JP2014081080A - Vacuum heat insulating material, and refrigerator, jar pot and housing including the same - Google Patents

Vacuum heat insulating material, and refrigerator, jar pot and housing including the same Download PDF

Info

Publication number
JP2014081080A
JP2014081080A JP2014020027A JP2014020027A JP2014081080A JP 2014081080 A JP2014081080 A JP 2014081080A JP 2014020027 A JP2014020027 A JP 2014020027A JP 2014020027 A JP2014020027 A JP 2014020027A JP 2014081080 A JP2014081080 A JP 2014081080A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
vacuum heat
yarn
fiber assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014020027A
Other languages
Japanese (ja)
Other versions
JP5948615B2 (en
Inventor
Masaya Kojima
真弥 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2014020027A priority Critical patent/JP5948615B2/en
Publication of JP2014081080A publication Critical patent/JP2014081080A/en
Application granted granted Critical
Publication of JP5948615B2 publication Critical patent/JP5948615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)
  • Thermally Insulated Containers For Foods (AREA)
  • Cookers (AREA)
  • Building Environments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat insulating material which is easy to handle and a vacuum heat insulating material which is easy for secondary processing.SOLUTION: A vacuum heat insulating material 6 comprises at least: a core material 9 comprising fiber assembly 7 and having two heat transfer surfaces facing each other; and an external covering material 10 for covering the core material 9. The core material 9 is sealed in a decompressed state in the external covering material 10. The vacuum heat insulating material 6 includes a yarn having a portion exposed to one of the heat transfer surfaces of the core material 9, a portion exposed to the other heat transfer surface, and a portion buried in the fiber assembly. The yarn 5 includes a large diameter part 11 having a cross sectional area which is larger than the yarn 5, and the fiber assembly 7 is compressed in a thickness direction by a tension of the yarn 5. Thereby, rigidity is imparted to the core material 9, and flatness of the vacuum heat insulating material is secured even after vacuum packaging or after an inspection of the internal vacuum degree of the vacuum heat insulating material.

Description

本発明は、繊維集合体からなる芯材を外被材内に減圧密封した真空断熱材に関するものである。   The present invention relates to a vacuum heat insulating material in which a core material made of a fiber assembly is sealed under reduced pressure in a jacket material.

近年、地球環境問題である温暖化の対策として、省エネルギーを推進する動きが活発となっており、温冷熱利用機器に関しては、熱を有効活用するという観点から優れた断熱性能を有する真空断熱材が普及しつつある。   In recent years, as a measure against global warming, which is a global environmental problem, there has been an active movement to promote energy saving, and for thermal and thermal equipment, there is a vacuum thermal insulation material that has excellent thermal insulation performance from the viewpoint of effective use of heat. It is becoming popular.

真空断熱材とは、袋状に加工したガスバリア性を有する外被材内へグラスウールのように気相容積比率が高く微細な空隙を構成する芯材を挿入し、芯材を減圧密封したものである。   A vacuum heat insulating material is a material in which a core material having a high gas phase volume ratio and a fine gap is inserted into a jacket material having a gas barrier property processed into a bag shape, and the core material is sealed under reduced pressure. is there.

芯材の空隙径を減圧下における気体分子の平均自由行程よりも小さくすることで、気体熱伝導成分は小さくなり、また、1mm程度の微細な空隙では対流熱伝達成分の影響は無視できるようになる。さらに、室温付近では輻射成分の影響は軽微であるため、真空断熱材における熱伝導は、芯材の固体熱伝導成分と僅かに残る気体熱伝導成分が支配的であるとされている。   By making the gap diameter of the core material smaller than the mean free path of gas molecules under reduced pressure, the gas heat conduction component becomes small, and the influence of the convective heat transfer component can be ignored in a fine gap of about 1 mm. Become. Furthermore, since the influence of the radiation component is slight near room temperature, it is said that the heat conduction in the vacuum heat insulating material is dominated by the solid heat conduction component of the core material and the slightly remaining gas heat conduction component.

この芯材となるグラスウールは、大気からの圧縮荷重に対して芯材が形成する空隙を保持しなければならないため、減圧密封される前のグラスウールは気相容積比率が高いことから非常に嵩高い。また、剛性が不足しているため、グラスウールを袋状に加工された外被材内に収納することは非常に困難であった。   The glass wool used as the core material must retain the void formed by the core material against the compressive load from the atmosphere. Therefore, the glass wool before being sealed under reduced pressure is very bulky because of its high gas phase volume ratio. . Moreover, since the rigidity is insufficient, it is very difficult to store the glass wool in the envelope material processed into a bag shape.

そこで、上記課題を解決するために、輻射率の小さな金属箔とシリカ系無機質繊維シートとを多数枚交互に積層してなる積層体を真空に対する大気圧に耐圧する密度まで積層方向に圧縮した状態で、熱伝導率の小さな材質よりなる糸で縫合した真空断熱材の芯材が提案されている(例えば、特許文献1参照)。   Therefore, in order to solve the above-mentioned problem, a state in which a laminate formed by alternately laminating a large number of metal foils having a low emissivity and silica-based inorganic fiber sheets is compressed in the laminating direction to a density that withstands atmospheric pressure against vacuum A core material of a vacuum heat insulating material stitched with a thread made of a material having a low thermal conductivity has been proposed (see, for example, Patent Document 1).

以下、図面を参照しながら、上記従来の真空断熱材の芯材を説明する。図19は、特許文献1に記載された従来の真空断熱材の芯材の構成を示す断面図である。   Hereinafter, the core material of the conventional vacuum heat insulating material will be described with reference to the drawings. FIG. 19 is a cross-sectional view illustrating a configuration of a core material of a conventional vacuum heat insulating material described in Patent Document 1.

図19に示すように、特許文献1に記載された従来の真空断熱材の芯材1は、熱輻射率の小さな金属箔2とシリカ系無機繊維質シート3とを多数枚交互に積層してなる積層体4を真空に対する大気圧に耐圧するまで積層方向に圧縮した状態で、熱伝導率の小さな材質よりなる糸5で縫合したものであり、芯材1のハンドリング性の改善が図れるとされている。   As shown in FIG. 19, the core material 1 of the conventional vacuum heat insulating material described in Patent Document 1 is formed by alternately laminating a large number of metal foils 2 and silica-based inorganic fibrous sheets 3 having a low thermal radiation rate. It is said that the laminated body 4 is stitched with a thread 5 made of a material having a low thermal conductivity in a state where the laminated body 4 is compressed in the laminating direction until it is pressured to atmospheric pressure against vacuum, and the handling property of the core material 1 can be improved. ing.

特開平8−121683号公報JP-A-8-121683

しかしながら上記特許文献1の構成では、一本の糸5で縫製するハンドステッチミシンを用いた縫製方法であるため、糸5と被縫製体である積層体4との交絡力が弱く、縫製後における積層体4の圧縮率が80%〜90%となる嵩高い無機繊維を縫製すると、無機繊
維の反発力によって積層体4から糸5が解け、積層体4に十分な剛性が付与されない。
However, in the configuration of Patent Document 1, since the sewing method uses a hand stitch sewing machine that sews with one thread 5, the entanglement force between the thread 5 and the laminated body 4 that is the sewing object is weak, and the sewing is performed after sewing. When a bulky inorganic fiber having a compression rate of 80% to 90% is sewn, the yarn 5 is unwound from the laminate 4 due to the repulsive force of the inorganic fiber, and sufficient rigidity is not given to the laminate 4.

この積層体4を真空断熱材の芯材1として用いると、真空包装前後において芯材1の厚み方向における変形量が大きくなるため、真空包装後の真空断熱材は平面性が十分に確保されず、また真空断熱材の一部もしくは全体を減圧することで真空断熱材の内部真空度を検査する工程においても真空断熱材の平面性を確保することが困難である。   When this laminated body 4 is used as the core material 1 of the vacuum heat insulating material, the amount of deformation in the thickness direction of the core material 1 increases before and after the vacuum packaging, so that the flatness of the vacuum heat insulating material after the vacuum packaging is not sufficiently secured. In addition, it is difficult to ensure the flatness of the vacuum heat insulating material even in the process of inspecting the degree of internal vacuum of the vacuum heat insulating material by reducing the pressure of a part or the whole of the vacuum heat insulating material.

本発明は、上記従来の課題に鑑み、平面性を確保した真空断熱材を提供することを目的とする。   An object of this invention is to provide the vacuum heat insulating material which ensured planarity in view of the said conventional subject.

上記目的を達成するために、本発明の真空断熱材は、少なくとも、繊維集合体からなり対向する2つの伝熱面を有する芯材と、前記芯材を覆う外被材とからなり、前記芯材を前記外被材内に減圧密封した真空断熱材であって、前記芯材の一方の前記伝熱面に露出する部分と他方の前記伝熱面に露出する部分と前記繊維集合体内に埋没する部分とを有する糸を備え、前記糸は、前記糸より大きな断面積を有する大径部を有し、前記糸の張力により前記繊維集合体が厚み方向に圧縮されているものである。   In order to achieve the above object, the vacuum heat insulating material of the present invention comprises at least a core material composed of a fiber assembly and having two heat transfer surfaces facing each other, and a jacket material covering the core material, and the core A vacuum heat insulating material in which a material is sealed under reduced pressure in the jacket material, the portion exposed on one of the heat transfer surfaces of the core material, the portion exposed on the other heat transfer surface, and embedded in the fiber assembly The yarn has a large-diameter portion having a cross-sectional area larger than that of the yarn, and the fiber assembly is compressed in the thickness direction by the tension of the yarn.

糸よりも大きな断面積を有する大径部を繊維集合体の伝熱面に設けたことで、大径部が縫製後も繊維集合体の圧縮状態を保持し続けるため、繊維集合体に剛性が付与される。この繊維集合体は芯材の厚み方向に圧縮されていることから、真空包装前後において繊維集合体の厚み方向に対する変形量が小さくなる。   By providing a large-diameter portion having a larger cross-sectional area than the yarn on the heat transfer surface of the fiber assembly, the large-diameter portion continues to hold the compressed state of the fiber assembly after sewing, so that the fiber assembly has rigidity. Is granted. Since this fiber assembly is compressed in the thickness direction of the core material, the amount of deformation in the thickness direction of the fiber assembly becomes small before and after vacuum packaging.

本発明の真空断熱材は、真空包装前後において繊維集合体の厚み方向に対する変形量が小さいため、真空断熱材の平面性が確保される。また、この真空断熱材の一部または全体を減圧し真空断熱材の内部真空度を検査する工程においても真空断熱材の平面性を確保することができる。   Since the vacuum heat insulating material of the present invention has a small amount of deformation in the thickness direction of the fiber assembly before and after vacuum packaging, the flatness of the vacuum heat insulating material is ensured. Further, the flatness of the vacuum heat insulating material can be ensured also in the step of depressurizing a part or the whole of the vacuum heat insulating material and inspecting the internal vacuum degree of the vacuum heat insulating material.

本発明の実施の形態1における真空断熱材の構成を示す断面図Sectional drawing which shows the structure of the vacuum heat insulating material in Embodiment 1 of this invention. 同実施の形態の真空断熱材に用いた芯材の伝熱面を示す平面図The top view which shows the heat-transfer surface of the core material used for the vacuum heat insulating material of the embodiment 図2のA−A線断面図AA line sectional view of FIG. 本発明の実施の形態2における真空断熱材に用いた芯材の伝熱面を示す平面図The top view which shows the heat-transfer surface of the core material used for the vacuum heat insulating material in Embodiment 2 of this invention 図4のB−B線断面図BB sectional view of FIG. 本発明の実施の形態3における真空断熱材に用いた芯材の伝熱面を示す平面図The top view which shows the heat-transfer surface of the core material used for the vacuum heat insulating material in Embodiment 3 of this invention 図6のC−C線断面図CC sectional view of FIG. 本発明の実施の形態4における真空断熱材に用いた芯材の伝熱面を示す平面図The top view which shows the heat-transfer surface of the core material used for the vacuum heat insulating material in Embodiment 4 of this invention 図8のD−D線断面図DD sectional view of FIG. 本発明の実施の形態5における真空断熱材の構成を示す断面図Sectional drawing which shows the structure of the vacuum heat insulating material in Embodiment 5 of this invention. 同実施の形態の真空断熱材に用いた芯材の伝熱面を示す平面図The top view which shows the heat-transfer surface of the core material used for the vacuum heat insulating material of the embodiment 図11のE−E線断面図EE sectional view of FIG. 本発明の実施の形態6における真空断熱材に用いた芯材の伝熱面を示す平面図The top view which shows the heat-transfer surface of the core material used for the vacuum heat insulating material in Embodiment 6 of this invention 図13のF−F線断面図FF sectional view of FIG. 本発明の実施の形態7における真空断熱材に用いた芯材の伝熱面を示す平面図The top view which shows the heat-transfer surface of the core material used for the vacuum heat insulating material in Embodiment 7 of this invention 図15のG−G線断面図GG sectional view of FIG. 本発明の実施の形態8における真空断熱材に用いた芯材の伝熱面を示す平面図The top view which shows the heat-transfer surface of the core material used for the vacuum heat insulating material in Embodiment 8 of this invention 図17のH−H線断面図HH line sectional view of FIG. 特許文献1に示される従来の真空断熱材の芯材の構成を示す断面図Sectional drawing which shows the structure of the core material of the conventional vacuum heat insulating material shown by patent document 1

第1の発明は、少なくとも、繊維集合体からなり対向する2つの伝熱面を有する芯材と、前記芯材を覆う外被材とからなり、前記芯材を前記外被材内に減圧密封した真空断熱材であって、前記芯材の一方の前記伝熱面に露出する部分と他方の前記伝熱面に露出する部分と前記繊維集合体内に埋没する部分とを有する糸を備え、前記糸は、前記糸より大きな断面積を有する大径部を有し、前記糸の張力により前記繊維集合体が厚み方向に圧縮されているものである。   1st invention consists of a core material which consists of a fiber assembly and which has two heat-transfer surfaces which oppose at least, and the jacket material which covers the said core material, and seals the said core material in the said jacket material under reduced pressure A vacuum heat insulating material, comprising: a yarn having a portion exposed to one of the heat transfer surfaces of the core, a portion exposed to the other heat transfer surface, and a portion embedded in the fiber assembly; The yarn has a large diameter portion having a larger cross-sectional area than the yarn, and the fiber assembly is compressed in the thickness direction by the tension of the yarn.

糸よりも大きな断面積を有する大径部を繊維集合体の伝熱面に設けたことで、大径部が縫製後も繊維集合体の圧縮状態を保持し続けるため、繊維集合体に剛性が付与される。この繊維集合体は芯材の厚み方向に圧縮されていることから、真空包装前後において繊維集合体の厚み方向に対する変形量が小さくなる作用を有する。   By providing a large-diameter portion having a larger cross-sectional area than the yarn on the heat transfer surface of the fiber assembly, the large-diameter portion continues to hold the compressed state of the fiber assembly after sewing, so that the fiber assembly has rigidity. Is granted. Since this fiber assembly is compressed in the thickness direction of the core material, it has the effect of reducing the deformation amount in the thickness direction of the fiber assembly before and after vacuum packaging.

そして上記作用により、真空包装前後において繊維集合体の厚み方向に対する変形量が小さいため、真空断熱材の平面性が確保される。また、この真空断熱材の一部または全体を減圧し真空断熱材の内部真空度を検査する工程においても真空断熱材の平面性を確保することができる。   And by the said effect | action, since the deformation amount with respect to the thickness direction of a fiber assembly is small before and after vacuum packaging, the planarity of a vacuum heat insulating material is ensured. Further, the flatness of the vacuum heat insulating material can be ensured also in the step of depressurizing a part or the whole of the vacuum heat insulating material and inspecting the internal vacuum degree of the vacuum heat insulating material.

なお、繊維の種類に関して特に指定するものではないが、グラスウールやロックウール、アルミナ繊維、金属繊維など無機繊維や、ポリエチレンテレフタレート繊維など従来公知の材料が利用できる。なお、金属繊維を用いる場合は、金属の中でも比較的熱伝導性に優れた金属からなる金属繊維は、好ましくない。   In addition, although it does not specify in particular regarding the kind of fiber, conventionally well-known materials, such as inorganic fiber, such as glass wool, rock wool, an alumina fiber, and a metal fiber, and a polyethylene terephthalate fiber, can be utilized. In addition, when using a metal fiber, the metal fiber which consists of a metal comparatively excellent in heat conductivity among metals is not preferable.

その中でも繊維自体の弾性が高く、また繊維自体の熱伝導率が低く、なおかつ工業的に安価なグラスウールを用いることが望ましい。さらに、繊維の繊維径は小さいほど真空断熱材の熱伝導率が低下する傾向にあるため、より小さい繊維径の繊維を用いることが望ましいが、汎用的でないため繊維のコストアップが予想される。したがって、真空断熱材用の繊維として一般的に使用されている比較的安価な平均繊維径が3μm〜6μm程度の集合体からなるグラスウールがより望ましい。   Among them, it is desirable to use glass wool having high elasticity of the fiber itself, low thermal conductivity of the fiber itself, and industrially inexpensive. Furthermore, since the thermal conductivity of the vacuum heat insulating material tends to decrease as the fiber diameter of the fiber decreases, it is desirable to use a fiber having a smaller fiber diameter, but the fiber cost is expected to increase because it is not versatile. Therefore, the glass wool which consists of an aggregate | assembly with a comparatively cheap average fiber diameter of about 3 micrometers-6 micrometers generally used as a fiber for vacuum heat insulating materials is more desirable.

本発明における伝熱面とは、繊維の集合体を繊維断熱体として用いた際に、最も広い面積となる面とその対向する面を指す。また、断熱のため真空断熱材を、比較的高温の面または比較的低温の面に配置した場合に、真空断熱材を配設した比較的高温の面または比較的低温の面と対向する真空断熱材の面とその対向する面を指す。また、複数の繊維断熱体を積層して使用する場合は、積層方向に対して垂直な各真空断熱材の面とその対向する面を指す。   The heat transfer surface in the present invention refers to a surface having the largest area and a surface facing the surface when a fiber assembly is used as a fiber heat insulator. Further, when the vacuum heat insulating material is disposed on a relatively high temperature surface or a relatively low temperature surface for heat insulation, the vacuum heat insulating material is opposed to the relatively high temperature surface or the relatively low temperature surface on which the vacuum heat insulating material is disposed. It refers to the surface of the material and its opposite surface. Moreover, when using it laminating | stacking a some fiber heat insulator, the surface of each vacuum heat insulating material perpendicular | vertical with respect to the lamination direction and the surface which opposes it are pointed out.

本発明における外被材とは、真空断熱材の真空度を維持する役割を果たすものであり、最内層の熱溶着フィルムと、中間層としてのガスバリアフィルムとして金属箔や金属原子を蒸着した樹脂フィルムと、最外層として表面保護フィルムを、それぞれラミネートしたものである。   The jacket material in the present invention plays a role of maintaining the vacuum degree of the vacuum heat insulating material, and is a resin film in which metal foil or metal atoms are vapor-deposited as a gas barrier film as an inner layer and a heat-welded film as an inner layer. A surface protective film is laminated as the outermost layer.

なお、熱溶着フィルムとしては特に指定するものではないが、低密度ポリエチレンフィルム、直鎖低密度ポリエチレンフィルム、高密度ポリエチレンフィルム、ポリプロピレン
フィルム、ポリアクリロニトリルフィルム等の熱可塑性樹脂、或いはそれらの混合体が使用できる。
The heat welding film is not particularly specified, but a thermoplastic resin such as a low density polyethylene film, a linear low density polyethylene film, a high density polyethylene film, a polypropylene film, a polyacrylonitrile film, or a mixture thereof is used. Can be used.

また、ガスバリアフィルムとしては、アルミニウム箔や銅箔などの金属箔や、ポリエチレンテレフタレートフィルムやエチレン−ビニルアルコール共重合体フィルム等の基材に、アルミニウムや銅等の金属やアルミナやシリカ等の金属酸化物を蒸着したフィルム等が使用できる。   Gas barrier films include metal foils such as aluminum foil and copper foil, base materials such as polyethylene terephthalate films and ethylene-vinyl alcohol copolymer films, metals such as aluminum and copper, and metal oxides such as alumina and silica. The film etc. which vapor-deposited the thing can be used.

また、表面保護フィルムとしては、ナイロンフィルム、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム等従来公知の材料が使用できる。   Moreover, as a surface protective film, conventionally well-known materials, such as a nylon film, a polyethylene terephthalate film, a polypropylene film, can be used.

なお、ガスや水蒸気の侵入による気体熱伝導成分の増加を抑制するために、ゼオライトや酸化カルシウム等のように、真空断熱材に侵入するガスや水蒸気を補足する吸着剤を芯材とともに減圧密封することが望ましい。   In order to suppress the increase of gas heat conduction component due to the invasion of gas and water vapor, the adsorbent supplementing the gas and water vapor entering the vacuum heat insulating material, such as zeolite and calcium oxide, is sealed under reduced pressure together with the core material. It is desirable.

また、真空断熱材の製造方法に関しては、特に指定するものではないが、一枚の外被材を折り返し、対向する外被材の端部に位置する熱溶着フィルム同士を熱溶着することで得た袋状の外被材内へ芯材を挿入し、減圧下にて袋状外被材の開口部に位置する熱溶着フィルム同士を熱溶着する方法や、熱溶着フィルム同士が対向するよう二枚の外被材を配置し、各外被材の端部に位置する熱溶着フィルム同士を熱溶着することで得た袋状の外被材内に芯材を挿入し、減圧下にて袋状外被材の開口部付近に位置する熱溶着フィルム同士を熱溶着する方法が利用できる。   In addition, the vacuum insulation material manufacturing method is not particularly specified, but it is obtained by folding back one outer cover material and thermally welding the heat-welded films located at the ends of the opposite outer cover materials. The core material is inserted into the bag-shaped jacket material, and the heat-welded films located at the openings of the bag-shaped jacket material are thermally welded under reduced pressure, or the heat-welded films are opposed to each other. The core material is inserted into a bag-shaped outer cover material obtained by arranging a single outer cover material and heat-welding the heat-welded films located at the ends of each outer cover material. The method of heat-welding the heat welding films located in the vicinity of the opening part of a shape-like outer covering material can be utilized.

本発明における糸とは、繊維の集合体を圧縮するための役割を果たすものである。なお、糸の材質を特に指定するものではないが、繊維集合体を構成する材質や、繊維集合体を所定の嵩密度まで圧縮する度合いに応じて、綿や絹などの天然繊維や、ポリエチレンテレフタレートやナイロン、ポリエチレン、ポリプロピレンなどの合成糸や、ガラス長繊維や金属長繊維などの無機糸が使用できる。   The yarn in the present invention plays a role for compressing an aggregate of fibers. In addition, although the material of the thread is not particularly specified, natural fibers such as cotton and silk, polyethylene terephthalate, depending on the material constituting the fiber aggregate and the degree to which the fiber aggregate is compressed to a predetermined bulk density Synthetic yarns such as nylon, polyethylene, and polypropylene, and inorganic yarns such as long glass fibers and long metal fibers can be used.

しかし、断熱材の断熱効果を確保する目的や、減圧下において発生する有機ガスを抑制する目的や、より高い剛性を有する断熱材を提供する目的から、ポリエチレンテレフタレートやナイロンなどの合成樹脂からなる有機繊維を用いることがより望ましい。   However, for the purpose of securing the heat insulating effect of the heat insulating material, the purpose of suppressing the organic gas generated under reduced pressure, and the purpose of providing a heat insulating material having higher rigidity, an organic material made of a synthetic resin such as polyethylene terephthalate or nylon is used. It is more desirable to use fibers.

さらに、糸の形態を特に指定するものではないが、一本の糸で構成されたモノフィラメントや、複数の糸で構成される撚り糸や、撚り糸に嵩高加工を施したウーリー糸や、伸縮性を有するゴム状の糸や、加熱により収縮する糸や、合成樹脂をI型に成型した商品タグを取り付ける部材などが利用できる。   Furthermore, although the shape of the yarn is not particularly specified, it has a monofilament composed of a single yarn, a twisted yarn composed of a plurality of yarns, a wooly yarn obtained by subjecting the twisted yarn to a bulky process, and elasticity. A rubber-like thread, a thread that shrinks when heated, a member to which a product tag in which a synthetic resin is molded into an I shape, and the like can be used.

また、一般的な縫製糸は、縫製時の糸滑りを良くする目的や撚糸工程の糸切れを防止する目的で糸の表面に油剤がコーティングされている。この油剤がコーティングされた糸を繊維断熱体へ適用すると、減圧下にて有機ガスの発生原因となるため、油剤は可能な限り少ない事が好ましい。なお、前述のモノフィラメントは、撚糸工程が無いため油剤の付着量が0.1%〜0.3%重量比と撚り糸に比べて少ない。よって、モノフィラメントを本発明に適用することがより望ましいと考える。   Further, a general sewing thread is coated with an oil agent on the surface of the thread for the purpose of improving the sliding of the thread during sewing and for preventing the thread breakage in the twisting process. When this oil-coated yarn is applied to a fiber heat insulator, it causes generation of organic gas under reduced pressure. Therefore, it is preferable that the amount of oil is as small as possible. In addition, since the above-mentioned monofilament does not have a twisting process, the adhesion amount of the oil agent is 0.1% to 0.3% in weight ratio, which is smaller than that of the twisted thread. Therefore, it is more desirable to apply a monofilament to the present invention.

さらに、一般的な縫製糸には、意匠性を鑑みて着色剤が付与されている。この着色剤が付与された糸を繊維断熱体へ適用すると前述の油剤と同様に、減圧下にて有機ガスの発生原因となるため着色剤が付与されていない生成の糸がより望ましい。   Furthermore, a coloring agent is given to a general sewing thread in view of design properties. When the yarn to which the colorant is applied is applied to the fiber heat insulator, as in the case of the above-described oil agent, an organic gas is generated under reduced pressure, and thus a generated yarn to which no colorant is applied is more desirable.

本発明における大径部とは、糸に備えられたものであり、かつ、繊維集合体に埋没した
糸よりも大きな断面積を有する部分を指す。なお、大径部の種類や形状を特に指定するものではないが、縫い終わり箇所に縫製針を当て、針に糸を巻きつけた後に針を抜いて引き締めたものや、糸を絡ませて節を形成したものや、糸を他の部材に係留したものや、糸を他の部材と絡ませたものが考えられる。
The large diameter portion in the present invention refers to a portion provided in the yarn and having a larger cross-sectional area than the yarn embedded in the fiber assembly. The type and shape of the large-diameter part are not particularly specified, but the sewing needle is applied to the end of sewing, the thread is wound around the needle, the needle is pulled out and tightened, or the knot is entangled with the thread. A formed thread, a thread anchored to another member, or a thread entangled with another member can be considered.

第2の発明は、特に、第1の発明において、前記大径部は、玉結びにより形成したものである。   In a second invention, in particular, in the first invention, the large diameter portion is formed by ball knotting.

第3の発明は、特に、第1の発明において、前記大径部は、前記糸の端部に輪を作り、輪の中に前記糸を通すことにより形成したものである。   In a third aspect of the invention, in particular, in the first aspect of the invention, the large diameter portion is formed by forming a ring at the end of the yarn and passing the yarn through the ring.

第4の発明は、特に、第1の発明において、前記大径部は、前記糸の空環により形成したものである。   In a fourth aspect of the invention, in particular, in the first aspect of the invention, the large diameter portion is formed by an empty ring of the yarn.

これにより、第1の発明の作用効果に加えて、大径部となる空環は糸の結び目が複数連なっているため、何らかの原因で大径部の一部が繊維集合体内へ埋没した場合であっても他の大径部が繊維集合体の圧縮状態を保持し続けるため、繊維集合体に剛性が付与される作用を有する。   Thereby, in addition to the effect of 1st invention, since the empty ring used as a large diameter part has several knots of a thread | yarn, when a part of large diameter part is buried in the fiber assembly for some reason, Even if it exists, in order that another large diameter part may hold | maintain the compression state of a fiber assembly, it has the effect | action which a rigidity is provided to a fiber assembly.

本発明における空環とは、繊維集合体を介さずに形成された糸の縫い目を指す。なお、空環は、繊維集合体を本縫いや単環縫いや二重環縫いによって形成されるものである。   The empty ring in the present invention refers to a thread seam formed without a fiber assembly. In addition, an empty ring is a fiber assembly formed by a lock stitch, a single ring stitch, or a double ring stitch.

第5の発明は、特に、第1から第4の発明において、前記糸は、前記芯材の長手方向に平行に、並縫いしたものである。   In a fifth aspect of the invention, in particular, in the first to fourth aspects of the invention, the thread is sewn in parallel in the longitudinal direction of the core material.

第6の発明は、特に、第1から第4の発明において、前記糸は、前記芯材の長手方向に平行に、半返し縫いしたものである。   In a sixth aspect of the invention, in particular, in the first to fourth aspects of the invention, the thread is half-turn stitched parallel to the longitudinal direction of the core material.

第7の発明は、特に、第5または第6の発明において、前記糸は、互いに隔離して配置された複数の糸であるものである。   According to a seventh invention, in particular, in the fifth or sixth invention, the yarn is a plurality of yarns arranged separately from each other.

第8の発明は、特に第1から第4の発明において、前記大径部と前記伝熱面との間に、前記糸が貫通または交絡する係留部材を設けたものである。   In an eighth aspect of the invention, particularly in the first to fourth aspects, an anchoring member through which the yarn penetrates or entangles is provided between the large diameter portion and the heat transfer surface.

これにより、第1から第4の発明の作用効果に加えて、繊維集合体に対して係留部材が楔の役割を果たすため、繊維集合体に付与された剛性がより強固になるという作用を有する。   Thereby, in addition to the effects of the first to fourth aspects of the invention, the anchor member serves as a wedge with respect to the fiber assembly, so that the rigidity imparted to the fiber assembly becomes stronger. .

本発明における係留部材とは、糸を固定する役割を果たすものである。なお、糸の固定方法を特に指定するものではないが、係留部材に糸を絡ませる方法や、係留部材を貫通するように糸を配置し、係留部材上に係留部材の貫通孔よりも大きな大径部を糸で形成する方法が考えられる。   The anchoring member in the present invention plays a role of fixing the yarn. Although the thread fixing method is not particularly specified, the thread is entangled with the mooring member, or the thread is arranged so as to penetrate the mooring member, and is larger than the through hole of the mooring member. A method of forming the diameter portion with a thread is conceivable.

また、係留部材の形状を特に指定するものではないが、針金のような棒状や、フィルムや不織布のようなシート状や、孔を有するボタン状など様々な形状が考えられる。しかし、真空断熱材の平面性を確保する目的や外被材の損傷を抑える目的から、係留部材の厚みは1mm以内が望ましい。   Although the shape of the anchoring member is not particularly specified, various shapes such as a bar shape such as a wire, a sheet shape such as a film or a non-woven fabric, and a button shape having a hole are conceivable. However, the thickness of the mooring member is preferably within 1 mm for the purpose of ensuring the flatness of the vacuum heat insulating material and the purpose of suppressing damage to the jacket material.

また、不織布を係留部材として用いると、糸が不織布に絡まり易くなるため、大径部の大きさを第1から第4の発明に比べて小さくすることができる。なお、フィルムやシート
を伝熱面全体に設けると、繊維集合体を全体的に圧縮する作用が得られるため、真空断熱材の平面性が確保し易くなる効果が得られる。
Moreover, since a thread | yarn becomes easy to get entangled in a nonwoven fabric when a nonwoven fabric is used as a mooring member, the magnitude | size of a large diameter part can be made small compared with 1st-4th invention. In addition, since the effect | action which compresses a fiber assembly as a whole will be acquired if a film and a sheet | seat are provided in the whole heat-transfer surface, the effect which becomes easy to ensure the planarity of a vacuum heat insulating material will be acquired.

第9の発明は、特に第1から第8の発明において、複数の繊維断熱体を積層したものである。   According to a ninth invention, in particular, in the first to eighth inventions, a plurality of fiber heat insulators are laminated.

第10の発明は、特に第1から第9の発明の真空断熱材を備えた冷蔵庫である。   The tenth invention is a refrigerator provided with the vacuum heat insulating material of the first to ninth inventions in particular.

第11の発明は、特に第1から第9の発明の真空断熱材を備えたジャーポットである。   The eleventh invention is a jar pot provided with the vacuum heat insulating material of the first to ninth inventions in particular.

第12の発明は、特に第1から第9の発明の真空断熱材を備えた住宅である。   The twelfth invention is a house provided with the vacuum heat insulating material of the first to ninth inventions.

以下、本発明の実施の形態について、図面を参照しながら説明するが、先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the same components as those of the above-described embodiments will be denoted by the same reference numerals, and detailed description thereof will be omitted. The present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1における真空断熱材の構成を示す断面図、図2は同実施の形態の真空断熱材に用いた芯材の伝熱面を示す平面図、図3は同実施の形態の真空断熱材に用いた芯材を図2のA−A線の位置で切断し、その断面を矢印の方向から見た場合の断面図である。
(Embodiment 1)
FIG. 1 is a cross-sectional view showing a configuration of a vacuum heat insulating material in Embodiment 1 of the present invention, FIG. 2 is a plan view showing a heat transfer surface of a core material used in the vacuum heat insulating material of the same embodiment, and FIG. It is sectional drawing at the time of cut | disconnecting the core material used for the vacuum heat insulating material of embodiment at the position of the AA line of FIG. 2, and seeing the cross section from the direction of the arrow.

図1から図3に示すように、本実施の形態の真空断熱材6は、繊維集合体7からなり対向する二つの伝熱面8を有する芯材9と、水分吸着材12と、芯材9及び水分吸着材12を覆う外被材10とからなり、芯材9が外被材10内に減圧密封されたものである。また、芯材9は、一方の伝熱面8に露出する部分と他方の伝熱面8に露出する部分と繊維集合体7内に埋没する部分とを有する糸5を備え、糸5には繊維集合体7内を厚み方向に移動することが困難な大きさの複数の大径部11が繊維集合体7内に埋没する部分を挟んで伝熱面8に露出している。なお、大径部11は糸5を結んで形成されている。そして、糸5の張力により、繊維集合体7が厚み方向に圧縮されている。   As shown in FIGS. 1 to 3, the vacuum heat insulating material 6 of the present embodiment includes a core material 9 having two heat transfer surfaces 8 made of a fiber assembly 7, a moisture adsorbing material 12, and a core material. 9 and a covering material 10 covering the moisture adsorbing material 12, and the core material 9 is sealed in the covering material 10 under reduced pressure. The core material 9 includes a yarn 5 having a portion exposed on one heat transfer surface 8, a portion exposed on the other heat transfer surface 8, and a portion buried in the fiber assembly 7. A plurality of large-diameter portions 11 having a size that is difficult to move in the thickness direction in the fiber assembly 7 are exposed to the heat transfer surface 8 across a portion embedded in the fiber assembly 7. The large diameter portion 11 is formed by tying the yarn 5. The fiber assembly 7 is compressed in the thickness direction by the tension of the yarn 5.

本実施の形態では、複数(図2では6本)の糸5で、互いに所定間隔離して、芯材9の長手方向に平行に、並縫いしている。そして、伝熱面8に露出する部分毎に糸5の玉結びにより大径部11を形成している。なお、糸5は、繊維集合体7内を貫通する箇所がほぼ均等に分布し、伝熱面8に露出する部分が、芯材9の長手方向に垂直に並ぶようにしている。   In the present embodiment, a plurality (six in FIG. 2) of threads 5 are sewn in parallel with each other at a predetermined interval and parallel to the longitudinal direction of the core material 9. And the large diameter part 11 is formed by the ball knot of the thread | yarn 5 for every part exposed to the heat-transfer surface 8. FIG. In the yarn 5, the portions penetrating through the fiber assembly 7 are distributed almost evenly, and the portions exposed to the heat transfer surface 8 are arranged perpendicular to the longitudinal direction of the core material 9.

本実施の形態では、繊度が205dtexのポリエチレンテレフタレートを糸5として用い、糸5の端部に輪を作り、輪の中に糸5を通すことで大径部11を形成した。この糸5の他端を目付量2,400g/m2のグラスウールからなる繊維集合体7(厚み150mm)を貫通させた後、繊維集合体7の伝熱面8上に糸で輪を作り、その輪の中に糸を通すことで糸5に大径部11を形成した。この作業を繰り返すことで、図2および図3の形状となる芯材9を手に入れた。   In the present embodiment, polyethylene terephthalate having a fineness of 205 dtex is used as the yarn 5, a ring is formed at the end of the yarn 5, and the large diameter portion 11 is formed by passing the yarn 5 through the ring. After passing the other end of the yarn 5 through a fiber assembly 7 (thickness 150 mm) made of glass wool having a basis weight of 2,400 g / m 2, a ring is formed on the heat transfer surface 8 of the fiber assembly 7, The large-diameter portion 11 was formed on the thread 5 by passing the thread through the ring. By repeating this operation, the core material 9 having the shape shown in FIGS. 2 and 3 was obtained.

この芯材9の厚みは15mmであり、また取り扱いは良好であったため、本実施の形態における繊維集合体7の圧縮効果は十分であると判断した。   Since the thickness of the core material 9 was 15 mm and the handling was good, it was determined that the compression effect of the fiber assembly 7 in the present embodiment was sufficient.

次に、芯材9を酸化カルシウムからなる水分吸着材12とともに袋状の外被材10内へ挿入し、外被材10内を減圧密封することで真空断熱材6を手に入れた。この真空断熱材6の厚みを測ると9.8mmであり、真空断熱材6の伝熱面に波打ちなどの変形は見られ
ないことから平面性は良好であると判断した。
Next, the core material 9 was inserted into the bag-shaped outer cover material 10 together with the moisture adsorbing material 12 made of calcium oxide, and the vacuum heat insulating material 6 was obtained by sealing the interior of the outer cover material 10 under reduced pressure. When the thickness of the vacuum heat insulating material 6 was measured, it was 9.8 mm, and no deformation such as undulation was observed on the heat transfer surface of the vacuum heat insulating material 6, so that the flatness was judged to be good.

以上のように構成された芯材9は、糸5よりも大きな断面積を有する大径部11が繊維集合体の伝熱面8に留まり、縫製後も繊維集合体7の圧縮状態を保持し続けるため、繊維集合体7に剛性が付与される。これによって、この繊維集合体7を用いた真空断熱材6は厚み方向に圧縮されていることから、真空包装前後において繊維集合体7の厚み方向に対する変形量が小さくなり、真空断熱材6の平面性が確保される。また、この真空断熱材6の一部または全体を減圧し真空断熱材6の内部真空度を検査する工程においても真空断熱材6の平面性を確保することができる。   In the core material 9 configured as described above, the large-diameter portion 11 having a cross-sectional area larger than that of the yarn 5 remains on the heat transfer surface 8 of the fiber assembly, and maintains the compressed state of the fiber assembly 7 even after sewing. In order to continue, the fiber assembly 7 is given rigidity. Accordingly, since the vacuum heat insulating material 6 using the fiber assembly 7 is compressed in the thickness direction, the amount of deformation in the thickness direction of the fiber assembly 7 is reduced before and after vacuum packaging, and the plane of the vacuum heat insulating material 6 is reduced. Sex is secured. Further, the flatness of the vacuum heat insulating material 6 can be ensured also in the step of depressurizing a part or the whole of the vacuum heat insulating material 6 and inspecting the internal vacuum degree of the vacuum heat insulating material 6.

さらには、上下2本の糸を使ってミシンで本縫い方法に比べて、繊維集合体7内に埋没する糸の数が減少し、熱橋が低減するという付帯効果が生じる。   Furthermore, as compared with the main sewing method using the upper and lower two threads, the number of threads buried in the fiber assembly 7 is reduced, and the incidental effect that the thermal bridge is reduced occurs.

(実施の形態2)
図4は本発明の実施の形態2における真空断熱材に用いた芯材の伝熱面を示す平面図、図5は同実施の形態の真空断熱材に用いた芯材を図4のB−B線の位置で切断し、その断面を矢印の方向から見た場合の断面図である。
(Embodiment 2)
4 is a plan view showing the heat transfer surface of the core material used in the vacuum heat insulating material in Embodiment 2 of the present invention, and FIG. 5 shows the core material used in the vacuum heat insulating material of the same embodiment in FIG. It is sectional drawing at the time of cut | disconnecting in the position of B line and seeing the cross section from the direction of the arrow.

図4、図5に示すように、本実施の形態の真空断熱材6は、実施の形態1の真空断熱材6と同様に、繊維集合体7からなり対向する二つの伝熱面8を有する芯材9と、水分吸着材12と、芯材9及び水分吸着材12を覆う外被材10とからなり、芯材9が外被材10内に減圧密封されたものである。また、芯材9は、一方の伝熱面8に露出する部分と他方の伝熱面8に露出する部分と繊維集合体7内に埋没する部分とを有する糸5を備え、糸5の両端には、それぞれ繊維集合体7内を厚み方向に移動することが困難な大きさの大径部11が繊維集合体7内に埋没する部分を挟んで伝熱面8に露出している。そして、糸5の張力により、繊維集合体7が厚み方向に圧縮されている。   As shown in FIGS. 4 and 5, the vacuum heat insulating material 6 of the present embodiment has two heat transfer surfaces 8 made of a fiber assembly 7 and facing each other, like the vacuum heat insulating material 6 of the first embodiment. The core material 9 includes a core material 9, a moisture adsorbing material 12, and a jacket material 10 that covers the core material 9 and the moisture adsorbing material 12. The core material 9 is sealed in the jacket material 10 under reduced pressure. The core material 9 includes a yarn 5 having a portion exposed on one heat transfer surface 8, a portion exposed on the other heat transfer surface 8, and a portion buried in the fiber assembly 7. The large-diameter portion 11 having a size that is difficult to move in the thickness direction in the fiber assembly 7 is exposed to the heat transfer surface 8 with a portion buried in the fiber assembly 7 interposed therebetween. The fiber assembly 7 is compressed in the thickness direction by the tension of the yarn 5.

本実施の形態では、I型の形状に成型され、直径が0.5mmのナイロン樹脂を糸5として用い、タグガン呼ばれる冶具を用いて糸5の他端が直線となるよう曲げ、目付量2,400g/m2のグラスウールからなる繊維集合体7(厚み150mm)を一方の伝熱面8から他方の伝熱面8へ貫通させた。この作業を芯材9の伝熱面8において千鳥状になるように繰り返すことで図4および図5の形状となる芯材9を手に入れた。   In this embodiment, a nylon resin having a diameter of 0.5 mm is used as the thread 5 and is bent using a jig called a tag gun so that the other end of the thread 5 is a straight line. A fiber assembly 7 (thickness 150 mm) made of 400 g / m 2 of glass wool was penetrated from one heat transfer surface 8 to the other heat transfer surface 8. By repeating this operation so as to form a staggered pattern on the heat transfer surface 8 of the core material 9, the core material 9 having the shape shown in FIGS. 4 and 5 was obtained.

この芯材9の厚みは20mmであり、また取り扱いは良好であったため、本実施の形態における繊維集合体7の圧縮効果は十分であると判断した。   Since the thickness of the core material 9 was 20 mm and the handling was good, it was determined that the compression effect of the fiber assembly 7 in the present embodiment was sufficient.

次に、芯材9を酸化カルシウムからなる水分吸着材12とともに袋状の外被材10内へ挿入し、外被材10内を減圧密封することで真空断熱材6を手に入れた。この真空断熱材6の厚みを測ると10mmであり、真空断熱材6の伝熱面に波打ちなどの変形は見られないことから平面性は良好であると判断した。   Next, the core material 9 was inserted into the bag-shaped outer cover material 10 together with the moisture adsorbing material 12 made of calcium oxide, and the vacuum heat insulating material 6 was obtained by sealing the interior of the outer cover material 10 under reduced pressure. When the thickness of the vacuum heat insulating material 6 was measured, it was 10 mm, and no deformation such as undulation was observed on the heat transfer surface of the vacuum heat insulating material 6, so that the flatness was judged to be good.

以上のように構成された芯材9は、糸5よりも大きな断面積を有する大径部11が繊維集合体の伝熱面8に留まり、縫製後も繊維集合体7の圧縮状態を保持し続けるため、繊維集合体7に剛性が付与される。これによって、この繊維集合体7を用いた真空断熱材6は厚み方向に圧縮されていることから、真空包装前後において繊維集合体7の厚み方向に対する変形量が小さくなり、真空断熱材6の平面性が確保される。また、この真空断熱材6の一部または全体を減圧し真空断熱材6の内部真空度を検査する工程においても真空断熱材6の平面性を確保することができる。   In the core material 9 configured as described above, the large-diameter portion 11 having a cross-sectional area larger than that of the yarn 5 remains on the heat transfer surface 8 of the fiber assembly, and maintains the compressed state of the fiber assembly 7 even after sewing. In order to continue, the fiber assembly 7 is given rigidity. Accordingly, since the vacuum heat insulating material 6 using the fiber assembly 7 is compressed in the thickness direction, the amount of deformation in the thickness direction of the fiber assembly 7 is reduced before and after vacuum packaging, and the plane of the vacuum heat insulating material 6 is reduced. Sex is secured. Further, the flatness of the vacuum heat insulating material 6 can be ensured also in the step of depressurizing a part or the whole of the vacuum heat insulating material 6 and inspecting the internal vacuum degree of the vacuum heat insulating material 6.

さらには、上下2本の糸を使ってミシンで本縫い方法に比べて、繊維集合体7内に埋没
する糸の数が減少し、熱橋が低減するという付帯効果が生じる。
Furthermore, as compared with the main sewing method using the upper and lower two threads, the number of threads buried in the fiber assembly 7 is reduced, and the incidental effect that the thermal bridge is reduced occurs.

(実施の形態3)
図6は本発明の実施の形態3における真空断熱材に用いた芯材の伝熱面を示す平面図、図7は同実施の形態の真空断熱材に用いた芯材を図6のC−C線の位置で切断し、その断面を矢印の方向から見た場合の断面図である。
(Embodiment 3)
6 is a plan view showing the heat transfer surface of the core material used for the vacuum heat insulating material in Embodiment 3 of the present invention, and FIG. 7 shows the core material used for the vacuum heat insulating material of the same embodiment in FIG. It is sectional drawing at the time of cut | disconnecting in the position of C line and seeing the cross section from the direction of the arrow.

図6、図7に示すように、本実施の形態の真空断熱材6は、実施の形態1の真空断熱材6と同様に、繊維集合体7からなり対向する二つの伝熱面8を有する芯材9と、水分吸着材12と、芯材9及び水分吸着材12を覆う外被材10とからなり、芯材9が外被材10内に減圧密封されたものである。また、芯材9は、一方の伝熱面8に露出する部分と他方の伝熱面8に露出する部分と繊維集合体7内に埋没する部分とを有する糸5を備え、糸5の両端近傍には繊維集合体7内を厚み方向に移動することが困難な大きさの大径部11が繊維集合体7内に埋没する部分を挟んで伝熱面8に露出している。なお、大径部11は糸5を結んで形成されている。そして、糸5の張力により、繊維集合体7が厚み方向に圧縮されている。   As shown in FIGS. 6 and 7, the vacuum heat insulating material 6 of the present embodiment has two heat transfer surfaces 8 made of a fiber assembly 7 and facing each other, like the vacuum heat insulating material 6 of the first embodiment. The core material 9 includes a core material 9, a moisture adsorbing material 12, and a jacket material 10 that covers the core material 9 and the moisture adsorbing material 12. The core material 9 is sealed in the jacket material 10 under reduced pressure. The core material 9 includes a yarn 5 having a portion exposed on one heat transfer surface 8, a portion exposed on the other heat transfer surface 8, and a portion buried in the fiber assembly 7. In the vicinity, a large-diameter portion 11 having a size that is difficult to move in the thickness direction in the fiber assembly 7 is exposed on the heat transfer surface 8 with a portion embedded in the fiber assembly 7 interposed therebetween. The large diameter portion 11 is formed by tying the yarn 5. The fiber assembly 7 is compressed in the thickness direction by the tension of the yarn 5.

本実施の形態では、複数(図6では6本)の糸5で、互いに所定間隔離して、芯材9の長手方向に平行に、半返し縫いしている。そして、糸5の両端近傍の伝熱面8に露出する部分には糸5の玉結びにより大径部11を形成している。なお、糸5は、繊維集合体7内を貫通する箇所がほぼ均等に碁盤目状に分布するようにしている。   In the present embodiment, a plurality (six in FIG. 6) of threads 5 are half-reversely sewn in parallel to the longitudinal direction of the core material 9 while being separated from each other by a predetermined distance. And the large diameter part 11 is formed in the part exposed to the heat-transfer surface 8 of the both ends vicinity of the thread | yarn 5 by the ball knot of the thread | yarn 5. FIG. In addition, as for the thread | yarn 5, the location which penetrates the inside of the fiber assembly 7 is made to distribute substantially equally in a grid pattern.

本実施の形態では、繊度が110dtexのナイロンを糸5として用い、糸5の端部に輪を作り、輪の中に糸を通すことで大径部11を形成した。この糸5の他端を目付量2,400g/m2のグラスウールからなる繊維集合体7(厚み150mm)の一方の伝熱面8から他方の伝熱面8へ貫通させた後、繊維集合体7の同一伝熱面8上の異なる箇所から対向する伝熱面8へ糸5を貫通させた。この作業を繰り返した後、最後に糸5で輪を作り、輪の中に糸5を通すことで大径部11を形成し、図6および図7の形状となる芯材9を手に入れた。   In the present embodiment, nylon having a fineness of 110 dtex is used as the yarn 5, a ring is formed at the end of the yarn 5, and the large diameter portion 11 is formed by passing the yarn through the ring. After the other end of the yarn 5 is penetrated from one heat transfer surface 8 of the fiber aggregate 7 (thickness 150 mm) made of glass wool having a basis weight of 2,400 g / m 2 to the other heat transfer surface 8, the fiber aggregate 7 The thread | yarn 5 was penetrated from the different location on the same heat transfer surface 8 to the heat transfer surface 8 which opposes. After repeating this operation, finally, a ring is formed with the thread 5, and the large diameter portion 11 is formed by passing the thread 5 through the ring, and the core material 9 having the shape shown in FIGS. 6 and 7 is obtained. It was.

この芯材9の厚みは23mmであり、また取り扱いは良好であったため、本実施の形態における繊維集合体7の圧縮効果は十分であると判断した。   Since the thickness of the core material 9 was 23 mm and the handling was good, it was determined that the compression effect of the fiber assembly 7 in the present embodiment was sufficient.

次に、芯材9を酸化カルシウムからなる水分吸着材12とともに袋状の外被材10内へ挿入し、外被材10内を減圧密封することで真空断熱材6を手に入れた。この真空断熱材6の厚みを測ると11mmであり、真空断熱材6の伝熱面に波打ちなどの変形は見られないことから平面性は良好であると判断した。   Next, the core material 9 was inserted into the bag-shaped outer cover material 10 together with the moisture adsorbing material 12 made of calcium oxide, and the vacuum heat insulating material 6 was obtained by sealing the interior of the outer cover material 10 under reduced pressure. When the thickness of the vacuum heat insulating material 6 was measured, it was 11 mm, and no deformation such as undulation was observed on the heat transfer surface of the vacuum heat insulating material 6, so that the flatness was judged to be good.

以上のように構成された芯材9は、糸5よりも大きな断面積を有する大径部11が繊維集合体の伝熱面8に留まり、縫製後も繊維集合体7の圧縮状態を保持し続けるため、繊維集合体7に剛性が付与される。これによって、この繊維集合体7を用いた真空断熱材6は厚み方向に圧縮されていることから、真空包装前後において繊維集合体7の厚み方向に対する変形量が小さくなり、真空断熱材6の平面性が確保される。また、この真空断熱材6の一部または全体を減圧し真空断熱材6の内部真空度を検査する工程においても真空断熱材6の平面性を確保することができる。   In the core material 9 configured as described above, the large-diameter portion 11 having a cross-sectional area larger than that of the yarn 5 remains on the heat transfer surface 8 of the fiber assembly, and maintains the compressed state of the fiber assembly 7 even after sewing. In order to continue, the fiber assembly 7 is given rigidity. Accordingly, since the vacuum heat insulating material 6 using the fiber assembly 7 is compressed in the thickness direction, the amount of deformation in the thickness direction of the fiber assembly 7 is reduced before and after vacuum packaging, and the plane of the vacuum heat insulating material 6 is reduced. Sex is secured. Further, the flatness of the vacuum heat insulating material 6 can be ensured also in the step of depressurizing a part or the whole of the vacuum heat insulating material 6 and inspecting the internal vacuum degree of the vacuum heat insulating material 6.

さらには、上下2本の糸を使ってミシンで本縫い方法に比べて、繊維集合体7内に埋没する糸の数が減少し、熱橋が低減するという付帯効果が生じる。   Furthermore, as compared with the main sewing method using the upper and lower two threads, the number of threads buried in the fiber assembly 7 is reduced, and the incidental effect that the thermal bridge is reduced occurs.

(実施の形態4)
図8は本発明の実施の形態4における真空断熱材に用いた芯材の伝熱面を示す平面図、図9は同実施の形態の真空断熱材に用いた芯材を図8のD−D線の位置で切断し、その断面を矢印の方向から見た場合の断面図である。
(Embodiment 4)
FIG. 8 is a plan view showing the heat transfer surface of the core material used in the vacuum heat insulating material according to Embodiment 4 of the present invention, and FIG. 9 shows the core material used in the vacuum heat insulating material of the same embodiment in FIG. It is sectional drawing at the time of cut | disconnecting in the position of D line and seeing the cross section from the direction of the arrow.

図8、図9に示すように、本実施の形態の真空断熱材6は、実施の形態1の真空断熱材6と同様に、繊維集合体7からなり対向する二つの伝熱面8を有する芯材9と、水分吸着材12と、芯材9及び水分吸着材12を覆う外被材10とからなり、芯材9が外被材10内に減圧密封されたものである。また、芯材9は、一方の伝熱面8に露出する部分と他方の伝熱面8に露出する部分と繊維集合体7内に埋没する部分とを有する糸5を備え、糸5の両端近傍には繊維集合体7内を厚み方向に移動することが困難な大きさの大径部11が繊維集合体7内に埋没する部分を挟んで伝熱面8に露出している。なお、大径部11は糸5を結んで形成されている。そして、糸5の張力により、繊維集合体7が厚み方向に圧縮されている。   As shown in FIGS. 8 and 9, the vacuum heat insulating material 6 of the present embodiment has two heat transfer surfaces 8 made of fiber assemblies 7 and facing each other, like the vacuum heat insulating material 6 of the first embodiment. The core material 9 includes a core material 9, a moisture adsorbing material 12, and a jacket material 10 that covers the core material 9 and the moisture adsorbing material 12. The core material 9 is sealed in the jacket material 10 under reduced pressure. The core material 9 includes a yarn 5 having a portion exposed on one heat transfer surface 8, a portion exposed on the other heat transfer surface 8, and a portion buried in the fiber assembly 7. In the vicinity, a large-diameter portion 11 having a size that is difficult to move in the thickness direction in the fiber assembly 7 is exposed on the heat transfer surface 8 with a portion embedded in the fiber assembly 7 interposed therebetween. The large diameter portion 11 is formed by tying the yarn 5. The fiber assembly 7 is compressed in the thickness direction by the tension of the yarn 5.

本実施の形態では、繊度が135dtexのポリエチレンテレフタレートを糸5として単環縫いミシンにセットし、係留部材としてのポリエチレンテレフタレートからなる不織布シート13を縫製して空環を形成した。次に、不織布シート13と糸5が連続した状態のまま目付量2,400g/m2のグラスウールからなる繊維集合体7(厚み150mm)を縫製し、最後に糸のみを絡ませて空環を形成した。この作業を繰り返すことで、図8および図9の形状となる芯材9を手に入れた。   In the present embodiment, polyethylene terephthalate having a fineness of 135 dtex is set as a thread 5 on a single-ring stitch sewing machine, and a nonwoven fabric sheet 13 made of polyethylene terephthalate as an anchoring member is sewn to form an empty ring. Next, a fiber assembly 7 (thickness 150 mm) made of glass wool having a basis weight of 2,400 g / m 2 with the nonwoven fabric sheet 13 and the yarn 5 being continuous was sewn, and finally only the yarn was entangled to form an empty ring. . By repeating this operation, the core material 9 having the shape shown in FIGS. 8 and 9 was obtained.

この芯材の厚みは18mmであり、また取り扱いは良好であったため、本実施の形態における繊維集合体7の圧縮効果は十分であると判断した。   Since the thickness of the core material was 18 mm and the handling was good, it was determined that the compression effect of the fiber assembly 7 in the present embodiment was sufficient.

次に、芯材9を酸化カルシウムからなる水分吸着材12とともに袋状の外被材10内へ挿入し、外被材10内を減圧密封することで真空断熱材6を手に入れた。この真空断熱材6の厚みを測ると10.4mmであり、真空断熱材6の伝熱面に波打ちなどの変形は見られないことから平面性は良好であると判断した。   Next, the core material 9 was inserted into the bag-shaped outer cover material 10 together with the moisture adsorbing material 12 made of calcium oxide, and the vacuum heat insulating material 6 was obtained by sealing the interior of the outer cover material 10 under reduced pressure. When the thickness of the vacuum heat insulating material 6 was measured, it was 10.4 mm, and no deformation such as undulation was observed on the heat transfer surface of the vacuum heat insulating material 6, so that the flatness was judged to be good.

以上のように構成された芯材9は、糸5よりも大きな断面積を有する大径部11が繊維集合体の伝熱面8に留まり、縫製後も繊維集合体7の圧縮状態を保持し続けるため、繊維集合体7に剛性が付与される。これによって、この繊維集合体7を用いた真空断熱材6は厚み方向に圧縮されていることから、真空包装前後において繊維集合体7の厚み方向に対する変形量が小さくなり、真空断熱材6の平面性が確保される。また、この真空断熱材6の一部または全体を減圧し真空断熱材6の内部真空度を検査する工程においても真空断熱材6の平面性を確保することができる。   In the core material 9 configured as described above, the large-diameter portion 11 having a cross-sectional area larger than that of the yarn 5 remains on the heat transfer surface 8 of the fiber assembly, and maintains the compressed state of the fiber assembly 7 even after sewing. In order to continue, the fiber assembly 7 is given rigidity. Accordingly, since the vacuum heat insulating material 6 using the fiber assembly 7 is compressed in the thickness direction, the amount of deformation in the thickness direction of the fiber assembly 7 is reduced before and after vacuum packaging, and the plane of the vacuum heat insulating material 6 is reduced. Sex is secured. Further, the flatness of the vacuum heat insulating material 6 can be ensured also in the step of depressurizing a part or the whole of the vacuum heat insulating material 6 and inspecting the internal vacuum degree of the vacuum heat insulating material 6.

さらには、上下2本の糸を使ってミシンで本縫い方法に比べて、繊維集合体7内に埋没する糸の数が減少し、熱橋が低減するという付帯効果が生じる。   Furthermore, as compared with the main sewing method using the upper and lower two threads, the number of threads buried in the fiber assembly 7 is reduced, and the incidental effect that the thermal bridge is reduced occurs.

(実施の形態5)
図10は本発明の実施の形態5における真空断熱材の構成を示す断面図、図11は同実施の形態の真空断熱材に用いた芯材の伝熱面を示す平面図、図12は同実施の形態の真空断熱材に用いた芯材を図11のE−E線の位置で切断し、その断面を矢印の方向から見た場合の断面図である。
(Embodiment 5)
FIG. 10 is a cross-sectional view showing the configuration of the vacuum heat insulating material in Embodiment 5 of the present invention, FIG. 11 is a plan view showing the heat transfer surface of the core material used in the vacuum heat insulating material of the same embodiment, and FIG. It is sectional drawing at the time of cut | disconnecting the core material used for the vacuum heat insulating material of embodiment in the position of the EE line | wire of FIG. 11, and seeing the cross section from the direction of the arrow.

図10から図12に示すように、本実施の形態の真空断熱材6は、繊維集合体7からなり対向する二つの伝熱面8を有する芯材9と、水分吸着材12と、芯材9及び水分吸着材12を覆う外被材10とからなり、芯材9が外被材10内に減圧密封されたものである。また、芯材9は、一方の伝熱面8に露出する部分と他方の伝熱面8に露出する部分と繊維
集合体7内に埋没する部分とを有する糸5を備え、繊維集合体7内を貫通し対向する2つの伝熱面8に露出するように環状に結ばれて、糸5の張力により繊維集合体7が厚み方向に圧縮されている。
As shown in FIGS. 10 to 12, the vacuum heat insulating material 6 of the present embodiment includes a core material 9 including two heat transfer surfaces 8 made of a fiber assembly 7, a moisture adsorbing material 12, and a core material. 9 and a covering material 10 covering the moisture adsorbing material 12, and the core material 9 is sealed in the covering material 10 under reduced pressure. The core material 9 includes a yarn 5 having a portion exposed to one heat transfer surface 8, a portion exposed to the other heat transfer surface 8, and a portion buried in the fiber assembly 7, and the fiber assembly 7. The fiber assembly 7 is compressed in the thickness direction by the tension of the yarn 5 and is connected in an annular shape so as to be exposed to the two heat transfer surfaces 8 that pass through the inside and face each other.

本実施の形態では、1本の糸5で、芯材9の長手方向に平行になる部分が大半となるように蛇行し、最後に芯材9の長手方向に垂直に出発点に戻るようなコースで並縫いしている。そして、糸5の端部同士を結んで環状にしている。   In the present embodiment, the single thread 5 meanders so that most of the portion parallel to the longitudinal direction of the core material 9 is the majority, and finally returns to the starting point perpendicular to the longitudinal direction of the core material 9. Sewing on the course. Then, the ends of the yarn 5 are connected to form an annular shape.

本実施の形態では、繊度が120dtexの低密度ポリエチレンを糸5としてハンドステッチミシンにセットし、目付量2,400g/m2のグラスウールからなる繊維集合体7(厚み150mm)を図11に示すように、繊維集合体7内を貫通する箇所がほぼ均等に分布するように蛇行させて縫製し、最後に糸5の両端を結束することで図12の形状となる芯材9を手に入れた。   In the present embodiment, low density polyethylene having a fineness of 120 dtex is set as a thread 5 on a hand stitch sewing machine, and a fiber assembly 7 (thickness 150 mm) made of glass wool having a basis weight of 2,400 g / m 2 is shown in FIG. Then, the core material 9 having the shape shown in FIG. 12 was obtained by binding and sewing so that the portions penetrating through the fiber assembly 7 were distributed almost evenly, and finally binding both ends of the yarn 5.

この芯材9の厚みは25mmであり、また取り扱いは良好であったため、本実施の形態における繊維集合体7の圧縮効果は十分であると判断した。   Since the thickness of the core material 9 was 25 mm and the handling was good, it was determined that the compression effect of the fiber assembly 7 in the present embodiment was sufficient.

次に、芯材9を酸化カルシウムからなる水分吸着材12とともに袋状の外被材10内へ挿入し、外被材10内を減圧密封することで真空断熱材6を手に入れた。この真空断熱材6の厚みを測ると11mmであり、真空断熱材6の伝熱面に波打ちなどの変形は見られないことから平面性は良好であると判断した。   Next, the core material 9 was inserted into the bag-shaped outer cover material 10 together with the moisture adsorbing material 12 made of calcium oxide, and the vacuum heat insulating material 6 was obtained by sealing the interior of the outer cover material 10 under reduced pressure. When the thickness of the vacuum heat insulating material 6 was measured, it was 11 mm, and no deformation such as undulation was observed on the heat transfer surface of the vacuum heat insulating material 6, so that the flatness was judged to be good.

以上のように構成された芯材9は、糸5が環状に結ばれる際に糸5が繊維集合体7を圧縮し、糸5が環状に結ばれた後も繊維集合体7の圧縮状態を保持し続けるため、繊維集合体7に剛性が付与される。この繊維集合体7は厚み方向に圧縮されていることから、真空包装後において繊維集合体7の厚み方向に対する変形量が小さくなるため、真空断熱材6の平面性が確保される。また、この真空断熱材6の一部または全体を減圧し真空断熱材6の内部真空度を検査する工程においても真空断熱材6の平面性を確保することができる。   The core material 9 configured as described above compresses the fiber assembly 7 when the yarn 5 is tied in a ring shape, and maintains the compressed state of the fiber assembly 7 even after the yarn 5 is tied in a ring shape. In order to keep it held, rigidity is imparted to the fiber assembly 7. Since the fiber assembly 7 is compressed in the thickness direction, the amount of deformation in the thickness direction of the fiber assembly 7 is reduced after vacuum packaging, so that the flatness of the vacuum heat insulating material 6 is ensured. Further, the flatness of the vacuum heat insulating material 6 can be ensured also in the step of depressurizing a part or the whole of the vacuum heat insulating material 6 and inspecting the internal vacuum degree of the vacuum heat insulating material 6.

さらには、上下2本の糸を使ってミシンで本縫い方法に比べて、繊維集合体7内に埋没する糸の数が減少し、熱橋が低減するという付帯効果が生じる。   Furthermore, as compared with the main sewing method using the upper and lower two threads, the number of threads buried in the fiber assembly 7 is reduced, and the incidental effect that the thermal bridge is reduced occurs.

(実施の形態6)
図13は本発明の実施の形態6における真空断熱材に用いた芯材の伝熱面を示す平面図、図14は同実施の形態の真空断熱材に用いた芯材を図13のF−F線の位置で切断し、その断面を矢印の方向から見た場合の断面図である。
(Embodiment 6)
FIG. 13 is a plan view showing the heat transfer surface of the core material used for the vacuum heat insulating material in Embodiment 6 of the present invention, and FIG. 14 shows the core material used for the vacuum heat insulating material of the same embodiment in FIG. It is sectional drawing at the time of cut | disconnecting in the position of F line and seeing the cross section from the direction of the arrow.

図13、図14に示すように、本実施の形態の真空断熱材6は、繊維集合体7からなり対向する二つの伝熱面8を有する芯材9と、水分吸着材12と、芯材9及び水分吸着材12を覆う外被材10とからなり、芯材9が外被材10内に減圧密封されたものである。また、芯材9は、一方の伝熱面8に露出する部分と他方の伝熱面8に露出する部分と繊維集合体7内に埋没する部分とを有する複数の糸5を備え、それぞれの糸5は、一方の伝熱面8から繊維集合体7内を貫通して他方の伝熱面8に露出した後、他方の伝熱面8から繊維集合体7内を貫通して一方の伝熱面8に露出し、繊維集合体7内を貫通せずに一方の伝熱面8に残っていた糸5の一方の端部と、繊維集合体7内を二度貫通して一方の伝熱面8に露出した糸5の他方の端部とが結ばれて糸5の環が形成され、糸5の張力により繊維集合体7が厚み方向に圧縮されている。   As shown in FIGS. 13 and 14, the vacuum heat insulating material 6 of the present embodiment includes a core material 9 having two heat transfer surfaces 8 made of a fiber assembly 7 and facing each other, a moisture adsorbing material 12, and a core material. 9 and a covering material 10 covering the moisture adsorbing material 12, and the core material 9 is sealed in the covering material 10 under reduced pressure. The core material 9 includes a plurality of yarns 5 each having a portion exposed to one heat transfer surface 8, a portion exposed to the other heat transfer surface 8, and a portion buried in the fiber assembly 7. The yarn 5 penetrates the inside of the fiber assembly 7 from one heat transfer surface 8 and is exposed to the other heat transfer surface 8, and then penetrates the inside of the fiber assembly 7 from the other heat transfer surface 8. One end of the yarn 5 exposed on the heat surface 8 and remaining on one heat transfer surface 8 without penetrating the fiber assembly 7 and the fiber assembly 7 passing twice through the one end The other end of the yarn 5 exposed on the hot surface 8 is connected to form a ring of the yarn 5, and the fiber assembly 7 is compressed in the thickness direction by the tension of the yarn 5.

なお、伝熱面8に露出した糸5が、芯材9の長手方向に平行な複数本(図13では5本)の破線を形成し、糸5繊維集合体7内を貫通する箇所がほぼ均等に碁盤目状に分布し、
伝熱面8に露出する部分が、芯材9の長手方向に垂直に並ぶようにしている。糸5を結んで形成される大径部11が一方の伝熱面8にのみ露出するようにしている。
It should be noted that the yarn 5 exposed on the heat transfer surface 8 forms a plurality of broken lines (five in FIG. 13) parallel to the longitudinal direction of the core material 9, and the portion penetrating through the yarn 5 fiber assembly 7 is almost the same. Evenly distributed in a grid pattern,
The portions exposed to the heat transfer surface 8 are arranged perpendicular to the longitudinal direction of the core material 9. The large diameter portion 11 formed by tying the yarn 5 is exposed only on one heat transfer surface 8.

本実施の形態では、繊度が110dtexのナイロンを糸5として用い、この糸5を目付量2,400g/m2のグラスウールからなる繊維断熱体7(厚み150mm)の一方の伝熱面8から他方の伝熱面8へ貫通させた後、他方の伝熱面8上の異なる箇所から一方の伝熱面8へ貫通させ、糸5の両端を図13の形状となるよう結束することで、図14の形状となる芯材9を手に入れた。   In the present embodiment, nylon having a fineness of 110 dtex is used as the yarn 5, and the yarn 5 is used from one heat transfer surface 8 of the fiber heat insulator 7 (thickness 150 mm) made of glass wool having a basis weight of 2,400 g / m 2 to the other. After passing through the heat transfer surface 8, it penetrates from one place on the other heat transfer surface 8 to the one heat transfer surface 8 and binds both ends of the yarn 5 to the shape shown in FIG. The core material 9 which becomes the shape was obtained.

この芯材の厚みは22mmであり、また取り扱いは良好であったため、本実施の形態における繊維集合体7の圧縮効果は十分であると判断した。   Since the thickness of the core material was 22 mm and the handling was good, it was determined that the compression effect of the fiber assembly 7 in the present embodiment was sufficient.

次に、芯材9を酸化カルシウムからなる水分吸着材12とともに袋状の外被材10内へ挿入し、外被材10内を減圧密封することで真空断熱材6を手に入れた。この真空断熱材6の厚みを測ると9.7mmであり、真空断熱材6の伝熱面に波打ちなどの変形は見られないことから平面性は良好であると判断した。   Next, the core material 9 was inserted into the bag-shaped outer cover material 10 together with the moisture adsorbing material 12 made of calcium oxide, and the vacuum heat insulating material 6 was obtained by sealing the interior of the outer cover material 10 under reduced pressure. When the thickness of the vacuum heat insulating material 6 was measured, it was 9.7 mm, and no deformation such as undulation was observed on the heat transfer surface of the vacuum heat insulating material 6, so that the flatness was judged to be good.

以上のように構成された芯材9は、糸5が環状に結ばれる際に糸5が繊維集合体7を圧縮し、糸5が環状に結ばれた後も繊維集合体7の圧縮状態を保持し続けるため、繊維集合体7に剛性が付与される。この繊維集合体7は厚み方向に圧縮されていることから、真空包装後において繊維集合体7の厚み方向に対する変形量が小さくなるため、真空断熱材6の平面性が確保される。また、この真空断熱材6の一部または全体を減圧し真空断熱材6の内部真空度を検査する工程においても真空断熱材6の平面性を確保することができる。   The core material 9 configured as described above compresses the fiber assembly 7 when the yarn 5 is tied in a ring shape, and maintains the compressed state of the fiber assembly 7 even after the yarn 5 is tied in a ring shape. In order to keep it held, rigidity is imparted to the fiber assembly 7. Since the fiber assembly 7 is compressed in the thickness direction, the amount of deformation in the thickness direction of the fiber assembly 7 is reduced after vacuum packaging, so that the flatness of the vacuum heat insulating material 6 is ensured. Further, the flatness of the vacuum heat insulating material 6 can be ensured also in the step of depressurizing a part or the whole of the vacuum heat insulating material 6 and inspecting the internal vacuum degree of the vacuum heat insulating material 6.

さらには、上下2本の糸を使ってミシンで本縫い方法に比べて、繊維集合体7内に埋没する糸の数が減少し、熱橋が低減するという付帯効果が生じる。   Furthermore, as compared with the main sewing method using the upper and lower two threads, the number of threads buried in the fiber assembly 7 is reduced, and the incidental effect that the thermal bridge is reduced occurs.

(実施の形態7)
図15は本発明の実施の形態7における真空断熱材に用いた芯材の伝熱面を示す平面図、図16は同実施の形態の真空断熱材に用いた芯材を図15のG−G線の位置で切断し、その断面を矢印の方向から見た場合の断面図である。
(Embodiment 7)
15 is a plan view showing the heat transfer surface of the core material used for the vacuum heat insulating material in Embodiment 7 of the present invention, and FIG. 16 shows the core material used for the vacuum heat insulating material of the same embodiment in FIG. It is sectional drawing at the time of cut | disconnecting in the position of G line and seeing the cross section from the direction of the arrow.

図15、図16に示すように、本実施の形態の真空断熱材6は、繊維集合体7からなり対向する二つの伝熱面8を有する芯材9と、水分吸着材12と、芯材9及び水分吸着材12を覆う外被材10とからなり、芯材9が外被材10内に減圧密封されたものである。また、芯材9は、一方の伝熱面8に露出する部分と他方の伝熱面8に露出する部分と繊維集合体7内に埋没する部分とを有する複数の糸5を備え、それぞれの糸5は、一方の伝熱面8から繊維集合体7内を貫通して他方の伝熱面8に露出した後、他方の伝熱面8から繊維集合体7内を貫通して一方の伝熱面8に露出し、繊維集合体7内を貫通せずに一方の伝熱面8に残っていた糸5の一方の端部と、繊維集合体7内を二度貫通して一方の伝熱面8に露出した糸5の他方の端部とが結ばれて糸5の環が形成され、糸5の張力により繊維集合体7が厚み方向に圧縮されている。   As shown in FIGS. 15 and 16, the vacuum heat insulating material 6 of the present embodiment includes a core material 9 including two heat transfer surfaces 8 made of a fiber assembly 7, a moisture adsorbing material 12, and a core material. 9 and a covering material 10 covering the moisture adsorbing material 12, and the core material 9 is sealed in the covering material 10 under reduced pressure. The core material 9 includes a plurality of yarns 5 each having a portion exposed to one heat transfer surface 8, a portion exposed to the other heat transfer surface 8, and a portion buried in the fiber assembly 7. The yarn 5 penetrates the inside of the fiber assembly 7 from one heat transfer surface 8 and is exposed to the other heat transfer surface 8, and then penetrates the inside of the fiber assembly 7 from the other heat transfer surface 8. One end of the yarn 5 exposed on the heat surface 8 and remaining on one heat transfer surface 8 without penetrating the fiber assembly 7 and the fiber assembly 7 passing twice through the one end The other end of the yarn 5 exposed on the hot surface 8 is connected to form a ring of the yarn 5, and the fiber assembly 7 is compressed in the thickness direction by the tension of the yarn 5.

なお、伝熱面8に露出した糸5が、芯材9の長手方向に平行な複数本(図13では5本)の破線を形成し、糸5繊維集合体7内を貫通する箇所がほぼ均等に千鳥状に分布し、伝熱面8に露出する部分が、千鳥状に芯材9の伝熱面8にのみ露出し、また、糸5を結んで形成される大径部11が一方の伝熱面8にのみ露出するようにしている。   It should be noted that the yarn 5 exposed on the heat transfer surface 8 forms a plurality of broken lines (five in FIG. 13) parallel to the longitudinal direction of the core material 9, and the portion penetrating through the yarn 5 fiber assembly 7 is almost the same. A portion that is uniformly distributed in a zigzag shape and exposed to the heat transfer surface 8 is exposed only to the heat transfer surface 8 of the core material 9 in a zigzag shape, and a large diameter portion 11 formed by tying the yarn 5 is one side. Only the heat transfer surface 8 is exposed.

本実施の形態では、繊度が110dtexのナイロンを糸5として用い、この糸5を目付量2,400g/m2のグラスウールからなる繊維断熱体7(厚み150mm)の一方
の伝熱面8から他方の伝熱面8へ貫通させた後、他方の伝熱面8上の異なる箇所から一方の伝熱面8へ貫通させ、糸5の両端を図15の形状となるよう結束することで図16の形状となる芯材9を手に入れた。
In the present embodiment, nylon having a fineness of 110 dtex is used as the yarn 5, and the yarn 5 is used from one heat transfer surface 8 of the fiber heat insulator 7 (thickness 150 mm) made of glass wool having a basis weight of 2,400 g / m 2 to the other. After passing through the heat transfer surface 8, it penetrates from one location on the other heat transfer surface 8 to the one heat transfer surface 8 and binds both ends of the yarn 5 to the shape shown in FIG. The core material 9 which becomes a shape was obtained.

この芯材9の厚みは18mmであり、また取り扱いは良好であったため、本実施の形態における繊維集合体7の圧縮効果は十分であると判断した。   Since the thickness of the core material 9 was 18 mm and the handling was good, it was determined that the compression effect of the fiber assembly 7 in the present embodiment was sufficient.

次に、芯材9を酸化カルシウムからなる水分吸着材12とともに袋状の外被材10内へ挿入し、外被材10内を減圧密封することで真空断熱材6を手に入れた。この真空断熱材6の厚みを測ると10.1mmであり、真空断熱材の伝熱面に波打ちなどの変形は見られないことから平面性は良好であると判断した。   Next, the core material 9 was inserted into the bag-shaped outer cover material 10 together with the moisture adsorbing material 12 made of calcium oxide, and the vacuum heat insulating material 6 was obtained by sealing the interior of the outer cover material 10 under reduced pressure. When the thickness of the vacuum heat insulating material 6 was measured, it was 10.1 mm, and no deformation such as undulation was observed on the heat transfer surface of the vacuum heat insulating material, so that the flatness was judged to be good.

以上のように構成された芯材9は、糸5が環状に結ばれる際に糸5が繊維集合体7を圧縮し、糸5が環状に結ばれた後も繊維集合体7の圧縮状態を保持し続けるため、繊維集合体7に剛性が付与される。この繊維集合体7は厚み方向に圧縮されていることから、真空包装後において繊維集合体7の厚み方向に対する変形量が小さくなるため、真空断熱材6の平面性が確保される。また、この真空断熱材6の一部または全体を減圧し真空断熱材6の内部真空度を検査する工程においても真空断熱材6の平面性を確保することができる。   The core material 9 configured as described above compresses the fiber assembly 7 when the yarn 5 is tied in a ring shape, and maintains the compressed state of the fiber assembly 7 even after the yarn 5 is tied in a ring shape. In order to keep it held, rigidity is imparted to the fiber assembly 7. Since the fiber assembly 7 is compressed in the thickness direction, the amount of deformation in the thickness direction of the fiber assembly 7 is reduced after vacuum packaging, so that the flatness of the vacuum heat insulating material 6 is ensured. Further, the flatness of the vacuum heat insulating material 6 can be ensured also in the step of depressurizing a part or the whole of the vacuum heat insulating material 6 and inspecting the internal vacuum degree of the vacuum heat insulating material 6.

さらには、上下2本の糸を使ってミシンで本縫い方法に比べて、繊維集合体7内に埋没する糸の数が減少し、熱橋が低減するという付帯効果が生じる。   Furthermore, as compared with the main sewing method using the upper and lower two threads, the number of threads buried in the fiber assembly 7 is reduced, and the incidental effect that the thermal bridge is reduced occurs.

(実施の形態8)
図17は本発明の実施の形態8における真空断熱材に用いた芯材の伝熱面を示す平面図、図18は同実施の形態の真空断熱材に用いた芯材を図17のH−H線の位置で切断し、その断面を矢印の方向から見た場合の断面図である。
(Embodiment 8)
FIG. 17 is a plan view showing a heat transfer surface of the core material used for the vacuum heat insulating material in Embodiment 8 of the present invention, and FIG. 18 shows the core material used for the vacuum heat insulating material of the same embodiment in FIG. It is sectional drawing at the time of cut | disconnecting in the position of H line and seeing the cross section from the direction of the arrow.

図17、図18に示すように、本実施の形態の真空断熱材6は、繊維集合体7からなり対向する二つの伝熱面8を有する芯材9と、水分吸着材12と、芯材9及び水分吸着材12を覆う外被材10とからなり、芯材9が外被材10内に減圧密封されたものである。また、芯材9は、一方の伝熱面8に露出する部分と他方の伝熱面8に露出する部分と繊維集合体7内に埋没する部分とを有する複数(図17では7本)の糸5を備え、複数(図17では7本)の糸5で、互いに所定間隔離して、芯材9の長手方向に平行に、並縫いしており、芯材9の長手方向の端部で、隣接する糸5の端部同士を結んで環状にし、糸5の環を複数設けている。そして、糸5の張力により繊維集合体7が厚み方向に圧縮されている。   As shown in FIGS. 17 and 18, the vacuum heat insulating material 6 of the present embodiment includes a core material 9 including two heat transfer surfaces 8 made of a fiber assembly 7, a moisture adsorbing material 12, and a core material. 9 and a covering material 10 covering the moisture adsorbing material 12, and the core material 9 is sealed in the covering material 10 under reduced pressure. Further, the core material 9 has a plurality (seven in FIG. 17) having a portion exposed on one heat transfer surface 8, a portion exposed on the other heat transfer surface 8, and a portion buried in the fiber assembly 7. A plurality of (seven in FIG. 17) yarns 5 are provided, and are sewn together in parallel with the longitudinal direction of the core material 9, separated from each other by a predetermined distance, and at the end in the longitudinal direction of the core material 9. The ends of adjacent yarns 5 are connected to form a ring, and a plurality of rings of the yarn 5 are provided. The fiber assembly 7 is compressed in the thickness direction by the tension of the yarn 5.

本実施の形態では、繊度が205dtexのポリエチレンテレフタレートからなる糸と、目付量2,400g/m2のグラスウール(厚み150mm)からなる繊維集合体7をハンドステッチミシンにセットした。次に、糸が直線状になるよう縫製するとともに、繊維集合体7の同一辺に位置する複数の糸を図17および図18に示すように連結することで糸5が環状に結束された芯材9を手に入れた。この芯材9の厚みは21mmであり、また取り扱いは良好であったため、本実施の形態における繊維集合体7の圧縮効果は十分であると判断した。   In the present embodiment, a yarn made of polyethylene terephthalate having a fineness of 205 dtex and a fiber assembly 7 made of glass wool (thickness 150 mm) having a basis weight of 2,400 g / m 2 were set on a hand stitch sewing machine. Next, the thread is sewn so as to be linear, and a plurality of threads located on the same side of the fiber assembly 7 are connected as shown in FIGS. 17 and 18 so that the thread 5 is bound in an annular shape. The material 9 was obtained. Since the thickness of the core material 9 was 21 mm and the handling was good, it was determined that the compression effect of the fiber assembly 7 in the present embodiment was sufficient.

次に、芯材9を酸化カルシウムからなる水分吸着材12とともに袋状の外被材10内へ挿入し、外被材10内を減圧密封することで真空断熱材6を手に入れた。この真空断熱材6の厚みを測ると10.4mmであり、真空断熱材6の伝熱面に波打ちなどの変形は見られないことから平面性は良好であると判断した。   Next, the core material 9 was inserted into the bag-shaped outer cover material 10 together with the moisture adsorbing material 12 made of calcium oxide, and the vacuum heat insulating material 6 was obtained by sealing the interior of the outer cover material 10 under reduced pressure. When the thickness of the vacuum heat insulating material 6 was measured, it was 10.4 mm, and no deformation such as undulation was observed on the heat transfer surface of the vacuum heat insulating material 6, so that the flatness was judged to be good.

以上のように構成された芯材9は、糸5が環状に結ばれる際に糸5が繊維集合体7を圧
縮し、糸5が環状に結ばれた後も繊維集合体7の圧縮状態を保持し続けるため、繊維集合体7に剛性が付与される。この繊維集合体7は厚み方向に圧縮されていることから、真空包装後において繊維集合体7の厚み方向に対する変形量が小さくなるため、真空断熱材6の平面性が確保される。また、この真空断熱材6の一部または全体を減圧し真空断熱材6の内部真空度を検査する工程においても真空断熱材6の平面性を確保することができる。
The core material 9 configured as described above compresses the fiber assembly 7 when the yarn 5 is tied in a ring shape, and maintains the compressed state of the fiber assembly 7 even after the yarn 5 is tied in a ring shape. In order to keep it held, rigidity is imparted to the fiber assembly 7. Since the fiber assembly 7 is compressed in the thickness direction, the amount of deformation in the thickness direction of the fiber assembly 7 is reduced after vacuum packaging, so that the flatness of the vacuum heat insulating material 6 is ensured. Further, the flatness of the vacuum heat insulating material 6 can be ensured also in the step of depressurizing a part or the whole of the vacuum heat insulating material 6 and inspecting the internal vacuum degree of the vacuum heat insulating material 6.

さらには、上下2本の糸を使ってミシンで本縫い方法に比べて、繊維集合体7内に埋没する糸の数が減少し、熱橋が低減するという付帯効果が生じる。   Furthermore, as compared with the main sewing method using the upper and lower two threads, the number of threads buried in the fiber assembly 7 is reduced, and the incidental effect that the thermal bridge is reduced occurs.

(比較例)
繊度が135dtexのポリエチレンテレフタレートを糸としてハンドステッチミシンにセットし、目付量2,400g/m2のグラスウールからなる繊維集合体(厚み150mm)を縫製し、芯材を手に入れた。しかし、縫製直後に糸が解れたため、この芯材の厚みは85mmまで復元し、取り扱いが困難であったため、本比較例では繊維集合体の圧縮効果が不十分であると判断した。
(Comparative example)
A polyethylene terephthalate having a fineness of 135 dtex was set as a thread on a hand stitch sewing machine, a fiber assembly (thickness 150 mm) made of glass wool having a basis weight of 2,400 g / m 2 was sewn, and a core material was obtained. However, since the thread was released immediately after sewing, the thickness of the core material was restored to 85 mm and it was difficult to handle. Therefore, it was determined that the compression effect of the fiber assembly was insufficient in this comparative example.

次に、芯材を酸化カルシウムからなる水分吸着材とともに袋状の外被材内へ挿入し、外被材内を減圧密封することで真空断熱材を手に入れた。この真空断熱材の厚みを測ると9.5mmであったが、真空断熱材の伝熱面に波打ちが見られることから平面性の確保は十分でないと判断した。   Next, the core material was inserted into a bag-shaped jacket material together with a moisture adsorbing material made of calcium oxide, and the vacuum jacket was obtained by sealing the inside of the jacket material under reduced pressure. When the thickness of this vacuum heat insulating material was measured, it was 9.5 mm, but it was judged that securing of flatness was not sufficient because the heat transfer surface of the vacuum heat insulating material was seen.

本発明の真空断熱材は、真空包装前後において繊維集合体の厚み方向に対する変形量が小さいため、真空断熱材の平面性が確保される。また、この真空断熱材の一部または全体を減圧し真空断熱材の内部真空度を検査する工程においても真空断熱材の平面性を確保することができる。そのため、本発明の真空断熱材は、冷蔵庫やジャーポット、炊飯器、自動販売機、住宅など真空断熱材が適用可能なあらゆる用途にて利用可能である。   Since the vacuum heat insulating material of the present invention has a small amount of deformation in the thickness direction of the fiber assembly before and after vacuum packaging, the flatness of the vacuum heat insulating material is ensured. Further, the flatness of the vacuum heat insulating material can be ensured also in the step of depressurizing a part or the whole of the vacuum heat insulating material and inspecting the internal vacuum degree of the vacuum heat insulating material. Therefore, the vacuum heat insulating material of the present invention can be used in any application to which a vacuum heat insulating material can be applied, such as a refrigerator, a jar pot, a rice cooker, a vending machine, and a house.

5 糸
6 真空断熱材
7 繊維集合体
8 伝熱面
9 芯材
10 外被材
11 大径部
13 不織布シート(係留部材)
5 Yarn 6 Vacuum Insulating Material 7 Fiber Assembly 8 Heat Transfer Surface 9 Core Material 10 Outer Material 11 Large Diameter Part 13 Nonwoven Sheet (Mooring Member)

本発明は、繊維集合体からなる芯材を外被材内に減圧密封した真空断熱材に関するものである。   The present invention relates to a vacuum heat insulating material in which a core material made of a fiber assembly is sealed under reduced pressure in a jacket material.

近年、地球環境問題である温暖化の対策として、省エネルギーを推進する動きが活発となっており、温冷熱利用機器に関しては、熱を有効活用するという観点から優れた断熱性能を有する真空断熱材が普及しつつある。   In recent years, as a measure against global warming, which is a global environmental problem, there has been an active movement to promote energy saving, and for thermal and thermal equipment, there is a vacuum thermal insulation material that has excellent thermal insulation performance from the viewpoint of effective use of heat. It is becoming popular.

真空断熱材とは、袋状に加工したガスバリア性を有する外被材内へグラスウールのように気相容積比率が高く微細な空隙を構成する芯材を挿入し、芯材を減圧密封したものである。   A vacuum heat insulating material is a material in which a core material having a high gas phase volume ratio and a fine gap is inserted into a jacket material having a gas barrier property processed into a bag shape, and the core material is sealed under reduced pressure. is there.

芯材の空隙径を減圧下における気体分子の平均自由行程よりも小さくすることで、気体熱伝導成分は小さくなり、また、1mm程度の微細な空隙では対流熱伝達成分の影響は無視できるようになる。さらに、室温付近では輻射成分の影響は軽微であるため、真空断熱材における熱伝導は、芯材の固体熱伝導成分と僅かに残る気体熱伝導成分が支配的であるとされている。   By making the gap diameter of the core material smaller than the mean free path of gas molecules under reduced pressure, the gas heat conduction component becomes small, and the influence of the convective heat transfer component can be ignored in a fine gap of about 1 mm. Become. Furthermore, since the influence of the radiation component is slight near room temperature, it is said that the heat conduction in the vacuum heat insulating material is dominated by the solid heat conduction component of the core material and the slightly remaining gas heat conduction component.

この芯材となるグラスウールは、大気からの圧縮荷重に対して芯材が形成する空隙を保持しなければならないため、減圧密封される前のグラスウールは気相容積比率が高いことから非常に嵩高い。また、剛性が不足しているため、グラスウールを袋状に加工された外被材内に収納することは非常に困難であった。   The glass wool used as the core material must retain the void formed by the core material against the compressive load from the atmosphere. Therefore, the glass wool before being sealed under reduced pressure is very bulky because of its high gas phase volume ratio. . Moreover, since the rigidity is insufficient, it is very difficult to store the glass wool in the envelope material processed into a bag shape.

そこで、上記課題を解決するために、輻射率の小さな金属箔とシリカ系無機質繊維シー
トとを多数枚交互に積層してなる積層体を真空に対する大気圧に耐圧する密度まで積層方向に圧縮した状態で、熱伝導率の小さな材質よりなる糸で縫合した真空断熱材の芯材が提案されている(例えば、特許文献1参照)。
Therefore, in order to solve the above-mentioned problem, a state in which a laminate formed by alternately laminating a large number of metal foils having a low emissivity and silica-based inorganic fiber sheets is compressed in the laminating direction to a density that withstands atmospheric pressure against vacuum. A core material of a vacuum heat insulating material stitched with a thread made of a material having a low thermal conductivity has been proposed (see, for example, Patent Document 1).

以下、図面を参照しながら、上記従来の真空断熱材の芯材を説明する。図19は、特許文献1に記載された従来の真空断熱材の芯材の構成を示す断面図である。   Hereinafter, the core material of the conventional vacuum heat insulating material will be described with reference to the drawings. FIG. 19 is a cross-sectional view illustrating a configuration of a core material of a conventional vacuum heat insulating material described in Patent Document 1.

図19に示すように、特許文献1に記載された従来の真空断熱材の芯材1は、熱輻射率の小さな金属箔2とシリカ系無機繊維質シート3とを多数枚交互に積層してなる積層体4を真空に対する大気圧に耐圧するまで積層方向に圧縮した状態で、熱伝導率の小さな材質よりなる糸5で縫合したものであり、芯材1のハンドリング性の改善が図れるとされている。   As shown in FIG. 19, the core material 1 of the conventional vacuum heat insulating material described in Patent Document 1 is formed by alternately laminating a large number of metal foils 2 and silica-based inorganic fibrous sheets 3 having a low thermal radiation rate. It is said that the laminated body 4 is stitched with a thread 5 made of a material having a low thermal conductivity in a state where the laminated body 4 is compressed in the laminating direction until it is pressured to atmospheric pressure against vacuum, and the handling property of the core material 1 can be improved. ing.

特開平8−121683号公報JP-A-8-121683

しかしながら上記特許文献1の構成では、一本の糸5で縫製するハンドステッチミシンを用いた縫製方法であるため、糸5と被縫製体である積層体4との交絡力が弱く、縫製後における積層体4の圧縮率が80%〜90%となる嵩高い無機繊維を縫製すると、無機繊維の反発力によって積層体4から糸5が解け、積層体4に十分な剛性が付与されない。   However, in the configuration of Patent Document 1, since the sewing method uses a hand stitch sewing machine that sews with one thread 5, the entanglement force between the thread 5 and the laminated body 4 that is the sewing object is weak, and the sewing is performed after sewing. When a bulky inorganic fiber having a compression rate of 80% to 90% is sewn, the yarn 5 is unwound from the laminate 4 due to the repulsive force of the inorganic fiber, and sufficient rigidity is not given to the laminate 4.

この積層体4を真空断熱材の芯材1として用いると、真空包装前後において芯材1の厚み方向における変形量が大きくなるため、真空包装後の真空断熱材は平面性が十分に確保されず、また真空断熱材の一部もしくは全体を減圧することで真空断熱材の内部真空度を検査する工程においても真空断熱材の平面性を確保することが困難である。   When this laminated body 4 is used as the core material 1 of the vacuum heat insulating material, the amount of deformation in the thickness direction of the core material 1 increases before and after the vacuum packaging, so that the flatness of the vacuum heat insulating material after the vacuum packaging is not sufficiently secured. In addition, it is difficult to ensure the flatness of the vacuum heat insulating material even in the process of inspecting the degree of internal vacuum of the vacuum heat insulating material by reducing the pressure of a part or the whole of the vacuum heat insulating material.

本発明は、上記従来の課題に鑑み、平面性を確保した真空断熱材を提供することを目的とする。   An object of this invention is to provide the vacuum heat insulating material which ensured planarity in view of the said conventional subject.

上記目的を達成するために、本発明の真空断熱材は、少なくとも、繊維集合体からなり対向する2つの伝熱面を有する芯材と、前記芯材を覆う外被材とを有し、前記芯材を前記外被材内に減圧密封した真空断熱材であって、前記芯材の一方の前記伝熱面に露出する部分と他方の前記伝熱面に露出する部分と前記繊維集合体内に埋没する部分とを有する糸を備え、前記糸は、前記糸の断面積より大きな断面積を有する大径部を有し、前記糸の張力により前記繊維集合体が厚み方向に圧縮されているものである。 To achieve the above object, the vacuum heat insulator of the present invention, at least has a core having two heat transfer surfaces which faces made fiber aggregate, the envelope material covering the core material, wherein A vacuum heat insulating material in which a core material is sealed under reduced pressure in the jacket material, the portion exposed to one of the heat transfer surfaces of the core material, the portion exposed to the other heat transfer surface, and the fiber assembly A yarn having an embedded portion, the yarn has a large diameter portion having a cross- sectional area larger than the cross-sectional area of the yarn, and the fiber assembly is compressed in the thickness direction by the tension of the yarn It is.

の断面積よりも大きな断面積を有する大径部を設けたことで、大径部が縫製後も繊維集合体の圧縮状態を保持し続けるため、繊維集合体に剛性が付与される。この繊維集合体は芯材の厚み方向に圧縮されていることから、真空包装前後において繊維集合体の厚み方向に対する変形量が小さくなる。 By the large diameter portion digits set having a larger cross-sectional area than the cross-sectional area of the yarn, because the large diameter portion continues to hold the compressed state also fiber assembly after the sewing, rigidity is imparted to the fiber assembly. Since this fiber assembly is compressed in the thickness direction of the core material, the amount of deformation in the thickness direction of the fiber assembly becomes small before and after vacuum packaging.

本発明の真空断熱材は、真空包装前後において繊維集合体の厚み方向に対する変形量が小さいため、真空断熱材の平面性が確保される。また、この真空断熱材の一部または全体を減圧し真空断熱材の内部真空度を検査する工程においても真空断熱材の平面性を確保することができる。   Since the vacuum heat insulating material of the present invention has a small amount of deformation in the thickness direction of the fiber assembly before and after vacuum packaging, the flatness of the vacuum heat insulating material is ensured. Further, the flatness of the vacuum heat insulating material can be ensured also in the step of depressurizing a part or the whole of the vacuum heat insulating material and inspecting the internal vacuum degree of the vacuum heat insulating material.

本発明の実施の形態1における真空断熱材の構成を示す断面図Sectional drawing which shows the structure of the vacuum heat insulating material in Embodiment 1 of this invention. 同実施の形態の真空断熱材に用いた芯材の伝熱面を示す平面図The top view which shows the heat-transfer surface of the core material used for the vacuum heat insulating material of the embodiment 図2のA−A線断面図AA line sectional view of FIG. 本発明の実施の形態2における真空断熱材に用いた芯材の伝熱面を示す平面図The top view which shows the heat-transfer surface of the core material used for the vacuum heat insulating material in Embodiment 2 of this invention 図4のB−B線断面図BB sectional view of FIG. 本発明の実施の形態3における真空断熱材に用いた芯材の伝熱面を示す平面図The top view which shows the heat-transfer surface of the core material used for the vacuum heat insulating material in Embodiment 3 of this invention 図6のC−C線断面図CC sectional view of FIG. 本発明の実施の形態4における真空断熱材に用いた芯材の伝熱面を示す平面図The top view which shows the heat-transfer surface of the core material used for the vacuum heat insulating material in Embodiment 4 of this invention 図8のD−D線断面図DD sectional view of FIG. 本発明の実施の形態5における真空断熱材の構成を示す断面図Sectional drawing which shows the structure of the vacuum heat insulating material in Embodiment 5 of this invention. 同実施の形態の真空断熱材に用いた芯材の伝熱面を示す平面図The top view which shows the heat-transfer surface of the core material used for the vacuum heat insulating material of the embodiment 図11のE−E線断面図EE sectional view of FIG. 本発明の実施の形態6における真空断熱材に用いた芯材の伝熱面を示す平面図The top view which shows the heat-transfer surface of the core material used for the vacuum heat insulating material in Embodiment 6 of this invention 図13のF−F線断面図FF sectional view of FIG. 本発明の実施の形態7における真空断熱材に用いた芯材の伝熱面を示す平面図The top view which shows the heat-transfer surface of the core material used for the vacuum heat insulating material in Embodiment 7 of this invention 図15のG−G線断面図GG sectional view of FIG. 本発明の実施の形態8における真空断熱材に用いた芯材の伝熱面を示す平面図The top view which shows the heat-transfer surface of the core material used for the vacuum heat insulating material in Embodiment 8 of this invention 図17のH−H線断面図HH line sectional view of FIG. 特許文献1に示される従来の真空断熱材の芯材の構成を示す断面図Sectional drawing which shows the structure of the core material of the conventional vacuum heat insulating material shown by patent document 1

第1の発明は、少なくとも、繊維集合体からなり対向する2つの伝熱面を有する芯材と、前記芯材を覆う外被材とを有し、前記芯材を前記外被材内に減圧密封した真空断熱材であって、前記芯材の一方の前記伝熱面に露出する部分と他方の前記伝熱面に露出する部分と前記繊維集合体内に埋没する部分とを有する糸を備え、前記糸は、前記糸の断面積より大きな断面積を有する大径部を有し、前記糸の張力により前記繊維集合体が厚み方向に圧縮されているものである。 A first aspect of the present invention is at least, has a core member having two heat transfer surfaces which faces made fiber aggregate, the envelope material covering the core material, vacuum the core material in the outer covering material in A sealed vacuum heat insulating material, comprising a thread having a portion exposed to one of the heat transfer surfaces of the core, a portion exposed to the other heat transfer surface, and a portion buried in the fiber assembly; The yarn has a large-diameter portion having a cross- sectional area larger than the cross-sectional area of the yarn, and the fiber assembly is compressed in the thickness direction by the tension of the yarn.

の断面積よりも大きな断面積を有する大径部を設けたことで、大径部が縫製後も繊維集合体の圧縮状態を保持し続けるため、繊維集合体に剛性が付与される。この繊維集合体は芯材の厚み方向に圧縮されていることから、真空包装前後において繊維集合体の厚み方向に対する変形量が小さくなる作用を有する。 By the large diameter portion digits set having a larger cross-sectional area than the cross-sectional area of the yarn, because the large diameter portion continues to hold the compressed state also fiber assembly after the sewing, rigidity is imparted to the fiber assembly. Since this fiber assembly is compressed in the thickness direction of the core material, it has the effect of reducing the deformation amount in the thickness direction of the fiber assembly before and after vacuum packaging.

そして上記作用により、真空包装前後において繊維集合体の厚み方向に対する変形量が小さいため、真空断熱材の平面性が確保される。また、この真空断熱材の一部または全体を減圧し真空断熱材の内部真空度を検査する工程においても真空断熱材の平面性を確保することができる。   And by the said effect | action, since the deformation amount with respect to the thickness direction of a fiber assembly is small before and after vacuum packaging, the planarity of a vacuum heat insulating material is ensured. Further, the flatness of the vacuum heat insulating material can be ensured also in the step of depressurizing a part or the whole of the vacuum heat insulating material and inspecting the internal vacuum degree of the vacuum heat insulating material.

なお、繊維の種類に関して特に指定するものではないが、グラスウールやロックウール、アルミナ繊維、金属繊維など無機繊維や、ポリエチレンテレフタレート繊維など従来公知の材料が利用できる。なお、金属繊維を用いる場合は、金属の中でも比較的熱伝導性に優れた金属からなる金属繊維は、好ましくない。   In addition, although it does not specify in particular regarding the kind of fiber, conventionally well-known materials, such as inorganic fiber, such as glass wool, rock wool, an alumina fiber, and a metal fiber, and a polyethylene terephthalate fiber, can be utilized. In addition, when using a metal fiber, the metal fiber which consists of a metal comparatively excellent in heat conductivity among metals is not preferable.

その中でも繊維自体の弾性が高く、また繊維自体の熱伝導率が低く、なおかつ工業的に安価なグラスウールを用いることが望ましい。さらに、繊維の繊維径は小さいほど真空断熱材の熱伝導率が低下する傾向にあるため、より小さい繊維径の繊維を用いることが望ましいが、汎用的でないため繊維のコストアップが予想される。したがって、真空断熱材用の繊維として一般的に使用されている比較的安価な平均繊維径が3μm〜6μm程度の集合体からなるグラスウールがより望ましい。   Among them, it is desirable to use glass wool having high elasticity of the fiber itself, low thermal conductivity of the fiber itself, and industrially inexpensive. Furthermore, since the thermal conductivity of the vacuum heat insulating material tends to decrease as the fiber diameter of the fiber decreases, it is desirable to use a fiber having a smaller fiber diameter, but the fiber cost is expected to increase because it is not versatile. Therefore, the glass wool which consists of an aggregate | assembly with a comparatively cheap average fiber diameter of about 3 micrometers-6 micrometers generally used as a fiber for vacuum heat insulating materials is more desirable.

本発明における伝熱面とは、繊維の集合体を繊維断熱体として用いた際に、最も広い面積となる面とその対向する面を指す。また、断熱のため真空断熱材を、比較的高温の面または比較的低温の面に配置した場合に、真空断熱材を配設した比較的高温の面または比較的低温の面と対向する真空断熱材の面とその対向する面を指す。また、複数の繊維断熱体を積層して使用する場合は、積層方向に対して垂直な各真空断熱材の面とその対向する面を指す。   The heat transfer surface in the present invention refers to a surface having the largest area and a surface facing the surface when a fiber assembly is used as a fiber heat insulator. Further, when the vacuum heat insulating material is disposed on a relatively high temperature surface or a relatively low temperature surface for heat insulation, the vacuum heat insulating material is opposed to the relatively high temperature surface or the relatively low temperature surface on which the vacuum heat insulating material is disposed. It refers to the surface of the material and its opposite surface. Moreover, when using it laminating | stacking a some fiber heat insulator, the surface of each vacuum heat insulating material perpendicular | vertical with respect to the lamination direction and the surface which opposes it are pointed out.

本発明における外被材とは、真空断熱材の真空度を維持する役割を果たすものであり、最内層の熱溶着フィルムと、中間層としてのガスバリアフィルムとして金属箔や金属原子を蒸着した樹脂フィルムと、最外層として表面保護フィルムを、それぞれラミネートしたものである。   The jacket material in the present invention plays a role of maintaining the vacuum degree of the vacuum heat insulating material, and is a resin film in which metal foil or metal atoms are vapor-deposited as a gas barrier film as an inner layer and a heat-welded film as an inner layer. A surface protective film is laminated as the outermost layer.

なお、熱溶着フィルムとしては特に指定するものではないが、低密度ポリエチレンフィルム、直鎖低密度ポリエチレンフィルム、高密度ポリエチレンフィルム、ポリプロピレンフィルム、ポリアクリロニトリルフィルム等の熱可塑性樹脂、或いはそれらの混合体が使用できる。   The heat welding film is not particularly specified, but a thermoplastic resin such as a low density polyethylene film, a linear low density polyethylene film, a high density polyethylene film, a polypropylene film, a polyacrylonitrile film, or a mixture thereof is used. Can be used.

また、ガスバリアフィルムとしては、アルミニウム箔や銅箔などの金属箔や、ポリエチレンテレフタレートフィルムやエチレン−ビニルアルコール共重合体フィルム等の基材に、アルミニウムや銅等の金属やアルミナやシリカ等の金属酸化物を蒸着したフィルム等が使用できる。   Gas barrier films include metal foils such as aluminum foil and copper foil, base materials such as polyethylene terephthalate films and ethylene-vinyl alcohol copolymer films, metals such as aluminum and copper, and metal oxides such as alumina and silica. The film etc. which vapor-deposited the thing can be used.

また、表面保護フィルムとしては、ナイロンフィルム、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム等従来公知の材料が使用できる。   Moreover, as a surface protective film, conventionally well-known materials, such as a nylon film, a polyethylene terephthalate film, a polypropylene film, can be used.

なお、ガスや水蒸気の侵入による気体熱伝導成分の増加を抑制するために、ゼオライトや酸化カルシウム等のように、真空断熱材に侵入するガスや水蒸気を補足する吸着剤を芯材とともに減圧密封することが望ましい。   In order to suppress the increase of gas heat conduction component due to the invasion of gas and water vapor, the adsorbent supplementing the gas and water vapor entering the vacuum heat insulating material, such as zeolite and calcium oxide, is sealed under reduced pressure together with the core material. It is desirable.

また、真空断熱材の製造方法に関しては、特に指定するものではないが、一枚の外被材を折り返し、対向する外被材の端部に位置する熱溶着フィルム同士を熱溶着することで得た袋状の外被材内へ芯材を挿入し、減圧下にて袋状外被材の開口部に位置する熱溶着フィルム同士を熱溶着する方法や、熱溶着フィルム同士が対向するよう二枚の外被材を配置し、各外被材の端部に位置する熱溶着フィルム同士を熱溶着することで得た袋状の外被材内に芯材を挿入し、減圧下にて袋状外被材の開口部付近に位置する熱溶着フィルム同士を熱溶着する方法が利用できる。   In addition, the vacuum insulation material manufacturing method is not particularly specified, but it is obtained by folding back one outer cover material and thermally welding the heat-welded films located at the ends of the opposite outer cover materials. The core material is inserted into the bag-shaped jacket material, and the heat-welded films located at the openings of the bag-shaped jacket material are thermally welded under reduced pressure, or the heat-welded films are opposed to each other. The core material is inserted into a bag-shaped outer cover material obtained by arranging a single outer cover material and heat-welding the heat-welded films located at the ends of each outer cover material. The method of heat-welding the heat welding films located in the vicinity of the opening part of a shape-like outer covering material can be utilized.

本発明における糸とは、繊維の集合体を圧縮するための役割を果たすものである。なお、糸の材質を特に指定するものではないが、繊維集合体を構成する材質や、繊維集合体を所定の嵩密度まで圧縮する度合いに応じて、綿や絹などの天然繊維や、ポリエチレンテレフタレートやナイロン、ポリエチレン、ポリプロピレンなどの合成糸や、ガラス長繊維や金属長繊維などの無機糸が使用できる。   The yarn in the present invention plays a role for compressing an aggregate of fibers. In addition, although the material of the thread is not particularly specified, natural fibers such as cotton and silk, polyethylene terephthalate, depending on the material constituting the fiber aggregate and the degree to which the fiber aggregate is compressed to a predetermined bulk density Synthetic yarns such as nylon, polyethylene, and polypropylene, and inorganic yarns such as long glass fibers and long metal fibers can be used.

しかし、断熱材の断熱効果を確保する目的や、減圧下において発生する有機ガスを抑制する目的や、より高い剛性を有する断熱材を提供する目的から、ポリエチレンテレフタレートやナイロンなどの合成樹脂からなる有機繊維を用いることがより望ましい。   However, for the purpose of securing the heat insulating effect of the heat insulating material, the purpose of suppressing the organic gas generated under reduced pressure, and the purpose of providing a heat insulating material having higher rigidity, an organic material made of a synthetic resin such as polyethylene terephthalate or nylon is used. It is more desirable to use fibers.

さらに、糸の形態を特に指定するものではないが、一本の糸で構成されたモノフィラメントや、複数の糸で構成される撚り糸や、撚り糸に嵩高加工を施したウーリー糸や、伸縮性を有するゴム状の糸や、加熱により収縮する糸や、合成樹脂をI型に成型した商品タグを取り付ける部材などが利用できる。   Furthermore, although the shape of the yarn is not particularly specified, it has a monofilament composed of a single yarn, a twisted yarn composed of a plurality of yarns, a wooly yarn obtained by subjecting the twisted yarn to a bulky process, and elasticity. A rubber-like thread, a thread that shrinks when heated, a member to which a product tag in which a synthetic resin is molded into an I shape, and the like can be used.

また、一般的な縫製糸は、縫製時の糸滑りを良くする目的や撚糸工程の糸切れを防止する目的で糸の表面に油剤がコーティングされている。この油剤がコーティングされた糸を繊維断熱体へ適用すると、減圧下にて有機ガスの発生原因となるため、油剤は可能な限り少ない事が好ましい。なお、前述のモノフィラメントは、撚糸工程が無いため油剤の付着量が0.1%〜0.3%重量比と撚り糸に比べて少ない。よって、モノフィラメントを本発明に適用することがより望ましいと考える。   Further, a general sewing thread is coated with an oil agent on the surface of the thread for the purpose of improving the sliding of the thread during sewing and for preventing the thread breakage in the twisting process. When this oil-coated yarn is applied to a fiber heat insulator, it causes generation of organic gas under reduced pressure. Therefore, it is preferable that the amount of oil is as small as possible. In addition, since the above-mentioned monofilament does not have a twisting process, the adhesion amount of the oil agent is 0.1% to 0.3% in weight ratio, which is smaller than that of the twisted thread. Therefore, it is more desirable to apply a monofilament to the present invention.

さらに、一般的な縫製糸には、意匠性を鑑みて着色剤が付与されている。この着色剤が付与された糸を繊維断熱体へ適用すると前述の油剤と同様に、減圧下にて有機ガスの発生原因となるため着色剤が付与されていない生成の糸がより望ましい。   Furthermore, a coloring agent is given to a general sewing thread in view of design properties. When the yarn to which the colorant is applied is applied to the fiber heat insulator, as in the case of the above-described oil agent, an organic gas is generated under reduced pressure, and thus a generated yarn to which no colorant is applied is more desirable.

本発明における大径部とは、糸に備えられたものであり、かつ、繊維集合体に埋没した糸の断面積よりも大きな断面積を有する部分を指す。なお、大径部の種類や形状を特に指定するものではないが、縫い終わり箇所に縫製針を当て、針に糸を巻きつけた後に針を抜いて引き締めたものや、糸を絡ませて節を形成したものや、糸を他の部材に係留したものや、糸を他の部材と絡ませたものが考えられる。 The large-diameter portion in the present invention are those provided in the yarn, and refers to a moiety having a larger cross-sectional area than the cross-sectional area of the yarn was embedded in the fiber aggregate. The type and shape of the large-diameter part are not particularly specified, but the sewing needle is applied to the end of sewing, the thread is wound around the needle, the needle is pulled out and tightened, or the knot is entangled with the thread. A formed thread, a thread anchored to another member, or a thread entangled with another member can be considered.

第2の発明は、特に、第1の発明において、前記大径部は、玉結びにより形成されたものである。 In a second aspect of the invention, in particular, in the first aspect of the invention, the large diameter portion is formed by ball knotting.

第3の発明は、特に、第1の発明において、前記大径部は、前記糸に輪を作り、前記輪の中に前記糸を通すことにより形成されたものである。 A third invention is, in particular, in the first invention, the large-diameter portion is looped to the yarn, and is formed by passing said yarn in said wheel.

第4の発明は、特に、第1の発明において、前記大径部は、前記糸の空環により形成されたものである。 In a fourth aspect of the present invention, in particular, in the first aspect, the large diameter portion is formed by an empty ring of the yarn.

これにより、第1の発明の作用効果に加えて、大径部となる空環は糸の結び目が複数連なっているため、何らかの原因で大径部の一部が繊維集合体内へ埋没した場合であっても他の大径部が繊維集合体の圧縮状態を保持し続けるため、繊維集合体に剛性が付与される作用を有する。   Thereby, in addition to the effect of 1st invention, since the empty ring used as a large diameter part has several knots of a thread | yarn, when a part of large diameter part is buried in the fiber assembly for some reason, Even if it exists, in order that another large diameter part may hold | maintain the compression state of a fiber assembly, it has the effect | action which a rigidity is provided to a fiber assembly.

本発明における空環とは、繊維集合体を介さずに形成された糸の縫い目を指す。なお、空環は、繊維集合体を本縫いや単環縫いや二重環縫いによって形成されるものである。   The empty ring in the present invention refers to a thread seam formed without a fiber assembly. In addition, an empty ring is a fiber assembly formed by a lock stitch, a single ring stitch, or a double ring stitch.

第5の発明は、特に、第1の発明において、前記大径部は、前記糸を絡ませることにより節を形成したものである。 In a fifth aspect of the invention, in particular, in the first aspect of the invention, the large diameter portion forms a knot by entanglement of the yarn .

第6の発明は、特に、第1の発明において、前記大径部は、前記糸が貫通または交絡する係留部材により形成されたものである。 In a sixth aspect of the invention, in particular, in the first aspect of the invention, the large diameter portion is formed by an anchoring member through which the yarn penetrates or entangles .

第7の発明は、特に、第6の発明において、前記係留部材とは、前記糸を固定するものである。 In a seventh aspect of the invention, in particular , in the sixth aspect of the invention, the mooring member fixes the yarn .

第8の発明は、特に第7の発明において、前記係留部材は、棒状、または、シート状、もしくは、ボタン状の形状であるものである。
また、第9の発明は、特に第8の発明において、前記係留部材は、不織布であるものである。
また、第10の発明は、特に第6から第9の発明において、前記係留部材の厚みは、1mm以内としたものである。
According to an eighth aspect of the invention, in particular, in the seventh aspect of the invention, the anchoring member has a rod shape, a sheet shape, or a button shape .
In addition, according to a ninth aspect, in the eighth aspect, the mooring member is a nonwoven fabric.
In addition, according to a tenth aspect of the invention, in particular, in the sixth to ninth aspects of the invention, the thickness of the anchoring member is within 1 mm.

ここで、第6から第10の発明においては、第1の発明の作用効果に加えて、繊維集合体に対して係留部材が楔の役割を果たすため、繊維集合体に付与された剛性がより強固になるという作用を有する。 Here, in the sixth to tenth inventions, in addition to the function and effect of the first invention, the anchoring member serves as a wedge with respect to the fiber assembly, so that the rigidity imparted to the fiber assembly is further increased. Has the effect of strengthening.

本発明における係留部材とは、糸を固定する役割を果たすものである。なお、糸の固定方法を特に指定するものではないが、係留部材に糸を絡ませる方法や、係留部材を貫通するように糸を配置し、係留部材上に係留部材の貫通孔よりも大きな大径部を糸で形成する方法が考えられる。   The anchoring member in the present invention plays a role of fixing the yarn. Although the thread fixing method is not particularly specified, the thread is entangled with the mooring member, or the thread is arranged so as to penetrate the mooring member, and is larger than the through hole of the mooring member. A method of forming the diameter portion with a thread is conceivable.

また、係留部材の形状を特に指定するものではないが、針金のような棒状や、フィルムや不織布のようなシート状や、孔を有するボタン状など様々な形状が考えられる。しかし、真空断熱材の平面性を確保する目的や外被材の損傷を抑える目的から、係留部材の厚みは1mm以内が望ましい。   Although the shape of the anchoring member is not particularly specified, various shapes such as a bar shape such as a wire, a sheet shape such as a film or a non-woven fabric, and a button shape having a hole are conceivable. However, the thickness of the mooring member is preferably within 1 mm for the purpose of ensuring the flatness of the vacuum heat insulating material and the purpose of suppressing damage to the jacket material.

また、第9の発明においては、不織布を係留部材として用いると、糸が不織布に絡まり易くなるため、大径部の大きさを第8の発明において、より小さくすることができる。なお、フィルムやシートを伝熱面全体に設けると、繊維集合体を全体的に圧縮する作用が得られるため、真空断熱材の平面性が確保し易くなる効果が得られる。 Further, in a ninth aspect, the use of non-woven fabric as the anchoring member, since the yarn is easily entangled nonwoven fabric, Oite the size of the large diameter portion to the eighth invention, can be made smaller. In addition, since the effect | action which compresses a fiber assembly as a whole will be acquired if a film and a sheet | seat are provided in the whole heat-transfer surface, the effect which becomes easy to ensure the planarity of a vacuum heat insulating material will be acquired.

11の発明は、特に第1の発明において、前記大径部は、互いに隔離して配置された複数の前記糸の端部同士を結んで形成されたものである。 In an eleventh aspect of the invention, in particular, in the first aspect of the invention, the large-diameter portion is formed by connecting ends of the plurality of yarns arranged separately from each other .

12の発明は、特に第1の発明において、前記大径部は、前記糸を蛇行させて縫製し、前記糸の端部同士を結んで形成されたものである。 In a twelfth aspect of the invention, in particular, in the first aspect of the invention , the large-diameter portion is formed by meandering the thread to sew and connecting ends of the thread .

13の発明は、特に第1から第12の発明において、前記糸は、並縫い、または、半返し縫いしたものである。 In a thirteenth aspect of the invention, particularly in the first to twelfth aspects of the invention , the thread is obtained by side-by-side stitching or half-turn stitching .

14の発明は、特に第1から第13の発明において、複数の繊維断熱体を積層したものである。
また、第15の発明は、特に第1から第14の発明の真空断熱材を備えた冷蔵庫である。また、第16の発明は、特に第1から第14の発明の真空断熱材を備えたジャーポットである。
また、第17の発明は、特に第1から第14の発明の真空断熱材を備えた住宅である。
In a fourteenth aspect of the invention, in particular, in the first to thirteenth aspects, a plurality of fiber heat insulators are laminated .
The fifteenth aspect of the invention is a refrigerator provided with the vacuum heat insulating material of the first to fourteenth aspects of the invention. The sixteenth invention is a jar pot provided with the vacuum heat insulating material of the first to fourteenth inventions.
In addition, the seventeenth invention is a house provided with the vacuum heat insulating material of the first to fourteenth inventions.

以下、本発明の実施の形態について、図面を参照しながら説明するが、先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the same components as those of the above-described embodiments will be denoted by the same reference numerals, and detailed description thereof will be omitted. The present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1における真空断熱材の構成を示す断面図、図2は同実施の
形態の真空断熱材に用いた芯材の伝熱面を示す平面図、図3は同実施の形態の真空断熱材に用いた芯材を図2のA−A線の位置で切断し、その断面を矢印の方向から見た場合の断面図である。
(Embodiment 1)
FIG. 1 is a cross-sectional view showing a configuration of a vacuum heat insulating material in Embodiment 1 of the present invention, FIG. 2 is a plan view showing a heat transfer surface of a core material used in the vacuum heat insulating material of the same embodiment, and FIG. It is sectional drawing at the time of cut | disconnecting the core material used for the vacuum heat insulating material of embodiment at the position of the AA line of FIG. 2, and seeing the cross section from the direction of the arrow.

図1から図3に示すように、本実施の形態の真空断熱材6は、繊維集合体7からなり対向する二つの伝熱面8を有する芯材9と、水分吸着材12と、芯材9及び水分吸着材12を覆う外被材10とからなり、芯材9が外被材10内に減圧密封されたものである。また、芯材9は、一方の伝熱面8に露出する部分と他方の伝熱面8に露出する部分と繊維集合体7内に埋没する部分とを有する糸5を備え、糸5には繊維集合体7内を厚み方向に移動することが困難な大きさの複数の大径部11が繊維集合体7内に埋没する部分を挟んで伝熱面8に露出している。なお、大径部11は糸5を結んで形成されている。そして、糸5の張力により、繊維集合体7が厚み方向に圧縮されている。   As shown in FIGS. 1 to 3, the vacuum heat insulating material 6 of the present embodiment includes a core material 9 having two heat transfer surfaces 8 made of a fiber assembly 7, a moisture adsorbing material 12, and a core material. 9 and a covering material 10 covering the moisture adsorbing material 12, and the core material 9 is sealed in the covering material 10 under reduced pressure. The core material 9 includes a yarn 5 having a portion exposed on one heat transfer surface 8, a portion exposed on the other heat transfer surface 8, and a portion buried in the fiber assembly 7. A plurality of large-diameter portions 11 having a size that is difficult to move in the thickness direction in the fiber assembly 7 are exposed to the heat transfer surface 8 across a portion embedded in the fiber assembly 7. The large diameter portion 11 is formed by tying the yarn 5. The fiber assembly 7 is compressed in the thickness direction by the tension of the yarn 5.

本実施の形態では、複数(図2では6本)の糸5で、互いに所定間隔離して、芯材9の長手方向に平行に、並縫いしている。そして、伝熱面8に露出する部分毎に糸5の玉結びにより大径部11を形成している。なお、糸5は、繊維集合体7内を貫通する箇所がほぼ均等に分布し、伝熱面8に露出する部分が、芯材9の長手方向に垂直に並ぶようにしている。   In the present embodiment, a plurality (six in FIG. 2) of threads 5 are sewn in parallel with each other at a predetermined interval and parallel to the longitudinal direction of the core material 9. And the large diameter part 11 is formed by the ball knot of the thread | yarn 5 for every part exposed to the heat-transfer surface 8. FIG. In the yarn 5, the portions penetrating through the fiber assembly 7 are distributed almost evenly, and the portions exposed to the heat transfer surface 8 are arranged perpendicular to the longitudinal direction of the core material 9.

本実施の形態では、繊度が205dtexのポリエチレンテレフタレートを糸5として用い、糸5の端部に輪を作り、輪の中に糸5を通すことで大径部11を形成した。この糸5の他端を目付量2,400g/m2のグラスウールからなる繊維集合体7(厚み150mm)を貫通させた後、繊維集合体7の伝熱面8上に糸で輪を作り、その輪の中に糸を通すことで糸5に大径部11を形成した。この作業を繰り返すことで、図2および図3の形状となる芯材9を手に入れた。   In the present embodiment, polyethylene terephthalate having a fineness of 205 dtex is used as the yarn 5, a ring is formed at the end of the yarn 5, and the large diameter portion 11 is formed by passing the yarn 5 through the ring. After passing the other end of the yarn 5 through a fiber assembly 7 (thickness 150 mm) made of glass wool having a basis weight of 2,400 g / m 2, a ring is formed on the heat transfer surface 8 of the fiber assembly 7, The large-diameter portion 11 was formed on the thread 5 by passing the thread through the ring. By repeating this operation, the core material 9 having the shape shown in FIGS. 2 and 3 was obtained.

この芯材9の厚みは15mmであり、また取り扱いは良好であったため、本実施の形態における繊維集合体7の圧縮効果は十分であると判断した。   Since the thickness of the core material 9 was 15 mm and the handling was good, it was determined that the compression effect of the fiber assembly 7 in the present embodiment was sufficient.

次に、芯材9を酸化カルシウムからなる水分吸着材12とともに袋状の外被材10内へ挿入し、外被材10内を減圧密封することで真空断熱材6を手に入れた。この真空断熱材6の厚みを測ると9.8mmであり、真空断熱材6の伝熱面に波打ちなどの変形は見られないことから平面性は良好であると判断した。   Next, the core material 9 was inserted into the bag-shaped outer cover material 10 together with the moisture adsorbing material 12 made of calcium oxide, and the vacuum heat insulating material 6 was obtained by sealing the interior of the outer cover material 10 under reduced pressure. When the thickness of the vacuum heat insulating material 6 was measured, it was 9.8 mm, and no deformation such as undulation was observed on the heat transfer surface of the vacuum heat insulating material 6, so that the flatness was judged to be good.

以上のように構成された芯材9は、糸5よりも大きな断面積を有する大径部11が繊維集合体の伝熱面8に留まり、縫製後も繊維集合体7の圧縮状態を保持し続けるため、繊維集合体7に剛性が付与される。これによって、この繊維集合体7を用いた真空断熱材6は厚み方向に圧縮されていることから、真空包装前後において繊維集合体7の厚み方向に対する変形量が小さくなり、真空断熱材6の平面性が確保される。また、この真空断熱材6の一部または全体を減圧し真空断熱材6の内部真空度を検査する工程においても真空断熱材6の平面性を確保することができる。   In the core material 9 configured as described above, the large-diameter portion 11 having a cross-sectional area larger than that of the yarn 5 remains on the heat transfer surface 8 of the fiber assembly, and maintains the compressed state of the fiber assembly 7 even after sewing. In order to continue, the fiber assembly 7 is given rigidity. Accordingly, since the vacuum heat insulating material 6 using the fiber assembly 7 is compressed in the thickness direction, the amount of deformation in the thickness direction of the fiber assembly 7 is reduced before and after vacuum packaging, and the plane of the vacuum heat insulating material 6 is reduced. Sex is secured. Further, the flatness of the vacuum heat insulating material 6 can be ensured also in the step of depressurizing a part or the whole of the vacuum heat insulating material 6 and inspecting the internal vacuum degree of the vacuum heat insulating material 6.

さらには、上下2本の糸を使ってミシンで本縫い方法に比べて、繊維集合体7内に埋没する糸の数が減少し、熱橋が低減するという付帯効果が生じる。   Furthermore, as compared with the main sewing method using the upper and lower two threads, the number of threads buried in the fiber assembly 7 is reduced, and the incidental effect that the thermal bridge is reduced occurs.

(実施の形態2)
図4は本発明の実施の形態2における真空断熱材に用いた芯材の伝熱面を示す平面図、図5は同実施の形態の真空断熱材に用いた芯材を図4のB−B線の位置で切断し、その断面を矢印の方向から見た場合の断面図である。
(Embodiment 2)
4 is a plan view showing the heat transfer surface of the core material used in the vacuum heat insulating material in Embodiment 2 of the present invention, and FIG. 5 shows the core material used in the vacuum heat insulating material of the same embodiment in FIG. It is sectional drawing at the time of cut | disconnecting in the position of B line and seeing the cross section from the direction of the arrow.

図4、図5に示すように、本実施の形態の真空断熱材6は、実施の形態1の真空断熱材6と同様に、繊維集合体7からなり対向する二つの伝熱面8を有する芯材9と、水分吸着材12と、芯材9及び水分吸着材12を覆う外被材10とからなり、芯材9が外被材10内に減圧密封されたものである。また、芯材9は、一方の伝熱面8に露出する部分と他方の伝熱面8に露出する部分と繊維集合体7内に埋没する部分とを有する糸5を備え、糸5の両端には、それぞれ繊維集合体7内を厚み方向に移動することが困難な大きさの大径部11が繊維集合体7内に埋没する部分を挟んで伝熱面8に露出している。そして、糸5の張力により、繊維集合体7が厚み方向に圧縮されている。   As shown in FIGS. 4 and 5, the vacuum heat insulating material 6 of the present embodiment has two heat transfer surfaces 8 made of a fiber assembly 7 and facing each other, like the vacuum heat insulating material 6 of the first embodiment. The core material 9 includes a core material 9, a moisture adsorbing material 12, and a jacket material 10 that covers the core material 9 and the moisture adsorbing material 12. The core material 9 is sealed in the jacket material 10 under reduced pressure. The core material 9 includes a yarn 5 having a portion exposed on one heat transfer surface 8, a portion exposed on the other heat transfer surface 8, and a portion buried in the fiber assembly 7. The large-diameter portion 11 having a size that is difficult to move in the thickness direction in the fiber assembly 7 is exposed to the heat transfer surface 8 with a portion buried in the fiber assembly 7 interposed therebetween. The fiber assembly 7 is compressed in the thickness direction by the tension of the yarn 5.

本実施の形態では、I型の形状に成型され、直径が0.5mmのナイロン樹脂を糸5として用い、タグガン呼ばれる冶具を用いて糸5の他端が直線となるよう曲げ、目付量2,400g/m2のグラスウールからなる繊維集合体7(厚み150mm)を一方の伝熱面8から他方の伝熱面8へ貫通させた。この作業を芯材9の伝熱面8において千鳥状になるように繰り返すことで図4および図5の形状となる芯材9を手に入れた。   In this embodiment, a nylon resin having a diameter of 0.5 mm is used as the thread 5 and is bent using a jig called a tag gun so that the other end of the thread 5 is a straight line. A fiber assembly 7 (thickness 150 mm) made of 400 g / m 2 of glass wool was penetrated from one heat transfer surface 8 to the other heat transfer surface 8. By repeating this operation so as to form a staggered pattern on the heat transfer surface 8 of the core material 9, the core material 9 having the shape shown in FIGS. 4 and 5 was obtained.

この芯材9の厚みは20mmであり、また取り扱いは良好であったため、本実施の形態における繊維集合体7の圧縮効果は十分であると判断した。   Since the thickness of the core material 9 was 20 mm and the handling was good, it was determined that the compression effect of the fiber assembly 7 in the present embodiment was sufficient.

次に、芯材9を酸化カルシウムからなる水分吸着材12とともに袋状の外被材10内へ挿入し、外被材10内を減圧密封することで真空断熱材6を手に入れた。この真空断熱材6の厚みを測ると10mmであり、真空断熱材6の伝熱面に波打ちなどの変形は見られないことから平面性は良好であると判断した。   Next, the core material 9 was inserted into the bag-shaped outer cover material 10 together with the moisture adsorbing material 12 made of calcium oxide, and the vacuum heat insulating material 6 was obtained by sealing the interior of the outer cover material 10 under reduced pressure. When the thickness of the vacuum heat insulating material 6 was measured, it was 10 mm, and no deformation such as undulation was observed on the heat transfer surface of the vacuum heat insulating material 6, so that the flatness was judged to be good.

以上のように構成された芯材9は、糸5よりも大きな断面積を有する大径部11が繊維集合体の伝熱面8に留まり、縫製後も繊維集合体7の圧縮状態を保持し続けるため、繊維集合体7に剛性が付与される。これによって、この繊維集合体7を用いた真空断熱材6は厚み方向に圧縮されていることから、真空包装前後において繊維集合体7の厚み方向に対する変形量が小さくなり、真空断熱材6の平面性が確保される。また、この真空断熱材6の一部または全体を減圧し真空断熱材6の内部真空度を検査する工程においても真空断熱材6の平面性を確保することができる。   In the core material 9 configured as described above, the large-diameter portion 11 having a cross-sectional area larger than that of the yarn 5 remains on the heat transfer surface 8 of the fiber assembly, and maintains the compressed state of the fiber assembly 7 even after sewing. In order to continue, the fiber assembly 7 is given rigidity. Accordingly, since the vacuum heat insulating material 6 using the fiber assembly 7 is compressed in the thickness direction, the amount of deformation in the thickness direction of the fiber assembly 7 is reduced before and after vacuum packaging, and the plane of the vacuum heat insulating material 6 is reduced. Sex is secured. Further, the flatness of the vacuum heat insulating material 6 can be ensured also in the step of depressurizing a part or the whole of the vacuum heat insulating material 6 and inspecting the internal vacuum degree of the vacuum heat insulating material 6.

さらには、上下2本の糸を使ってミシンで本縫い方法に比べて、繊維集合体7内に埋没する糸の数が減少し、熱橋が低減するという付帯効果が生じる。   Furthermore, as compared with the main sewing method using the upper and lower two threads, the number of threads buried in the fiber assembly 7 is reduced, and the incidental effect that the thermal bridge is reduced occurs.

(実施の形態3)
図6は本発明の実施の形態3における真空断熱材に用いた芯材の伝熱面を示す平面図、図7は同実施の形態の真空断熱材に用いた芯材を図6のC−C線の位置で切断し、その断面を矢印の方向から見た場合の断面図である。
(Embodiment 3)
6 is a plan view showing the heat transfer surface of the core material used for the vacuum heat insulating material in Embodiment 3 of the present invention, and FIG. 7 shows the core material used for the vacuum heat insulating material of the same embodiment in FIG. It is sectional drawing at the time of cut | disconnecting in the position of C line and seeing the cross section from the direction of the arrow.

図6、図7に示すように、本実施の形態の真空断熱材6は、実施の形態1の真空断熱材6と同様に、繊維集合体7からなり対向する二つの伝熱面8を有する芯材9と、水分吸着材12と、芯材9及び水分吸着材12を覆う外被材10とからなり、芯材9が外被材10内に減圧密封されたものである。また、芯材9は、一方の伝熱面8に露出する部分と他方の伝熱面8に露出する部分と繊維集合体7内に埋没する部分とを有する糸5を備え、糸5の両端近傍には繊維集合体7内を厚み方向に移動することが困難な大きさの大径部11が繊維集合体7内に埋没する部分を挟んで伝熱面8に露出している。なお、大径部11は糸5を結んで形成されている。そして、糸5の張力により、繊維集合体7が厚み方向に圧縮されている。   As shown in FIGS. 6 and 7, the vacuum heat insulating material 6 of the present embodiment has two heat transfer surfaces 8 made of a fiber assembly 7 and facing each other, like the vacuum heat insulating material 6 of the first embodiment. The core material 9 includes a core material 9, a moisture adsorbing material 12, and a jacket material 10 that covers the core material 9 and the moisture adsorbing material 12. The core material 9 is sealed in the jacket material 10 under reduced pressure. The core material 9 includes a yarn 5 having a portion exposed on one heat transfer surface 8, a portion exposed on the other heat transfer surface 8, and a portion buried in the fiber assembly 7. In the vicinity, a large-diameter portion 11 having a size that is difficult to move in the thickness direction in the fiber assembly 7 is exposed on the heat transfer surface 8 with a portion embedded in the fiber assembly 7 interposed therebetween. The large diameter portion 11 is formed by tying the yarn 5. The fiber assembly 7 is compressed in the thickness direction by the tension of the yarn 5.

本実施の形態では、複数(図6では6本)の糸5で、互いに所定間隔離して、芯材9の
長手方向に平行に、半返し縫いしている。そして、糸5の両端近傍の伝熱面8に露出する部分には糸5の玉結びにより大径部11を形成している。なお、糸5は、繊維集合体7内を貫通する箇所がほぼ均等に碁盤目状に分布するようにしている。
In the present embodiment, a plurality (six in FIG. 6) of threads 5 are half-reversely sewn in parallel to the longitudinal direction of the core material 9 while being separated from each other by a predetermined distance. And the large diameter part 11 is formed in the part exposed to the heat-transfer surface 8 of the both ends vicinity of the thread | yarn 5 by the ball knot of the thread | yarn 5. FIG. In addition, as for the thread | yarn 5, the location which penetrates the inside of the fiber assembly 7 is made to distribute substantially equally in a grid pattern.

本実施の形態では、繊度が110dtexのナイロンを糸5として用い、糸5の端部に輪を作り、輪の中に糸を通すことで大径部11を形成した。この糸5の他端を目付量2,400g/m2のグラスウールからなる繊維集合体7(厚み150mm)の一方の伝熱面8から他方の伝熱面8へ貫通させた後、繊維集合体7の同一伝熱面8上の異なる箇所から対向する伝熱面8へ糸5を貫通させた。この作業を繰り返した後、最後に糸5で輪を作り、輪の中に糸5を通すことで大径部11を形成し、図6および図7の形状となる芯材9を手に入れた。   In the present embodiment, nylon having a fineness of 110 dtex is used as the yarn 5, a ring is formed at the end of the yarn 5, and the large diameter portion 11 is formed by passing the yarn through the ring. After the other end of the yarn 5 is penetrated from one heat transfer surface 8 of the fiber aggregate 7 (thickness 150 mm) made of glass wool having a basis weight of 2,400 g / m 2 to the other heat transfer surface 8, the fiber aggregate 7 The thread | yarn 5 was penetrated from the different location on the same heat transfer surface 8 to the heat transfer surface 8 which opposes. After repeating this operation, finally, a ring is formed with the thread 5, and the large diameter portion 11 is formed by passing the thread 5 through the ring, and the core material 9 having the shape shown in FIGS. 6 and 7 is obtained. It was.

この芯材9の厚みは23mmであり、また取り扱いは良好であったため、本実施の形態における繊維集合体7の圧縮効果は十分であると判断した。   Since the thickness of the core material 9 was 23 mm and the handling was good, it was determined that the compression effect of the fiber assembly 7 in the present embodiment was sufficient.

次に、芯材9を酸化カルシウムからなる水分吸着材12とともに袋状の外被材10内へ挿入し、外被材10内を減圧密封することで真空断熱材6を手に入れた。この真空断熱材6の厚みを測ると11mmであり、真空断熱材6の伝熱面に波打ちなどの変形は見られないことから平面性は良好であると判断した。   Next, the core material 9 was inserted into the bag-shaped outer cover material 10 together with the moisture adsorbing material 12 made of calcium oxide, and the vacuum heat insulating material 6 was obtained by sealing the interior of the outer cover material 10 under reduced pressure. When the thickness of the vacuum heat insulating material 6 was measured, it was 11 mm, and no deformation such as undulation was observed on the heat transfer surface of the vacuum heat insulating material 6, so that the flatness was judged to be good.

以上のように構成された芯材9は、糸5よりも大きな断面積を有する大径部11が繊維集合体の伝熱面8に留まり、縫製後も繊維集合体7の圧縮状態を保持し続けるため、繊維集合体7に剛性が付与される。これによって、この繊維集合体7を用いた真空断熱材6は厚み方向に圧縮されていることから、真空包装前後において繊維集合体7の厚み方向に対する変形量が小さくなり、真空断熱材6の平面性が確保される。また、この真空断熱材6の一部または全体を減圧し真空断熱材6の内部真空度を検査する工程においても真空断熱材6の平面性を確保することができる。   In the core material 9 configured as described above, the large-diameter portion 11 having a cross-sectional area larger than that of the yarn 5 remains on the heat transfer surface 8 of the fiber assembly, and maintains the compressed state of the fiber assembly 7 even after sewing. In order to continue, the fiber assembly 7 is given rigidity. Accordingly, since the vacuum heat insulating material 6 using the fiber assembly 7 is compressed in the thickness direction, the amount of deformation in the thickness direction of the fiber assembly 7 is reduced before and after vacuum packaging, and the plane of the vacuum heat insulating material 6 is reduced. Sex is secured. Further, the flatness of the vacuum heat insulating material 6 can be ensured also in the step of depressurizing a part or the whole of the vacuum heat insulating material 6 and inspecting the internal vacuum degree of the vacuum heat insulating material 6.

さらには、上下2本の糸を使ってミシンで本縫い方法に比べて、繊維集合体7内に埋没する糸の数が減少し、熱橋が低減するという付帯効果が生じる。   Furthermore, as compared with the main sewing method using the upper and lower two threads, the number of threads buried in the fiber assembly 7 is reduced, and the incidental effect that the thermal bridge is reduced occurs.

(実施の形態4)
図8は本発明の実施の形態4における真空断熱材に用いた芯材の伝熱面を示す平面図、図9は同実施の形態の真空断熱材に用いた芯材を図8のD−D線の位置で切断し、その断面を矢印の方向から見た場合の断面図である。
(Embodiment 4)
FIG. 8 is a plan view showing the heat transfer surface of the core material used in the vacuum heat insulating material according to Embodiment 4 of the present invention, and FIG. 9 shows the core material used in the vacuum heat insulating material of the same embodiment in FIG. It is sectional drawing at the time of cut | disconnecting in the position of D line and seeing the cross section from the direction of the arrow.

図8、図9に示すように、本実施の形態の真空断熱材6は、実施の形態1の真空断熱材6と同様に、繊維集合体7からなり対向する二つの伝熱面8を有する芯材9と、水分吸着材12と、芯材9及び水分吸着材12を覆う外被材10とからなり、芯材9が外被材10内に減圧密封されたものである。また、芯材9は、一方の伝熱面8に露出する部分と他方の伝熱面8に露出する部分と繊維集合体7内に埋没する部分とを有する糸5を備え、糸5の両端近傍には繊維集合体7内を厚み方向に移動することが困難な大きさの大径部11が繊維集合体7内に埋没する部分を挟んで伝熱面8に露出している。なお、大径部11は糸5を結んで形成されている。そして、糸5の張力により、繊維集合体7が厚み方向に圧縮されている。   As shown in FIGS. 8 and 9, the vacuum heat insulating material 6 of the present embodiment has two heat transfer surfaces 8 made of fiber assemblies 7 and facing each other, like the vacuum heat insulating material 6 of the first embodiment. The core material 9 includes a core material 9, a moisture adsorbing material 12, and a jacket material 10 that covers the core material 9 and the moisture adsorbing material 12. The core material 9 is sealed in the jacket material 10 under reduced pressure. The core material 9 includes a yarn 5 having a portion exposed on one heat transfer surface 8, a portion exposed on the other heat transfer surface 8, and a portion buried in the fiber assembly 7. In the vicinity, a large-diameter portion 11 having a size that is difficult to move in the thickness direction in the fiber assembly 7 is exposed on the heat transfer surface 8 with a portion embedded in the fiber assembly 7 interposed therebetween. The large diameter portion 11 is formed by tying the yarn 5. The fiber assembly 7 is compressed in the thickness direction by the tension of the yarn 5.

本実施の形態では、繊度が135dtexのポリエチレンテレフタレートを糸5として単環縫いミシンにセットし、係留部材としてのポリエチレンテレフタレートからなる不織布シート13を縫製して空環を形成した。次に、不織布シート13と糸5が連続した状態のまま目付量2,400g/m2のグラスウールからなる繊維集合体7(厚み150mm
)を縫製し、最後に糸のみを絡ませて空環を形成した。この作業を繰り返すことで、図8および図9の形状となる芯材9を手に入れた。
In the present embodiment, polyethylene terephthalate having a fineness of 135 dtex is set as a thread 5 on a single-ring stitch sewing machine, and a nonwoven fabric sheet 13 made of polyethylene terephthalate as an anchoring member is sewn to form an empty ring. Next, a fiber assembly 7 (thickness 150 mm) made of glass wool having a basis weight of 2,400 g / m 2 while the nonwoven fabric sheet 13 and the yarn 5 are continuous.
) Was sewn, and finally only a thread was entangled to form an empty ring. By repeating this operation, the core material 9 having the shape shown in FIGS. 8 and 9 was obtained.

この芯材の厚みは18mmであり、また取り扱いは良好であったため、本実施の形態における繊維集合体7の圧縮効果は十分であると判断した。   Since the thickness of the core material was 18 mm and the handling was good, it was determined that the compression effect of the fiber assembly 7 in the present embodiment was sufficient.

次に、芯材9を酸化カルシウムからなる水分吸着材12とともに袋状の外被材10内へ挿入し、外被材10内を減圧密封することで真空断熱材6を手に入れた。この真空断熱材6の厚みを測ると10.4mmであり、真空断熱材6の伝熱面に波打ちなどの変形は見られないことから平面性は良好であると判断した。   Next, the core material 9 was inserted into the bag-shaped outer cover material 10 together with the moisture adsorbing material 12 made of calcium oxide, and the vacuum heat insulating material 6 was obtained by sealing the interior of the outer cover material 10 under reduced pressure. When the thickness of the vacuum heat insulating material 6 was measured, it was 10.4 mm, and no deformation such as undulation was observed on the heat transfer surface of the vacuum heat insulating material 6, so that the flatness was judged to be good.

以上のように構成された芯材9は、糸5よりも大きな断面積を有する大径部11が繊維集合体の伝熱面8に留まり、縫製後も繊維集合体7の圧縮状態を保持し続けるため、繊維集合体7に剛性が付与される。これによって、この繊維集合体7を用いた真空断熱材6は厚み方向に圧縮されていることから、真空包装前後において繊維集合体7の厚み方向に対する変形量が小さくなり、真空断熱材6の平面性が確保される。また、この真空断熱材6の一部または全体を減圧し真空断熱材6の内部真空度を検査する工程においても真空断熱材6の平面性を確保することができる。   In the core material 9 configured as described above, the large-diameter portion 11 having a cross-sectional area larger than that of the yarn 5 remains on the heat transfer surface 8 of the fiber assembly, and maintains the compressed state of the fiber assembly 7 even after sewing. In order to continue, the fiber assembly 7 is given rigidity. Accordingly, since the vacuum heat insulating material 6 using the fiber assembly 7 is compressed in the thickness direction, the amount of deformation in the thickness direction of the fiber assembly 7 is reduced before and after vacuum packaging, and the plane of the vacuum heat insulating material 6 is reduced. Sex is secured. Further, the flatness of the vacuum heat insulating material 6 can be ensured also in the step of depressurizing a part or the whole of the vacuum heat insulating material 6 and inspecting the internal vacuum degree of the vacuum heat insulating material 6.

さらには、上下2本の糸を使ってミシンで本縫い方法に比べて、繊維集合体7内に埋没する糸の数が減少し、熱橋が低減するという付帯効果が生じる。   Furthermore, as compared with the main sewing method using the upper and lower two threads, the number of threads buried in the fiber assembly 7 is reduced, and the incidental effect that the thermal bridge is reduced occurs.

(実施の形態5)
図10は本発明の実施の形態5における真空断熱材の構成を示す断面図、図11は同実施の形態の真空断熱材に用いた芯材の伝熱面を示す平面図、図12は同実施の形態の真空断熱材に用いた芯材を図11のE−E線の位置で切断し、その断面を矢印の方向から見た場合の断面図である。
(Embodiment 5)
FIG. 10 is a cross-sectional view showing the configuration of the vacuum heat insulating material in Embodiment 5 of the present invention, FIG. 11 is a plan view showing the heat transfer surface of the core material used in the vacuum heat insulating material of the same embodiment, and FIG. It is sectional drawing at the time of cut | disconnecting the core material used for the vacuum heat insulating material of embodiment in the position of the EE line | wire of FIG. 11, and seeing the cross section from the direction of the arrow.

図10から図12に示すように、本実施の形態の真空断熱材6は、繊維集合体7からなり対向する二つの伝熱面8を有する芯材9と、水分吸着材12と、芯材9及び水分吸着材12を覆う外被材10とからなり、芯材9が外被材10内に減圧密封されたものである。また、芯材9は、一方の伝熱面8に露出する部分と他方の伝熱面8に露出する部分と繊維集合体7内に埋没する部分とを有する糸5を備え、繊維集合体7内を貫通し対向する2つの伝熱面8に露出するように環状に結ばれて、糸5の張力により繊維集合体7が厚み方向に圧縮されている。   As shown in FIGS. 10 to 12, the vacuum heat insulating material 6 of the present embodiment includes a core material 9 including two heat transfer surfaces 8 made of a fiber assembly 7, a moisture adsorbing material 12, and a core material. 9 and a covering material 10 covering the moisture adsorbing material 12, and the core material 9 is sealed in the covering material 10 under reduced pressure. The core material 9 includes a yarn 5 having a portion exposed to one heat transfer surface 8, a portion exposed to the other heat transfer surface 8, and a portion buried in the fiber assembly 7, and the fiber assembly 7. The fiber assembly 7 is compressed in the thickness direction by the tension of the yarn 5 and is connected in an annular shape so as to be exposed to the two heat transfer surfaces 8 that pass through the inside and face each other.

本実施の形態では、1本の糸5で、芯材9の長手方向に平行になる部分が大半となるように蛇行し、最後に芯材9の長手方向に垂直に出発点に戻るようなコースで並縫いしている。そして、糸5の端部同士を結んで環状にしている。   In the present embodiment, the single thread 5 meanders so that most of the portion parallel to the longitudinal direction of the core material 9 is the majority, and finally returns to the starting point perpendicular to the longitudinal direction of the core material 9. Sewing on the course. Then, the ends of the yarn 5 are connected to form an annular shape.

本実施の形態では、繊度が120dtexの低密度ポリエチレンを糸5としてハンドステッチミシンにセットし、目付量2,400g/m2のグラスウールからなる繊維集合体7(厚み150mm)を図11に示すように、繊維集合体7内を貫通する箇所がほぼ均等に分布するように蛇行させて縫製し、最後に糸5の両端を結束することで図12の形状となる芯材9を手に入れた。   In the present embodiment, low density polyethylene having a fineness of 120 dtex is set as a thread 5 on a hand stitch sewing machine, and a fiber assembly 7 (thickness 150 mm) made of glass wool having a basis weight of 2,400 g / m 2 is shown in FIG. Then, the core material 9 having the shape shown in FIG. 12 was obtained by binding and sewing so that the portions penetrating through the fiber assembly 7 were distributed almost evenly, and finally binding both ends of the yarn 5.

この芯材9の厚みは25mmであり、また取り扱いは良好であったため、本実施の形態における繊維集合体7の圧縮効果は十分であると判断した。   Since the thickness of the core material 9 was 25 mm and the handling was good, it was determined that the compression effect of the fiber assembly 7 in the present embodiment was sufficient.

次に、芯材9を酸化カルシウムからなる水分吸着材12とともに袋状の外被材10内へ
挿入し、外被材10内を減圧密封することで真空断熱材6を手に入れた。この真空断熱材6の厚みを測ると11mmであり、真空断熱材6の伝熱面に波打ちなどの変形は見られないことから平面性は良好であると判断した。
Next, the core material 9 was inserted into the bag-shaped outer cover material 10 together with the moisture adsorbing material 12 made of calcium oxide, and the vacuum heat insulating material 6 was obtained by sealing the interior of the outer cover material 10 under reduced pressure. When the thickness of the vacuum heat insulating material 6 was measured, it was 11 mm, and no deformation such as undulation was observed on the heat transfer surface of the vacuum heat insulating material 6, so that the flatness was judged to be good.

以上のように構成された芯材9は、糸5が環状に結ばれる際に糸5が繊維集合体7を圧縮し、糸5が環状に結ばれた後も繊維集合体7の圧縮状態を保持し続けるため、繊維集合体7に剛性が付与される。この繊維集合体7は厚み方向に圧縮されていることから、真空包装後において繊維集合体7の厚み方向に対する変形量が小さくなるため、真空断熱材6の平面性が確保される。また、この真空断熱材6の一部または全体を減圧し真空断熱材6の内部真空度を検査する工程においても真空断熱材6の平面性を確保することができる。   The core material 9 configured as described above compresses the fiber assembly 7 when the yarn 5 is tied in a ring shape, and maintains the compressed state of the fiber assembly 7 even after the yarn 5 is tied in a ring shape. In order to keep it held, rigidity is imparted to the fiber assembly 7. Since the fiber assembly 7 is compressed in the thickness direction, the amount of deformation in the thickness direction of the fiber assembly 7 is reduced after vacuum packaging, so that the flatness of the vacuum heat insulating material 6 is ensured. Further, the flatness of the vacuum heat insulating material 6 can be ensured also in the step of depressurizing a part or the whole of the vacuum heat insulating material 6 and inspecting the internal vacuum degree of the vacuum heat insulating material 6.

さらには、上下2本の糸を使ってミシンで本縫い方法に比べて、繊維集合体7内に埋没する糸の数が減少し、熱橋が低減するという付帯効果が生じる。   Furthermore, as compared with the main sewing method using the upper and lower two threads, the number of threads buried in the fiber assembly 7 is reduced, and the incidental effect that the thermal bridge is reduced occurs.

(実施の形態6)
図13は本発明の実施の形態6における真空断熱材に用いた芯材の伝熱面を示す平面図、図14は同実施の形態の真空断熱材に用いた芯材を図13のF−F線の位置で切断し、その断面を矢印の方向から見た場合の断面図である。
(Embodiment 6)
FIG. 13 is a plan view showing the heat transfer surface of the core material used for the vacuum heat insulating material in Embodiment 6 of the present invention, and FIG. 14 shows the core material used for the vacuum heat insulating material of the same embodiment in FIG. It is sectional drawing at the time of cut | disconnecting in the position of F line and seeing the cross section from the direction of the arrow.

図13、図14に示すように、本実施の形態の真空断熱材6は、繊維集合体7からなり対向する二つの伝熱面8を有する芯材9と、水分吸着材12と、芯材9及び水分吸着材12を覆う外被材10とからなり、芯材9が外被材10内に減圧密封されたものである。また、芯材9は、一方の伝熱面8に露出する部分と他方の伝熱面8に露出する部分と繊維集合体7内に埋没する部分とを有する複数の糸5を備え、それぞれの糸5は、一方の伝熱面8から繊維集合体7内を貫通して他方の伝熱面8に露出した後、他方の伝熱面8から繊維集合体7内を貫通して一方の伝熱面8に露出し、繊維集合体7内を貫通せずに一方の伝熱面8に残っていた糸5の一方の端部と、繊維集合体7内を二度貫通して一方の伝熱面8に露出した糸5の他方の端部とが結ばれて糸5の環が形成され、糸5の張力により繊維集合体7が厚み方向に圧縮されている。   As shown in FIGS. 13 and 14, the vacuum heat insulating material 6 of the present embodiment includes a core material 9 having two heat transfer surfaces 8 made of a fiber assembly 7 and facing each other, a moisture adsorbing material 12, and a core material. 9 and a covering material 10 covering the moisture adsorbing material 12, and the core material 9 is sealed in the covering material 10 under reduced pressure. The core material 9 includes a plurality of yarns 5 each having a portion exposed to one heat transfer surface 8, a portion exposed to the other heat transfer surface 8, and a portion buried in the fiber assembly 7. The yarn 5 penetrates the inside of the fiber assembly 7 from one heat transfer surface 8 and is exposed to the other heat transfer surface 8, and then penetrates the inside of the fiber assembly 7 from the other heat transfer surface 8. One end of the yarn 5 exposed on the heat surface 8 and remaining on one heat transfer surface 8 without penetrating the fiber assembly 7 and the fiber assembly 7 passing twice through the one end The other end of the yarn 5 exposed on the hot surface 8 is connected to form a ring of the yarn 5, and the fiber assembly 7 is compressed in the thickness direction by the tension of the yarn 5.

なお、伝熱面8に露出した糸5が、芯材9の長手方向に平行な複数本(図13では5本)の破線を形成し、糸5繊維集合体7内を貫通する箇所がほぼ均等に碁盤目状に分布し、伝熱面8に露出する部分が、芯材9の長手方向に垂直に並ぶようにしている。糸5を結んで形成される大径部11が一方の伝熱面8にのみ露出するようにしている。   It should be noted that the yarn 5 exposed on the heat transfer surface 8 forms a plurality of broken lines (five in FIG. 13) parallel to the longitudinal direction of the core material 9, and the portion penetrating through the yarn 5 fiber assembly 7 is almost the same. The portions that are evenly distributed in a grid pattern and exposed to the heat transfer surface 8 are arranged vertically in the longitudinal direction of the core member 9. The large diameter portion 11 formed by tying the yarn 5 is exposed only on one heat transfer surface 8.

本実施の形態では、繊度が110dtexのナイロンを糸5として用い、この糸5を目付量2,400g/m2のグラスウールからなる繊維断熱体7(厚み150mm)の一方の伝熱面8から他方の伝熱面8へ貫通させた後、他方の伝熱面8上の異なる箇所から一方の伝熱面8へ貫通させ、糸5の両端を図13の形状となるよう結束することで、図14の形状となる芯材9を手に入れた。   In the present embodiment, nylon having a fineness of 110 dtex is used as the yarn 5, and the yarn 5 is used from one heat transfer surface 8 of the fiber heat insulator 7 (thickness 150 mm) made of glass wool having a basis weight of 2,400 g / m 2 to the other. After passing through the heat transfer surface 8, it penetrates from one place on the other heat transfer surface 8 to the one heat transfer surface 8 and binds both ends of the yarn 5 to the shape shown in FIG. The core material 9 which becomes the shape was obtained.

この芯材の厚みは22mmであり、また取り扱いは良好であったため、本実施の形態における繊維集合体7の圧縮効果は十分であると判断した。   Since the thickness of the core material was 22 mm and the handling was good, it was determined that the compression effect of the fiber assembly 7 in the present embodiment was sufficient.

次に、芯材9を酸化カルシウムからなる水分吸着材12とともに袋状の外被材10内へ挿入し、外被材10内を減圧密封することで真空断熱材6を手に入れた。この真空断熱材6の厚みを測ると9.7mmであり、真空断熱材6の伝熱面に波打ちなどの変形は見られないことから平面性は良好であると判断した。   Next, the core material 9 was inserted into the bag-shaped outer cover material 10 together with the moisture adsorbing material 12 made of calcium oxide, and the vacuum heat insulating material 6 was obtained by sealing the interior of the outer cover material 10 under reduced pressure. When the thickness of the vacuum heat insulating material 6 was measured, it was 9.7 mm, and no deformation such as undulation was observed on the heat transfer surface of the vacuum heat insulating material 6, so that the flatness was judged to be good.

以上のように構成された芯材9は、糸5が環状に結ばれる際に糸5が繊維集合体7を圧
縮し、糸5が環状に結ばれた後も繊維集合体7の圧縮状態を保持し続けるため、繊維集合体7に剛性が付与される。この繊維集合体7は厚み方向に圧縮されていることから、真空包装後において繊維集合体7の厚み方向に対する変形量が小さくなるため、真空断熱材6の平面性が確保される。また、この真空断熱材6の一部または全体を減圧し真空断熱材6の内部真空度を検査する工程においても真空断熱材6の平面性を確保することができる。
The core material 9 configured as described above compresses the fiber assembly 7 when the yarn 5 is tied in a ring shape, and maintains the compressed state of the fiber assembly 7 even after the yarn 5 is tied in a ring shape. In order to keep it held, rigidity is imparted to the fiber assembly 7. Since the fiber assembly 7 is compressed in the thickness direction, the amount of deformation in the thickness direction of the fiber assembly 7 is reduced after vacuum packaging, so that the flatness of the vacuum heat insulating material 6 is ensured. Further, the flatness of the vacuum heat insulating material 6 can be ensured also in the step of depressurizing a part or the whole of the vacuum heat insulating material 6 and inspecting the internal vacuum degree of the vacuum heat insulating material 6.

さらには、上下2本の糸を使ってミシンで本縫い方法に比べて、繊維集合体7内に埋没する糸の数が減少し、熱橋が低減するという付帯効果が生じる。   Furthermore, as compared with the main sewing method using the upper and lower two threads, the number of threads buried in the fiber assembly 7 is reduced, and the incidental effect that the thermal bridge is reduced occurs.

(実施の形態7)
図15は本発明の実施の形態7における真空断熱材に用いた芯材の伝熱面を示す平面図、図16は同実施の形態の真空断熱材に用いた芯材を図15のG−G線の位置で切断し、その断面を矢印の方向から見た場合の断面図である。
(Embodiment 7)
15 is a plan view showing the heat transfer surface of the core material used for the vacuum heat insulating material in Embodiment 7 of the present invention, and FIG. 16 shows the core material used for the vacuum heat insulating material of the same embodiment in FIG. It is sectional drawing at the time of cut | disconnecting in the position of G line and seeing the cross section from the direction of the arrow.

図15、図16に示すように、本実施の形態の真空断熱材6は、繊維集合体7からなり対向する二つの伝熱面8を有する芯材9と、水分吸着材12と、芯材9及び水分吸着材12を覆う外被材10とからなり、芯材9が外被材10内に減圧密封されたものである。また、芯材9は、一方の伝熱面8に露出する部分と他方の伝熱面8に露出する部分と繊維集合体7内に埋没する部分とを有する複数の糸5を備え、それぞれの糸5は、一方の伝熱面8から繊維集合体7内を貫通して他方の伝熱面8に露出した後、他方の伝熱面8から繊維集合体7内を貫通して一方の伝熱面8に露出し、繊維集合体7内を貫通せずに一方の伝熱面8に残っていた糸5の一方の端部と、繊維集合体7内を二度貫通して一方の伝熱面8に露出した糸5の他方の端部とが結ばれて糸5の環が形成され、糸5の張力により繊維集合体7が厚み方向に圧縮されている。   As shown in FIGS. 15 and 16, the vacuum heat insulating material 6 of the present embodiment includes a core material 9 including two heat transfer surfaces 8 made of a fiber assembly 7, a moisture adsorbing material 12, and a core material. 9 and a covering material 10 covering the moisture adsorbing material 12, and the core material 9 is sealed in the covering material 10 under reduced pressure. The core material 9 includes a plurality of yarns 5 each having a portion exposed to one heat transfer surface 8, a portion exposed to the other heat transfer surface 8, and a portion buried in the fiber assembly 7. The yarn 5 penetrates the inside of the fiber assembly 7 from one heat transfer surface 8 and is exposed to the other heat transfer surface 8, and then penetrates the inside of the fiber assembly 7 from the other heat transfer surface 8. One end of the yarn 5 exposed on the heat surface 8 and remaining on one heat transfer surface 8 without penetrating the fiber assembly 7 and the fiber assembly 7 passing twice through the one end The other end of the yarn 5 exposed on the hot surface 8 is connected to form a ring of the yarn 5, and the fiber assembly 7 is compressed in the thickness direction by the tension of the yarn 5.

なお、伝熱面8に露出した糸5が、芯材9の長手方向に平行な複数本(図13では5本)の破線を形成し、糸5繊維集合体7内を貫通する箇所がほぼ均等に千鳥状に分布し、伝熱面8に露出する部分が、千鳥状に芯材9の伝熱面8にのみ露出し、また、糸5を結んで形成される大径部11が一方の伝熱面8にのみ露出するようにしている。   It should be noted that the yarn 5 exposed on the heat transfer surface 8 forms a plurality of broken lines (five in FIG. 13) parallel to the longitudinal direction of the core material 9, and the portion penetrating through the yarn 5 fiber assembly 7 is almost the same. A portion that is uniformly distributed in a zigzag shape and exposed to the heat transfer surface 8 is exposed only to the heat transfer surface 8 of the core material 9 in a zigzag shape, and a large diameter portion 11 formed by tying the yarn 5 is one side. Only the heat transfer surface 8 is exposed.

本実施の形態では、繊度が110dtexのナイロンを糸5として用い、この糸5を目付量2,400g/m2のグラスウールからなる繊維断熱体7(厚み150mm)の一方の伝熱面8から他方の伝熱面8へ貫通させた後、他方の伝熱面8上の異なる箇所から一方の伝熱面8へ貫通させ、糸5の両端を図15の形状となるよう結束することで図16の形状となる芯材9を手に入れた。   In the present embodiment, nylon having a fineness of 110 dtex is used as the yarn 5, and this yarn 5 is used from one heat transfer surface 8 of the fiber heat insulator 7 (thickness 150 mm) made of glass wool having a basis weight of 2,400 g / m 2 to the other. After passing through the heat transfer surface 8, it penetrates from one location on the other heat transfer surface 8 to the one heat transfer surface 8 and binds both ends of the yarn 5 to the shape shown in FIG. The core material 9 which becomes a shape was obtained.

この芯材9の厚みは18mmであり、また取り扱いは良好であったため、本実施の形態における繊維集合体7の圧縮効果は十分であると判断した。   Since the thickness of the core material 9 was 18 mm and the handling was good, it was determined that the compression effect of the fiber assembly 7 in the present embodiment was sufficient.

次に、芯材9を酸化カルシウムからなる水分吸着材12とともに袋状の外被材10内へ挿入し、外被材10内を減圧密封することで真空断熱材6を手に入れた。この真空断熱材6の厚みを測ると10.1mmであり、真空断熱材の伝熱面に波打ちなどの変形は見られないことから平面性は良好であると判断した。   Next, the core material 9 was inserted into the bag-shaped outer cover material 10 together with the moisture adsorbing material 12 made of calcium oxide, and the vacuum heat insulating material 6 was obtained by sealing the interior of the outer cover material 10 under reduced pressure. When the thickness of the vacuum heat insulating material 6 was measured, it was 10.1 mm, and no deformation such as undulation was observed on the heat transfer surface of the vacuum heat insulating material, so that the flatness was judged to be good.

以上のように構成された芯材9は、糸5が環状に結ばれる際に糸5が繊維集合体7を圧縮し、糸5が環状に結ばれた後も繊維集合体7の圧縮状態を保持し続けるため、繊維集合体7に剛性が付与される。この繊維集合体7は厚み方向に圧縮されていることから、真空包装後において繊維集合体7の厚み方向に対する変形量が小さくなるため、真空断熱材6の平面性が確保される。また、この真空断熱材6の一部または全体を減圧し真空断熱材6の内部真空度を検査する工程においても真空断熱材6の平面性を確保することができる。   The core material 9 configured as described above compresses the fiber assembly 7 when the yarn 5 is tied in a ring shape, and maintains the compressed state of the fiber assembly 7 even after the yarn 5 is tied in a ring shape. In order to keep it held, rigidity is imparted to the fiber assembly 7. Since the fiber assembly 7 is compressed in the thickness direction, the amount of deformation in the thickness direction of the fiber assembly 7 is reduced after vacuum packaging, so that the flatness of the vacuum heat insulating material 6 is ensured. Further, the flatness of the vacuum heat insulating material 6 can be ensured also in the step of depressurizing a part or the whole of the vacuum heat insulating material 6 and inspecting the internal vacuum degree of the vacuum heat insulating material 6.

さらには、上下2本の糸を使ってミシンで本縫い方法に比べて、繊維集合体7内に埋没する糸の数が減少し、熱橋が低減するという付帯効果が生じる。   Furthermore, as compared with the main sewing method using the upper and lower two threads, the number of threads buried in the fiber assembly 7 is reduced, and the incidental effect that the thermal bridge is reduced occurs.

(実施の形態8)
図17は本発明の実施の形態8における真空断熱材に用いた芯材の伝熱面を示す平面図、図18は同実施の形態の真空断熱材に用いた芯材を図17のH−H線の位置で切断し、その断面を矢印の方向から見た場合の断面図である。
(Embodiment 8)
FIG. 17 is a plan view showing a heat transfer surface of the core material used for the vacuum heat insulating material in Embodiment 8 of the present invention, and FIG. 18 shows the core material used for the vacuum heat insulating material of the same embodiment in FIG. It is sectional drawing at the time of cut | disconnecting in the position of H line and seeing the cross section from the direction of the arrow.

図17、図18に示すように、本実施の形態の真空断熱材6は、繊維集合体7からなり対向する二つの伝熱面8を有する芯材9と、水分吸着材12と、芯材9及び水分吸着材12を覆う外被材10とからなり、芯材9が外被材10内に減圧密封されたものである。また、芯材9は、一方の伝熱面8に露出する部分と他方の伝熱面8に露出する部分と繊維集合体7内に埋没する部分とを有する複数(図17では7本)の糸5を備え、複数(図17では7本)の糸5で、互いに所定間隔離して、芯材9の長手方向に平行に、並縫いしており、芯材9の長手方向の端部で、隣接する糸5の端部同士を結んで環状にし、糸5の環を複数設けている。そして、糸5の張力により繊維集合体7が厚み方向に圧縮されている。   As shown in FIGS. 17 and 18, the vacuum heat insulating material 6 of the present embodiment includes a core material 9 including two heat transfer surfaces 8 made of a fiber assembly 7, a moisture adsorbing material 12, and a core material. 9 and a covering material 10 covering the moisture adsorbing material 12, and the core material 9 is sealed in the covering material 10 under reduced pressure. Further, the core material 9 has a plurality (seven in FIG. 17) having a portion exposed on one heat transfer surface 8, a portion exposed on the other heat transfer surface 8, and a portion buried in the fiber assembly 7. A plurality of (seven in FIG. 17) yarns 5 are provided, and are sewn together in parallel with the longitudinal direction of the core material 9, separated from each other by a predetermined distance, and at the end in the longitudinal direction of the core material 9. The ends of adjacent yarns 5 are connected to form a ring, and a plurality of rings of the yarn 5 are provided. The fiber assembly 7 is compressed in the thickness direction by the tension of the yarn 5.

本実施の形態では、繊度が205dtexのポリエチレンテレフタレートからなる糸と、目付量2,400g/m2のグラスウール(厚み150mm)からなる繊維集合体7をハンドステッチミシンにセットした。次に、糸が直線状になるよう縫製するとともに、繊維集合体7の同一辺に位置する複数の糸を図17および図18に示すように連結することで糸5が環状に結束された芯材9を手に入れた。この芯材9の厚みは21mmであり、また取り扱いは良好であったため、本実施の形態における繊維集合体7の圧縮効果は十分であると判断した。   In the present embodiment, a yarn made of polyethylene terephthalate having a fineness of 205 dtex and a fiber assembly 7 made of glass wool (thickness 150 mm) having a basis weight of 2,400 g / m 2 were set on a hand stitch sewing machine. Next, the thread is sewn so as to be linear, and a plurality of threads located on the same side of the fiber assembly 7 are connected as shown in FIGS. 17 and 18 so that the thread 5 is bound in an annular shape. The material 9 was obtained. Since the thickness of the core material 9 was 21 mm and the handling was good, it was determined that the compression effect of the fiber assembly 7 in the present embodiment was sufficient.

次に、芯材9を酸化カルシウムからなる水分吸着材12とともに袋状の外被材10内へ挿入し、外被材10内を減圧密封することで真空断熱材6を手に入れた。この真空断熱材6の厚みを測ると10.4mmであり、真空断熱材6の伝熱面に波打ちなどの変形は見られないことから平面性は良好であると判断した。   Next, the core material 9 was inserted into the bag-shaped outer cover material 10 together with the moisture adsorbing material 12 made of calcium oxide, and the vacuum heat insulating material 6 was obtained by sealing the interior of the outer cover material 10 under reduced pressure. When the thickness of the vacuum heat insulating material 6 was measured, it was 10.4 mm, and no deformation such as undulation was observed on the heat transfer surface of the vacuum heat insulating material 6, so that the flatness was judged to be good.

以上のように構成された芯材9は、糸5が環状に結ばれる際に糸5が繊維集合体7を圧縮し、糸5が環状に結ばれた後も繊維集合体7の圧縮状態を保持し続けるため、繊維集合体7に剛性が付与される。この繊維集合体7は厚み方向に圧縮されていることから、真空包装後において繊維集合体7の厚み方向に対する変形量が小さくなるため、真空断熱材6の平面性が確保される。また、この真空断熱材6の一部または全体を減圧し真空断熱材6の内部真空度を検査する工程においても真空断熱材6の平面性を確保することができる。   The core material 9 configured as described above compresses the fiber assembly 7 when the yarn 5 is tied in a ring shape, and maintains the compressed state of the fiber assembly 7 even after the yarn 5 is tied in a ring shape. In order to keep it held, rigidity is imparted to the fiber assembly 7. Since the fiber assembly 7 is compressed in the thickness direction, the amount of deformation in the thickness direction of the fiber assembly 7 is reduced after vacuum packaging, so that the flatness of the vacuum heat insulating material 6 is ensured. Further, the flatness of the vacuum heat insulating material 6 can be ensured also in the step of depressurizing a part or the whole of the vacuum heat insulating material 6 and inspecting the internal vacuum degree of the vacuum heat insulating material 6.

さらには、上下2本の糸を使ってミシンで本縫い方法に比べて、繊維集合体7内に埋没する糸の数が減少し、熱橋が低減するという付帯効果が生じる。   Furthermore, as compared with the main sewing method using the upper and lower two threads, the number of threads buried in the fiber assembly 7 is reduced, and the incidental effect that the thermal bridge is reduced occurs.

(比較例)
繊度が135dtexのポリエチレンテレフタレートを糸としてハンドステッチミシンにセットし、目付量2,400g/m2のグラスウールからなる繊維集合体(厚み150mm)を縫製し、芯材を手に入れた。しかし、縫製直後に糸が解れたため、この芯材の厚みは85mmまで復元し、取り扱いが困難であったため、本比較例では繊維集合体の圧縮効果が不十分であると判断した。
(Comparative example)
A polyethylene terephthalate having a fineness of 135 dtex was set as a thread on a hand stitch sewing machine, a fiber assembly (thickness 150 mm) made of glass wool having a basis weight of 2,400 g / m 2 was sewn, and a core material was obtained. However, since the thread was released immediately after sewing, the thickness of the core material was restored to 85 mm and it was difficult to handle. Therefore, it was determined that the compression effect of the fiber assembly was insufficient in this comparative example.

次に、芯材を酸化カルシウムからなる水分吸着材とともに袋状の外被材内へ挿入し、外被材内を減圧密封することで真空断熱材を手に入れた。この真空断熱材の厚みを測ると9
.5mmであったが、真空断熱材の伝熱面に波打ちが見られることから平面性の確保は十分でないと判断した。
Next, the core material was inserted into a bag-shaped jacket material together with a moisture adsorbing material made of calcium oxide, and the vacuum jacket was obtained by sealing the inside of the jacket material under reduced pressure. When the thickness of this vacuum heat insulating material is measured, it is 9
. Although it was 5 mm, it was judged that ensuring of flatness was not sufficient because the heat transfer surface of the vacuum heat insulating material was wavy.

本発明の真空断熱材は、真空包装前後において繊維集合体の厚み方向に対する変形量が小さいため、真空断熱材の平面性が確保される。また、この真空断熱材の一部または全体を減圧し真空断熱材の内部真空度を検査する工程においても真空断熱材の平面性を確保することができる。そのため、本発明の真空断熱材は、冷蔵庫やジャーポット、炊飯器、自動販売機、住宅など真空断熱材が適用可能なあらゆる用途にて利用可能である。   Since the vacuum heat insulating material of the present invention has a small amount of deformation in the thickness direction of the fiber assembly before and after vacuum packaging, the flatness of the vacuum heat insulating material is ensured. Further, the flatness of the vacuum heat insulating material can be ensured also in the step of depressurizing a part or the whole of the vacuum heat insulating material and inspecting the internal vacuum degree of the vacuum heat insulating material. Therefore, the vacuum heat insulating material of the present invention can be used in any application to which a vacuum heat insulating material can be applied, such as a refrigerator, a jar pot, a rice cooker, a vending machine, and a house.

5 糸
6 真空断熱材
7 繊維集合体
8 伝熱面
9 芯材
10 外被材
11 大径部
13 不織布シート(係留部材)
5 Yarn 6 Vacuum Insulating Material 7 Fiber Assembly 8 Heat Transfer Surface 9 Core Material 10 Outer Material 11 Large Diameter Part 13 Nonwoven Sheet (Mooring Member)

Claims (12)

少なくとも、繊維集合体からなり対向する2つの伝熱面を有する芯材と、
前記芯材を覆う外被材とからなり、
前記芯材を前記外被材内に減圧密封した真空断熱材であって、
前記芯材の一方の前記伝熱面に露出する部分と他方の前記伝熱面に露出する部分と前記繊維集合体内に埋没する部分とを有する糸を備え、
前記糸は、前記糸より大きな断面積を有する大径部を有し、
前記糸の張力により前記繊維集合体が厚み方向に圧縮されている真空断熱材。
A core material having at least two heat transfer surfaces made of a fiber assembly and facing each other;
It consists of a jacket material covering the core material,
A vacuum heat insulating material in which the core material is vacuum-sealed in the outer jacket material,
A yarn having a portion exposed to one of the heat transfer surfaces of the core, a portion exposed to the other heat transfer surface, and a portion buried in the fiber assembly;
The yarn has a large diameter portion having a larger cross-sectional area than the yarn,
A vacuum heat insulating material in which the fiber assembly is compressed in the thickness direction by the tension of the yarn.
前記大径部は、玉結びにより形成した請求項1に記載の真空断熱材。 The vacuum heat insulating material according to claim 1, wherein the large diameter portion is formed by ball knotting. 前記大径部は、前記糸の端部に輪を作り、輪の中に前記糸を通すことにより形成した請求項1に記載の真空断熱材。 The vacuum heat insulating material according to claim 1, wherein the large diameter portion is formed by forming a ring at an end of the yarn and passing the yarn through the ring. 前記大径部は、前記糸の空環により形成した請求項1に記載の真空断熱材。 The vacuum heat insulating material according to claim 1, wherein the large diameter portion is formed by an empty ring of the yarn. 前記糸は、前記芯材の長手方向に平行に、並縫いした請求項1から4のいずれか一項に記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 1 to 4, wherein the thread is sewn in parallel in the longitudinal direction of the core material. 前記糸は、前記芯材の長手方向に平行に、半返し縫いした請求項1から4のいずれか一項に記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 1 to 4, wherein the thread is half-turn stitched in parallel to a longitudinal direction of the core material. 前記糸は、互いに隔離して配置された複数の糸である請求項5または請求項6に記載の真空断熱材。 The vacuum heat insulating material according to claim 5 or 6, wherein the yarn is a plurality of yarns arranged separately from each other. 前記大径部と前記伝熱面との間に、前記糸が貫通または交絡する係留部材を設けた請求項1から請求項4のいずれか一項に記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 1 to 4, wherein a mooring member through which the yarn penetrates or entangles is provided between the large diameter portion and the heat transfer surface. 複数の繊維断熱体を積層した請求項1から8のいずれか一項に記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 1 to 8, wherein a plurality of fiber heat insulators are laminated. 請求項1から9のいずれか一項に記載の真空断熱材を備えた冷蔵庫。 The refrigerator provided with the vacuum heat insulating material as described in any one of Claim 1 to 9. 請求項1から9のいずれか一項に記載の真空断熱材を備えたジャーポット。 A jar pot provided with the vacuum heat insulating material according to any one of claims 1 to 9. 請求項1から9のいずれか一項に記載の真空断熱材を備えた住宅。 The house provided with the vacuum heat insulating material as described in any one of Claim 1 to 9.
JP2014020027A 2014-02-05 2014-02-05 Vacuum heat insulating material, and refrigerator, jar pot and house equipped with the same Active JP5948615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014020027A JP5948615B2 (en) 2014-02-05 2014-02-05 Vacuum heat insulating material, and refrigerator, jar pot and house equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014020027A JP5948615B2 (en) 2014-02-05 2014-02-05 Vacuum heat insulating material, and refrigerator, jar pot and house equipped with the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009243015A Division JP5471288B2 (en) 2009-04-07 2009-10-22 Vacuum insulation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015252786A Division JP5948617B2 (en) 2015-12-25 2015-12-25 Vacuum heat insulating material, and refrigerator, jar pot and house equipped with the same

Publications (2)

Publication Number Publication Date
JP2014081080A true JP2014081080A (en) 2014-05-08
JP5948615B2 JP5948615B2 (en) 2016-07-06

Family

ID=50785431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014020027A Active JP5948615B2 (en) 2014-02-05 2014-02-05 Vacuum heat insulating material, and refrigerator, jar pot and house equipped with the same

Country Status (1)

Country Link
JP (1) JP5948615B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2460848A (en) * 1944-07-14 1949-02-08 Foster Wheeler Corp Insulating blanket
JPS58106292A (en) * 1981-12-16 1983-06-24 株式会社日立製作所 Vacuum heat insulating material
JPH0424336U (en) * 1990-06-20 1992-02-27
JPH08121683A (en) * 1994-10-18 1996-05-17 Kubota Corp Manufacture of vacuum insulator filler and vacuum insulator
JPH10169888A (en) * 1996-12-09 1998-06-26 Osaka Gas Chem Kk Vibration resistant heat insulation material
JP2004251304A (en) * 2003-02-18 2004-09-09 Matsushita Electric Ind Co Ltd Manufacturing method for vacuum insulator, vacuum insulator, insulating box body and insulation appliance using the vacuum insulator
JP2008030288A (en) * 2006-07-28 2008-02-14 Daikyo Nishikawa Kk Resin sheet material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2460848A (en) * 1944-07-14 1949-02-08 Foster Wheeler Corp Insulating blanket
JPS58106292A (en) * 1981-12-16 1983-06-24 株式会社日立製作所 Vacuum heat insulating material
JPH0424336U (en) * 1990-06-20 1992-02-27
JPH08121683A (en) * 1994-10-18 1996-05-17 Kubota Corp Manufacture of vacuum insulator filler and vacuum insulator
JPH10169888A (en) * 1996-12-09 1998-06-26 Osaka Gas Chem Kk Vibration resistant heat insulation material
JP2004251304A (en) * 2003-02-18 2004-09-09 Matsushita Electric Ind Co Ltd Manufacturing method for vacuum insulator, vacuum insulator, insulating box body and insulation appliance using the vacuum insulator
JP2008030288A (en) * 2006-07-28 2008-02-14 Daikyo Nishikawa Kk Resin sheet material

Also Published As

Publication number Publication date
JP5948615B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP6412134B2 (en) Windable multilayer heat shield
JP5752775B2 (en) Long fiber nonwoven fabric and laminated fabric having the long fiber nonwoven fabric
BRPI0516642B1 (en) flame resistant fiber blends (fr)
JPH01306667A (en) Elastic composite fabric sewn by tape needle
US11905631B2 (en) Durable and launderable cushioning and insulative fabrics and strings and methods for making same
TW201726993A (en) Stereoscopic weft knitted fabric for vamp
WO2013173276A1 (en) Multilayer fabric structures
JP5476615B2 (en) Vacuum heat insulating material, and refrigerator, jar pot and house equipped with the same
JP6149259B2 (en) Vacuum heat insulating material, and refrigerator, jar pot and house equipped with the same
JP5470987B2 (en) Vacuum insulation
JP5948617B2 (en) Vacuum heat insulating material, and refrigerator, jar pot and house equipped with the same
JP5948615B2 (en) Vacuum heat insulating material, and refrigerator, jar pot and house equipped with the same
JP5471288B2 (en) Vacuum insulation
CN203488974U (en) Low-temperature dewar bottle thermal insulation device
JP5469198B2 (en) Insulation
CN105105450A (en) Computer bag with buffering functions
JP5139917B2 (en) Insulation
US20220183412A1 (en) Cold-weather protection gear having batting
WO2010116716A1 (en) Fiber heat insulator and vacuum heat insulator using same
US20140370230A1 (en) Insulation material structure having crimped continued filament tow interposed between staple fiber webs
CN213082567U (en) Terylene double-sided napping sandwich cloth
CN210970214U (en) High-heat-insulation flame-retardant oxford fabric
JP2884079B2 (en) Packing
JP2006090495A (en) Heat insulation sheet
TWM565707U (en) Stereoscopic weft knitted fabric for vamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140220

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140312

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160509

R151 Written notification of patent or utility model registration

Ref document number: 5948615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151