-lubricating composite plate for bearing

Similar Documents

Publication Publication Date Title
Ahmed Abdalglil Mustafa et al. A review on potentials and challenges of nanolubricants as promising lubricants for electric vehicles
JP5742087B2 (en) MULTILAYER SLIDING MEMBER AND RACK GUIDE IN AUTOMOTIVE RACK AND PINION STEADING DEVICE USING THE SAME
Wu et al. Carbon solid lubricants: role of different dimensions
WO2010079719A1 (en) Multitiered bearing
Zhou et al. Electrodeposition of CNTs/copper composite coatings with enhanced tribological performance from a low concentration CNTs colloidal solution
JP2001355634A (en) Multi-layer sliding material
WO2018021122A1 (en) Sintered multilayer plate, multilayer sliding member using same and method for producing sintered multilayer plate
JP2009079766A (en) Multilayer bearing manufacturing method
CN103254971A (en) Lubricating oil containing sheet magnetic nanometer Fe3O4 particles and preparation method of lubricating oil
Sankaran Nair et al. Micro and nanoparticles blended sesame oil bio‐lubricant: study of its tribological and rheological properties
White et al. Microtribological behavior of Mo and W nanoparticle/graphene composites
Zabet et al. Effect of carbon nanotubes on electrical and mechanical properties of multiwalled carbon nanotubes/epoxy coatings
JP2007145894A (en) Multi-layer sliding member
JP2014084399A (en) Solid lubricant film
Feng et al. Study on conductivity and tribological properties of polyaniline/molybdenum disulfide composites in lithium complex grease
Owhal et al. Developing sustainable Zn-MWCNTs composite coatings using electrochemical co-deposition method: Tribological and surface wetting behavior
JP6382679B2 (en) Manufacturing method of sliding member
JP2013203905A (en) Sliding member and method for manufacturing the same
KR20160034625A (en) Coating Material For Solid Lubrication
DE102012207819A1 (en) Slide coating useful for coating the engine modules, preferably pistons, optionally comprising e.g. rings and pins, comprises solid lubricant e.g. graphite, zinc sulfide, optionally heat-curable polymer e.g. polyaryletherketone, and solvent
JP2015200339A (en) Slide member
Verma et al. Superlubricity of Nanocomposites of Polyaniline-Functionalized Reduced Graphene Oxide with Yttrium and Vanadium-Codoped Zinc Oxide Nanoparticles
JP2002327750A (en) Multi-layered bearing
Boidi et al. Exploring the solid lubrication potential of 2D black phosphorus
JP2017522421A (en) Polymer thick film silver conductor with reverse cure profile behavior

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160923