JP2014082056A - Fuel cell system installed in vehicle - Google Patents

Fuel cell system installed in vehicle Download PDF

Info

Publication number
JP2014082056A
JP2014082056A JP2012228102A JP2012228102A JP2014082056A JP 2014082056 A JP2014082056 A JP 2014082056A JP 2012228102 A JP2012228102 A JP 2012228102A JP 2012228102 A JP2012228102 A JP 2012228102A JP 2014082056 A JP2014082056 A JP 2014082056A
Authority
JP
Japan
Prior art keywords
power
fuel cell
capacitor
predetermined
cell stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012228102A
Other languages
Japanese (ja)
Other versions
JP5948210B2 (en
Inventor
Akio Matsuura
章雄 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2012228102A priority Critical patent/JP5948210B2/en
Publication of JP2014082056A publication Critical patent/JP2014082056A/en
Application granted granted Critical
Publication of JP5948210B2 publication Critical patent/JP5948210B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell system capable of most effectively utilizing the capacity of a capacitor when generated power is changed over.SOLUTION: When an open-circuit voltage Vof a capacitor 6 drops below a prescribed first threshold Vwhile a fuel cell stack 1 is generating power with a prescribed intermediate power P, an ECU 8 of a fuel cell system 100 exerts control to change a generated power Pof the fuel cell stack 1 from the intermediate power Pto a maximum power P. The prescribed first threshold Vis determined on the basis of the maximum power P, the intermediate power P, a capacity C of the capacitor 6, a minimum permissible voltage Vof the capacitor 6, and a power rise rate α at which the generated power Prises from the intermediate power Pto the maximum power P.

Description

この発明は、車両に搭載される燃料電池システムに関する。   The present invention relates to a fuel cell system mounted on a vehicle.

燃料電池システムを搭載したフォークリフトや乗用車等の産業車両の実用化が進められている。一般的な燃料電池システムでは、発電電力の変動は燃料電池スタックの劣化の原因となるため、燃料電池スタックの劣化を防ぐためには、発電電力の変動を最大限抑えて一定電力で発電することが好ましい。例えば特許文献1には、燃料電池スタックの発電電力を連続的に変化させずに所定の3段階に制御する燃料電池システムが記載されている。このようなシステムでは、燃料電池スタックに接続される負荷と並列にキャパシタが接続されており、燃料電池スタックの発電電力が負荷の要求電力を上回る場合には、余剰の電力がキャパシタに充電され、発電電力が要求電力を下回る場合には、不足分の電力がキャパシタから放電される。   Industrial vehicles such as forklifts and passenger cars equipped with fuel cell systems are being put to practical use. In a general fuel cell system, fluctuations in the generated power cause deterioration of the fuel cell stack. Therefore, in order to prevent the deterioration of the fuel cell stack, it is necessary to generate power at a constant power while minimizing fluctuations in the generated power. preferable. For example, Patent Document 1 describes a fuel cell system that controls the generated power of a fuel cell stack in predetermined three stages without continuously changing the generated power. In such a system, a capacitor is connected in parallel with the load connected to the fuel cell stack, and when the generated power of the fuel cell stack exceeds the required power of the load, surplus power is charged to the capacitor, When the generated power is less than the required power, the insufficient power is discharged from the capacitor.

特開昭64−38969号公報JP-A-64-38969

特許文献1のように燃料電池スタックの発電電力を3段階に制御するシステムにおいて、例えば燃料電池スタックの発電電力を所定の中間電力から最大電力に切り替える場合、発電電力が中間電力から最大電力まで上昇するのには一定の時間を要する。そのため、負荷に対する安定した電力供給を維持するためには、この間に不足する電力をキャパシタからの放電電力で補わなくてはならない。理想的には、発電電力の切り替え時に不足する電力量とその際にキャパシタから放電可能な最大電力量とが等しければ、キャパシタの容量を最大限有効利用していることになり、キャパシタを小型化することができる。しかしながら、従来そのような技術は存在せず、余裕をもって過度に大容量のキャパシタを選択しているのが現状である。   In a system that controls the generated power of the fuel cell stack in three stages as in Patent Document 1, for example, when the generated power of the fuel cell stack is switched from predetermined intermediate power to maximum power, the generated power increases from the intermediate power to the maximum power. It takes a certain amount of time to do. For this reason, in order to maintain a stable power supply to the load, it is necessary to supplement the power shortage during this time with the discharge power from the capacitor. Ideally, if the amount of power that is insufficient when switching generated power is equal to the maximum amount of power that can be discharged from the capacitor at that time, the capacitor capacity is used to the maximum extent possible, and the capacitor is miniaturized. can do. However, there is no such technique in the past, and the current situation is that an excessively large capacitor is selected with a margin.

この発明はこのような問題を解決するためになされたものであり、発電電力の切り替え時にキャパシタの容量を最大限有効利用することができる燃料電池システムを提供することを目的とする。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a fuel cell system capable of making maximum use of the capacity of a capacitor when switching generated power.

上記の課題を解決するために、この発明に係る車両に搭載される燃料電池システムは、車両負荷に電気的に接続される燃料電池スタックと、車両負荷と並列に燃料電池スタックに電気的に接続されるキャパシタと、キャパシタの開回路電圧に基づいて、燃料電池スタックの発電電力を、所定の最低電力、所定の中間電力および所定の最大電力の3段階に切り替える制御手段とを備え、制御手段は、燃料電池スタックが所定の中間電力で発電している際に、キャパシタの開回路電圧が所定の閾値を下回ると、燃料電池スタックの発電電力を所定の中間電力から所定の最大電力に切り替え、所定の閾値は、所定の最大電力、所定の中間電力、キャパシタの容量、キャパシタの許容最低電圧および発電電力が所定の中間電力から所定の最大電力まで上昇する際の電力上昇率に基づいて定められることを特徴とする。   In order to solve the above problems, a fuel cell system mounted on a vehicle according to the present invention includes a fuel cell stack electrically connected to a vehicle load, and an electrical connection to the fuel cell stack in parallel with the vehicle load. And a control means for switching the generated power of the fuel cell stack to three stages of a predetermined minimum power, a predetermined intermediate power and a predetermined maximum power based on the open circuit voltage of the capacitor, the control means comprising: When the open circuit voltage of the capacitor falls below a predetermined threshold when the fuel cell stack is generating with a predetermined intermediate power, the generated power of the fuel cell stack is switched from the predetermined intermediate power to a predetermined maximum power, The thresholds are: predetermined maximum power, predetermined intermediate power, capacitor capacity, allowable minimum voltage of capacitor, and generated power from predetermined intermediate power to predetermined maximum power Characterized in that it is determined based on the power increase rate at the time of raising.

好適には、上記所定の閾値は、当該所定の閾値をVTH1、所定の最大電力をP、所定の中間電力をP、キャパシタの容量をC、キャパシタの許容最低電圧をVmin、電力上昇率をαとすると、

Figure 2014082056
によって定められる。 Preferably, the predetermined threshold value is V TH1 , the predetermined maximum power is P H , the predetermined intermediate power is P M , the capacitance of the capacitor is C, the allowable minimum voltage of the capacitor is V min , power If the rate of increase is α,
Figure 2014082056
Determined by.

所定の中間電力は、車両を所定期間に渡って使用することによって算出される当該車両の平均消費電力に設定することができる。   The predetermined intermediate power can be set to the average power consumption of the vehicle calculated by using the vehicle for a predetermined period.

この発明に係る車両に搭載される燃料電池システムによれば、発電電力の切り替え時にキャパシタの容量を最大限有効利用することができる。   According to the fuel cell system mounted on the vehicle according to the present invention, the capacity of the capacitor can be utilized to the maximum extent when switching the generated power.

この発明の実施の形態に係る車両に搭載される燃料電池システムの構成を示す図である。It is a figure which shows the structure of the fuel cell system mounted in the vehicle which concerns on embodiment of this invention. この発明の実施の形態に係る車両に搭載される燃料電池システムにおけるキャパシタの開回路電圧と燃料電池スタックの発電電力の時間遷移を示す図である。It is a figure which shows the time transition of the open circuit voltage of the capacitor and the generated electric power of a fuel cell stack in the fuel cell system mounted on the vehicle according to the embodiment of the present invention. この発明の実施の形態に係る車両に搭載される燃料電池システムにおける発電電力の切り替え時における時間遷移の詳細を示す図である。It is a figure which shows the detail of the time transition at the time of the switching of the electric power generation in the fuel cell system mounted in the vehicle which concerns on embodiment of this invention.

以下、この発明の実施の形態について添付図面に基づいて説明する。
実施の形態.
この発明の実施の形態に係る産業車両に搭載される燃料電池システム100の構成を図1に示す。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
Embodiment.
FIG. 1 shows the configuration of a fuel cell system 100 mounted on an industrial vehicle according to an embodiment of the present invention.

燃料電池システム100は、燃料電池スタック1と、水素ガスを供給可能な水素タンク2と、酸素を含む空気を供給可能なコンプレッサ3とを備えており、水素タンク2から供給される水素とコンプレッサ3から供給される空気中の酸素とが燃料電池スタック1内で化学反応を起こすことによって、電気エネルギーが生成される。燃料電池スタック1と水素タンク2との間には、燃料電池スタック1に供給される水素ガス量を調整するための電磁弁4が設けられており、電磁弁4およびコンプレッサ3は後述する電子制御ユニット(ECU)8によって制御される。   The fuel cell system 100 includes a fuel cell stack 1, a hydrogen tank 2 that can supply hydrogen gas, and a compressor 3 that can supply air containing oxygen, and hydrogen supplied from the hydrogen tank 2 and the compressor 3. Electrical energy is generated by causing a chemical reaction in the fuel cell stack 1 with oxygen in the air supplied from the fuel cell stack 1. An electromagnetic valve 4 for adjusting the amount of hydrogen gas supplied to the fuel cell stack 1 is provided between the fuel cell stack 1 and the hydrogen tank 2, and the electromagnetic valve 4 and the compressor 3 are electronically controlled to be described later. Controlled by a unit (ECU) 8.

燃料電池スタック1の出力は、DC/DCコンバータ5を介して車両負荷20に接続されており、燃料電池スタック1で発電された直流電力は、DC/DCコンバータ5によって所定の電圧まで降圧された後、車両負荷20に出力される。   The output of the fuel cell stack 1 is connected to the vehicle load 20 via the DC / DC converter 5, and the DC power generated by the fuel cell stack 1 is stepped down to a predetermined voltage by the DC / DC converter 5. Then, it is output to the vehicle load 20.

車両負荷20は、具体的には産業車両の荷役装置を駆動するための荷役モータや車軸を駆動するための走行モータ等であり、燃料電池システム100から供給される電力によって荷役モータや走行モータが駆動されることによって、車両の荷役動作や走行動作が行われる。   The vehicle load 20 is specifically a cargo handling motor for driving a cargo handling device of an industrial vehicle, a travel motor for driving an axle, or the like. The cargo handling motor or the travel motor is driven by electric power supplied from the fuel cell system 100. By being driven, a cargo handling operation and a traveling operation of the vehicle are performed.

また、DC/DCコンバータ5の出力には、車両負荷20と並列にキャパシタ6が接続されている。燃料電池スタック1の発電電力Pが車両負荷20の要求電力Pを上回る場合には、余剰の電力がキャパシタ6に充電され、発電電力Pが要求電力Pを下回る場合には、不足分の電力がキャパシタ6から放電される。また、キャパシタ6には、電圧推定器7が取り付けられている。電圧推定器7は、キャパシタ6に入出力される電流を積算することによってキャパシタ6の充電量を求め、当該充電量に基づいてキャパシタ6の開回路電圧(OCV)を推定する。 A capacitor 6 is connected to the output of the DC / DC converter 5 in parallel with the vehicle load 20. If the generated power P G of the fuel cell stack 1 exceeds the required power P W of the vehicle load 20, when surplus power is charged in the capacitor 6, the generated power P G is below the required power P W is insufficient The minute power is discharged from the capacitor 6. A voltage estimator 7 is attached to the capacitor 6. The voltage estimator 7 obtains a charge amount of the capacitor 6 by integrating currents input to and output from the capacitor 6, and estimates an open circuit voltage (OCV) of the capacitor 6 based on the charge amount.

さらに、燃料電池システム100は、マイクロコンピュータによって構成される電子制御ユニット(ECU)8を備えている。ECU8は、電圧推定器7によって推定されるキャパシタ6の開回路電圧Vに基づいて、電磁弁4の開度とコンプレッサ3の吐出量を制御することによって、燃料電池スタック1に供給される水素と酸素の量を調整し、燃料電池スタック1の発電電力Pを制御する。 Furthermore, the fuel cell system 100 includes an electronic control unit (ECU) 8 constituted by a microcomputer. ECU8 is hydrogen based on the open circuit voltage V C of the capacitor 6 which are estimated by the voltage estimator 7, supplied by controlling the discharge amount of the opening and the compressor 3 of the solenoid valve 4, the fuel cell stack 1 the amount of oxygen was adjusted to control the generated power P G of the fuel cell stack 1.

前述したように、燃料電池スタック1の劣化を防ぐためには、その発電電力Pの変動を最大限抑えて一定電力で発電することが好ましい。そのため、ECU8は、燃料電池スタック1の発電電力Pを、所定の最低電力P、中間電力P、最大電力Pの3段階に制御する。ここで、最大電力Pは、産業車両が最大高負荷で動作する際に車両負荷20が要求する電力の最大値として定義され、最低電力Pは、燃料電池スタック1が劣化を伴うことなく発電可能な電力の最低値として定義され、中間電力Pは、最大電力Pと最低電力Pとの間の所定値として定義される。 As described above, in order to prevent deterioration of the fuel cell stack 1 is preferably generated by a constant power while suppressing maximize the variation of the generated power P G. Therefore, ECU 8 is the generated power P G of the fuel cell stack 1, to control a predetermined minimum power P L, the intermediate power P M, the three stages of the maximum power P H. Here, the maximum power P H is defined as the maximum value of power required by the vehicle load 20 when the industrial vehicle operates at the maximum high load, and the minimum power P L is not accompanied by deterioration of the fuel cell stack 1. The intermediate power P M is defined as a predetermined value between the maximum power P H and the minimum power P L.

ECU8は、電圧推定器7によって推定されるキャパシタ6の開回路電圧Vを常時監視し、図2に示されるように、キャパシタ6の開回路電圧Vが所定の第1閾値VTH1と第2閾値VTH2との間にある通常時には、燃料電池スタック1の発電電力Pを中間電力Pに設定する。また、ECU8は、車両負荷20の要求電力Pの増加等に起因してキャパシタ6の充電量が減少し、その開回路電圧Vが所定の第1閾値VTH1を下回ったことを検知すると、発電電力Pを中間電力Pから最大電力Pに切り替え、開回路電圧Vが上昇して第1閾値VTH1を上回ったことを検知すると、発電電力Pを再び中間電力Pに切り替える。また、ECU8は、キャパシタ6の充電量が増加してその開回路電圧Vが所定の第2閾値VTH2を上回ったことを検知すると、発電電力Pを中間電力Pから最低電力Pに切り替え、開回路電圧Vが低下して第2閾値VTH2を下回ったことを検知すると、発電電力Pを再び中間電力Pに切り替える。 The ECU 8 constantly monitors the open circuit voltage V C of the capacitor 6 estimated by the voltage estimator 7, and as shown in FIG. 2, the open circuit voltage V C of the capacitor 6 has a predetermined first threshold value V TH1 and a first threshold voltage V TH1 . during normal lying between 2 threshold V TH2, setting the generated power P G of the fuel cell stack 1 to the intermediate power P M. Further, ECU 8 decreases the amount of charge of the capacitor 6 due to an increase in required power P W of the vehicle load 20, when the open-circuit voltage V C detects that below a predetermined first threshold value V TH1 When the generated power P G is switched from the intermediate power P M to the maximum power P H and it is detected that the open circuit voltage V C rises and exceeds the first threshold value V TH1 , the generated power P G is changed to the intermediate power P M again. Switch to. Further, ECU 8, when the open circuit voltage V C charge amount of the capacitor 6 is increased it is detected that exceeds a predetermined second threshold value V TH2, the generated power P minimum power G from the intermediate power P M P L the switching, the open circuit voltage V C detects that falls below the second threshold value V TH2 decreases, switching the generated power P G again to the intermediate power P M.

ここで、上記所定の第1閾値VTH1の定め方について説明する。燃料電池スタック1の発電電力Pを中間電力Pから最大電力Pに切り替える際には、ECU8は、電磁弁4の開度とコンプレッサ3の吐出量を制御することによって、燃料電池スタック1に供給される水素と酸素の量を増加させ、発電電力Pを最大電力Pまで上昇させる。この際、図3に詳細に示されるように、時刻tにおいて切り替えを開始しても、発電電力Pが中間電力Pから最大電力Pまで上昇するのには一定時間τを要する。そのため、車両負荷20の要求電力Pが最大電力Pに等しいクリティカルケースにおいても車両負荷20に対する安定した電力供給を維持するためには、この一定時間τの間に不足する電力量(図中に斜線で示される領域)Wを、キャパシタ6からの放電電力で補わなくてはならない。 Here, how to determine the predetermined first threshold value V TH1 will be described. When switching the generated power P G of the fuel cell stack 1 from the intermediate power P M to the maximum power P H is ECU 8 by controlling the discharge amount of the opening and the compressor 3 of the solenoid valve 4, the fuel cell stack 1 increase the amount of hydrogen and oxygen supplied to raise the generated power P G to a maximum power P H. At this time, as shown in detail in FIG. 3, also started to switch at time t 0, takes a certain time τ is in generated power P G is increased from the intermediate power P M to the maximum power P H. Therefore, in order to request power P W of the vehicle load 20 is to maintain a stable power supply to the vehicle load 20 even in critical cases equal to the maximum power P H is the amount of power (in the figure the missing during the predetermined time τ not a shown is area) W a by hatching, not supplemented by electric power discharged from the capacitor 6 to.

このとき、上記第1閾値VTH1の定義から、切り替え開始時tにおけるキャパシタ6の開回路電圧はVTH1であり、キャパシタ6の許容最低電圧をVmin、キャパシタ6の容量をCとすると、キャパシタ6が放電可能な電力量WAt this time, from the definition of the first threshold value V TH1 , the open circuit voltage of the capacitor 6 at the switching start time t 0 is V TH1 , the allowable minimum voltage of the capacitor 6 is V min , and the capacitance of the capacitor 6 is C, capacitor 6 is dischargeable power amount W C is

Figure 2014082056
Figure 2014082056

と表される。この放電可能電力量Wによって不足電力量Wを補うためには、 It is expressed. To compensate for the lack power amount W A by the dischargeable power amount W C,

Figure 2014082056
Figure 2014082056

の関係を満たす必要がある。さらに、背景技術の説明において述べたように、キャパシタ6の容量を最大限有効利用するためには、放電可能電力量Wと不足電力量Wとが等しくなり、 It is necessary to satisfy the relationship. Furthermore, as mentioned in the description of the background art, in order to maximize effective use of the capacity of the capacitor 6, the dischargeable power amount W C insufficient power amount W A is equal,

Figure 2014082056
Figure 2014082056

の関係を満たすのが理想的である。 It is ideal to satisfy this relationship.

この式(3)に式(1)を代入し、VTH1について整理すると、 Substituting equation (1) into equation (3) and organizing V TH1 ,

Figure 2014082056
Figure 2014082056

の関係が得られる。 The relationship is obtained.

また、図3において、発電電力Pが中間電力Pから最大電力Pまで上昇する際の変化が直線的であると仮定すると、不足電力量WFurther, in FIG. 3, the generated power P G is the change in time of rising from the intermediate power P M to the maximum power P H is assumed to be linear, the power shortage amount W A

Figure 2014082056
Figure 2014082056

によって近似することでき、この式(5)を式(4)に代入すると、 By substituting this equation (5) into equation (4),

Figure 2014082056
Figure 2014082056

の関係が得られる。さらに、発電電力Pが中間電力Pから最大電力Pまで上昇する際の電力上昇率αを The relationship is obtained. Moreover, the power increase rate α when generated power P G is increased from the intermediate power P M to the maximum power P H

Figure 2014082056
によって定義して式(6)に代入すると、
Figure 2014082056
And substituting it into equation (6)

Figure 2014082056
Figure 2014082056

の関係が得られる。すなわち、最大電力P、中間電力P、キャパシタ容量C、キャパシタ許容最低電圧Vmin、電力上昇率αが与えられた際に、式(8)に従って第1閾値VTH1を定めることによって、キャパシタ6の容量を最大限有効利用することができる。 The relationship is obtained. That is, when the maximum power P H , the intermediate power P M , the capacitor capacitance C, the capacitor allowable minimum voltage V min , and the power increase rate α are given, the first threshold value V TH1 is determined according to the equation (8). The capacity of 6 can be used as much as possible.

以上説明したように、この実施の形態に係る産業車両に搭載される燃料電池システム100では、ECU8は、燃料電池スタック1が所定の中間電力Pで発電している際に、キャパシタ6の開回路電圧Vが所定の第1閾値VTH1を下回ると、燃料電池スタック1の発電電力Pを中間電力Pから最大電力Pに切り替える制御を行い、当該所定の第1閾値VTH1は、上記式(8)に従って定められる。これにより、キャパシタ6の容量を最大限有効利用することができ、キャパシタ6を小型化することができる。 As described above, in the fuel cell system 100 is mounted to the industrial vehicle according to this embodiment, ECU 8, when the fuel cell stack 1 is generated by the predetermined intermediate power P M, the opening of the capacitor 6 When the circuit voltage V C falls below a predetermined first threshold value V TH1, it performs control for switching the generated power P G of the fuel cell stack 1 from the intermediate power P M to the maximum power P H, the first threshold value V TH1 of the predetermined is Is determined according to the above equation (8). Thereby, the capacity | capacitance of the capacitor 6 can be utilized effectively to the maximum, and the capacitor 6 can be reduced in size.

その他の実施の形態.
上記の実施の形態において、燃料電池スタック1の劣化をさらに防ぐためには、発電電力Pの切り替え回数を最大限少なくすることが好ましい。本願の発明者による研究によれば、産業車両を例えば、1週間や1ヶ月など所定期間に渡って実際の作業に使用してその平均消費電力を算出し、上記所定の中間電力Pを算出された平均消費電力に設定することによって、発電電力Pの切り替え回数を大幅に少なくできることが分かっている。
なお、上記の実施の形態において、荷役装置を有する産業車両として説明したが、上記発明が適用可能である車両であれば特に限定されない。例えば、乗用車やフォークリフト、牽引車であってもよい。
Other embodiments.
In the above embodiment, in order to further prevent the deterioration of the fuel cell stack 1, it is preferable to reduce maximize the number of times of switching the power generation electric power P G. Studies by the inventors of this application, the industrial vehicle for example, using the actual work over a predetermined period such as one week or one month to calculate the average power consumption, calculate the predetermined intermediate power P M by setting the average power consumption that is, it has been found that the number of switching times in the generated power P G can be greatly reduced.
In the above-described embodiment, the industrial vehicle having the cargo handling device has been described. However, the vehicle is not particularly limited as long as the above-described invention is applicable. For example, a passenger car, a forklift, or a tow truck may be used.

100 燃料電池システム、1 燃料電池スタック、6 キャパシタ、8 ECU(制御手段)、P 発電電力、P 最大電力、P 中間電力、P 最低電力、V キャパシタの開回路電圧、VTH1 第1閾値(閾値)、Vmin キャパシタの許容最低電圧、C キャパシタの容量、α 電力上昇率。 100 fuel cell system, first fuel cell stack, 6 capacitors, 8 ECU (control means), P G generated power, P H maximum power, P M intermediate power, P L minimum power, open circuit voltage V C capacitor, V TH1 First threshold (threshold), allowable minimum voltage of V min capacitor, capacity of C capacitor, α power increase rate.

Claims (3)

車両に搭載される燃料電池システムであって、
車両負荷に電気的に接続される燃料電池スタックと、
前記車両負荷と並列に前記燃料電池スタックに電気的に接続されるキャパシタと、
前記キャパシタの開回路電圧に基づいて、前記燃料電池スタックの発電電力を、所定の最低電力、所定の中間電力および所定の最大電力の3段階に切り替える制御手段と
を備え、
前記制御手段は、前記燃料電池スタックが前記所定の中間電力で発電している際に、前記キャパシタの開回路電圧が所定の閾値を下回ると、前記燃料電池スタックの発電電力を前記所定の中間電力から前記所定の最大電力に切り替え、
前記所定の閾値は、前記所定の最大電力、前記所定の中間電力、前記キャパシタの容量、前記キャパシタの許容最低電圧および前記発電電力が前記所定の中間電力から前記所定の最大電力まで上昇する際の電力上昇率に基づいて定められることを特徴とする、車両に搭載される燃料電池システム。
A fuel cell system mounted on a vehicle,
A fuel cell stack electrically connected to a vehicle load;
A capacitor electrically connected to the fuel cell stack in parallel with the vehicle load;
Control means for switching, based on the open circuit voltage of the capacitor, the generated power of the fuel cell stack into three stages of a predetermined minimum power, a predetermined intermediate power, and a predetermined maximum power;
When the fuel cell stack generates power with the predetermined intermediate power and the open circuit voltage of the capacitor falls below a predetermined threshold, the control means converts the generated power of the fuel cell stack to the predetermined intermediate power. Switch to the predetermined maximum power from
The predetermined threshold is determined when the predetermined maximum power, the predetermined intermediate power, the capacity of the capacitor, the allowable minimum voltage of the capacitor, and the generated power increase from the predetermined intermediate power to the predetermined maximum power. A fuel cell system mounted on a vehicle, characterized in that the fuel cell system is determined based on a power increase rate.
前記所定の閾値は、該所定の閾値をVTH1、前記所定の最大電力をP、前記所定の中間電力をP、前記キャパシタの容量をC、前記キャパシタの許容最低電圧をVmin、前記電力上昇率をαとすると、
Figure 2014082056
によって定められることを特徴とする、請求項1に記載の車両に搭載される燃料電池システム。
The predetermined threshold is V TH1 , the predetermined maximum power is P H , the predetermined intermediate power is P M , the capacitance of the capacitor is C, the allowable minimum voltage of the capacitor is V min , If the power increase rate is α,
Figure 2014082056
The fuel cell system mounted on a vehicle according to claim 1, wherein the fuel cell system is defined by:
前記所定の中間電力は、前記車両を所定期間に渡って使用することによって算出される該車両の平均消費電力に設定されることを特徴とする、請求項1または2に記載の車両に搭載される燃料電池システム。   The vehicle according to claim 1 or 2, wherein the predetermined intermediate power is set to an average power consumption of the vehicle calculated by using the vehicle for a predetermined period. Fuel cell system.
JP2012228102A 2012-10-15 2012-10-15 Fuel cell system mounted on vehicle Expired - Fee Related JP5948210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012228102A JP5948210B2 (en) 2012-10-15 2012-10-15 Fuel cell system mounted on vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012228102A JP5948210B2 (en) 2012-10-15 2012-10-15 Fuel cell system mounted on vehicle

Publications (2)

Publication Number Publication Date
JP2014082056A true JP2014082056A (en) 2014-05-08
JP5948210B2 JP5948210B2 (en) 2016-07-06

Family

ID=50786088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012228102A Expired - Fee Related JP5948210B2 (en) 2012-10-15 2012-10-15 Fuel cell system mounted on vehicle

Country Status (1)

Country Link
JP (1) JP5948210B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018063803A (en) * 2016-10-12 2018-04-19 株式会社豊田自動織機 Fuel cell system mounted on industrial vehicle
JP2018073796A (en) * 2016-11-04 2018-05-10 株式会社豊田自動織機 Fuel cell vehicle
US10358050B2 (en) 2016-11-04 2019-07-23 Kabushiki Kaisha Toyota Jidoshokki Fuel cell vehicle and method for controlling fuel cell vehicle
US11142441B2 (en) 2018-11-12 2021-10-12 Kabushiki Kaisha Toyota Jidoshokki Industrial vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001095107A (en) * 1999-09-21 2001-04-06 Yamaha Motor Co Ltd Method for controlling power source of hybrid-driven mobile
JP2005149920A (en) * 2003-11-17 2005-06-09 Nissan Motor Co Ltd Fuel cell power source, and capacitor charging method therefor
JP2008017594A (en) * 2006-07-05 2008-01-24 Suzuki Motor Corp Control device for vehicles mounted with fuel cell
JP2011223870A (en) * 2011-04-28 2011-11-04 Toyota Motor Corp Supply of power using fuel cell and power storage part capable of charging and discharging

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001095107A (en) * 1999-09-21 2001-04-06 Yamaha Motor Co Ltd Method for controlling power source of hybrid-driven mobile
JP2005149920A (en) * 2003-11-17 2005-06-09 Nissan Motor Co Ltd Fuel cell power source, and capacitor charging method therefor
JP2008017594A (en) * 2006-07-05 2008-01-24 Suzuki Motor Corp Control device for vehicles mounted with fuel cell
JP2011223870A (en) * 2011-04-28 2011-11-04 Toyota Motor Corp Supply of power using fuel cell and power storage part capable of charging and discharging

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018063803A (en) * 2016-10-12 2018-04-19 株式会社豊田自動織機 Fuel cell system mounted on industrial vehicle
JP2018073796A (en) * 2016-11-04 2018-05-10 株式会社豊田自動織機 Fuel cell vehicle
US20180131019A1 (en) * 2016-11-04 2018-05-10 Kabushiki Kaisha Toyota Jidoshokki Fuel cell vehicle and method for controlling fuel cell vehicle
US10358050B2 (en) 2016-11-04 2019-07-23 Kabushiki Kaisha Toyota Jidoshokki Fuel cell vehicle and method for controlling fuel cell vehicle
US11142441B2 (en) 2018-11-12 2021-10-12 Kabushiki Kaisha Toyota Jidoshokki Industrial vehicle

Also Published As

Publication number Publication date
JP5948210B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
US9371005B2 (en) Battery management apparatus for an electric vehicle, and method for managing same
CN108859801B (en) Fuel cell system
CN101909924B (en) Fuel cell system and fuel cell boosting converter
AU2006304921B2 (en) Lift truck with hybrid power source
JP5577775B2 (en) Electric vehicle power supply
CN107404144A (en) Solar cell system
JP2009118727A (en) Hybrid power source
US20170365892A1 (en) Fuel cell system and control method of the same
JP2008211952A (en) Power supply unit
JP5796457B2 (en) Battery system and battery system control method
US20200195033A1 (en) Battery charge control apparatus for vehicle and method of controlling battery charging of vehicle
JP5786952B2 (en) Fuel cell output control device
US20150042156A1 (en) Vehicle electric power supply control system and vehicle
US10122177B2 (en) Power supply method and power supply system
KR102243561B1 (en) Apparatus for stabilizing a power source for battery management system using super capacitor
JP5948210B2 (en) Fuel cell system mounted on vehicle
JP2009117070A (en) Fuel cell system
US9209719B2 (en) Load driving device and inverted movable body equipped with same
CN101803089A (en) Fuel cell system
JP6633998B2 (en) Fuel cell system mounted on industrial vehicles
CN104159780A (en) Power supply system
JP6520745B2 (en) Fuel cell system
JP2018196274A (en) Battery system
JP6881224B2 (en) Fuel cell vehicle
JP6485871B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160606

R150 Certificate of patent or registration of utility model

Ref document number: 5948210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees