JP2014081311A - Radar system - Google Patents

Radar system Download PDF

Info

Publication number
JP2014081311A
JP2014081311A JP2012230273A JP2012230273A JP2014081311A JP 2014081311 A JP2014081311 A JP 2014081311A JP 2012230273 A JP2012230273 A JP 2012230273A JP 2012230273 A JP2012230273 A JP 2012230273A JP 2014081311 A JP2014081311 A JP 2014081311A
Authority
JP
Japan
Prior art keywords
unit
radar
doppler
output
coherent integration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012230273A
Other languages
Japanese (ja)
Inventor
Takaaki Kishigami
高明 岸上
Tadashi Morita
忠士 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012230273A priority Critical patent/JP2014081311A/en
Publication of JP2014081311A publication Critical patent/JP2014081311A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a radar system capable of increasing the coherent integral gain of a reflection wave signal reflected by a target using a simple configuration.SOLUTION: A radar transmission section converts a transmission signal into a high-frequency radar transmission signal to transmit the same from a transmission antenna. At least one radar reception section receives a reflection wave signal which is the radar transmission signal reflected by the target using a reception antenna. The correlation calculation section calculates correlation value between the reception signal and the transmission signal for each transmission period of the radar transmission signal. A Doppler frequency detection unit performs a coherent integration on (Np×Nc: Np, Nc: integers equal to or more than one) correlation values using a correction amount of a Doppler phase rotation corresponding to different plural Doppler frequencies.

Description

本開示は、ターゲットに反射された反射波信号を基にしてターゲットを検出するレーダ装置に関する。   The present disclosure relates to a radar apparatus that detects a target based on a reflected wave signal reflected by the target.

レーダ装置は、高周波のレーダ送信信号を測定地点から空間に送信し、ターゲットに反射された反射波信号を受信し、測定地点とターゲットとの距離、方向のうち、少なくとも1つを測定する。近年、マイクロ波又はミリ波を含む波長の短いレーダ送信信号を用いて、自動車及び歩行者を含むターゲットまでの距離又は到来方向を高分解能に推定するレーダ装置の要請が高い。   The radar apparatus transmits a high-frequency radar transmission signal from a measurement point to space, receives a reflected wave signal reflected by the target, and measures at least one of the distance and direction between the measurement point and the target. In recent years, there is a high demand for a radar apparatus that estimates a distance or an arrival direction to a target including an automobile and a pedestrian with high resolution by using a radar transmission signal having a short wavelength including microwaves or millimeter waves.

従来のレーダ装置は、例えば送信側において送信周期T毎にパルス圧縮符号を繰り返して送信する場合、受信側においてパルス圧縮処理により算出された相関演算値を複数回加算処理する。これにより、ターゲットからの反射波信号の受信SNR(signal to noise ratio)が改善する。加算処理の一例として、相関演算値における位相成分がほぼ同位相とみなせる場合に相関演算値を複数回加算処理するコヒーレント積分が用いられる。 For example, when a conventional radar apparatus repeatedly transmits a pulse compression code for each transmission cycle Tr on the transmission side, the reception side performs addition processing on the correlation calculation value calculated by the pulse compression processing a plurality of times. Thereby, the reception SNR (signal to noise ratio) of the reflected wave signal from the target is improved. As an example of the addition process, coherent integration is used in which the correlation calculation value is added a plurality of times when the phase components in the correlation calculation value can be regarded as substantially the same phase.

例えば、パルス圧縮処理により算出された相関演算値のうち、時間相関が高い期間(N×T)では、相関演算値のI成分及びQ成分毎にコヒーレント積分が可能である。Nは、コヒーレント積分回数を示し、ターゲットの想定最大移動速度に依存して設定される。Tは送信周期[秒]である。コヒーレント積分により、受信SNR[dB]が、コヒーレント積分利得G[dB]分の改善が可能となる(数式(1)参照)。ターゲットが静止しているような理想的な状態では、コヒーレント積分利得Gは、数式(2)により示される。 For example, among the correlation calculation values calculated by the pulse compression processing, in a period (N c × T r ) where the time correlation is high, coherent integration is possible for each of the I component and Q component of the correlation calculation value. Nc indicates the number of times of coherent integration, and is set depending on the assumed maximum moving speed of the target. T r is the transmission cycle [seconds]. Coherent integration makes it possible to improve the received SNR [dB] by a coherent integration gain G c [dB] (see Expression (1)). In an ideal state where the target is stationary, the coherent integration gain G c is expressed by Equation (2).

Figure 2014081311
Figure 2014081311

Figure 2014081311
Figure 2014081311

一方、ターゲットの想定最大移動速度が大きい状態では、ターゲットからの反射波信号に含まれるドップラ周波数の変動が大きくなり、時間相関の高い期間が短くなる。即ち、コヒーレント積分数Nが小さくなり、数式(2)によってコヒーレント積分による利得Gが小さくなり、数式(1)において、コヒーレント積分によるSNRの向上効果が小さくなる。 On the other hand, in a state where the assumed maximum moving speed of the target is high, the fluctuation of the Doppler frequency included in the reflected wave signal from the target becomes large, and the period with high time correlation becomes short. That is, coherent integration speed N c is small, the gain G c is reduced by coherent integration according to Equation (2), in Equation (1), the effect of improving the SNR by coherent integration is reduced.

例えば特許文献1では、送受信手段から入力した受信信号が低次高域除去フィルタによって高周波クラッタ成分が除去され、高周波クラッタ成分の除去後の受信信号がコヒーレント積分処理部においてコヒーレント積分されるレーダ信号処理装置が開示されている。   For example, in Patent Document 1, radar signal processing in which a high-frequency clutter component is removed from a received signal input from a transmission / reception unit by a low-order high-frequency removal filter, and the received signal after removal of the high-frequency clutter component is coherently integrated in a coherent integration processing unit. An apparatus is disclosed.

更に、レーダ信号処理装置は、コヒーレント積分処理後の受信信号に対し、フーリエ変換処理部(FFT処理部)においてフーリエ変換処理(FFT処理)し、周波数スペクトルを算出する。周波数スペクトル上でのピークスペクトラムは、フーリエ変換処理(FFT)点数に比例したコヒーレント加算利得が得られる。   Further, the radar signal processing device performs a Fourier transform process (FFT process) in the Fourier transform processing unit (FFT processing unit) on the received signal after the coherent integration process, and calculates a frequency spectrum. The peak spectrum on the frequency spectrum provides a coherent addition gain proportional to the number of Fourier transform (FFT) points.

特許文献1では、フーリエ変換処理(FFT処理)前にコヒーレント積分処理するため、コヒーレント積分処理部におけるコヒーレント積分によりデータレートが低減される。このため、フーリエ変換処理(FFT処理)部では、フーリエ変換処理(FFT処理)点数が少なくなり、処理量が少なくなる。   In Patent Document 1, since the coherent integration process is performed before the Fourier transform process (FFT process), the data rate is reduced by coherent integration in the coherent integration processing unit. For this reason, in the Fourier transform processing (FFT processing) unit, the number of Fourier transform processing (FFT processing) decreases, and the processing amount decreases.

特開2002−131421号公報JP 2002-131421 A

しかし、特許文献1に示すレーダ信号処理装置では、コヒーレント積分処理部におけるコヒーレント積分の積分回数は想定するターゲットの移動速度により上限がある。従って、コヒーレント積分利得による受信SNRを更に改善するためには、フーリエ変換処理(FFT処理)部におけるフーリエ変換処理(FFT処理)点数を増加する必要がある。あるいは、特許文献1に示すレーダ信号処理装置では、周波数分解能を高めるためは、周波数ビン数を多くする必要がある。フーリエ変換処理(FFT処理)点数を増加する場合、あるいは周波数ビン数を多くする場合は、フーリエ変換処理部(FFT処理部)の回路構成が複雑化するという課題があった。   However, in the radar signal processing device disclosed in Patent Document 1, the number of coherent integrations in the coherent integration processing unit has an upper limit depending on the assumed target moving speed. Therefore, in order to further improve the reception SNR due to the coherent integration gain, it is necessary to increase the number of Fourier transform processing (FFT processing) in the Fourier transform processing (FFT processing) unit. Alternatively, in the radar signal processing device disclosed in Patent Document 1, it is necessary to increase the number of frequency bins in order to increase the frequency resolution. When the number of Fourier transform processing (FFT processing) points is increased, or when the number of frequency bins is increased, there is a problem that the circuit configuration of the Fourier transform processing unit (FFT processing unit) becomes complicated.

本開示は、上述した従来の課題を解決するために、従来のフーリエ変換処理(FFT処理)部に比べ、簡易なフーリエ変換(FFT)構成を用いて、フーリエ変換によるコヒーレント積分利得を向上するレーダ装置を提供することを目的とする。   In order to solve the above-described conventional problems, the present disclosure uses a simple Fourier transform (FFT) configuration as compared with a conventional Fourier transform (FFT) unit, and improves the coherent integration gain by Fourier transform. An object is to provide an apparatus.

本開示は、送信信号を高周波のレーダ送信信号に変換し、前記レーダ送信信号を送信アンテナから送信するレーダ送信部と、受信アンテナを用いて、ターゲットにより反射された前記レーダ送信信号である反射波信号を受信する少なくとも1個のレーダ受信部と、を含み、前記レーダ受信部は、受信信号と前記送信信号との相関値を、前記レーダ送信信号の送信周期毎に演算する相関演算部と、演算された(Np×Nc:Np、Ncは、1以上の整数)個の前記相関値を、異なる複数のドップラ周波数に応じたドップラ位相回転の補正量を用いてコヒーレント積分するドップラ周波数検出部と、を有するレーダ装置である。   The present disclosure is directed to a radar transmitter that converts a transmission signal into a high-frequency radar transmission signal and transmits the radar transmission signal from a transmission antenna, and a reflected wave that is the radar transmission signal reflected by a target using a reception antenna. At least one radar receiving unit that receives a signal, and the radar receiving unit calculates a correlation value between the received signal and the transmission signal for each transmission period of the radar transmission signal; A Doppler frequency detector that coherently integrates the calculated (Np × Nc: Np, Nc is an integer of 1 or more) pieces of the correlation values using correction amounts of Doppler phase rotations corresponding to different Doppler frequencies; The radar apparatus having

本開示によれば、簡易なフーリエ変換(FFT)構成を用いて、フーリエ変換によるコヒーレント積分利得を向上できる。   According to the present disclosure, it is possible to improve coherent integration gain by Fourier transform using a simple Fourier transform (FFT) configuration.

第1の実施形態のレーダ装置の内部構成を簡略に示すブロック図The block diagram which shows simply the internal structure of the radar apparatus of 1st Embodiment 第1の実施形態のレーダ装置の内部構成を詳細に示すブロック図The block diagram which shows the internal structure of the radar apparatus of 1st Embodiment in detail レーダ送信信号の送信区間と送信周期との関係を示す説明図Explanatory drawing which shows the relationship between the transmission interval and transmission cycle of a radar transmission signal 送信信号生成部の他の内部構成を詳細に示すブロック図The block diagram which shows the other internal structure of a transmission signal generation part in detail レーダ送信信号と、遅延時間τの受信信号と、遅延時間τの受信信号との関係を示す図The figure which shows the relationship between a radar transmission signal, the received signal of delay time (tau) 1 , and the received signal of delay time (tau) 2 . 第2の実施形態のレーダ装置の内部構成を簡略に示すブロック図The block diagram which shows simply the internal structure of the radar apparatus of 2nd Embodiment 第2の実施形態のレーダ装置の内部構成を詳細に示すブロック図The block diagram which shows the internal structure of the radar apparatus of 2nd Embodiment in detail 本発明者らによる先願のレーダ装置のレーダ受信部における動作の流れの一部を示す説明図Explanatory drawing which shows a part of operation | movement flow in the radar receiving part of the radar apparatus of the prior application by the present inventors.

(本開示に係るレーダ装置の各実施形態の内容に至る経緯)
先ず、本開示に係るレーダ装置の各実施形態の内容を説明する前に、本開示に係るレーダ装置の各実施形態の内容に至る経緯について説明する。
(Background to the contents of each embodiment of the radar apparatus according to the present disclosure)
First, before explaining the contents of the embodiments of the radar apparatus according to the present disclosure, the background to the contents of the embodiments of the radar apparatus according to the present disclosure will be described.

回のパルス圧縮符号の送信区間(N×T)に対し、特定の離散時刻においてパルス圧縮されたN個の相関値、又はN個の相関値を単位とした所定回のコヒーレント積分出力(特許文献1参照)を用いてフーリエ変換すると、ターゲットからの反射波信号に含まれるドップラスペクトルが周波数領域信号から観測できる。レーダ装置は、ドップラスペクトル上のピーク周波数成分を、コヒーレント積分による利得向上効果が得られた信号成分として検出できる。なお、フーリエ変換は、「FFT」(Fast Fourier Transform)又は「DFT」(Discrete Fourier Transform)のアルゴリズムが用いられる。 To N d times of the pulse compression code of the transmission period (N d × T r), the pulse compressed N d number of correlation values in a certain discrete time, or N d number predetermined times of the correlation value in units of When Fourier transform is performed using a coherent integration output (see Patent Document 1), the Doppler spectrum included in the reflected wave signal from the target can be observed from the frequency domain signal. The radar apparatus can detect the peak frequency component on the Doppler spectrum as a signal component from which a gain improvement effect by coherent integration is obtained. For the Fourier transform, an algorithm of “FFT” (Fast Fourier Transform) or “DFT” (Discrete Fourier Transform) is used.

レーダ装置は、ターゲットの移動に伴うドップラ周波数の変移に基づくドップラ位相変動がターゲットからの反射波信号に含まれる場合、フーリエ変換を用いたコヒーレント積分によってドップラスペクトルのピークを検出することで、ドップラ位相変動に応じたコヒーレント積分が可能となる。   The radar equipment detects the Doppler phase peak by coherent integration using Fourier transform when the Doppler phase variation based on the Doppler frequency shift accompanying the target movement is included in the reflected wave signal from the target. Coherent integration according to fluctuation is possible.

ドップラスペクトルの広がりが十分に小さい場合、フーリエ変換サイズに相当するコヒーレント積分区間に拘わらず、レーダ装置は、コヒーレント積分による理想的な利得向上効果(数式(1)参照)が得られる。特に、ドップラスペクトルが線スペクトルによって近似できる場合には、レーダ装置は、フーリエ変換を用いたコヒーレント積分回数Nに対し、数式(3)に示すコヒーレント積分効果による利得G[dB]が得られる。 When the spread of the Doppler spectrum is sufficiently small, the radar apparatus can obtain an ideal gain improvement effect (see Expression (1)) by coherent integration regardless of the coherent integration interval corresponding to the Fourier transform size. In particular, when the Doppler spectrum can be approximated by a line spectrum, the radar apparatus can obtain a gain G d [dB] due to the coherent integration effect shown in Formula (3) with respect to the number of times N d of coherent integration using Fourier transform. .

Figure 2014081311
Figure 2014081311

しかし、フーリエ変換を用いてコヒーレント積分する場合、フーリエ変換サイズに相当するコヒーレント積分回数N又はフーリエ変換における周波数軸上の周波数ビン数Nが大きくなると、コヒーレント積分利得又は周波数分解能が向上するが、レーダ装置の回路構成が複雑化するという課題がある。 However, when the coherent integration using Fourier transform, the frequency bin number N f on the frequency axis in the coherent integration count N d or Fourier transform corresponds to the Fourier transform size increases, but improves the coherent integration gain or frequency resolution There is a problem that the circuit configuration of the radar apparatus becomes complicated.

フーリエ変換のアルゴリズムのうち、FFT(高速フーリエ変換)について説明する。例えば、フーリエ変換として、2のべき乗となるN個の特定の離散時刻においてパルス圧縮された相関値を用いてFFT(高速フーリエ変換)した場合、FFTの演算量は数式(4)により示される。例えばN=128では、FFTにおける複素乗算回数は448となり、実数乗算器は448×4=1792個が必要となる。 Of the Fourier transform algorithms, FFT (Fast Fourier Transform) will be described. For example, as a Fourier transform, when the FFT (Fast Fourier transform) using a correlation value pulse compression in N d pieces of the particular discrete time as a power of two, the calculation amount of FFT is represented by Equation (4) . For example, when N d = 128, the number of complex multiplications in the FFT is 448, and the number of real number multipliers is 448 × 4 = 1799.

Figure 2014081311
Figure 2014081311

図8は、本発明者らによる先願のレーダ装置のレーダ受信部Rxxにおける動作の流れの一部を示す説明図である。図8に示すレーダ受信部Rxxは、A/D変換部101a,101b、相関演算部102、コヒーレント積分部103、ドップラ位相回転テーブル104、N(=2N)個の乗算器MX#N,MX#N−1〜MX#−N+1、N(=2N)個のドップラコヒーレント加算バッファBF#N,BF#N−1〜BF#−N+1、絶対値算出部105及びピークドップラ出力選択部106を含む。 FIG. 8 is an explanatory diagram showing a part of the operation flow in the radar receiver Rxx of the radar apparatus of the prior application by the present inventors. The radar receiver Rxx shown in FIG. 8 includes A / D converters 101a and 101b, a correlation calculator 102, a coherent integrator 103, a Doppler phase rotation table 104, and N f (= 2N L ) multipliers MX # N L. , MX # N L −1 to MX # −N L +1, N f (= 2N L ) Doppler coherent addition buffers BF # N L , BF # N L −1 to BF # −N L +1, absolute value calculation Unit 105 and peak Doppler output selection unit 106.

A/D変換部101aには、直交検波後のベースバンドの受信信号のうち同相信号(I信号)が入力される。A/D変換部101bには、直交検波後のベースバンドの受信信号のうち直交信号(Q信号)が入力される。   The A / D converter 101a receives an in-phase signal (I signal) among the baseband received signals after quadrature detection. The A / D conversion unit 101b receives a quadrature signal (Q signal) among baseband received signals after quadrature detection.

図8に示すレーダ受信部Rxxにおいて、複数の異なるドップラ周波数q毎に設けられた各乗算器MX#N,MX#N−1〜MX#−N+1は、離散時刻k毎に順次出力されるコヒーレント積分結果h(k)に、ドップラ周波数qに応じたドップラ位相回転ベクトルD(k,q)を乗算する。ドップラ位相回転ベクトルD(k,q)は、数式(5)により示され、ドップラ位相回転テーブル104に記憶されている。 In the radar receiver Rxx shown in FIG. 8, each of the multipliers MX # N L and MX # N L −1 to MX # −N L +1 provided for each of a plurality of different Doppler frequencies q is sequentially provided at each discrete time k. The output coherent integration result h (k) is multiplied by a Doppler phase rotation vector D (k, q) corresponding to the Doppler frequency q. The Doppler phase rotation vector D (k, q) is expressed by Equation (5) and stored in the Doppler phase rotation table 104.

Figure 2014081311
Figure 2014081311

離散時刻kは、k=0,…,N−1である。qはドップラ周波数の序数を表し、q=−N+1,…,0,…,N−2,N−1,Nである。Nは周波数ビン数を示し、N=2Nである。Δθは周波数分解能を示す。各乗算器MX#N,MX#N−1〜MX#−N+1における乗算処理結果は、各乗算器MX#N,MX#N−1〜MX#−N+1に対応して設けられた各ドップラコヒーレント加算バッファBF#N,BF#N−1〜BF#−N+1に出力される。 The discrete time k is k = 0,..., N d −1. q represents the ordinal number of the Doppler frequency, q = -N L + 1, ..., 0, ..., N L -2, N L -1, a N L. N f indicates the number of frequency bins, and N f = 2N L. Δθ represents the frequency resolution. Each multiplier MX # N L, multiplication result of the MX # N L -1~MX # -N L +1 , each multiplier MX # N L, corresponding to the MX # N L -1~MX # -N L +1 Output to the Doppler coherent addition buffers BF # N L and BF # N L −1 to BF # −N L +1.

各ドップラコヒーレント加算バッファBF#N,BF#N−1〜BF#−N+1は、離散時刻k=0,…,N−1を揃えた数式(6)に示す演算処理結果によって、ドップラ位相回転ベクトルD(k,q)が乗算されたコヒーレント積分結果h(k)を、ドップラ周波数q毎に更にコヒーレント積分する。 Each of the Doppler coherent addition buffers BF # N L , BF # N L −1 to BF # −N L +1 is calculated according to the calculation processing result shown in Formula (6) in which discrete times k = 0,..., N d −1 are aligned. The coherent integration result h (k) multiplied by the Doppler phase rotation vector D (k, q) is further coherently integrated for each Doppler frequency q.

Figure 2014081311
Figure 2014081311

数式(6)の演算によって、周波数ビン数に相当するN個の乗算回路を用いることでフーリエ変換が可能となり、例えばN=128では、フーリエ変換における複素乗算回数は128となり、実数乗算器は128×4=512個が必要となる。即ち、図8に示すレーダ装置は、フーリエ変換に2のべき乗となるN個の特定の離散時刻においてパルス圧縮された相関値を用いてFFTした場合に比べて、フーリエ変換に必要な実数乗算器の個数を低減できる。 By the calculation of Equation (6), Fourier transform is possible by using N f multiplier circuits corresponding to the number of frequency bins. For example, when N f = 128, the number of complex multiplications in the Fourier transform is 128, and a real multiplier 128 × 4 = 512 are required. That is, the radar apparatus shown in FIG. 8, as compared with the case where the FFT using a correlation value pulse compression in N d pieces of the particular discrete time as a power of two in the Fourier transform, real multiplications required Fourier transform The number of vessels can be reduced.

以下、フーリエ変換を用いてコヒーレント積分する場合に、図8に示すレーダ装置のレーダ受信部の構成に比べて、更に回路構成を簡易化してフーリエ変換によるコヒーレント積分利得を得るレーダ装置の例を説明する。   Hereinafter, in the case of coherent integration using Fourier transform, an example of a radar device that obtains coherent integration gain by Fourier transform by further simplifying the circuit configuration as compared with the configuration of the radar receiver of the radar device shown in FIG. 8 will be described. To do.

(本開示に係るレーダ装置の各実施形態)
次に、本開示に係るレーダ装置の各実施形態について、図面を参照して説明する。
(Each embodiment of the radar apparatus according to the present disclosure)
Next, each embodiment of the radar apparatus according to the present disclosure will be described with reference to the drawings.

(第1の実施形態)
第1の実施形態のレーダ装置1の構成及び動作について、図1〜図5を参照して説明する。図1は、第1の実施形態のレーダ装置1の内部構成を簡略に示すブロック図である。図2は、第1の実施形態のレーダ装置1の内部構成を詳細に示すブロック図である。図3は、レーダ送信信号の送信区間Tと送信周期Tとの関係を示す説明図である。図4は、送信信号生成部2の他の内部構成を詳細に示すブロック図である。図5は、レーダ送信信号と、遅延時間τの受信信号と、遅延時間τの受信信号との関係を示す図である。
(First embodiment)
The configuration and operation of the radar apparatus 1 according to the first embodiment will be described with reference to FIGS. FIG. 1 is a block diagram schematically showing the internal configuration of the radar apparatus 1 according to the first embodiment. FIG. 2 is a block diagram showing in detail the internal configuration of the radar apparatus 1 according to the first embodiment. Figure 3 is an explanatory diagram showing a relationship between the transmission interval T w and transmission cycle T r of the radar transmission signal. FIG. 4 is a block diagram showing in detail another internal configuration of the transmission signal generation unit 2. FIG. 5 is a diagram illustrating a relationship among a radar transmission signal, a reception signal having a delay time τ 1, and a reception signal having a delay time τ 2 .

レーダ装置1は、レーダ送信部Txにより生成された高周波のレーダ送信信号を送信アンテナAnt−Txから送信(放射)する。レーダ装置1は、ターゲット(不図示)により反射されたレーダ送信信号である反射波信号を、図1に示す受信アンテナAnt−Rxにおいて受信する。レーダ装置1は、受信アンテナAnt−Rxにおいて受信された反射波信号を信号処理することで、ターゲットの有無を検出する。   The radar apparatus 1 transmits (radiates) the high-frequency radar transmission signal generated by the radar transmission unit Tx from the transmission antenna Ant-Tx. The radar apparatus 1 receives a reflected wave signal, which is a radar transmission signal reflected by a target (not shown), at the reception antenna Ant-Rx shown in FIG. The radar apparatus 1 detects the presence / absence of a target by performing signal processing on the reflected wave signal received by the reception antenna Ant-Rx.

なお、ターゲットはレーダ装置1が検出する対象の物体であり、例えば自動車又は人を含み、以下の各実施形態においても同様である。なお、受信アンテナAnt−Rxは受信アンテナ素子でも良い。   The target is an object to be detected by the radar apparatus 1 and includes, for example, a car or a person, and the same applies to each of the following embodiments. The reception antenna Ant-Rx may be a reception antenna element.

(レーダ装置1)
先ず、レーダ装置1の各部の構成について簡略に説明する。
(Radar device 1)
First, the configuration of each part of the radar apparatus 1 will be briefly described.

図1に示すレーダ装置1は、レーダ送信部Tx及びレーダ受信部Rxを含む。レーダ送信部Txは、送信信号生成部2と、送信アンテナAnt−Txが接続された送信RF部7とを有する。レーダ送信部Tx及びレーダ受信部Rxは、基準信号発振器Loに接続され、基準信号発振器Loから信号の供給を受け、同期して動作する。   A radar apparatus 1 shown in FIG. 1 includes a radar transmitter Tx and a radar receiver Rx. The radar transmitter Tx includes a transmission signal generator 2 and a transmission RF unit 7 to which a transmission antenna Ant-Tx is connected. The radar transmitter Tx and the radar receiver Rx are connected to the reference signal oscillator Lo, receive signals from the reference signal oscillator Lo, and operate synchronously.

レーダ受信部Rxは、受信アンテナAnt−Rxが接続された受信RF部10と、信号処理部11とを有する。信号処理部11は、少なくとも相関演算部17と、ドップラ周波数検出部19とを有する。   The radar receiver Rx includes a reception RF unit 10 to which a reception antenna Ant-Rx is connected, and a signal processing unit 11. The signal processing unit 11 includes at least a correlation calculation unit 17 and a Doppler frequency detection unit 19.

(レーダ送信部Txの各部の構成)
次に、レーダ送信部Txの各部の構成について、図2を参照して詳細に説明する。
(Configuration of each part of the radar transmitter Tx)
Next, the configuration of each part of the radar transmitter Tx will be described in detail with reference to FIG.

図2に示すレーダ送信部Txは、送信信号生成部2と、送信アンテナAnt−Txが接続された送信RF部7とを有する。送信信号生成部2は、符号生成部3と、変調部4と、LPF(Low Pass Filter)5と、D/A(Digital to Analog)変換部6とを有する。図2に示す送信信号生成部2はLPF5を有するが、LPF5は、送信信号生成部2と独立してレーダ送信部Txに設けられても良い。送信RF部7は、周波数変換部8と、増幅器9とを有する。   The radar transmission unit Tx illustrated in FIG. 2 includes a transmission signal generation unit 2 and a transmission RF unit 7 to which a transmission antenna Ant-Tx is connected. The transmission signal generation unit 2 includes a code generation unit 3, a modulation unit 4, an LPF (Low Pass Filter) 5, and a D / A (Digital to Analog) conversion unit 6. The transmission signal generation unit 2 illustrated in FIG. 2 includes the LPF 5, but the LPF 5 may be provided in the radar transmission unit Tx independently of the transmission signal generation unit 2. The transmission RF unit 7 includes a frequency conversion unit 8 and an amplifier 9.

(レーダ送信部Txの各部の動作)
次に、レーダ送信部Txの各部の動作について詳細に説明する。
(Operation of each part of the radar transmitter Tx)
Next, the operation of each part of the radar transmitter Tx will be described in detail.

送信信号生成部2は、基準信号発振器Loにより生成されたリファレンス信号に基づいて、リファレンス信号を所定倍に逓倍した送信基準クロック信号を生成する。送信信号生成部2の各部は、生成された送信基準クロック信号に基づいて動作する。   Based on the reference signal generated by the reference signal oscillator Lo, the transmission signal generator 2 generates a transmission reference clock signal obtained by multiplying the reference signal by a predetermined factor. Each unit of the transmission signal generation unit 2 operates based on the generated transmission reference clock signal.

送信信号生成部2は、符号長Lの符号系列aの変調によって、数式(7)に示すベースバンドのパルス圧縮符号(送信信号)r(k,M)を周期的に生成する。n=1〜Lの整数であり、Lは符号系列aの符号長を示す。jはj=−1を満たす虚数単位である。Mはレーダ送信信号の送信周期Tの序数を示す。 Transmission signal generating unit 2, the modulation code sequence a n of the code length L, the pulse compression code (transmission signal) of the baseband shown in Equation (7) r (k, M) periodically generates. n = an integer from 1 to L, L denotes the code length of the code sequence a n. j is an imaginary unit satisfying j 2 = −1. M represents the ordinal number of the transmission cycle Tr of the radar transmission signal.

数式(7)に示すベースバンドの送信信号r(k,M)は、第M番目の送信周期Tの離散時刻kにおける送信信号を示し、同相信号成分I(k,M)と、虚数単位jが乗算された直交信号成分Q(k,M)との加算処理結果として表される。 A baseband transmission signal r (k, M) shown in Expression (7) indicates a transmission signal at a discrete time k in the Mth transmission cycle Tr , and an in-phase signal component I (k, M) and an imaginary number It is expressed as an addition processing result with the orthogonal signal component Q (k, M) multiplied by the unit j.

Figure 2014081311
Figure 2014081311

送信信号生成部2により生成される送信信号は、例えば各送信周期Tの送信区間T[秒]では、符号長Lの符号系列aに対して、1つの符号あたり送信基準クロック信号のN[個]のサンプルを用いて変調されている。送信信号生成部2におけるサンプリングレートは(N×L)/Tであり、図3に示す送信区間Tでは、N(=N×L)のサンプルを用いて変調されている。また、各送信周期Tの非送信区間(T−T)[秒]では、ベースバンドの送信信号としてN[個]のサンプルを用いて変調されている。kは、1から(N+N)までの値であり、送信信号の生成のための変調タイミングを表す離散時刻である。 Transmission signal generated by the transmission signal generating unit 2, for example the transmission interval T w [sec] of each transmission cycle T r, to the code sequence a n of the code length L, the transmitted reference clock signal per one code Modulated using N o [pieces] samples. The sampling rate in the transmission signal generation unit 2 is (N o × L) / T w , and modulation is performed using N r (= N o × L) samples in the transmission section T w shown in FIG. In addition, in the non-transmission section (T r −T w ) [seconds] of each transmission cycle T r , modulation is performed using N u [number] samples as baseband transmission signals. k is a value from 1 to (N r + N u ), and is a discrete time representing a modulation timing for generating a transmission signal.

符号生成部3は、送信周期T毎に、符号長Lの符号系列aのパルス圧縮用の送信符号を生成する。符号系列aの要素は、例えば、[−1,1]の2値、若しくは[1,−1,j,−j]の4値を用いて構成される。送信符号は、レーダ送信信号が低サイドローブ特性を有するために、例えばBarker符号系列、M系列符号、スパノ符号を構成する符号系列のうち少なくとも1つを含む符号、及び相補符号のペアを構成する符号系列のうちいずれか1つを含む符号であることが好ましい。符号生成部3は、生成された符号系列aの送信符号を変調部4に出力する。以下、符号系列aの送信符号を、便宜的に送信符号aと記載する。 Code generation unit 3, for each transmission cycle T r, to generate a transmission code for pulse compression code sequence a n of the code length L. Elements of the code sequence a n, for example, [- 1,1] binary, or [1, -1, j, -j] constructed using four values. Since the radar transmission signal has a low sidelobe characteristic, the transmission code forms a pair of a code including at least one of, for example, a Barker code sequence, an M sequence code, and a code sequence constituting a spano code, and a complementary code. A code including any one of the code sequences is preferable. Code generator 3 outputs a transmission code of the generated code sequence a n to the modulating unit 4. Hereinafter, the transmission code of the code sequence a n, are described as conveniently transmitted symbols a n.

なお、符号生成部3は、送信周期Tにおいて、送信符号aとして相補符号(例えば符号P,Q)のペアのいずれかを生成する場合、2個の送信周期(2T)を用いて、相補符号のペアとなる符号P,Qを送信周期毎に交互に生成する。 Incidentally, the code generation unit 3, the transmission cycle T r, the complementary code (for example, code P n, Q n) as a transmission code a n when generating any of the pairs, two transmission cycle (2T r) Using these, the codes P n and Q n that form a pair of complementary codes are alternately generated for each transmission cycle.

即ち、符号生成部3は、第M番目の送信周期(T)において、パルス圧縮符号a(M)として符号Pを生成し、続く第(M+1)番目の送信周期(T)ではパルス圧縮符号a(M+1)として、符号Qを生成する。これ以後、符号生成部3は、第(M+2)番目以降の送信周期では、第M番目の送信周期及び第(M+1)の2個の送信周期を単位として、同様に符号P,符号Qの順に繰り返して生成する。 That is, the code generator 3 at the M-th transmission cycle (T r), the code P n generated as a pulse compression code a n (M), in the subsequent second (M + 1) th transmission cycle (T r) A code Q n is generated as the pulse compression code a n (M + 1). Since then, the code generation unit 3, the transmission period of the (M + 2) -th and later, the two transmission period of the M-th transmission period and (M + 1) th units, likewise code P n, code Q n Iterate and generate in the order.

変調部4は、符号生成部3により出力された送信符号aのパルス変調によって、数式(7)に示されるベースバンドの送信信号r(k,M)を生成する。なお、パルス変調とは、振幅変調、ASK(Amplitude Shift Keying))又は位相変調(PSK(Phase Shift Keying)であり、以下の各実施形態においても同様である。 Modulation unit 4, the pulse modulation of the transmitted symbols a n which is output by the code generator 3 generates a transmission signal r baseband (k, M) shown in Equation (7). The pulse modulation is amplitude modulation, ASK (Amplitude Shift Keying), or phase modulation (PSK (Phase Shift Keying)), and the same applies to the following embodiments.

例えば位相変調(PSK)は、符号系列aが例えば[−1,1]の2値の位相変調ではBPSK(Binary Phase Shift Keying)となり、符号系列aが例えば[1,−1,j,−j]の4値の位相変調ではQPSK(Quadrature Phase Shift Keying)若しくは4相PSKとなる。即ち、位相変調(PSK)では、IQ平面上のコンスタレーションにおける所定の変調シンボルが割り当てられる。 For example phase modulation (PSK) is, BPSK (Binary Phase Shift Keying) next to the binary phase modulation code sequence a n, for example, [-1,1], the code sequence a n is for example [1, -1, j, The quaternary phase modulation of −j] is QPSK (Quadrature Phase Shift Keying) or 4-phase PSK. That is, in phase modulation (PSK), a predetermined modulation symbol in a constellation on the IQ plane is assigned.

変調部4は、生成された送信信号r(k,M)のうち予め設定された制限帯域以下の送信信号を、LPF5を介してD/A変換部6に出力する。なお、LPF5は送信信号生成部2において省略し、D/A変換部6の後段においても良く、以下の各実施形態でも同様である。   The modulation unit 4 outputs a transmission signal that is equal to or less than a preset limit band among the generated transmission signals r (k, M) to the D / A conversion unit 6 via the LPF 5. Note that the LPF 5 is omitted in the transmission signal generation unit 2 and may be provided in the subsequent stage of the D / A conversion unit 6, and the same applies to the following embodiments.

D/A変換部6は、変調部4から出力されたデジタルの送信信号r(k,M)をアナログの送信信号に変換する。D/A変換部6は、アナログの送信信号を送信RF7に出力する。   The D / A conversion unit 6 converts the digital transmission signal r (k, M) output from the modulation unit 4 into an analog transmission signal. The D / A converter 6 outputs an analog transmission signal to the transmission RF 7.

送信RF部7は、基準信号発振器Loにより生成されたリファレンス信号に基づいて、リファレンス信号を所定倍数に逓倍したキャリア周波数帯域の送信基準信号を生成する。なお、逓倍信号は、送信信号生成部2と送信RF部7とそれぞれ、異なる倍数に逓倍した信号でもよいし、同一の倍数に逓倍した信号でもよい。送信RF部7の各部は、生成された送信基準信号に基づいて動作する。   Based on the reference signal generated by the reference signal oscillator Lo, the transmission RF unit 7 generates a transmission reference signal in a carrier frequency band obtained by multiplying the reference signal by a predetermined multiple. Note that the multiplied signal may be a signal multiplied by different multiples for the transmission signal generation unit 2 and the transmission RF unit 7, or may be a signal multiplied by the same multiple. Each unit of the transmission RF unit 7 operates based on the generated transmission reference signal.

周波数変換部8は、送信信号生成部2により生成された送信信号r(k,M)をアップコンバートすることによって、キャリア周波数帯域(高周波)のレーダ送信信号を生成する。周波数変換部8は、生成されたレーダ送信信号を増幅器9に出力する。   The frequency conversion unit 8 generates a radar transmission signal in the carrier frequency band (high frequency) by up-converting the transmission signal r (k, M) generated by the transmission signal generation unit 2. The frequency conversion unit 8 outputs the generated radar transmission signal to the amplifier 9.

増幅器9、周波数変換部8により出力されたレーダ送信信号の信号レベルを所定の信号レベルに増幅することによって、送信アンテナAnt−Txに出力する。増幅されたレーダ送信信号は、送信アンテナAnt−Txを介した空間に放射される。   By amplifying the signal level of the radar transmission signal output by the amplifier 9 and the frequency conversion unit 8 to a predetermined signal level, the signal is output to the transmission antenna Ant-Tx. The amplified radar transmission signal is radiated to the space via the transmission antenna Ant-Tx.

送信アンテナAnt−Txは、送信RF部7により出力されたレーダ送信信号を空間に放射することによって送信する。レーダ送信信号は、送信周期Tのうち送信区間Tの間に送信され、非送信区間(T−T)の間には送信されない(図3参照)。 The transmission antenna Ant-Tx transmits the radar transmission signal output by the transmission RF unit 7 by radiating it into space. Radar transmission signal is transmitted during the transmission interval T w of the transmission cycle T r, it is not transmitted during the non-transmission period (T r -T w) (see FIG. 3).

なお、送信RF部7及び受信RF部10には、基準信号発振器Loにより生成されたリファレンス信号が所定倍に逓倍された信号が共通に供給される。送信RF部7及び受信RF部10は同期して動作する。   The transmission RF unit 7 and the reception RF unit 10 are commonly supplied with a signal obtained by multiplying the reference signal generated by the reference signal oscillator Lo by a predetermined factor. The transmission RF unit 7 and the reception RF unit 10 operate in synchronization.

なお、上述した符号生成部3、変調部4及びLPF5を、送信信号生成部2に設けず、送信信号生成部2により生成された送信符号aを予め記憶する送信符号記憶部CMを設けても良い(図4参照)。送信符号記憶部CMは、送信信号生成部2により相補符号が生成される場合、相補符号のペア、例えば送信周期毎に交互にペアとなる符号P,Qを記憶する。 Incidentally, the above-mentioned code generator 3, the modulating unit 4 and LPF 5, the transmission signal is not provided generator 2, provided with a transmission code storage unit CM for previously storing a transmission code a n generated by the transmission signal generating unit 2 (See FIG. 4). When the transmission signal generation unit 2 generates a complementary code, the transmission code storage unit CM stores a pair of complementary codes, for example, codes P n and Q n that are alternately paired for each transmission cycle.

なお、図4に示す送信符号記憶部CMは、本実施形態に限らず、後述の各実施形態にも同様に適用できる。図4に示す送信信号生成部2rは、送信符号記憶部CM及びD/A変換部6を含む。   Note that the transmission code storage unit CM shown in FIG. 4 is not limited to this embodiment, and can be similarly applied to each embodiment described later. The transmission signal generation unit 2r shown in FIG. 4 includes a transmission code storage unit CM and a D / A conversion unit 6.

(レーダ受信部の各部の構成)
次に、レーダ受信部Rxの各部の構成について、図2を参照して詳細に説明する。
(Configuration of each part of radar receiver)
Next, the configuration of each part of the radar receiver Rx will be described in detail with reference to FIG.

図2に示すレーダ受信部Rxは、受信アンテナAnt−Rxが接続された受信RF部10と、信号処理部11とを有する。受信RF部10は、増幅器12と、周波数変換部13と、直交検波部14とを有する。信号処理部11は、2個のA/D変換部15,16と、相関演算部17と、コヒーレント積分部18と、ドップラ周波数検出部19とを有する。信号処理部11は、各送信周期Tを信号処理区間として周期的に動作する。 The radar receiver Rx illustrated in FIG. 2 includes a reception RF unit 10 to which a reception antenna Ant-Rx is connected, and a signal processing unit 11. The reception RF unit 10 includes an amplifier 12, a frequency conversion unit 13, and a quadrature detection unit 14. The signal processing unit 11 includes two A / D conversion units 15 and 16, a correlation calculation unit 17, a coherent integration unit 18, and a Doppler frequency detection unit 19. The signal processing unit 11 periodically operates with each transmission cycle Tr as a signal processing interval.

ドップラ周波数検出部19は、記憶部20と、加減算処理部21と、ドップラ位相回転記憶部22と、2N(=N)個の乗算器23#N,23#N−1〜23#−N+1と、2N(=N)個のドップラコヒーレント加算バッファ24#N,24#N−1〜24#−N+1と、ドップラ出力選択部25とを有する。乗算器とドップラコヒーレント加算バッファとは、異なる複数の周波数ビンqに対応するドップラ周波数fの範囲に応じて設けられている(q=−N+1〜N−1)。 The Doppler frequency detection unit 19 includes a storage unit 20, an addition / subtraction processing unit 21, a Doppler phase rotation storage unit 22, and 2N L (= N f ) multipliers 23 # N L and 23 # N L −1 to 23. # -N L +1, 2N L (= N f ) Doppler coherent addition buffers 24 #N L , 24 #N L −1 to 24 # -N L +1, and a Doppler output selection unit 25 are provided. The multiplier and the Doppler coherent addition buffer are provided according to a range of Doppler frequencies f s corresponding to different frequency bins q (q = −N L +1 to N L −1 , N L ).

(レーダ受信部の各部の動作)
次に、レーダ受信部Rxの各部の動作について詳細に説明する。
(Operation of each part of the radar receiver)
Next, the operation of each part of the radar receiver Rx will be described in detail.

受信アンテナAnt−Rxは、レーダ送信部Txから送信されたレーダ送信信号がターゲット(不図示)により反射された反射波信号を受信する。受信アンテナAnt−Rxにて受信された受信信号は、受信RF部10に入力される。   The receiving antenna Ant-Rx receives a reflected wave signal obtained by reflecting a radar transmission signal transmitted from the radar transmitter Tx by a target (not shown). A reception signal received by the reception antenna Ant-Rx is input to the reception RF unit 10.

受信RF部10は、送信RF部7と同様に、基準信号発振器Loにより生成されたリファレンス信号に基づいて、リファレンス信号を所定倍に逓倍したキャリア周波数帯域の受信基準信号を生成する。受信RF部10の各部は、生成された受信基準信号に基づいて動作する。   Similarly to the transmission RF unit 7, the reception RF unit 10 generates a reception reference signal in a carrier frequency band obtained by multiplying the reference signal by a predetermined number based on the reference signal generated by the reference signal oscillator Lo. Each unit of the reception RF unit 10 operates based on the generated reception reference signal.

増幅器12は、受信アンテナAnt−Rxにて受信された高周波の受信信号の信号レベルを増幅して周波数変換部13に出力する。   The amplifier 12 amplifies the signal level of the high frequency reception signal received by the reception antenna Ant-Rx and outputs the amplified signal level to the frequency conversion unit 13.

周波数変換部13は、増幅器12から出力された受信信号と受信基準信号とを用いて、高周波の受信信号をダウンコンバートする。周波数変換部13は、ベースバンドの受信信号を生成して直交検波部14に出力する。   The frequency converter 13 down-converts the high frequency received signal using the received signal output from the amplifier 12 and the received reference signal. The frequency conversion unit 13 generates a baseband reception signal and outputs it to the quadrature detection unit 14.

直交検波部14は、周波数変換部13から出力された受信信号を直交検波することで、同相信号(In-phase signal)及び直交信号(Quadrate signal)を用いて構成されるベースバンドの受信信号を生成する。直交検波部14は、生成された受信信号のうち、同相信号をA/D変換部15に出力し、直交信号をA/D変換部16に出力する。   The quadrature detection unit 14 performs quadrature detection on the reception signal output from the frequency conversion unit 13 and thereby uses a baseband reception signal configured using an in-phase signal (Quadrate signal). Is generated. The quadrature detection unit 14 outputs the in-phase signal of the generated reception signals to the A / D conversion unit 15 and outputs the quadrature signal to the A / D conversion unit 16.

A/D変換部15は、直交検波部14から出力されたベースバンドの同相信号を離散時刻k毎にサンプリングし、アナログデータの同相信号をデジタルデータに変換する。A/D変換部15は、変換されたデジタルデータの同相信号成分を相関演算部17に出力する。   The A / D conversion unit 15 samples the baseband in-phase signal output from the quadrature detection unit 14 at each discrete time k, and converts the in-phase signal of analog data into digital data. The A / D conversion unit 15 outputs the in-phase signal component of the converted digital data to the correlation calculation unit 17.

A/D変換部15は、ベースバンドの同相信号を、送信信号生成部2が生成する送信信号r(k,M)の1つのパルス幅(パルス時間)T(=T/L)あたりN[個]の割合によってサンプリングする。即ち、A/D変換部15のサンプリングレートは、N×L/T=N/Tとなり、1パルス当たりのオーバーサンプル数はN[個]である。 The A / D converter 15 converts the baseband in-phase signal into one pulse width (pulse time) T p (= T w / L) of the transmission signal r (k, M) generated by the transmission signal generator 2. Sampling is performed according to the ratio of N s [pieces]. That is, the sampling rate of the A / D converter 15 is N s × L / T w = N s / T p , and the number of oversamples per pulse is N s [pieces].

なお、A/D変換部15のサンプリングタイミングは、送信信号生成部2と同期して動作するために、送信信号生成部2と同様に、基準信号発振器Loにおいて生成されたリファレンス信号に基づいて、リファレンス信号を所定倍に逓倍した受信基準クロック信号を基に生成される。   Note that the sampling timing of the A / D conversion unit 15 operates in synchronization with the transmission signal generation unit 2, so that, similarly to the transmission signal generation unit 2, based on the reference signal generated in the reference signal oscillator Lo, It is generated based on a reception reference clock signal obtained by multiplying the reference signal by a predetermined factor.

A/D変換部16は、直交検波部14から出力されたベースバンドの直交信号に対して、A/D変換部15と同様に動作し、変換されたデジタルデータの直交信号成分を、相関演算部17に出力する。また、A/D変換部16のサンプリングレートはN/Tとなり、1パルスあたりのオーバーサンプル数はNである。 The A / D conversion unit 16 operates in the same manner as the A / D conversion unit 15 on the baseband quadrature signal output from the quadrature detection unit 14, and performs a correlation operation on the quadrature signal component of the converted digital data. To the unit 17. Further, the sampling rate of the A / D converter 16 is N s / T p , and the number of oversamples per pulse is N s .

以下、A/D変換部15,16により変換された第M番目の送信周期Tの離散時刻kにおける受信信号を、受信信号の同相信号成分I(k,M)及び直交信号成分Q(k,M)を用いて、数式(8)の複素信号x(k,M)として表す。 Hereinafter, the received signal at the discrete time k in the M-th transmission cycle T r converted by the A / D converters 15 and 16 is expressed as an in-phase signal component I r (k, M) and a quadrature signal component Q. Using r (k, M), it is expressed as a complex signal x (k, M) in equation (8).

Figure 2014081311
Figure 2014081311

図5の第1段は、レーダ送信信号の送信タイミングを表す。図5の第1段では、離散時刻kは、各送信周期Tが開始するタイミングを基準(k=1)とし、信号処理部11は、送信周期Tが終了する前までのサンプル点であるk=N(N+N)/Nまで周期的に動作する。 The first stage in FIG. 5 represents the transmission timing of the radar transmission signal. In the first stage of FIG. 5, the discrete time k is based on the timing at which each transmission cycle T r starts (k = 1), and the signal processing unit 11 has sample points until the transmission cycle T r ends. It operates periodically up to a certain k = N s (N r + N u ) / N o .

即ち、信号処理部11は、離散時刻k=1〜N(N+N)/Nにおいて周期的に動作する(図5の第2段参照)。図5の第2段は、遅延時間τの受信信号の受信タイミングを示す図である。図5の第3段は、遅延時間τの受信信号の受信タイミングを示す図である。離散時刻k=N×(N/N)は、各送信周期Tにおける送信区間Tの終了直前のサンプル点を示す。以下、A/D変換部15,16から出力されたデジタルの受信信号x(k,M)を離散サンプル値x(k,M)とも言う。 That is, the signal processing unit 11 periodically operates at discrete time k = 1~N s (N r + N u) / N o ( see the second stage of FIG. 5). The second stage of FIG. 5 is a diagram showing the reception timing of the reception signal with the delay time τ 1 . The third stage in FIG. 5 is a diagram illustrating the reception timing of the reception signal with the delay time τ 2 . The discrete time k = N r × (N s / N o ) indicates a sample point immediately before the end of the transmission interval T w in each transmission cycle T r . Hereinafter, the digital received signal x (k, M) output from the A / D converters 15 and 16 is also referred to as a discrete sample value x (k, M).

相関演算部17は、A/D変換部15,16から出力された各離散サンプル値I(k,M),Q(k,M)、即ち、受信信号としての離散サンプル値x(k,M)を入力する。相関演算部17は、リファレンス信号を所定倍に逓倍した受信基準クロック信号に基づいて、離散時刻k毎に、図5の第1段に示す各送信周期Tにおいて送信される符号長Lの送信符号aを周期的に生成する。 The correlation calculation unit 17 outputs the discrete sample values I r (k, M) and Q r (k, M) output from the A / D conversion units 15 and 16, that is, the discrete sample values x (k , M). The correlation calculation unit 17 transmits the code length L transmitted at each transmission cycle Tr shown in the first stage of FIG. 5 at each discrete time k based on the reception reference clock signal obtained by multiplying the reference signal by a predetermined multiple. the code a n periodically generated.

相関演算部17は、入力された離散サンプル値x(k,M)と、送信符号aとのスライディング相関値AC(k,M)を演算する。AC(k,M)は、離散時刻kにおけるスライディング相関値を表す。 Correlation calculating unit 17 calculates an input discrete sample values x (k, M), a sliding correlation value AC of the transmission code a n (k, M). AC (k, M) represents a sliding correlation value at discrete time k.

具体的には、相関演算部17は、図5の第2段に示す各送信周期T、即ち、各離散時刻k=1〜N(N+N)/Nに対して、数式(9)に従ってスライディング相関値AC(k,M)を演算する。相関演算部17は、数式(9)に従って演算された離散時刻k毎のスライディング相関値AC(k,M)をコヒーレント積分部18に出力する。数式(9)において、*(アスタリスク)は、複素共役演算子である。 Specifically, the correlation calculation unit 17 calculates the mathematical expression for each transmission period T r shown in the second stage of FIG. 5, that is, for each discrete time k = 1 to N s (N r + N u ) / N o . The sliding correlation value AC (k, M) is calculated according to (9). The correlation calculation unit 17 outputs the sliding correlation value AC (k, M) for each discrete time k calculated according to Equation (9) to the coherent integration unit 18. In formula (9), * (asterisk) is a complex conjugate operator.

Figure 2014081311
Figure 2014081311

図5の第2段では、レーダ送信信号の送信開始時から遅延時間τの経過後に反射波信号が受信された場合の測定期間の範囲が示されている。図5の第3段では、レーダ送信信号の送信開始時から遅延時間τの経過後に反射波信号が受信される場合の測定期間の範囲が示されている。遅延時間τ及びτは、それぞれ数式(10)及び(11)により示される。 The second stage of FIG. 5 shows the range of the measurement period when the reflected wave signal is received after the delay time τ 1 has elapsed from the start of transmission of the radar transmission signal. The third stage of FIG. 5 shows the range of the measurement period when the reflected wave signal is received after the delay time τ 2 has elapsed from the start of the transmission of the radar transmission signal. The delay times τ 1 and τ 2 are expressed by equations (10) and (11), respectively.

Figure 2014081311
Figure 2014081311

Figure 2014081311
Figure 2014081311

相関演算部17は、本実施形態を含む各実施形態において、離散時刻k=1〜N(N+N)/Nにおいて演算する。なお、相関演算部17は、レーダ装置1の測定対象となるターゲットの存在範囲に応じて、測定距離の範囲、即ち離散時刻kの範囲を限定しても良い。これにより、レーダ装置1は、相関演算部17の演算量を更に低減できる。即ち、レーダ装置1は、信号処理部11における演算量を削減することで、レーダ受信部Rxにおける消費電力量を更に低減できる。 In each embodiment including this embodiment, the correlation calculation unit 17 calculates at discrete times k = 1 to N s (N r + N u ) / N o . Note that the correlation calculation unit 17 may limit the range of the measurement distance, that is, the range of the discrete time k, according to the presence range of the target to be measured by the radar apparatus 1. Thereby, the radar apparatus 1 can further reduce the calculation amount of the correlation calculation unit 17. In other words, the radar apparatus 1 can further reduce the power consumption in the radar receiver Rx by reducing the amount of calculation in the signal processing unit 11.

なお、レーダ装置1は、相関演算部17が離散時刻k=N(L+1)〜N(N+N)/N−NLの範囲におけるスライディング相関値AC(k,M)を演算する場合には、レーダ送信信号の送信区間Tにおける反射波信号の測定を省略しても良い。 In the radar apparatus 1, the correlation calculation unit 17 calculates the sliding correlation value AC (k, M) in the range of discrete times k = N s (L + 1) to N s (N r + N u ) / N o −N s L. when operations may be omitted to measure the reflected wave signal in the transmission period T w of the radar transmission signal.

レーダ装置1は、レーダ送信信号が、反射波信号としてではなく、レーダ受信部Rxに直接的に回り込んだとしても、回り込みによる影響を排除して測定できる。また、測定レンジ(離散時刻kの範囲)を限定する場合、コヒーレント積分部18及びドップラ周波数検出部19も同様の限定された測定レンジにおいて動作するため、各部の処理量を削減でき、レーダ受信部Rxにおける消費電力を低減できる。   Even if the radar transmission signal directly wraps around the radar receiver Rx instead of as a reflected wave signal, the radar apparatus 1 can measure without the influence of the wraparound. Further, when the measurement range (range of discrete time k) is limited, the coherent integration unit 18 and the Doppler frequency detection unit 19 operate in the same limited measurement range, so that the processing amount of each unit can be reduced, and the radar receiving unit Power consumption in Rx can be reduced.

コヒーレント積分部18は、複数回(N回)の送信周期Tの期間(N×T)において、離散時刻k毎に算出された相関値AC(k,N(m−1)+g)を基に、数式(12)に従って、積分数N回、コヒーレント積分する。 The coherent integrator 18 calculates the correlation value AC (k, N p (m−1)) calculated for each discrete time k in the period (N p × T r ) of the transmission cycle T r multiple times (N p times). + g) based on, in accordance with equation (12), the integral number N p times, coherent integration.

はコヒーレント積分部18におけるコヒーレント積分の積分回数を示す。mは、1以上の整数であり、N回分の送信周期Tを単位とした送信周期(N×T)の序数を示す。gは1〜Nの1以上の整数であり、コヒーレント積分部18におけるコヒーレント積分回数の範囲を示す。 N p indicates the number of times of coherent integration in the coherent integration unit 18. m is an integer of 1 or more, indicating the ordinal number of the transmission period in units of transmission cycle T r of N p times (N p × T r). g is an integer of 1 or more of the 1 to N p, indicating the scope of the coherent integration count in coherent integrator 18.

Figure 2014081311
Figure 2014081311

即ち、コヒーレント積分部18は、g=1に相当する第{N(m−1)+1}番目の送信周期Tにおける相関値AC(k,N(m−1)+1)からg=Nに相当する第(N×m)番目の送信周期Tにおける相関値AC(k,N×m)を単位に、離散時刻kのタイミングを揃えて各相関値を加算する。コヒーレント積分部18は、積分数N回のコヒーレント積分結果CI(k,m)をドップラ周波数検出部19に出力する。 That is, the coherent integrator 18 calculates from the correlation value AC (k, N p (m−1) +1) in the {N p (m−1) +1} th transmission cycle Tr corresponding to g = 1 to g = The correlation values AC (k, N p × m) in the (N p × m) -th transmission cycle Tr corresponding to N p are used as units, and the correlation values are added at the same timing of the discrete time k. Coherent integrator 18 outputs the integral number N p times coherent integration result CI (k, m) to the Doppler frequency detector 19.

レーダ装置1は、コヒーレント積分部18におけるコヒーレント積分により、N回にわたるコヒーレント積分区間(時間範囲)のうち、ターゲットからの反射波の受信信号が高い相関値を有する範囲において受信SNRを改善でき、反射波の到来方向の推定精度を向上できる。更に、レーダ装置1は、ターゲットまでの距離の推定精度を向上できる。 The radar apparatus 1 can improve the reception SNR in the range in which the reception signal of the reflected wave from the target has a high correlation value in the N p times of the coherent integration period (time range) by the coherent integration in the coherent integration unit 18. The estimation accuracy of the arrival direction of the reflected wave can be improved. Furthermore, the radar apparatus 1 can improve the estimation accuracy of the distance to the target.

なお、本実施形態では、ドップラ周波数検出部19の前段にコヒーレント積分部18を設けることで、高いコヒーレント積分利得を得ているが、高い周波数分解能を得るためにコヒーレント積分部18を設けなくても良く、N=0となる。 In this embodiment, a high coherent integration gain is obtained by providing the coherent integration unit 18 before the Doppler frequency detection unit 19, but the coherent integration unit 18 is not provided in order to obtain a high frequency resolution. Well, N p = 0.

ドップラ周波数検出部19は、N×N回の送信周期Tの期間(T×N×N)において、離散時刻k毎に得られたコヒーレント積分部18のN個の出力(CI(k,N(w−1)+1)〜CI(k,N×w))を用いて、記憶部20、加減算処理部21、ドップラ位相回転記憶部22及び乗算器23#N,23#N−1〜23#−N+1により、離散時刻kのタイミングを揃えてN個の異なるドップラ周波数成分fに応じたドップラ位相変動(数式(13)参照)を補正する。ドップラ周波数検出部19は、ドップラ位相変動を補正した後に、ドップラコヒーレント加算バッファ24#N,24#N−1〜24#−N+1により、N回、加算処理することにより、積分数N回、コヒーレント積分する。 Doppler frequency detector 19, N p in × N c times the period of the transmission cycle T r of (T r × N p × N c), N c pieces of output of the coherent integrator 18 obtained for each discrete time k (CI (k, N c (w−1) +1) to CI (k, N c × w)) is used to store the storage unit 20, the addition / subtraction processing unit 21, the Doppler phase rotation storage unit 22, and the multiplier 23 # N. L , 23 # N L −1 to 23 # −N L +1 correct the Doppler phase fluctuation (see Equation (13)) according to N f different Doppler frequency components f s at the same time at the discrete time k. To do. After correcting the Doppler phase fluctuation, the Doppler frequency detector 19 performs integration by Nc times by Doppler coherent addition buffers 24 # N L and 24 # N L −1 to 24 # −N L +1, thereby integrating Coherent integration is performed Nc times.

Figure 2014081311
Figure 2014081311

wは、1以上の整数であり、N×N回分の送信周期Tを単位とした送信周期(N×N×T)の序数を示す。w=1であれば、1回目のTからN×N回目のTまでの送信周期Tとなる(N×N×T)。つまり、ドップラ周波数検出部19は、送信周期TがN×N回繰り返す度に、離散時刻kのタイミングを揃えてN個の異なるドップラ周波数成分fに応じた位相変動(数式(13)参照)を補正した後に、積分数N回、コヒーレント積分する。 w is an integer of 1 or more, and indicates the ordinal number of the transmission cycle (N p × N c × T r ) in units of N p × N c transmission cycles T r . If w = 1, the transmission cycle T r from first T r to N p × N c th T r (N p × N c × T r). That is, the Doppler frequency detection unit 19 aligns the timings of the discrete time k and repeats the phase fluctuations according to N f different Doppler frequency components f s each time the transmission cycle T r repeats N p × N c times (formula ( After 13) is corrected, coherent integration is performed Nc times of integration.

次に、ドップラ周波数検出部19の各部の動作を詳細に説明する。   Next, the operation of each part of the Doppler frequency detector 19 will be described in detail.

記憶部20は、Nが偶数である場合、逐次的に入力されるコヒーレント積分部18のN個のコヒーレント積分出力CI(k,N(w−1)+1)〜CI(k,N×w)のうち、前半のN/2個のコヒーレント積分出力CI(k,N(w−1)+1)〜CI(k,N(w−1)+N/2)を一時的に格納する。 The storage unit 20, if N c is even, N c pieces of coherent integration output CI of the coherent integrator 18 is inputted sequentially (k, N c (w- 1) +1) ~CI (k, N c × w), the first half N c / 2 coherent integration outputs CI (k, N c (w−1) +1) to CI (k, N c (w−1) + N c / 2) are temporarily stored. To store.

記憶部20は、Nが奇数である場合、逐次的に入力されるコヒーレント積分部18のN個のコヒーレント積分出力CI(k,N(w−1)+1)〜CI(k,N×w)のうち、前半の(N−1)/2個のコヒーレント積分出力CI(k,N(w−1)+1)〜CI(k,N(w−1)+(N−1)/2)を一時的に格納する。 The storage unit 20, if N c is odd, N c pieces of coherent integration output CI of the coherent integrator 18 is inputted sequentially (k, N c (w- 1) +1) ~CI (k, N c × w), the first half (N c −1) / 2 coherent integration outputs CI (k, N c (w−1) +1) to CI (k, N c (w−1) + (N c- 1) / 2) is temporarily stored.

加減算処理部21は、Nが偶数である場合、記憶部20に格納された前半のN/2個のコヒーレント積分出力CI(k,N(w−1)+1)〜CI(k,N(w−1)+N/2)を、記憶部20への格納順序と逆順に読み出す。 When N c is an even number, the addition / subtraction processing unit 21 stores the first half N c / 2 coherent integration outputs CI (k, N c (w−1) +1) to CI (k, k) stored in the storage unit 20. N c (w−1) + N c / 2) is read out in the reverse order of the storage order in the storage unit 20.

加減算処理部21は、逐次的に入力されるN個のコヒーレント積分出力のうち後半の第1番目(N/2+1個目)のコヒーレント積分出力CI(k,N(w−1)+N/2+1)が入力された後、前半のコヒーレント積分出力CI(k,N(w−1)+N/2)〜CI(k,N(w−1)+1)と後半のコヒーレント積分出力CI(k,N(w−1)+N/2+1)〜CI(k,N×w)とを用いて、数式(14)に示す加算処理、及び数式(15)に示す減算処理に必要なコヒーレント積分出力の各データが揃った順に、数式(14)に示す加算処理、及び数式(15)に示す減算処理を行う。 Subtraction processing unit 21, the coherent integration output CI (k of the first late among N c pieces of coherent integration output that is input sequentially (N c / 2 + 1 th), N c (w-1 ) + N c / 2 + 1) is input, the first half coherent integration output CI (k, Nc (w-1) + Nc / 2) to CI (k, Nc (w-1) +1) and the second half coherent integration. Using the outputs CI (k, N c (w−1) + N c / 2 + 1) to CI (k, N c × w), the addition process shown in Formula (14) and the subtraction process shown in Formula (15) In addition, the addition process shown in Expression (14) and the subtraction process shown in Expression (15) are performed in the order in which each data of the coherent integration output necessary for the above is obtained.

なお、数式(15)に示す減算処理は、コヒーレント積分出力に対して、90度の位相回転を付与した後に行う減算処理である。   In addition, the subtraction process shown in Formula (15) is a subtraction process performed after giving 90 degree phase rotation with respect to a coherent integration output.

即ち、加減算処理部21は、数式(14)に示す加算処理、及び数式(15)に示す減算処理の演算結果を、演算処理が終了した演算処理結果から逐次的に、加算処理、減算処理の順、又は減算処理、加算処理の順に、各乗算器23#N,23#N−1〜23#−N+1に出力する。 That is, the addition / subtraction processing unit 21 sequentially performs the addition process and the subtraction process on the calculation result of the addition process shown in Expression (14) and the calculation process of the subtraction process shown in Expression (15) from the calculation process result after the calculation process ends. It outputs to each multiplier 23 # N L , 23 # N L −1 to 23 # −N L +1 in order, or in the order of subtraction processing and addition processing.

例えば、数式(14)及び(15)において、s=N/2から降順に処理すると、加減算処理部21は、
加算処理:CI_sum(k,N(w−1)+N/2),
減算処理:CI_sum(k,N(w−1)+N),
加算処理:CI_sum(k,N(w−1)+N/2−1),
減算処理:CI_sum(k,N(w−1)+N−1)

加算処理:CI_sum(k,N(w−1)+1),
減算処理:CI_sum(k,N(w−1)+N/2+1)
の順に加算処理又は減算処理が終了した演算処理結果を、逐次的に各乗算器23#N,23#N−1〜23#−N+1の全てに出力する。
For example, in the formulas (14) and (15), when processing is performed in descending order from s = N c / 2, the addition / subtraction processing unit 21
Addition processing: CI_sum (k, N c (w−1) + N c / 2),
Subtraction process: CI_sum (k, N c (w−1) + N c ),
Addition processing: CI_sum (k, N c (w−1) + N c / 2-1),
Subtraction process: CI_sum (k, N c (w−1) + N c −1)
~
Addition processing: CI_sum (k, N c (w−1) +1),
Subtraction process: CI_sum (k, N c (w−1) + N c / 2 + 1)
The result of the arithmetic processing in which the addition process or the subtraction process is completed is sequentially output to all the multipliers 23 # N L , 23 # N L −1 to 23 # −N L +1.

ここで、数式(14)及び(15)において、sは1≦s≦N/2を満たす整数である。また、jは虚数単位であってj=exp[jπ/2]である。なお、虚数単位jの乗算処理は、90度の位相回転を付与する処理となるため、CI(k,N(w−1)+s)の実数成分を虚数成分に変換し、CI(k,N(w−1)+s)の虚数成分の符号を反転して実数成分に変換することによって減算処理を簡易に実現できる。 Here, in Equations (14) and (15), s is an integer that satisfies 1 ≦ s ≦ N c / 2. J is an imaginary unit, and j = exp [jπ / 2]. In addition, since the multiplication process of the imaginary unit j is a process of giving a phase rotation of 90 degrees, the real number component of CI (k, N c (w−1) + s) is converted into an imaginary number component, and CI (k, The subtraction process can be easily realized by inverting the sign of the imaginary component of N c (w−1) + s) and converting it to a real component.

Figure 2014081311
Figure 2014081311

Figure 2014081311
Figure 2014081311

加減算処理部21における数式(14)に示す加算処理のうち第1番目の加算処理(s=N/2)は、前半のN/2個の最後(s=N/2)のコヒーレント積分出力と、後半のN/2個の第1番目(N−s+1=N−N/2+1=N/2+1)のコヒーレント積分出力との加算処理となる。 The first addition process (s = N c / 2) among the addition processes shown in Expression (14) in the addition / subtraction processing unit 21 is the first half N c / 2 last (s = N c / 2) coherent. and the integrated output, a process of adding a coherent integration output of the second half of N c / 2 pieces 1st (N c -s + 1 = N c -N c / 2 + 1 = N c / 2 + 1).

一方、加減算処理部21における数式(15)に示す減算処理のうち第1番目の減算処理は、前半のN/2個の最後(s=N/2)のコヒーレント積分出力に−90度の位相回転が付与されたコヒーレント積分出力と、後半のN/2個の第1番目(N−s+1=N−N/2+1=N/2+1)のコヒーレント積分出力に90度の位相回転が付与されたコヒーレント積分との減算処理となる。つまり、数式(15)の第1項は−jが乗算され、数式(15)の第2項はjが乗算される。 On the other hand, the first subtraction process in the subtraction process shown in Formula (15) in the addition / subtraction processing unit 21 is −90 degrees in the first half N c / 2 last (s = N c / 2) coherent integration output. 90 degrees of the coherent integration output to which the phase rotation is given and the second half of the N c / 2 first (N c −s + 1 = N c −N c / 2 + 1 = N c / 2 + 1) coherent integration output This is a subtraction process with coherent integration to which phase rotation is applied. In other words, the first term of Equation (15) is multiplied by -j, and the second term of Equation (15) is multiplied by j.

加減算処理部21は、Nが奇数である場合、記憶部20に格納された前半の(N−1)/2個のコヒーレント積分出力CI(k,N(w−1)+1)〜CI(k,N(w−1)+(N−1)/2)を、記憶部20への格納順序と逆順に読み出す。 When N c is an odd number, the addition / subtraction processing unit 21 (N c −1) / 2 coherent integration outputs CI (k, N c (w−1) +1) to be stored in the storage unit 20 CI (k, N c (w−1) + (N c −1) / 2) is read out in the reverse order of storage in the storage unit 20.

加減算処理部21は、逐次的に入力されるN個のコヒーレント積分出力のうち後半の第1番目(N−1)/2+1個目)のコヒーレント積分出力CI(k,N(w−1)+(N−1)/2+1)が入力された後、前半のコヒーレント積分出力CI(k,N(w−1)+(N−1)/2)〜CI(k,N(w−1)+1)と後半のコヒーレント積分出力CI(k,N(w−1)+(N−1)/2+1)〜CI(k,N×w)とを用いて、数式(16)に示す加算処理、及び数式(17)に示す減算処理に必要なコヒーレント積分出力の各データが揃った順に、数式(16)に示す加算処理、及び数式(17)に示す減算処理を行う。 Subtraction processing unit 21, the coherent integration output CI (k of the first late among N c pieces of coherent integration output that is input sequentially (N c -1) / 2 + 1 th), N c (w- 1) + (N c −1) / 2 + 1) is input, and then the first half coherent integration output CI (k, N c (w−1) + (N c −1) / 2) to CI (k, N c (w−1) +1) and the latter half of the coherent integration output CI (k, N c (w−1) + (N c −1) / 2 + 1) to CI (k, N c × w), The addition process shown in Formula (16) and the subtraction process shown in Formula (17) in the order in which the data of the coherent integration output necessary for the addition process shown in Formula (16) and the subtraction process shown in Formula (17) are prepared. I do.

なお、数式(17)に示す減算処理は、コヒーレント積分出力に対して、90度の位相回転を付与した後に行う減算処理である。   In addition, the subtraction process shown in Formula (17) is a subtraction process performed after giving 90 degree phase rotation with respect to a coherent integration output.

即ち、加減算処理部21は、数式(16)に示す加算処理、及び数式(17)に示す減算処理の演算結果を、演算処理が終了した演算結果から逐次的に、加算処理、減算処理の順、又は減算処理、加算処理の順に、各乗算器23#N,23#N−1〜23#−N+1に一様に出力する。 That is, the addition / subtraction processing unit 21 sequentially performs the addition process and the subtraction process in the order of the calculation result of the addition process shown in Formula (16) and the calculation result of the subtraction process shown in Formula (17) from the calculation result after the calculation process is completed. Or, in the order of the subtraction process and the addition process, they are uniformly output to the multipliers 23 # N L , 23 # N L −1 to 23 # −N L +1.

例えば、数式(16)及び(17)において、s=(N−1)+1/2から降順に処理すると、加減算処理部21は、
加算処理:CI_sum(k,N(w−1)+(N−1)/2+1),
加算処理:CI_sum(k,N(w−1)+(N−1)/2),
減算処理:CI_sum(k,N(w−1)+N),
加算処理:CI_sum(k,N(w−1)+(N−1)/2−1),
減算処理:CI_sum(k,N(w−1)+N−1)

加算処理:CI_sum(k,N(w−1)+1),
減算処理:CI_sum(k,N(w−1)+(N+1)/2+1)
の順に加算処理又は減算処理が終了した演算処理結果を、逐次的に各乗算器23#N,23#N−1〜23#−N+1の全てに出力する。
For example, in the formulas (16) and (17), when processing is performed in descending order from s = (N c −1) +1/2, the addition / subtraction processing unit 21
Addition processing: CI_sum (k, N c (w−1) + (N c −1) / 2 + 1),
Addition processing: CI_sum (k, N c (w−1) + (N c −1) / 2),
Subtraction process: CI_sum (k, N c (w−1) + N c ),
Addition processing: CI_sum (k, N c (w−1) + (N c −1) / 2-1),
Subtraction process: CI_sum (k, N c (w−1) + N c −1)
~
Addition processing: CI_sum (k, N c (w−1) +1),
Subtraction process: CI_sum (k, N c (w−1) + (N c +1) / 2 + 1)
The result of the arithmetic processing in which the addition process or the subtraction process is completed is sequentially output to all the multipliers 23 # N L , 23 # N L −1 to 23 # −N L +1.

数式(16)及び(17)において、sは1≦s≦(N−1)/2を満たす整数であるが、数式(16)の第2式ではs=(N−1)/2+1である。また、jは虚数単位であってj=exp[jπ/2]と示される。 In Equations (16) and (17), s is an integer that satisfies 1 ≦ s ≦ (N c −1) / 2, but in the second equation of Equation (16), s = (N c −1) / 2 + 1. It is. Further, j is an imaginary unit and is expressed as j = exp [jπ / 2].

Figure 2014081311
Figure 2014081311

Figure 2014081311
Figure 2014081311

加減算処理部21における数式(16)に示す加算処理のうち第1番目の加算処理(s=(N−1)/2+1)は、Nが奇数であるため、後半の(N−1)/2+1個の第1番目((N−1)/2+1)のコヒーレント積分出力を2回加算したコヒーレント積分出力となる。 The first addition process (s = (N c −1) / 2 + 1) among the addition processes shown in Expression (16) in the addition / subtraction processing unit 21 is the latter half (N c −1) because N c is an odd number. ) / 2 + 1 first ((N c −1) / 2 + 1) coherent integration outputs are added twice to obtain a coherent integration output.

更に、加減算処理部21における数式(16)に示す加算処理のうち第2番目の加算処理(s=(N−1)/2)は、Nが奇数であるため、前半の(N−1)/2個の最後(s=(N−1)/2)のコヒーレント積分出力と、後半の((N−1)/2+1)個の第2番目(N−s+1=N−((N−1)/2)+1=(N−1)/2+2)のコヒーレント積分出力との加算処理となる。 Further, the second addition process (s = (N c −1) / 2) in the addition process shown in Expression (16) in the addition / subtraction processing unit 21 is the first half (N c ) because N c is an odd number. −1) / 2 last (s = (N c −1) / 2) coherent integration outputs and the second ((N c −1) / 2 + 1) second (N c −s + 1 = N) It is an addition process with the coherent integration output of c − ((N c −1) / 2) + 1 = (N c −1) / 2 + 2).

一方、加減算処理部21における数式(17)に示す減算処理のうち第1番目の減算処理は、Nが奇数であるため、前半の(N−1)/2個の最後(s=(N−1)/2)のコヒーレント積分出力に−90度の位相回転が付与されたコヒーレント積分出力と、後半の((N−1)/2+1)個の第2番目(N−s+1=N−((N−1)/2))+1=(N−1)/2+2)のコヒーレント積分出力に90度の位相回転が付与されたコヒーレント積分との減算処理となる。 On the other hand, in the first subtraction process shown in Expression (17) in the addition / subtraction processing unit 21, since N c is an odd number, the last (N c −1) / 2 last (s = ( A coherent integration output in which a phase rotation of −90 degrees is applied to the coherent integration output of N c −1) / 2) and the second ((N c −1) / 2 + 1) second (N c −s + 1). = N c − ((N c −1) / 2)) + 1 = (N c −1) / 2 + 2) is a subtraction process with a coherent integration in which a phase rotation of 90 degrees is added to the coherent integration output.

ドップラ位相回転記憶部22は、Nが偶数では、N個の異なるドップラ周波数成分fに応じたドップラ位相変動を補正するための補正係数としてのドップラ位相回転因子E(q)を予め格納している。ドップラ位相回転因子E(q)は、N×N個の実数値の要素を含む(数式(18)参照)。qは周波数ビン数の序数を示し、q=N,N−1,N−2,…,−N+1である。qの絶対値が大きくなるほど、高いドップラ周波数成分に相当する周波数ビンとなる。Δθは、周波数分解能(位相回転単位)を示す。 When Nc is an even number, the Doppler phase rotation storage unit 22 stores in advance a Doppler phase rotation factor E (q) as a correction coefficient for correcting Doppler phase fluctuations according to N f different Doppler frequency components f s. doing. The Doppler phase rotation factor E (q) includes N c × N f real-valued elements (see Expression (18)). q indicates an ordinal number of frequency bins, and is q = N L , N L −1, N L −2,..., −N L +1. As the absolute value of q increases, the frequency bin corresponds to a higher Doppler frequency component. Δθ represents frequency resolution (phase rotation unit).

ここで、逐次的に出力されるN個のコヒーレント積分出力の中心時刻(t=(N−1)T/2)を位相基準とした場合に、従来のドップラ位相回転因子D(q)が、中心時刻を中心とした位相共役対称性を有する性質に着目し、ドップラ位相回転因子E(q)は、数式(19)に示す変換処理を施し、実数化したものである。 Here, the N c pieces of center time of the coherent integration output outputted sequentially (t 0 = (N c -1 ) T r / 2) in the case of the phase reference, conventional Doppler phase rotation factor D ( Paying attention to the property that q) has phase conjugate symmetry with the center time as the center, the Doppler phase twiddle factor E (q) is a real number obtained by performing the conversion process shown in Equation (19).

Figure 2014081311
Figure 2014081311

Uは数式(19)により示される行列であり、Iは、P次の単位行列(数式(20)参照)であり、IIはP次単位行列が行方向において転置された行列である(数式(21)参照)。Dは数式(22)により示されるベクトルである。ここでは、Nは偶数である。また、Hは行列の転置を示す。従って、ドップラ位相回転因子E(q)は、数式(23)に示すように、実数成分によって示される。 U is a matrix represented by Expression (19), IP is a P-th order unit matrix (see Expression (20)), and II P is a matrix in which a P-order unit matrix is transposed in the row direction ( Formula (21) reference). D is a vector represented by Expression (22). Here, Nc is an even number. H indicates transposition of the matrix. Therefore, the Doppler phase rotation factor E (q) is represented by a real number component as shown in Equation (23).

Figure 2014081311
Figure 2014081311

Figure 2014081311
Figure 2014081311

Figure 2014081311
Figure 2014081311

Figure 2014081311
Figure 2014081311

Figure 2014081311
Figure 2014081311

また、Nが奇数の場合も同様に、逐次的に出力されるN個のコヒーレント積分出力の中心時刻(t=(N−1)T/2)を位相基準とした場合に、従来のドップラ位相回転因子D(q)が、中心時刻を中心とした位相共役対称性を有する性質に着目し、ドップラ位相回転因子E(q)は、数式(19)に示す変換処理を用いて実数化したものである。 Similarly, if N c is odd, N c pieces of center time of the coherent integration output outputted sequentially (t 0 = (N c -1 ) T r / 2) to the case of the phase reference Focusing on the property that the conventional Doppler phase rotation factor D (q) has phase conjugate symmetry with the center time as the center, the Doppler phase rotation factor E (q) uses the transformation process shown in Equation (19). Is a real number.

なお、Nが奇数の場合は、数式(19)に示す変換処理において、数式(18)の代わりに数式(24)に示す従来のドップラ位相回転因子D(q)を用い、さらに数式(19)の代わりに数式(25)を用いる。ドップラ位相回転記憶部22は、実数化したドップラ位相回転因子E(q)を予め格納している(数式(26)参照)。 When Nc is an odd number, the conventional Doppler phase rotation factor D (q) shown in Formula (24) is used instead of Formula (18) in the conversion process shown in Formula (19), and Formula (19) is used. ) Is used instead of (25). The Doppler phase rotation storage unit 22 stores a realized Doppler phase rotation factor E (q) in advance (see Expression (26)).

Figure 2014081311
Figure 2014081311

Figure 2014081311
Figure 2014081311

Figure 2014081311
Figure 2014081311

補正係数乗算部としての各乗算器23#N,23#N−1〜23#−N+1は、異なるN(=2N)個のドップラ周波数成分fに応じて設けられる。各乗算器23#N,23#N−1〜23#−N+1は、ドップラ位相回転記憶部22から読み出したドップラ周波数成分fの序数qに応じたドップラ位相回転因子E(s,q)と、加減算処理部21から逐次的に出力される各演算結果の序数sがドップラ位相回転因子E(s,q)のパラメータs,qと一致する演算処理結果とを乗算処理する。 The multipliers 23 # N L and 23 # N L −1 to 23 # −N L +1 as correction coefficient multipliers are provided according to different N f (= 2N L ) Doppler frequency components f s . Each multiplier 23 # N L , 23 # N L −1 to 23 # −N L +1 has a Doppler phase rotation factor E (s) corresponding to the ordinal number q of the Doppler frequency component f s read from the Doppler phase rotation storage unit 22. , Q) and an arithmetic processing result in which the ordinal number s of each arithmetic result sequentially output from the addition / subtraction processing unit 21 matches the parameters s and q of the Doppler phase rotation factor E (s, q).

ここで、qは周波数ビン数の序数を示し、q=N,N−1,N−2,…,−N+1である。sは、1≦s≦Nの整数である。 Here, q represents the ordinal number of the number of frequency bins, q = N L, N L -1, N L -2, ..., a -N L +1. s is an integer of 1 ≦ s ≦ N c .

各乗算器#N,23#N−1〜23#−N+1は、各乗算器に対応するドップラコヒーレント加算バッファ24#N,24#N−1〜24#−N+1に乗算処理結果を出力する。 Each multiplier #N L , 23 # N L −1 to 23 # −N L +1 is a Doppler coherent addition buffer 24 # N L , 24 # N L −1 to 24 # −N L +1 corresponding to each multiplier. The result of multiplication processing is output to.

具体的には、乗算器23#qは、Nが偶数である場合、
CI_sum(k,N(w−1)+N/2)E(N/2,q),
CI_sum(k,N(w−1)+N)E(N,q),
CI_sum(k,N(w−1)+N/2−1)E(N/2−1,q),
CI_sum(k,N(w−1)+N−1)E(N−1,q)

CI_sum(k,N(w−1)+s)E(s,q),
CI_sum(k,N(w−1)+s+N/2)E(s+N/2,q)

CI_sum(k,N(w−1)+1)E(1,q),
CI_sum(k,N(w−1)+N/2+1)E(N/2+1,q)
の各乗算処理結果を、順次、ドップラコヒーレント加算バッファ24#qに出力する。ここで、q=N,N−1,N−2,…,−N+1である。
Specifically, the multiplier 23 # q, when N c is an even number,
CI_sum (k, Nc (w-1) + Nc / 2) E ( Nc / 2, q),
CI_sum (k, Nc (w-1) + Nc ) E ( Nc , q),
CI_sum (k, Nc (w-1) + Nc / 2-1) E ( Nc / 2-1, q),
CI_sum (k, Nc (w-1) + Nc- 1) E ( Nc- 1, q)
~
CI_sum (k, N c (w−1) + s) E (s, q),
CI_sum (k, Nc (w-1) + s + Nc / 2) E (s + Nc / 2, q)
~
CI_sum (k, N c (w−1) +1) E (1, q),
CI_sum (k, Nc (w-1) + Nc / 2 + 1) E ( Nc / 2 + 1, q)
Are sequentially output to the Doppler coherent addition buffer 24 # q. Here, q = N L , N L −1, N L −2,..., −N L +1.

より具体的には、例えば、乗算器23#Nは、Nが偶数である場合(q=N)、
CI_sum(k,N(w−1)+N/2)E(N/2,N),
CI_sum(k,N(w−1)+N)E(N,N),
CI_sum(k,N(w−1)+N/2−1)E(N/2−1,N),
CI_sum(k,N(w−1)+N−1)E(N−1,N

CI_sum(k,N(w−1)+s)E(s,N),
CI_sum(k,N(w−1)+s+N/2)E(s+N/2,N

CI_sum(k,N(w−1)+1)E(1,N),
CI_sum(k,N(w−1)+N/2+1)E(N/2+1,N
の各乗算処理結果をドップラコヒーレント加算バッファ24#Nに出力する。
More specifically, for example, the multiplier 23 # N L is configured such that when N c is an even number (q = N L ),
CI_sum (k, N c (w−1) + N c / 2) E (N c / 2, N L ),
CI_sum (k, N c (w−1) + N c ) E (N c , N L ),
CI_sum (k, Nc (w-1) + Nc / 2-1) E ( Nc / 2-1, NL ),
CI_sum (k, Nc (w-1) + Nc- 1) E ( Nc- 1, NL )
~
CI_sum (k, N c (w−1) + s) E (s, N L ),
CI_sum (k, Nc (w-1) + s + Nc / 2) E (s + Nc / 2, N L )
~
CI_sum (k, N c (w−1) +1) E (1, N L ),
CI_sum (k, Nc (w-1) + Nc / 2 + 1) E ( Nc / 2 + 1, N L )
Are output to the Doppler coherent addition buffer 24 # NL .

また、例えば乗算器23#N−1は、Nが偶数である場合(q=N−1)、
CI_sum(k,N(w−1)+N/2)E(N/2,N−1),
CI_sum(k,N(w−1)+N)E(N,N−1),
CI_sum(k,N(w−1)+N/2−1)E(N/2−1,N−1),
CI_sum(k,N(w−1)+N−1)E(N−1,N−1)

CI_sum(k,N(w−1)+s)E(s,N−1),
CI_sum(k,N(w−1)+s+N/2)E(s+N/2,N−1)

CI_sum(k,N(w−1)+1)E(1,N−1),
CI_sum(k,N(w−1)+N/2+1)E(N/2+1,N−1)
の各乗算処理結果をドップラコヒーレント加算バッファ24#N−1に出力する。
Further, for example, the multiplier 23 # N L −1 has an even number of N c (q = N L −1).
CI_sum (k, N c (w−1) + N c / 2) E (N c / 2, N L −1),
CI_sum (k, N c (w−1) + N c ) E (N c , N L −1),
CI_sum (k, N c (w−1) + N c / 2-1) E (N c / 2-1, N L −1),
CI_sum (k, N c (w−1) + N c −1) E (N c −1, N L −1)
~
CI_sum (k, N c (w−1) + s) E (s, N L −1),
CI_sum (k, N c (w−1) + s + N c / 2) E (s + N c / 2, N L −1)
~
CI_sum (k, N c (w−1) +1) E (1, N L −1),
CI_sum (k, N c (w−1) + N c / 2 + 1) E (N c / 2 + 1, N L −1)
Are output to the Doppler coherent addition buffer 24 # N L −1.

同様に、例えば乗算器23#−N+1は、Nが偶数である場合(q=−N+1)、
CI_sum(k,N(w−1)+N/2)E(N/2,−N+1),
CI_sum(k,N(w−1)+N)E(N,−N+1),
CI_sum(k,N(w−1)+N/2−1)E(N/2−1,−N+1),
CI_sum(k,N(w−1)+N−1)E(N−1,−N+1)

CI_sum(k,N(w−1)+s)E(s,−N+1),
CI_sum(k,N(w−1)+s+N/2)E(s+N/2,−N+1)

CI_sum(k,N(w−1)+1)E(1,−N+1),
CI_sum(k,N(w−1)+N/2+1)E(N/2+1,−N+1)
の各乗算処理結果をドップラコヒーレント加算バッファ24#−N+1に出力する。
Similarly, for example, the multiplier 23 # -N L +1, when N c is an even number (q = −N L +1),
CI_sum (k, N c (w -1) + N c / 2) E (N c / 2, -N L +1),
CI_sum (k, N c (w−1) + N c ) E (N c , −N L +1),
CI_sum (k, N c (w−1) + N c / 2-1) E (N c / 2-1, −N L +1),
CI_sum (k, N c (w−1) + N c −1) E (N c −1, −N L +1)
~
CI_sum (k, N c (w−1) + s) E (s, −N L +1),
CI_sum (k, Nc (w-1) + s + Nc / 2) E (s + Nc / 2, -N L +1)
~
CI_sum (k, N c (w−1) +1) E (1, −N L +1),
CI_sum (k, N c (w−1) + N c / 2 + 1) E (N c / 2 + 1, −N L +1)
Are output to the Doppler coherent addition buffer 24 # -N L +1.

また、乗算器23#qは、Nが奇数である場合、
CI_sum(k,N(w−1)+(N−1)/2+1)E((N−1)/2+1,q),
CI_sum(k,N(w−1)+(N−1)/2)E((N−1)/2,q),
CI_sum(k,N(w−1)+N)E(N,q),
CI_sum(k,N(w−1)+(N−1)/2−1)E((N−1)/2−1,q),
CI_sum(k,N(w−1)+N−1)E(N−1,q)

CI_sum(k,N(w−1)+s)E(s,q),
CI_sum(k,N(w−1)+s+(N−1)/2)E(s+(N−1)/2,q)

CI_sum(k,N(w−1)+1)E(1,q),
CI_sum(k,N(w−1)+(N+1)/2+2)E((N+1)/2+2,q)
の各乗算処理結果をドップラコヒーレント加算バッファ24#qに出力する。ここで、q=N,N−1,N−2,…,−N+1である。
In addition, the multiplier 23 # q, when N c is an odd number,
CI_sum (k, Nc (w-1) + ( Nc- 1) / 2 + 1) E (( Nc- 1) / 2 + 1, q),
CI_sum (k, Nc (w-1) + ( Nc- 1) / 2) E (( Nc- 1) / 2, q),
CI_sum (k, Nc (w-1) + Nc ) E ( Nc , q),
CI_sum (k, Nc (w-1) + ( Nc- 1) / 2-1) E (( Nc- 1) / 2-1, q),
CI_sum (k, Nc (w-1) + Nc- 1) E ( Nc- 1, q)
~
CI_sum (k, N c (w−1) + s) E (s, q),
CI_sum (k, Nc (w-1) + s + ( Nc- 1) / 2) E (s + ( Nc- 1) / 2, q)
~
CI_sum (k, N c (w−1) +1) E (1, q),
CI_sum (k, Nc (w-1) + ( Nc + 1) / 2 + 2) E (( Nc + 1) / 2 + 2, q)
Are output to the Doppler coherent addition buffer 24 # q. Here, q = N L , N L −1, N L −2,..., −N L +1.

例えば、乗算器23#Nは、Nが奇数である場合(q=N)、
CI_sum(k,N(w−1)+(N−1)/2+1)E((N−1)/2+1,N),
CI_sum(k,N(w−1)+(N−1)/2)E((N−1)/2,N),
CI_sum(k,N(w−1)+N)E(N,N),
CI_sum(k,N(w−1)+(N−1)/2−1)E((N−1)/2−1,N),
CI_sum(k,N(w−1)+N−1)E(N−1,N

CI_sum(k,N(w−1)+s)E(s,N),
CI_sum(k,N(w−1)+s+(N−1)/2)E(s+(N−1)/2,N

CI_sum(k,N(w−1)+1)E(1,N),
CI_sum(k,N(w−1)+(N+1)/2+2)E((N+1)/2+2,N
の各乗算処理結果をドップラコヒーレント加算バッファ24#Nに出力する。
For example, the multiplier 23 # NL has a case where Nc is an odd number (q = N L ),
CI_sum (k, Nc (w-1) + ( Nc- 1) / 2 + 1) E (( Nc- 1) / 2 + 1, N L ),
CI_sum (k, N c (w−1) + (N c −1) / 2) E ((N c −1) / 2, N L ),
CI_sum (k, N c (w−1) + N c ) E (N c , N L ),
CI_sum (k, Nc (w-1) + ( Nc- 1) / 2-1) E (( Nc- 1) / 2-1, NL ),
CI_sum (k, Nc (w-1) + Nc- 1) E ( Nc- 1, NL )
~
CI_sum (k, N c (w−1) + s) E (s, N L ),
CI_sum (k, N c (w−1) + s + (N c −1) / 2) E (s + (N c −1) / 2, N L )
~
CI_sum (k, N c (w−1) +1) E (1, N L ),
CI_sum (k, Nc (w-1) + ( Nc + 1) / 2 + 2) E (( Nc + 1) / 2 + 2, N L )
Are output to the Doppler coherent addition buffer 24 # NL .

また、例えば乗算器23#N−1は、Nが奇数である場合(q=N−1)、
CI_sum(k,N(w−1)+(N−1)/2+1)E((N−1)/2+1,N−1),
CI_sum(k,N(w−1)+(N−1)/2)E((N−1)/2,N−1),
CI_sum(k,N(w−1)+N)E(N,N−1),
CI_sum(k,N(w−1)+(N−1)/2−1)E((N−1)/2−1,N−1),
CI_sum(k,N(w−1)+N−1)E(N−1,N−1)

CI_sum(k,N(w−1)+s)E(s,N−1),
CI_sum(k,N(w−1)+s+(N−1)/2)E(s+(N−1)/2,N−1)

CI_sum(k,N(w−1)+1)E(1,N−1),
CI_sum(k,N(w−1)+(N+1)/2+2)E((N+1)/2+2,N−1)
の各乗算処理結果をドップラコヒーレント加算バッファ24#N−1に出力する。
Further, for example, the multiplier 23 # N L −1 has an odd number of N c (q = N L −1),
CI_sum (k, N c (w−1) + (N c −1) / 2 + 1) E ((N c −1) / 2 + 1, N L −1),
CI_sum (k, N c (w−1) + (N c −1) / 2) E ((N c −1) / 2, N L −1),
CI_sum (k, N c (w−1) + N c ) E (N c , N L −1),
CI_sum (k, Nc (w-1) + ( Nc- 1) / 2-1) E (( Nc- 1) / 2-1, NL- 1),
CI_sum (k, N c (w−1) + N c −1) E (N c −1, N L −1)
~
CI_sum (k, N c (w−1) + s) E (s, N L −1),
CI_sum (k, N c (w−1) + s + (N c −1) / 2) E (s + (N c −1) / 2, N L −1)
~
CI_sum (k, N c (w−1) +1) E (1, N L −1),
CI_sum (k, N c (w−1) + (N c +1) / 2 + 2) E ((N c +1) / 2 + 2, N L −1)
Are output to the Doppler coherent addition buffer 24 # N L −1.

同様に、例えば乗算器23#−N+1は、Nが奇数である場合(q=−N+1)、
CI_sum(k,N(w−1)+(N−1)/2+1)E((N−1)/2+1,−N+1),
CI_sum(k,N(w−1)+(N−1)/2)E((N−1)/2,−N+1),
CI_sum(k,N(w−1)+N)E(N,−N+1),
CI_sum(k,N(w−1)+(N−1)/2−1)E((N−1)/2−1,−N+1),
CI_sum(k,N(w−1)+N−1)E(N−1,−N+1)

CI_sum(k,N(w−1)+s)E(s,−N+1),
CI_sum(k,N(w−1)+s+(N−1)/2)E(s+(N−1)/2,−N+1)

CI_sum(k,N(w−1)+1)E(1,−N+1),
CI_sum(k,N(w−1)+(N+1)/2+2)E((N+1)/2+2,−N+1)
の各乗算処理結果をドップラコヒーレント加算バッファ24#−N+1に出力する。
Similarly, for example, the multiplier 23 # -N L +1, when N c is an odd number (q = −N L +1),
CI_sum (k, N c (w−1) + (N c −1) / 2 + 1) E ((N c −1) / 2 + 1, −N L +1),
CI_sum (k, N c (w−1) + (N c −1) / 2) E ((N c −1) / 2, −N L +1),
CI_sum (k, N c (w−1) + N c ) E (N c , −N L +1),
CI_sum (k, Nc (w-1) + ( Nc- 1) / 2-1) E (( Nc- 1) / 2-1, -N L +1),
CI_sum (k, N c (w−1) + N c −1) E (N c −1, −N L +1)
~
CI_sum (k, N c (w−1) + s) E (s, −N L +1),
CI_sum (k, N c (w−1) + s + (N c −1) / 2) E (s + (N c −1) / 2, −N L +1)
~
CI_sum (k, N c (w−1) +1) E (1, −N L +1),
CI_sum (k, N c (w−1) + (N c +1) / 2 + 2) E ((N c +1) / 2 + 2, −N L +1)
Are output to the Doppler coherent addition buffer 24 # -N L +1.

バッファ部としての各ドップラコヒーレント加算バッファ24#N,24#N−1〜24#−N+1は、対応する乗算器23#N,23#N−1〜23#−N+1から出力された乗算処理結果(N(w−1)番目からNw番目までのコヒーレント積分出力)を逐次的に加算処理する(数式(27)参照)。各ドップラコヒーレント加算バッファ24#N,24#N−1〜24#−N+1は、加算処理結果DCB(k,q,w)をドップラ出力選択部25に出力する。 Each of the Doppler coherent addition buffers 24 # N L and 24 # N L −1 to 24 # −N L +1 as the buffer unit is associated with a corresponding multiplier 23 # N L and 23 # N L −1 to 23 # −N L. The multiplication processing results (N c (w−1) th to N c wth coherent integration outputs) output from +1 are sequentially added (see Expression (27)). Each Doppler coherent addition buffer 24 #N L , 24 #N L −1 to 24 # -N L +1 outputs the addition processing result DCB (k, q, w) to the Doppler output selection unit 25.

これにより、ドップラコヒーレント加算バッファ24#N,24#N−1〜24#−N+1における加算処理結果は、Nが偶数である場合、前半N/2個の加減算処理部21の演算処理結果とドップラ位相回転因子E(q)との乗算処理結果と、後半N/2個の加減算処理部21の演算処理結果とドップラ位相回転因子E(q)との乗算処理結果との加算処理となる。ドップラ位相回転因子E(q)が、従来複素成分であったのに対し、本実施形態では実数成分となるため、乗算回数を半減できる。 As a result, the addition processing results in the Doppler coherent addition buffers 24 # N L and 24 # N L −1 to 24 # −N L +1 indicate that the first half N c / 2 addition / subtraction processing units 21 when N c is an even number. Result of multiplication of Doppler phase twiddle factor E (q), result of multiplication of second half N c / 2 adder / subtractor 21 and result of multiplication of Doppler phase twiddle factor E (q) This is the addition process. Since the Doppler phase rotation factor E (q) is a conventional complex component, it is a real component in the present embodiment, so that the number of multiplications can be halved.

また、ドップラコヒーレント加算バッファ24#N,24#N−1〜24#−N+1における加算処理結果は、Nが奇数である場合、前半(N−1)/2個の加減算処理部21の演算処理結果とドップラ位相回転因子E(q)との乗算処理結果と、後半(N−1)/2+1個の加減算処理部21の演算処理結果とドップラ位相回転因子E(q)との乗算処理結果との加算処理となる。ドップラ位相回転因子E(q)が、従来複素成分であったのに対し、本実施形態では実数成分となるため、乗算回数を半減できる。 Further, the addition processing results in the Doppler coherent addition buffers 24 # N L and 24 # N L -1 to 24 # -N L +1 indicate that when N c is an odd number, the first half (N c −1) / 2 addition / subtraction The multiplication process result of the calculation process of the processing unit 21 and the Doppler phase rotation factor E (q), the calculation process result of the second half (N c −1) / 2 + 1 addition / subtraction process units 21 and the Doppler phase rotation factor E (q ) And the multiplication process result. Since the Doppler phase rotation factor E (q) is a conventional complex component, it is a real component in the present embodiment, so that the number of multiplications can be halved.

Figure 2014081311
Figure 2014081311

ドップラ出力選択部25は、q=−N+1〜0〜Nに対応する各ドップラコヒーレント加算バッファ24#N,24#N−1〜24#−N+1からの出力の絶対値或いは電力値から、所定レベルを超えるピーク値を与えるドップラコヒーレント加算バッファを選択する。ドップラ出力選択部25は、選択された周波数ビン番号qに対応するドップラ周波数fselect(k,w)を特定し、ターゲットの相対移動速度v(k,w)を推定する(数式(28)参照)。λは、レーダ送信信号におけるキャリア周波数の波長である。 Doppler output selection unit 25, q = -N L + 1~0~N each Doppler coherent addition buffer 24 corresponding to the L # N L, 24 # N L -1~24 # absolute value of the output from -N L +1 Alternatively, a Doppler coherent addition buffer that gives a peak value exceeding a predetermined level is selected from the power value. The Doppler output selection unit 25 specifies the Doppler frequency f select (k, w) corresponding to the selected frequency bin number q, and estimates the relative movement speed v d (k, w) of the target (Formula (28)). reference). λ is the wavelength of the carrier frequency in the radar transmission signal.

Figure 2014081311
Figure 2014081311

以上により、レーダ装置1は、コヒーレント積分部18からのN個の出力のうち、加減算処理部21においてN個の半分の前半の最後の値と後半の最初の値とをデータが揃った順に加算処理及び減算処理し、次に、前半の最後から1つ前の値と後半の2番目の値とをデータが揃った順に、以降同様にして加算処理及び減算処理する。 As described above, in the radar apparatus 1, among the N c outputs from the coherent integration unit 18, the addition / subtraction processing unit 21 sets the data of the last value of the first half of the N c half and the first value of the second half. The addition process and the subtraction process are sequentially performed, and then the addition process and the subtraction process are performed in the same manner in the order in which the data of the last value in the first half and the second value in the second half are arranged.

レーダ装置1は、コヒーレント積分回数sが一致する加算処理及び減算処理の各演算結果とドップラ周波数成分毎に設けられたドップラ位相回転因子とを乗算処理する。   The radar apparatus 1 multiplies the calculation results of the addition process and the subtraction process with the same coherent integration count s and the Doppler phase rotation factor provided for each Doppler frequency component.

レーダ装置1は、ドップラ周波数成分毎の各乗算処理結果を、対応するドップラコヒーレント加算バッファにおいて逐次的に加算処理することで、コヒーレント積分として得られる出力が、所定レベルを超える場合のピーク周波数をドップラ周波数と特定し、ターゲットの相対移動速度を推定する。ドップラ位相回転因子は、従来複素成分であったのに対し、本実施の形態では実数成分となるため、乗算回数を半減できる。   The radar apparatus 1 sequentially adds each multiplication processing result for each Doppler frequency component in the corresponding Doppler coherent addition buffer, thereby obtaining a peak frequency when the output obtained as coherent integration exceeds a predetermined level. Specify the frequency and estimate the relative movement speed of the target. Since the Doppler phase rotation factor is a complex component in the past, it is a real component in the present embodiment, so the number of multiplications can be halved.

これにより、レーダ装置1は、簡易な構成を用いて、ターゲットにより反射された反射波信号のコヒーレント積分利得を向上できる。   Thereby, the radar apparatus 1 can improve the coherent integral gain of the reflected wave signal reflected by the target using a simple configuration.

更に、従来のFFTを用いたコヒーレント積分ではN個の出力データが揃う必要があったが、レーダ装置1は、コヒーレント積分部18の出力データがN/2個揃った時点からドップラ周波数検出部19においてコヒーレント積分が開始可能となるため、ドップラ周波数検出部19におけるコヒーレント積分の処理遅延を低減できる。 Furthermore, in the coherent integration using the conventional FFT, N c output data needs to be prepared. However, the radar apparatus 1 detects the Doppler frequency from the time when the output data of the coherent integration unit 18 is N c / 2. Since the coherent integration can be started in the unit 19, the processing delay of the coherent integration in the Doppler frequency detection unit 19 can be reduced.

(第2の実施形態)
次に、第2の実施形態のレーダ装置1aの構成及び動作について、図6及び図7を参照して説明する。図6は、第2の実施形態のレーダ装置1aの内部構成を簡略に示すブロック図である。図7は、第2の実施形態のレーダ装置1aの内部構成を詳細に示すブロック図である。本実施形態では、第1の実施形態のレーダ装置1と構成及び動作において同一の内容の説明は省略し、異なる内容について説明する。
(Second Embodiment)
Next, the configuration and operation of the radar apparatus 1a according to the second embodiment will be described with reference to FIGS. FIG. 6 is a block diagram schematically showing the internal configuration of the radar apparatus 1a according to the second embodiment. FIG. 7 is a block diagram showing in detail the internal configuration of the radar apparatus 1a of the second embodiment. In the present embodiment, the description of the same contents in the configuration and operation as the radar apparatus 1 of the first embodiment will be omitted, and different contents will be described.

図6又は図7に示すレーダ装置1aは、1個のレーダ送信部Txと、複数(例えば2個)のレーダ受信部Rx1,Rx2と、到来方向推定部26とを含む。受信アンテナAnt−Rx2は、レーダ受信部Rx2に対応して設けられている。各レーダ受信部Rx1,Rx2の内部構成は第1の実施形態のレーダ受信部Rxの内部構成と同様であるため、説明は省略する。   The radar apparatus 1a shown in FIG. 6 or 7 includes one radar transmitter Tx, a plurality of (for example, two) radar receivers Rx1 and Rx2, and an arrival direction estimator 26. The receiving antenna Ant-Rx2 is provided corresponding to the radar receiving unit Rx2. Since the internal configuration of each radar receiver Rx1, Rx2 is the same as the internal configuration of the radar receiver Rx of the first embodiment, description thereof is omitted.

各レーダ受信部Rx1,Rx2において、ドップラ出力選択部25は、q=−N+1〜0〜Nに対応する各ドップラコヒーレント加算バッファ24#N,24#N−1〜24#−N+1からの出力の絶対値或いは電力値から、所定レベルを超えるピーク値を与えるドップラコヒーレント加算バッファを選択する。ドップラ出力選択部25は、選択された周波数ビン番号qに対応するドップラ周波数fselect(k,w)を特定し、ターゲットの相対移動速度v(k,w)を推定する(数式(28)参照)。ドップラ出力選択部25は、選択された周波数ビン番号q_peakと、周波数ビン番号q_peakに対応するドップラ検出値DCBN_ANT(k,q_peak,w)(数式(29)参照)とを、到来方向推定部26に出力する。N_ANTは、レーダ受信部Rx1,Rx2の序数を示し、例えばレーダ装置1aが2個のレーダ受信部を含む場合には1又は2となる。 In each radar receiver Rx1, Rx2, Doppler output selection unit 25, q = -N L + 1~0~N each Doppler coherent addition buffer 24 corresponding to the L # N L, 24 # N L -1~24 # - A Doppler coherent addition buffer that gives a peak value exceeding a predetermined level is selected from the absolute value or power value of the output from N L +1. The Doppler output selection unit 25 specifies the Doppler frequency f select (k, w) corresponding to the selected frequency bin number q, and estimates the relative movement speed v d (k, w) of the target (Formula (28)). reference). The Doppler output selection unit 25 outputs the selected frequency bin number q_peak and the Doppler detection value DCB N_ANT (k, q_peak, w) (see Equation (29)) corresponding to the frequency bin number q_peak to the arrival direction estimation unit 26. Output to. N_ANT indicates the ordinal number of the radar receivers Rx1 and Rx2, and becomes 1 or 2 when the radar apparatus 1a includes two radar receivers, for example.

Figure 2014081311
Figure 2014081311

到来方向推定部26は、各レーダ受信部Rx1,Rx2のドップラ出力選択部25からの出力と、受信アンテナ間の位相差情報であるアンテナ相関ベクトルA(k,q_peak,w)(数式(30))とを用いて、ターゲットの到来方向を推定する。k=1〜N(N+N)/Nである。 The arrival direction estimation unit 26 outputs the output from the Doppler output selection unit 25 of each radar receiver Rx1, Rx2 and the antenna correlation vector A (k, q_peak, w) which is phase difference information between the receiving antennas (Equation (30)). ) To estimate the direction of arrival of the target. k = 1 to N s (N r + N u ) / N o .

Figure 2014081311
Figure 2014081311

なお、到来方向推定部26によるターゲットからの反射波信号の到来方向の推定演算は、既に公知の技術であり、例えば下述参考非特許文献1において開示されているアレーアンテナを用いた推定方法を用いて実現可能である。   Note that the calculation of the arrival direction of the reflected wave signal from the target by the arrival direction estimation unit 26 is a known technique. For example, an estimation method using an array antenna disclosed in Reference Non-Patent Document 1 described below is used. It can be realized using.

(参考非特許文献1)JAMES A. Cadzow、「Direction of Arrival Estimation Using Signal Subspace Modeling」、 Aerospace and Electronic Systems, IEEE、Vol.28、pp.64−79(1992)   (Reference Non-Patent Document 1) JAMES A. Cadzow, “Direction of Arrival Estimating Signal Subspace Modeling”, Aerospace and Electronic Systems, IEEE, Vol. 64-79 (1992)

以上により、レーダ装置1aは、第1の実施形態のレーダ装置1の効果に加え、各レーダ受信部Rx1,Rx2の処理量を低減でき、ターゲットにより反射された反射波信号の到来方向の推定精度を向上できる。   As described above, the radar apparatus 1a can reduce the processing amount of each of the radar receivers Rx1 and Rx2 in addition to the effects of the radar apparatus 1 of the first embodiment, and can estimate the arrival direction of the reflected wave signal reflected by the target. Can be improved.

以上、図面を参照し、各種の実施形態について説明したが、本開示はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。   While various embodiments have been described with reference to the drawings, it goes without saying that the present disclosure is not limited to such examples. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present disclosure. Understood.

本開示は、簡易な構成を用いて、ターゲットにより反射された反射波信号のコヒーレント積分利得を向上するレーダ装置として有用である。   The present disclosure is useful as a radar apparatus that improves the coherent integration gain of a reflected wave signal reflected by a target using a simple configuration.

1,1a レーダ装置
2 送信信号生成部
3 符号生成部
4 変調部
5 LPF
6 D/A変換部
7 送信RF部
8、13 周波数変換部
9、12 増幅器
10 受信RF部
11 信号処理部
14 直交検波部
15,16 A/D変換部
17 相関演算部
18 コヒーレント積分部
19 ドップラ周波数検出部
20 記憶部
21 加減算処理部
22 ドップラ位相回転記憶部
23#N、23#N−1、23#N−2、23#−N+1 乗算器
24#N、24#N−1、24#N−2、24#−N+1 ドップラコヒーレント加算バッファ
25 ドップラ出力選択部
26 到来方向推定部
Rx,Rx1,Rx2 レーダ受信部
Tx レーダ送信部
1, 1a Radar device 2 Transmission signal generator 3 Code generator 4 Modulator 5 LPF
6 D / A conversion unit 7 Transmission RF unit 8, 13 Frequency conversion unit 9, 12 Amplifier 10 Reception RF unit 11 Signal processing unit 14 Quadrature detection unit 15, 16 A / D conversion unit 17 Correlation calculation unit 18 Coherent integration unit 19 Doppler frequency detector 20 storage unit 21 subtraction processing section 22 Doppler phase rotating storage unit 23 # N L, 23 # N L -1,23 # N L -2,23 # -N L +1 multipliers 24 # N L, 24 # N L -1, 24 # N L -2, 24 # -N L +1 Doppler coherent addition buffer 25 Doppler output selection unit 26 Arrival direction estimation unit Rx, Rx1, Rx2 Radar reception unit Tx Radar transmission unit

Claims (9)

送信信号を高周波のレーダ送信信号に変換し、前記レーダ送信信号を送信アンテナから送信するレーダ送信部と、
受信アンテナを用いて、ターゲットにより反射された前記レーダ送信信号である反射波信号を受信する少なくとも1個のレーダ受信部と、を含み、
前記レーダ受信部は、
受信信号と前記送信信号との相関値を、前記レーダ送信信号の送信周期毎に演算する相関演算部と、
演算された前記相関値を、異なる複数のドップラ周波数に応じたドップラ位相回転の補正量を用いてコヒーレント積分するドップラ周波数検出部と、
を有するレーダ装置。
A radar transmitter that converts a transmission signal into a high-frequency radar transmission signal and transmits the radar transmission signal from a transmission antenna;
And at least one radar receiving unit that receives a reflected wave signal that is the radar transmission signal reflected by the target using a receiving antenna;
The radar receiver
A correlation calculation unit for calculating a correlation value between the reception signal and the transmission signal for each transmission period of the radar transmission signal;
A Doppler frequency detector that coherently integrates the calculated correlation value using a correction amount of Doppler phase rotation corresponding to a plurality of different Doppler frequencies;
A radar apparatus.
請求項1に記載のレーダ装置であって、
前記レーダ受信部は、
演算されたNp(Np:1以上の整数)個の前記相関値を単位として、前記Np個の相関値をNc(Nc:1以上の整数)回コヒーレント積分するコヒーレント積分部と、
を更に有し、
前記ドップラ周波数検出部は、前記コヒーレント積分部の出力を、異なる複数のドップラ周波数に応じたドップラ位相回転の補正量を用いて加算処理する、
レーダ装置。
The radar apparatus according to claim 1,
The radar receiver
A coherent integrator for coherently integrating the Np correlation values Nc (Nc: an integer greater than or equal to N) times using the calculated Np (Np: an integer greater than or equal to N) correlation values as a unit;
Further comprising
The Doppler frequency detection unit adds the output of the coherent integration unit using a correction amount of Doppler phase rotation corresponding to a plurality of different Doppler frequencies.
Radar device.
請求項1に記載のレーダ装置であって、
前記ドップラ周波数検出部は、
Nc(Nc:1以上の整数)回の前記相関値出力のうちの前半回数を格納する記憶部と、
前記Nc回の前記相関値出力のうち後半回数と前記記憶部において格納された前記Nc回の前記相関値出力のうちの前半回数とを用いて、加算処理及び減算処理を行う加減算処理部と、
前記異なる複数のドップラ周波数毎に、ドップラ位相回転の補正係数を格納するドップラ位相回転記憶部と、
前記異なる複数のドップラ周波数毎に格納された前記補正係数と、前記Nc回の前記加減算処理部の出力とを乗算する補正係数乗算部と、
前記Nc回の前記補正係数乗算部の出力を加算するバッファ部と、を
有するレーダ装置。
The radar apparatus according to claim 1,
The Doppler frequency detector is
A storage unit for storing the first half of the correlation value output of Nc (Nc: integer of 1 or more) times;
An addition / subtraction processing unit that performs addition processing and subtraction processing using the second half of the Nc correlation value outputs and the first half of the Nc correlation value outputs stored in the storage unit;
A Doppler phase rotation storage unit that stores a Doppler phase rotation correction coefficient for each of the different Doppler frequencies;
A correction coefficient multiplier that multiplies the correction coefficient stored for each of the plurality of different Doppler frequencies by the output of the Nc number of addition / subtraction processing units;
A buffer unit that adds the outputs of the Nc times of the correction coefficient multiplication unit.
請求項2に記載のレーダ装置であって、
前記ドップラ周波数検出部は、
前記Nc回のコヒーレント積分出力のうちの前半回数を格納する記憶部と、
前記Nc回のコヒーレント積分出力のうち後半回数と前記記憶部において格納された前記Nc回の前記相関値出力のうちの前半回数とを用いて、加算処理及び減算処理を行う加減算処理部と、
前記異なる複数のドップラ周波数毎に、ドップラ位相回転の補正係数を格納するドップラ位相回転記憶部と、
前記異なる複数のドップラ周波数毎に格納された前記補正係数と、前記Nc回の前記加減算処理部の出力とを乗算する補正係数乗算部と、
前記Nc回の前記補正係数乗算部の出力をコヒーレント積分するバッファ部と、を
有するレーダ装置。
The radar apparatus according to claim 2,
The Doppler frequency detector is
A storage unit for storing the first half of the Nc coherent integration outputs;
An addition / subtraction processing unit that performs addition processing and subtraction processing using the latter half of the Nc coherent integration outputs and the first half of the Nc correlation value outputs stored in the storage unit;
A Doppler phase rotation storage unit that stores a Doppler phase rotation correction coefficient for each of the different Doppler frequencies;
A correction coefficient multiplier that multiplies the correction coefficient stored for each of the plurality of different Doppler frequencies by the output of the Nc number of addition / subtraction processing units;
And a buffer unit that coherently integrates the output of the Nc times of the correction coefficient multiplication unit.
請求項3又は4に記載のレーダ装置であって、
前記ドップラ位相回転記憶部に格納されている前記ドップラ位相回転の補正係数は実数である、
レーダ装置。
The radar device according to claim 3 or 4,
The correction coefficient of the Doppler phase rotation stored in the Doppler phase rotation storage unit is a real number.
Radar device.
請求項2に記載のレーダ装置であって、
前記ドップラ周波数検出部は、
前記Nc回のコヒーレント積分出力のうち前半の1回目からNc/2回目までの各コヒーレント積分出力を格納する記憶部と、
前記Nc回のコヒーレント積分出力のうち後半の(Nc/2)+1回目からNc回目までの各コヒーレント積分出力と、前記記憶部への格納順序と逆順に格納された前記前半の最後のNc/2回目から1回目までの各コヒーレント積分出力とを基に、加算処理及び減算処理する加減算処理部と、
前記異なる複数のドップラ周波数毎に、ドップラ位相回転の補正係数を格納するドップラ位相回転記憶部と、
前記異なる複数のドップラ周波数毎に格納された前記補正係数と、前記Nc回の前記加減算処理部の出力とを乗算する補正係数乗算部と、
前記Nc回の前記補正係数乗算部の出力をコヒーレント積分するバッファ部と、
を有するレーダ装置。
The radar apparatus according to claim 2,
The Doppler frequency detector is
A storage unit for storing each coherent integration output from the first half of the Nc times of the coherent integration output to the Nc / 2 times of the Nc times,
Of the Nc coherent integration outputs, the last (Nc / 2) +1 to Nc coherent integration outputs and the last Nc / 2 of the first half stored in the reverse order of the storage order in the storage unit. An addition / subtraction processing unit that performs addition processing and subtraction processing based on each coherent integration output from the first time to the first time,
A Doppler phase rotation storage unit that stores a Doppler phase rotation correction coefficient for each of the different Doppler frequencies;
A correction coefficient multiplier that multiplies the correction coefficient stored for each of the plurality of different Doppler frequencies by the output of the Nc number of addition / subtraction processing units;
A buffer unit that coherently integrates the output of the Nc times of the correction coefficient multiplication unit;
A radar apparatus.
請求項2に記載のレーダ装置であって、
前記ドップラ周波数検出部は、
前記Nc回のコヒーレント積分出力のうち前半の1回目から(Nc−1)/2回目までの各コヒーレント積分出力を格納する記憶部と、
前記Nc回のコヒーレント積分出力のうち後半の(((Nc−1)/2)+1)回目からNc回目までの各コヒーレント積分出力と、前記記憶部への格納順序と逆順に格納された前記前半の最後の(Nc−1)/2回目から1回目までの各コヒーレント積分出力とを基に、加算処理及び減算処理する加減算処理部と、
前記異なる複数のドップラ周波数毎に、ドップラ位相回転の補正係数を格納するドップラ位相回転記憶部と、
前記異なる複数のドップラ周波数毎に格納された前記補正係数と、前記Nc回の前記加減算処理部の出力とを乗算する補正係数乗算部と、
前記Nc回の前記補正係数乗算部の出力をコヒーレント積分するバッファ部と、
を有するレーダ装置。
The radar apparatus according to claim 2,
The Doppler frequency detector is
A storage unit for storing each coherent integration output from the first half to (Nc-1) / 2 times among the Nc coherent integration outputs;
Of the Nc times of coherent integration output, each of the latter half (((Nc-1) / 2) +1) to Nc times of the coherent integration output and the first half stored in the reverse order of the storage order in the storage unit. An addition / subtraction processing unit that performs addition processing and subtraction processing based on the last (Nc-1) / 2 first to first coherent integration outputs,
A Doppler phase rotation storage unit that stores a Doppler phase rotation correction coefficient for each of the different Doppler frequencies;
A correction coefficient multiplier that multiplies the correction coefficient stored for each of the plurality of different Doppler frequencies by the output of the Nc number of addition / subtraction processing units;
A buffer unit that coherently integrates the output of the Nc times of the correction coefficient multiplication unit;
A radar apparatus.
請求項1又は2に記載のレーダ装置であって、
前記レーダ受信部は、
前記ドップラ周波数検出部によって検出されたドップラ周波数を基に、前記ターゲットの相対移動速度を導出するドップラ出力選択部と、
を更に有するレーダ装置。
The radar apparatus according to claim 1 or 2,
The radar receiver
Based on the Doppler frequency detected by the Doppler frequency detection unit, a Doppler output selection unit for deriving the relative movement speed of the target;
A radar apparatus further comprising:
請求項1又は2に記載のレーダ装置であって、
複数の前記レーダ受信部により選択された各ドップラ周波数に応じた前記バッファ部の出力と、前記複数の前記レーダ受信部の各受信アンテナ間の位相差情報であるアンテナ間相関ベクトルとを基に、前記ターゲットの到来方向を推定する到来方向推定部と、
を更に有するレーダ装置。
The radar apparatus according to claim 1 or 2,
Based on the output of the buffer unit according to each Doppler frequency selected by the plurality of radar receivers and the inter-antenna correlation vector which is phase difference information between the receiving antennas of the plurality of radar receivers, An arrival direction estimation unit for estimating an arrival direction of the target;
A radar apparatus further comprising:
JP2012230273A 2012-10-17 2012-10-17 Radar system Pending JP2014081311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012230273A JP2014081311A (en) 2012-10-17 2012-10-17 Radar system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012230273A JP2014081311A (en) 2012-10-17 2012-10-17 Radar system

Publications (1)

Publication Number Publication Date
JP2014081311A true JP2014081311A (en) 2014-05-08

Family

ID=50785615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012230273A Pending JP2014081311A (en) 2012-10-17 2012-10-17 Radar system

Country Status (1)

Country Link
JP (1) JP2014081311A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222233A (en) * 2014-05-23 2015-12-10 パナソニックIpマネジメント株式会社 Pulse radar apparatus
JP2017146273A (en) * 2016-02-19 2017-08-24 パナソニック株式会社 Radar system
JP2018054494A (en) * 2016-09-29 2018-04-05 パナソニックIpマネジメント株式会社 Detector, detection method and detection program
CN109413750A (en) * 2018-12-07 2019-03-01 京信通信系统(中国)有限公司 A kind of frequency point determines method and device
WO2022185507A1 (en) * 2021-03-05 2022-09-09 三菱電機株式会社 Signal processor, signal processing method, and radar device
WO2023047522A1 (en) * 2021-09-24 2023-03-30 株式会社日立国際電気 Radar device and radar system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222233A (en) * 2014-05-23 2015-12-10 パナソニックIpマネジメント株式会社 Pulse radar apparatus
JP2017146273A (en) * 2016-02-19 2017-08-24 パナソニック株式会社 Radar system
JP2018054494A (en) * 2016-09-29 2018-04-05 パナソニックIpマネジメント株式会社 Detector, detection method and detection program
CN109413750A (en) * 2018-12-07 2019-03-01 京信通信系统(中国)有限公司 A kind of frequency point determines method and device
WO2022185507A1 (en) * 2021-03-05 2022-09-09 三菱電機株式会社 Signal processor, signal processing method, and radar device
JPWO2022185507A1 (en) * 2021-03-05 2022-09-09
JP7262692B2 (en) 2021-03-05 2023-04-21 三菱電機株式会社 SIGNAL PROCESSOR, SIGNAL PROCESSING METHOD AND RADAR DEVICE
GB2618284A (en) * 2021-03-05 2023-11-01 Mitsubishi Electric Corp Signal processor, signal processing method, and radar device
WO2023047522A1 (en) * 2021-09-24 2023-03-30 株式会社日立国際電気 Radar device and radar system

Similar Documents

Publication Publication Date Title
JP7119188B2 (en) Radar device and radar method
JP6123974B2 (en) Radar equipment
JP5535024B2 (en) Radar equipment
JP5842143B2 (en) Radar equipment
JP6105473B2 (en) Radar equipment
JP5938737B2 (en) Radar equipment
JP5810287B2 (en) Radar equipment
JP6818541B2 (en) Radar device and positioning method
US11846696B2 (en) Reduced complexity FFT-based correlation for automotive radar
JP2014081311A (en) Radar system
US10921434B2 (en) Radar system
JP6909023B2 (en) Radar device and radar method
JP5089460B2 (en) Propagation delay time measuring apparatus and radar apparatus
JP2012181109A (en) Radar device
JP7266207B2 (en) Radar device and radar method
USRE49920E1 (en) Radar apparatus and radar method
CN115396269B (en) Carrier parameter estimation method and system suitable for burst communication
CN115877337A (en) Radar with phase noise correction
JP2022157184A (en) Object detection unit

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150116