JP2014080836A - Vertical accuracy management method of under-ground piled column - Google Patents

Vertical accuracy management method of under-ground piled column Download PDF

Info

Publication number
JP2014080836A
JP2014080836A JP2012231256A JP2012231256A JP2014080836A JP 2014080836 A JP2014080836 A JP 2014080836A JP 2012231256 A JP2012231256 A JP 2012231256A JP 2012231256 A JP2012231256 A JP 2012231256A JP 2014080836 A JP2014080836 A JP 2014080836A
Authority
JP
Japan
Prior art keywords
column
ground
pillar
under
true
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012231256A
Other languages
Japanese (ja)
Other versions
JP6039994B2 (en
Inventor
Kei Kato
圭 加藤
Kazumasa Goto
和正 後藤
Hideo Nukushina
秀夫 温品
Tatsuo Minowa
達男 蓑輪
Yukihiro Oda
幸弘 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2012231256A priority Critical patent/JP6039994B2/en
Publication of JP2014080836A publication Critical patent/JP2014080836A/en
Application granted granted Critical
Publication of JP6039994B2 publication Critical patent/JP6039994B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)
  • Foundations (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vertical accuracy management method of an under-ground piled column capable of sufficiently managing vertical accuracy when the under-ground piled column is built in a pile hole in the case that the under-ground piled column is not cylindrical or even in the case that the under-ground piled column is long.SOLUTION: A vertical accuracy management method of an under-ground piled column includes: a step of installing a cylindrical measurement pipe 14 on an outer surface of the under-ground piled column 1 so as to be approximately parallel to a column core of the under-ground piled column 1 and installing a target plate 15 on an end side of the measurement pipe 14 on ground; a step of inserting the under-ground piled column 1 into a pile hole 2 with the measurement pipe 14 and supporting an upper end part of the under-ground piled column 1 by a frame 11 for the under-ground piled column installed on ground; a step of installing a laser plummet instrument 17 right above the measurement pipe 14 on ground and radiating laser light vertically below through the measurement pipe 14 by the laser plummet instrument 17; and a step of measuring deviation of the under-ground piled column 1 by sighting a point of the laser light on the target plate 15 and correcting plumbing of the under-ground piled column 1 based on the measured deviation.

Description

本発明は、構真柱の鉛直精度管理方法に関する。詳しくは、地盤に掘削した杭穴に構真柱を建て込む際の構真柱の鉛直精度管理方法に関する。   The present invention relates to a vertical accuracy management method for a structural pillar. More specifically, the present invention relates to a vertical accuracy management method for a built-up column when a built-up column is built into a pile hole excavated in the ground.

従来より、工期を短縮するため、逆打ち工法により建物を構築する場合がある。
この場合、例えば、地中に杭穴を掘削して、この杭穴に鉄筋かごを挿入して杭コンクリートを打設するとともに、杭コンクリートに構真柱を建て込んで、構真柱の下段部を杭に一体化させる。その後、地面を掘削しながら、地下階を下方に向かって順に構築すると同時に、構真柱の上端部に地上階の鉄骨を接続して、地上階を上方に向かって順に構築する。
これにより、地下階の工事と地上階の工事とを同時進行できるので、工期を短縮できる。
Conventionally, in order to shorten the construction period, there is a case where a building is constructed by a reverse driving method.
In this case, for example, a pile hole is excavated in the ground, a reinforcing steel basket is inserted into the pile hole, and pile concrete is placed. Is integrated into the pile. Then, while excavating the ground, the basement floor is constructed in order downward, and at the same time, the ground floor steel frame is connected to the upper end portion of the structural pillar, and the ground floor is constructed in order upward.
As a result, the construction of the underground floor and the construction of the ground floor can be carried out simultaneously, so that the construction period can be shortened.

ところで、上述の構真柱は地下躯体を構成するものであるため、構真柱の建て込み時には、精度を確保する必要がある。そこで、構真柱の傾きを測定し、この測定結果に基づいて構真柱の建入れを修正することが考えられるが、この構真柱の傾きの測定方法として、例えば以下のような3つの方法が提案されている。
第1に、CFT構真柱のような筒状の構真柱について、構真柱内部の下端にターゲットを設置し、構真柱の直上に設置した鉛直器によりターゲットを視準する(例えば特許文献1参照)。
第2に、構真柱の外面に位置決め管を設け、この位置決め管に浮きを設ける。この浮きの位置決め管内における位置を超音波センサで検出して、構真柱の鉛直方向の精度を計測する(特許文献2参照)。
第3に、構真柱の外面に管体を設け、この管体内に重錘を垂らすとともに、管体の下端にターゲットおよびテレビカメラを設置する。そして、テレビカメラにて、ターゲットと重錘とのずれ量を計測する(特許文献3参照)。
By the way, since the above-mentioned structural pillar constitutes an underground frame, it is necessary to ensure accuracy when the structural pillar is built. Therefore, it is conceivable to measure the inclination of the structural pillar and correct the construction of the structural pillar based on the measurement result. For example, the following three methods of measuring the inclination of the structural pillar can be used. A method has been proposed.
First, for a tubular column such as a CFT column, a target is installed at the lower end inside the column and the target is collimated by a vertical instrument installed directly above the column (for example, a patent) Reference 1).
Second, a positioning tube is provided on the outer surface of the stem column, and a float is provided on the positioning tube. The position of the float in the positioning tube is detected by an ultrasonic sensor, and the vertical accuracy of the structural pillar is measured (see Patent Document 2).
Third, a tube is provided on the outer surface of the stem column, a weight is suspended in the tube, and a target and a television camera are installed at the lower end of the tube. And the deviation | shift amount of a target and a weight is measured with a television camera (refer patent document 3).

特開2011−21392号公報JP 2011-21392A 特開平6−128977号公報Japanese Patent Laid-Open No. 6-129777 特開平7−3825号公報Japanese Patent Laid-Open No. 7-3825

しかしながら、第1の方法では、構真柱の内部空間を利用するため、プレキャストコンクリート造や断面十字形状(クロスH)などの筒状ではない構真柱については採用できなかった。
また、構真柱の傾きは、1/1000以内とすることが要請されているが、第2および第3の方法では、重錘や浮きに揺れが生じるため、1/500程度の傾きしか計測できなかった。よって、例えば40m以上の長い構真柱については、鉛直精度を十分に管理できない、という問題があった。
However, in the first method, since the internal space of the construction pillar is used, it is not possible to adopt a construction pillar that is not cylindrical, such as a precast concrete structure or a cross-shaped cross section (cross H).
In addition, it is required that the inclination of the structural pillar is within 1/1000. However, in the second and third methods, since the weight and the floating are swayed, only an inclination of about 1/500 is measured. could not. Therefore, there is a problem that the vertical accuracy cannot be sufficiently managed, for example, for a long structure column of 40 m or longer.

本発明は、構真柱が筒状でない場合や、構真柱が長い場合でも、構真柱を杭穴に建て込む際、鉛直精度を高精度で管理できる構真柱の鉛直精度管理方法を提供することを目的とする。   The present invention provides a vertical accuracy management method for a structural column that can manage the vertical accuracy with high accuracy when the structural column is built into a pile hole even when the structural column is not cylindrical or when the structural column is long. The purpose is to provide.

請求項1に記載の構真柱の鉛直精度管理方法は、地盤に掘削した杭穴(例えば、後述の杭穴2)に構真柱(例えば、後述の構真柱1)を建て込む際に、当該構真柱の鉛直精度を管理する鉛直精度管理方法であって、地上にて、構真柱の外側に当該構真柱の柱芯に略平行となるように筒状の測定管(例えば、後述の測定管14)を設けて、さらに、当該測定管の先端側にターゲット板(例えば、後述のターゲット板15)を設ける工程(例えば、後述のステップS1)と、前記構真柱を前記測定管とともに前記杭穴に挿入し、地上に設けた構真柱架台により前記構真柱の上端部を支持する工程(例えば、後述のステップS2)と、地上にて前記測定管の直上にレーザ照射装置(例えば、後述のレーザ鉛直器17)を設けて、当該レーザ照射装置により前記測定管を通して鉛直方向下方にレーザ光を照射する工程(例えば、後述のステップS4、S6)と、前記ターゲット板上のレーザ光によるポイント(例えば、後述のポイント153)を視準して、当該構真柱のずれを計測し、当該計測したずれに基づいて、前記構真柱の建入れを修正する工程(例えば、後述のステップS7、S8)と、を備えることを特徴とする。   The vertical accuracy management method for a structural pillar according to claim 1 is used when a structural pillar (for example, a later-described structural pillar 1) is installed in a pile hole (for example, a later-described pile hole 2) excavated in the ground. , A vertical accuracy management method for managing the vertical accuracy of the true pillar, on the ground, a cylindrical measuring tube (for example, so as to be substantially parallel to the pillar core of the true pillar on the outside of the true pillar) And a step (for example, step S1 to be described later) of providing a target plate (for example, a target plate 15 to be described later) on the distal end side of the measurement tube, A step of inserting the measuring tube into the pile hole and supporting the upper end portion of the built-up column by a built-up column stand provided on the ground (for example, step S2 described later), and a laser directly on the measuring tube on the ground An irradiation apparatus (for example, a laser vertical device 17 described later) is provided, and the laser irradiation apparatus More collimating a step (for example, steps S4 and S6 described later) irradiating laser light vertically downward through the measuring tube and a point (for example, point 153 described later) by the laser beam on the target plate, A step (for example, Steps S7 and S8 described later) of measuring the displacement of the structural pillar and correcting the construction of the structural pillar based on the measured displacement.

この発明によれば、ターゲット板上のレーザ光によるポイントを視準して、当該構真柱のずれを計測し、当該計測したずれに基づいて、前記構真柱の建入れを修正する。よって、プレキャストコンクリート造や断面十字形状(クロスH)などの筒状ではない構真柱についても、鉛直精度を管理できる。
また、レーザ照射装置を利用して構真柱の鉛直精度を測定したので、従来のような重錘や浮きを使用する場合に比べて、ポイントの揺れが小さくなり、測定精度を向上できるから、全長が40m以上の長い構真柱についても、鉛直精度を高精度で管理できる。
According to this invention, the point by the laser beam on the target plate is collimated, the deviation of the true pillar is measured, and the construction of the true pillar is corrected based on the measured deviation. Therefore, it is possible to manage the vertical accuracy even for non-cylindrical structural pillars such as precast concrete structures and cross-shaped cross sections (cross H).
In addition, since the vertical accuracy of the structural pillar was measured using a laser irradiation device, the swing of the point becomes smaller and the measurement accuracy can be improved compared to the conventional case of using a weight or float. The vertical accuracy can be managed with high accuracy even for a long column having a total length of 40 m or more.

請求項2に記載の構真柱の鉛直精度管理方法は、前記ターゲット板の近傍には、光源(例えば、後述のバックライト152)が設けられていることを特徴とする。   According to a second aspect of the present invention, there is provided a method for controlling the vertical accuracy of a prism, wherein a light source (for example, a backlight 152 described later) is provided in the vicinity of the target plate.

測定管の長さが長くなると、測定管の内部に入る光が少なくなるため、測定管の上端からターゲット板が視認できなくなる場合がある。
そこで、この発明によれば、ターゲット板の近傍に光源を設けたので、ターゲット板が明るくなるので、ターゲット板を確実に視認できる。
If the length of the measuring tube is increased, the amount of light entering the measuring tube is reduced, and the target plate may not be visible from the upper end of the measuring tube.
Therefore, according to the present invention, since the light source is provided in the vicinity of the target plate, the target plate becomes bright, so that the target plate can be reliably recognized.

請求項3に記載の構真柱の鉛直精度管理方法は、地盤に掘削した杭穴に構真柱を建て込む際に、当該構真柱の鉛直精度を管理する鉛直精度管理方法であって、地上にて、構真柱の外側に当該構真柱の柱芯に略平行となるように測定管を設けて、さらに、当該測定管の先端側にターゲット板を設ける工程と、前記構真柱を前記測定管とともに前記杭穴に挿入し、地上に設けた構真柱架台により前記構真柱の上端を支持する工程と、地上にて、前記測定管の直上に光学式の鉛直器を鉛直方向下方に向けて設ける工程と、前記鉛直器を通して前記ターゲット板を視準して、当該構真柱のずれを計測し、当該計測したずれに基づいて、前記構真柱の建入れを修正する工程と、を備えることを特徴とする。   The vertical accuracy management method for a structural pillar according to claim 3 is a vertical accuracy management method for managing the vertical accuracy of the structural pillar when the structural pillar is built in a pile hole excavated in the ground, On the ground, a step of providing a measurement tube on the outside of the true column so as to be substantially parallel to the column core of the true column, and further providing a target plate on the tip side of the measurement tube, and the true column Is inserted into the pile hole together with the measuring tube, and the upper end of the built-up column is supported by a built-up column mount provided on the ground, and an optical vertical device is vertically mounted on the ground directly above the measuring tube. Aligning the target plate through the vertical device and measuring the misalignment of the structural pillar, and correcting the construction of the structural pillar based on the measured displacement And a process.

この発明によれば、上述の請求項1と同様の効果がある。   According to the present invention, there is an effect similar to that of the first aspect.

本発明によれば、ターゲット板上のレーザ光によるポイントを視準して、当該構真柱のずれを計測し、当該計測したずれに基づいて、前記構真柱の建入れを修正する。よって、プレキャストコンクリート造や断面十字形状(クロスH)などの筒状ではない構真柱についても、鉛直精度を管理できる。また、レーザ照射装置を利用して構真柱の鉛直精度を測定したので、従来のような重錘や浮きを使用する場合に比べて、ポイントの揺れが小さくなり、測定精度を向上できるから、全長が40m以上の長い構真柱についても、鉛直精度を高精度で管理できる。   According to the present invention, the point of the laser beam on the target plate is collimated, the deviation of the true pillar is measured, and the construction of the true pillar is corrected based on the measured deviation. Therefore, it is possible to manage the vertical accuracy even for non-cylindrical structural pillars such as precast concrete structures and cross-shaped cross sections (cross H). In addition, since the vertical accuracy of the structural pillar was measured using a laser irradiation device, the swing of the point becomes smaller and the measurement accuracy can be improved compared to the conventional case of using a weight or float. The vertical accuracy can be managed with high accuracy even for a long column having a total length of 40 m or more.

本発明の一実施形態に係る鉛直精度管理方法が適用された構真柱の側面図である。It is a side view of a construction pillar to which the vertical accuracy management method concerning one embodiment of the present invention was applied. 図1のA−A断面図である。It is AA sectional drawing of FIG. 図1のB−B断面図である。It is BB sectional drawing of FIG. 前記実施形態に係る鉛直精度管理方法のターゲット板の平面図である。It is a top view of the target board of the vertical accuracy management method concerning the embodiment. 前記実施形態に係る鉛直精度管理方法のフローチャートである。3 is a flowchart of a vertical accuracy management method according to the embodiment.

〔第1実施形態〕
図1は、本発明の一実施形態に係る構真柱の鉛直精度管理方法が適用された構真柱の側面図である。図2は、図1のA−A断面図であり、図3は、図1のB−B断面図である。
構真柱1は、断面矩形環状であり、逆打ち工法に用いられるものであり、地盤に掘削した杭穴2に挿入されている。杭穴2の上部には、スタンドパイプ3が打ち込まれており、杭穴2の底部には、図示しない鉄筋かごが配置され、さらにコンクリートが打設されて場所打ち杭4となっている。構真柱1の下端は、この場所打ち杭4に挿入された状態である。
[First Embodiment]
FIG. 1 is a side view of a structural pillar to which a vertical accuracy management method for the structural pillar according to an embodiment of the present invention is applied. 2 is a cross-sectional view taken along the line AA in FIG. 1, and FIG. 3 is a cross-sectional view taken along the line BB in FIG.
The structural pillar 1 has a rectangular cross section and is used for the reverse driving method, and is inserted into a pile hole 2 excavated in the ground. A stand pipe 3 is driven into the upper portion of the pile hole 2, and a reinforcing steel cage (not shown) is arranged at the bottom of the pile hole 2, and concrete is cast into the cast-in-place pile 4. The lower end of the true pillar 1 is inserted into the cast-in-place pile 4.

この構真柱1の鉛直精度は、鉛直精度管理システム10により管理される。
鉛直精度管理システム10は、地上に設けられてヤットコ12を介して構真柱1の上端部を支持する構真柱架台11と、地上に設けられて構真柱1の上端の位置を測定する三次元測定装置13と、構真柱1の外側に設けられて柱芯に沿って延びる筒状の測定管14と、この測定管14の内部の下端側に設けられたターゲット板15と、地上に設けられた測定架台16と、この測定架台16の測定管14の直上の位置に設けられたレーザ照射装置としてのレーザ鉛直器17と、レーザ鉛直器17に取り付けられた撮像装置であるCCDカメラ18と、構真柱1の上部外周面に設けられた傾斜計19と、構真柱1の下部外周面に設けられた4台の水中ジャッキ20と、を備える。
The vertical accuracy of the true pillar 1 is managed by the vertical accuracy management system 10.
The vertical accuracy management system 10 is provided on the ground and supports the upper end of the structural pillar 1 via a Yatco 12 and measures the position of the upper end of the structural pillar 1 provided on the ground. A three-dimensional measuring device 13, a cylindrical measuring tube 14 provided outside the stem 1 and extending along the column core, a target plate 15 provided on the lower end side inside the measuring tube 14, and the ground A measurement stand 16 provided on the laser stand, a laser vertical device 17 as a laser irradiation device provided at a position immediately above the measurement tube 14 of the measurement stand 16, and a CCD camera as an imaging device attached to the laser vertical device 17. 18, an inclinometer 19 provided on the upper outer peripheral surface of the structural pillar 1, and four underwater jacks 20 provided on the lower outer peripheral surface of the structural pillar 1.

構真柱架台11は、構真柱1の上端部をXYZ方向に調整可能であり、また、構真柱の柱芯を回転軸として、構真柱1を回転させることができる。
三次元測定装置13は、トランシット、レベル、あるいはトータルステーションなどであり、基準点の位置に基づいて、構真柱1の上端の三次元空間上の位置を測定するものである。
測定管14は、円筒形状であり、例えば亜鉛めっき鋼管(白ガス管)、角パイプ、丸パイプなどが用いられる。
The true pillar column 11 can adjust the upper end of the true pillar 1 in the X, Y, and Z directions, and can rotate the true pillar 1 around the pillar core of the true pillar as a rotation axis.
The three-dimensional measuring device 13 is a transit, a level, a total station, or the like, and measures the position in the three-dimensional space of the upper end of the stem 1 based on the position of the reference point.
The measurement tube 14 has a cylindrical shape, and for example, a galvanized steel tube (white gas tube), a square pipe, a round pipe, or the like is used.

図4は、ターゲット板15の平面図である。
ターゲット板15は、例えばアクリル板であり、測定管の下端面を塞ぐように設けられている。ターゲット板15の上面には、X方向およびY方向を示す直線が描かれている。これら直線同士の交点は、ターゲット板15上の中心点151であり、構真柱1の柱芯から所定寸法dだけ離れている。
また、ターゲット板15の下面には、光源としての電池式のバックライト152が設けられている。
FIG. 4 is a plan view of the target plate 15.
The target plate 15 is an acrylic plate, for example, and is provided so as to close the lower end surface of the measurement tube. On the upper surface of the target plate 15, straight lines indicating the X direction and the Y direction are drawn. The intersection of these straight lines is the center point 151 on the target plate 15 and is separated from the column core of the structural pillar 1 by a predetermined dimension d.
A battery-type backlight 152 as a light source is provided on the lower surface of the target plate 15.

レーザ鉛直器17は、鉛直方向下方にレーザ光を照射する。このレーザ鉛直器17から照射されたレーザ光は、測定管14の内部を通ってターゲット板15に到達し、ターゲット板15上のポイント153となる(図4参照)。
CCDカメラ18は、図示しないモニタに接続されており、レーザ鉛直器17のレーザ光の照射方向を撮像して、モニタに表示する。
The laser vertical unit 17 irradiates laser light downward in the vertical direction. The laser light emitted from the laser vertical device 17 reaches the target plate 15 through the inside of the measuring tube 14 and becomes a point 153 on the target plate 15 (see FIG. 4).
The CCD camera 18 is connected to a monitor (not shown), images the irradiation direction of the laser beam of the laser vertical device 17 and displays it on the monitor.

傾斜計19は、構真柱1の傾斜を計測するものである。
水中ジャッキ20は、伸縮可能であり、構真柱1の外面と杭穴2の内壁面との間に設置される。この水中ジャッキ20を伸縮させることにより、構真柱1の下部の杭穴2の内壁面からの距離を調整して、構真柱1の傾きを調整できる。
The inclinometer 19 measures the inclination of the true pillar 1.
The underwater jack 20 is extendable and is installed between the outer surface of the stem pillar 1 and the inner wall surface of the pile hole 2. By extending and contracting the underwater jack 20, the distance from the inner wall surface of the pile hole 2 at the lower part of the stem column 1 can be adjusted, and the inclination of the stem column 1 can be adjusted.

次に、構真柱1の鉛直精度を管理する手順について、図5のフローチャートを参照しながら説明する。   Next, the procedure for managing the vertical accuracy of the structural pillar 1 will be described with reference to the flowchart of FIG.

ステップS1では、構真柱1を地組みする。つまり、地上にて、構真柱1の構成部材を連結して、構真柱1を組み立てる。このとき、構真柱1の柱芯と略平行に測定管14を構真柱1の外側に取り付ける。
さらに、この測定管14の先端側にターゲット板15を取り付けて、構真柱の柱芯からターゲットの中心点151までの距離が所定寸法dとなるように調整する。
In step S1, the true pillar 1 is grounded. That is, the structural pillar 1 is assembled on the ground by connecting the structural members of the structural pillar 1. At this time, the measuring tube 14 is attached to the outside of the true pillar 1 substantially in parallel with the pillar core of the true pillar 1.
Further, a target plate 15 is attached to the distal end side of the measuring tube 14 and adjusted so that the distance from the pillar core of the built-up column to the center point 151 of the target becomes a predetermined dimension d.

ステップS2では、杭穴2に構真柱架台11を据え付けて、構真柱1にヤットコ12を取り付け、この構真柱1を測定管14とともに杭穴2に所定の深さまで挿入する。   In step S 2, the built-up column base 11 is installed in the pile hole 2, the Yatco 12 is attached to the built-up column 1, and the built-up column 1 is inserted into the pile hole 2 together with the measuring tube 14 to a predetermined depth.

ステップS3では、構真柱1の上端を構真柱架台11に仮固定する。このとき、三次元測定装置13により構真柱1の上端部の位置を測定して、この測定結果に基づいて構真柱架台11を操作し、構真柱1の上端部を所定の位置に納めておく。   In step S <b> 3, the upper end of the true pillar 1 is temporarily fixed to the true pillar base 11. At this time, the position of the upper end portion of the true pillar 1 is measured by the three-dimensional measuring device 13, and the true pillar base 11 is operated based on the measurement result, so that the upper end portion of the true pillar 1 is set to a predetermined position. I will keep it.

ステップS4では、杭穴2に測定架台16を据え付ける。この測定架台16には、レーザ鉛直器17およびCCDカメラ18を取り付ける。ここで、レーザ鉛直器17の姿勢を調整して、レーザ光の照射方向を鉛直方向下方に設定する。   In step S4, the measurement mount 16 is installed in the pile hole 2. A laser vertical unit 17 and a CCD camera 18 are attached to the measurement base 16. Here, the posture of the laser vertical device 17 is adjusted, and the irradiation direction of the laser light is set downward in the vertical direction.

ステップS5では、傾斜計19により構真柱1の傾斜を測定して、この測定結果に基づいて、構真柱1の傾きをある程度修正する。これは、構真柱1の傾きが大きいと、レーザ鉛直器17によるレーザ光の照射方向からターゲット板15が外れてしまい、構真柱1の傾きを測定できないからである。   In step S5, the inclination of the true pillar 1 is measured by the inclinometer 19, and the inclination of the true pillar 1 is corrected to some extent based on the measurement result. This is because if the inclination of the true pillar 1 is large, the target plate 15 is removed from the laser beam irradiation direction of the laser vertical device 17 and the inclination of the true pillar 1 cannot be measured.

ステップS6では、レーザ鉛直器17によりターゲット板15に向かってレーザ光を照射する。すると、レーザ鉛直器から射出されたレーザ光は、測定管14の内部を通ってターゲット板15に至り、ターゲット板15上にポイント153を照射する。   In step S <b> 6, laser beam is irradiated toward the target plate 15 by the laser vertical device 17. Then, the laser light emitted from the laser vertical device passes through the inside of the measurement tube 14 to the target plate 15 and irradiates the point 153 on the target plate 15.

ステップS7では、構真柱1の傾きを高精度で測定する。すなわち、バックライト152を点灯してターゲット板15を明るくして、この状態で、CCDカメラ18でターゲット板15を視準して撮影し、モニタに表示する。そして、ターゲット板15の中心点151とレーザ光によって照射されたポイント153とのずれ量を測定する。   In step S7, the inclination of the true pillar 1 is measured with high accuracy. That is, the backlight 152 is turned on to brighten the target plate 15, and in this state, the CCD camera 18 collimates and shoots the target plate 15 and displays it on the monitor. And the deviation | shift amount of the center point 151 of the target board 15 and the point 153 irradiated with the laser beam is measured.

ターゲット板15の中心点151は柱芯から所定寸法dだけ離れた位置であるので、ポイント153が中心点151に一致すれば、構真柱1の柱芯が鉛直状態であることとなる。
例えば、ポイント153がターゲット板15上でX軸のプラス方向に位置している場合、構真柱1の柱芯は、X軸のプラス方向に傾いている(つまり、構真柱の柱脚がX軸のマイナス方向に傾いている)ことになる。
Since the center point 151 of the target plate 15 is a position away from the column core by a predetermined dimension d, if the point 153 coincides with the center point 151, the column core of the construction column 1 is in a vertical state.
For example, when the point 153 is positioned on the target plate 15 in the positive direction of the X axis, the column core of the structural pillar 1 is tilted in the positive direction of the X axis (that is, the column base of the structural pillar is It is tilted in the negative direction of the X axis).

ステップS8では、ターゲット板15の中心点151とレーザ光によって照射されたポイント153とのずれ量が小さくなる方向に、水中ジャッキ20などの建入れ調整治具を用いて構真柱1の傾きを修正して、構真柱1の鉛直性を確保する。
この際、必要に応じて、地上において三次元測定装置13により構真柱1の上端部の位置を測定して、構真柱1全体の位置や姿勢の調整を行う。
その後、水中ジャッキ20などで構真柱1の位置を保持する。
In step S8, the inclination of the column 1 is adjusted by using an erection adjusting jig such as the underwater jack 20 in a direction in which the amount of deviation between the center point 151 of the target plate 15 and the point 153 irradiated with the laser beam is reduced. The verticality of the true pillar 1 is secured by correcting.
At this time, if necessary, the position of the upper end of the true pillar 1 is measured by the three-dimensional measuring device 13 on the ground to adjust the position and posture of the entire true pillar 1.
Thereafter, the position of the frame pillar 1 is held with an underwater jack 20 or the like.

本実施形態によれば、以下のような効果がある。
(1)ターゲット板15上のレーザ光によるポイント153を視準して、構真柱1のずれを計測し、この計測したずれに基づいて、構真柱1の建入れを修正する。よって、プレキャストコンクリート造や断面十字形状(クロスH)などの筒状ではない構真柱についても、鉛直精度を管理できる。
また、レーザ鉛直器17を利用して構真柱1の鉛直精度を測定したので、従来のような重錘や浮きを使用する場合に比べて、ポイントの揺れが小さくなり、測定精度を向上できるから、全長が40m以上の長い構真柱についても、鉛直精度を高精度で管理できる。
According to this embodiment, there are the following effects.
(1) The point 153 by the laser beam on the target plate 15 is collimated, the displacement of the structural pillar 1 is measured, and the construction of the structural pillar 1 is corrected based on the measured displacement. Therefore, it is possible to manage the vertical accuracy even for non-cylindrical structural pillars such as precast concrete structures and cross-shaped cross sections (cross H).
In addition, since the vertical accuracy of the structural pillar 1 is measured using the laser vertical device 17, the swing of the point is reduced and the measurement accuracy can be improved as compared with the case of using a conventional weight or float. Therefore, the vertical accuracy can be managed with high accuracy even for a long structural column having a total length of 40 m or more.

(2)ターゲット板15の近傍にバックライト152を設けたので、ターゲット板15が明るくなるので、ターゲット板15を確実に視認できる。   (2) Since the backlight 152 is provided in the vicinity of the target plate 15, the target plate 15 becomes bright, so that the target plate 15 can be visually recognized with certainty.

(3)測定管14を円筒形状としたので、測定管14は中空であり、比較的容易に撤去できる。
(4)測定管14を構真柱1の全長に近い長さにすれば、構真柱1全体の鉛直度を計測することができ、構真柱1の鉛直精度をより向上できる。
(3) Since the measuring tube 14 has a cylindrical shape, the measuring tube 14 is hollow and can be removed relatively easily.
(4) If the measuring tube 14 is made to have a length close to the total length of the stem 1, the verticality of the entire stem 1 can be measured, and the vertical accuracy of the stem 1 can be further improved.

なお、本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、本実施形態では、地上にて構真柱1を組み立てたが(地組)、これに限らず、杭穴内で構真柱を組み立ててもよく、結果的に組み立てた構真柱の柱芯に略平行に測定管を固定できればよい。
It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.
For example, in the present embodiment, the structural pillar 1 is assembled on the ground (ground assembly). However, the structural pillar is not limited to this, and the structural pillar may be assembled in the pile hole. It suffices if the measuring tube can be fixed substantially parallel to the core.

また、本実施形態では、CCDカメラ18でターゲット板15を撮影することで、ターゲット板15を視認したが、これに限らず、測定管14の直上から目視でターゲット板15を視認してもよいし、ターゲット板15の裏面にカメラを設けて、ターゲット板15を裏側から撮影してもよい。   Further, in the present embodiment, the target plate 15 is visually recognized by photographing the target plate 15 with the CCD camera 18. However, the present invention is not limited thereto, and the target plate 15 may be visually recognized from directly above the measurement tube 14. Then, a camera may be provided on the back surface of the target plate 15 so that the target plate 15 can be photographed from the back side.

また、本実施形態では、断面矩形環状の構真柱1に適用したが、これに限らず、プレキャストコンクリート製の構真柱や、断面円環状の構真柱、あるいは、断面が環状でないクロスH形状の構真柱などにも本発明を適用可能である。   In the present embodiment, the present invention is applied to the prismatic column 1 having a rectangular cross section. However, the present invention is not limited to this. The present invention can also be applied to a shape pillar having a shape.

また、本実施形態では、杭コンクリートを打設した後に構真柱を建て込むいわゆる構真柱後決め工法を採用したが、これに限らず、構真柱を建て込んだ後に杭コンクリートを打設するいわゆる構真柱先決め工法にも適用できる。   Moreover, in this embodiment, the so-called post-post structure construction method in which the post-construction column is built after the pile concrete is cast is adopted. However, the present invention is not limited to this, and the pile concrete is placed after the post-construction column is built. It can also be applied to the so-called structural pillar pre-setting method.

また、本実施形態では、レーザ鉛直器17およびCCDカメラ18を用いて、ターゲット板15を視準したが、これに限らず、望遠鏡を備えた光学式の鉛直器を用いて、この望遠鏡でターゲット板を視準してもよい。   In the present embodiment, the target plate 15 is collimated using the laser vertical device 17 and the CCD camera 18, but the present invention is not limited to this, and an optical vertical device equipped with a telescope is used to target the target plate 15. The plate may be collimated.

また、本実施形態では、杭穴2に測定架台16を設けて、この測定架台16にレーザ鉛直器17を取り付けたが、これに限らず、鉛直器が自動的に鉛直を保持する機能を有する場合には、鉛直器を構真柱1やヤットコ12に取り付けてもよい。   Moreover, in this embodiment, the measurement stand 16 was provided in the pile hole 2, and the laser vertical device 17 was attached to this measurement stand 16, but not only this but a vertical device has the function to hold | maintain perpendicularity automatically. In some cases, a vertical instrument may be attached to the stem 1 or Yatco 12.

1…構真柱
2…杭穴
3…スタンドパイプ
4…場所打ち杭
10…鉛直精度管理システム
11…構真柱架台
12…ヤットコ
13…三次元測定装置
14…測定管
15…ターゲット板
16…測定架台
17…レーザ鉛直器(レーザ照射装置)
18…CCDカメラ
19…傾斜計
20…水中ジャッキ
151…中心点
152…バックライト(光源)
153…ポイント
DESCRIPTION OF SYMBOLS 1 ... Construction pillar 2 ... Pile hole 3 ... Stand pipe 4 ... Cast-in-place pile 10 ... Vertical accuracy control system 11 ... Construction pillar pillar 12 ... Yatco 13 ... Three-dimensional measuring device 14 ... Measuring tube 15 ... Target plate 16 ... Measurement Base 17 ... Laser vertical device (laser irradiation device)
18 ... CCD camera 19 ... Inclinometer 20 ... Underwater jack 151 ... Center point 152 ... Back light (light source)
153 ... Point

Claims (3)

地盤に掘削した杭穴に構真柱を建て込む際に、当該構真柱の鉛直精度を管理する鉛直精度管理方法であって、
地上にて、構真柱の外側に当該構真柱の柱芯に略平行となるように測定管を設けて、さらに、当該測定管の先端側にターゲット板を設ける工程と、
前記構真柱を前記測定管とともに前記杭穴に挿入し、地上に設けた構真柱架台により前記構真柱の上端を支持する工程と、
地上にて前記測定管の直上にレーザ照射装置を設けて、当該レーザ照射装置により前記測定管を通して鉛直下方にレーザ光を照射する工程と、
前記ターゲット板上のレーザ光によるポイントを視準して、当該構真柱のずれを計測し、当該計測したずれに基づいて、前記構真柱の建入れを修正する工程と、を備えることを特徴とする構真柱の鉛直精度管理方法。
A vertical accuracy management method for managing the vertical accuracy of a structural pillar when building the structural column in a pile hole excavated in the ground,
On the ground, providing a measurement tube on the outside of the true column so as to be substantially parallel to the column core of the true column, and further providing a target plate on the tip side of the measurement tube;
Inserting the true pillar into the pile hole together with the measuring tube, and supporting the upper end of the true pillar by a true pillar mount provided on the ground;
Providing a laser irradiation device directly above the measurement tube on the ground, and irradiating the laser beam vertically downward through the measurement tube with the laser irradiation device;
Collimating the point by the laser beam on the target plate, measuring the displacement of the structural pillar, and correcting the construction of the structural pillar based on the measured displacement. A vertical accuracy control method for the structural column.
前記ターゲット板の近傍には、光源が設けられていることを特徴とする請求項1に記載の構真柱の鉛直精度管理方法。   The method of claim 1, wherein a light source is provided in the vicinity of the target plate. 地盤に掘削した杭穴に構真柱を建て込む際に、当該構真柱の鉛直精度を管理する鉛直精度管理方法であって、
地上にて、構真柱の外側に当該構真柱の柱芯に略平行となるように測定管を設けて、さらに、当該測定管の先端側にターゲット板を設ける工程と、
前記構真柱を前記測定管とともに前記杭穴に挿入し、地上に設けた構真柱架台により前記構真柱の上端を支持する工程と、
地上にて、前記測定管の直上に光学式の鉛直器を鉛直方向下方に向けて設ける工程と、
前記鉛直器を通して前記ターゲット板を視準して、当該構真柱のずれを計測し、当該計測したずれに基づいて、前記構真柱の建入れを修正する工程と、を備えることを特徴とする構真柱の鉛直精度管理方法。
A vertical accuracy management method for managing the vertical accuracy of a structural pillar when building the structural column in a pile hole excavated in the ground,
On the ground, providing a measurement tube on the outside of the true column so as to be substantially parallel to the column core of the true column, and further providing a target plate on the tip side of the measurement tube;
Inserting the true pillar into the pile hole together with the measuring tube, and supporting the upper end of the true pillar by a true pillar mount provided on the ground;
On the ground, a step of providing an optical vertical device directly above the measurement tube in a vertically downward direction;
Collimating the target plate through the vertical instrument, measuring the displacement of the structural pillar, and correcting the construction of the structural pillar based on the measured displacement, How to control the vertical accuracy of the structural pillar.
JP2012231256A 2012-10-18 2012-10-18 Vertical accuracy control method for structural pillars Active JP6039994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012231256A JP6039994B2 (en) 2012-10-18 2012-10-18 Vertical accuracy control method for structural pillars

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012231256A JP6039994B2 (en) 2012-10-18 2012-10-18 Vertical accuracy control method for structural pillars

Publications (2)

Publication Number Publication Date
JP2014080836A true JP2014080836A (en) 2014-05-08
JP6039994B2 JP6039994B2 (en) 2016-12-07

Family

ID=50785257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012231256A Active JP6039994B2 (en) 2012-10-18 2012-10-18 Vertical accuracy control method for structural pillars

Country Status (1)

Country Link
JP (1) JP6039994B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104006798A (en) * 2014-06-16 2014-08-27 贵州路桥集团有限公司 Measuring instrument for perpendicularity of pier column
CN104499485A (en) * 2014-12-08 2015-04-08 上海建工集团股份有限公司 One-column one-pile full-automatic hydraulic verticality adjusting system and method
CN105604103A (en) * 2016-02-24 2016-05-25 中国地质大学(武汉) Installing device of strain gauge inside miniature steel pipe pile and strain gauge installing method thereof
FR3041774A1 (en) * 2015-09-24 2017-03-31 Airbus Operations Sas DIMENSIONAL SPACING SYSTEM FOR ADJUSTING A HIGH HEAD DISPLAY SYSTEM IN AN AIRCRAFT
US10773860B2 (en) * 2014-07-24 2020-09-15 Al Ibtikar Packaging & Investment Co., Ltd. Method for safe and tight closure using safety strip and cap for closing bottle's neck
JP2020172817A (en) * 2019-04-12 2020-10-22 株式会社大林組 Position adjustment device, and position adjustment method of underground piled column
JP2020193482A (en) * 2019-05-28 2020-12-03 鹿島建設株式会社 Building adjustment measuring instrument and building method
CN112228091A (en) * 2020-12-14 2021-01-15 北京建工土木工程有限公司 Bottom sealing method for mechanical construction vertical shaft in tunnel
CN113587909A (en) * 2021-06-22 2021-11-02 上海建工五建集团有限公司 Verticality measurement and adjustment integrated system and method for latticed column
CN114277802A (en) * 2021-12-13 2022-04-05 深圳市工勘岩土集团有限公司 Positioning construction structure of reverse construction method steel pipe structure column rear insertion method
CN114277803A (en) * 2021-12-13 2022-04-05 深圳市工勘岩土集团有限公司 Reverse construction method steel pipe structure column rear insertion method positioning construction method
KR102423420B1 (en) * 2021-04-13 2022-07-21 권우성 Apparatus for adjusting height and slope of the manhole structure for the valve chamber

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272947A (en) * 1992-03-26 1993-10-22 Kubota Corp Measuring apparatus for buried angle of cylindrical body
JPH0694457A (en) * 1991-08-27 1994-04-05 Taisei Corp Displacement measuring apparatus of underground structure
JPH073825A (en) * 1992-11-25 1995-01-06 Taisei Corp Correction device for erecting position of under structural center column, and inclination measuring device
JPH073792A (en) * 1993-06-17 1995-01-06 Ohbayashi Corp Device for measuring plumbing accuracy of column body
JP3007824B2 (en) * 1995-09-08 2000-02-07 松下情報システム株式会社 Motion detection device
JP2011021392A (en) * 2009-07-16 2011-02-03 Takenaka Komuten Co Ltd Perpendicular accuracy management method of under-ground piled column
JP2011214307A (en) * 2010-03-31 2011-10-27 Ohbayashi Corp Perpendicular accuracy measuring system for reversely driven column

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694457A (en) * 1991-08-27 1994-04-05 Taisei Corp Displacement measuring apparatus of underground structure
JPH05272947A (en) * 1992-03-26 1993-10-22 Kubota Corp Measuring apparatus for buried angle of cylindrical body
JPH073825A (en) * 1992-11-25 1995-01-06 Taisei Corp Correction device for erecting position of under structural center column, and inclination measuring device
JPH073792A (en) * 1993-06-17 1995-01-06 Ohbayashi Corp Device for measuring plumbing accuracy of column body
JP3007824B2 (en) * 1995-09-08 2000-02-07 松下情報システム株式会社 Motion detection device
JP2011021392A (en) * 2009-07-16 2011-02-03 Takenaka Komuten Co Ltd Perpendicular accuracy management method of under-ground piled column
JP2011214307A (en) * 2010-03-31 2011-10-27 Ohbayashi Corp Perpendicular accuracy measuring system for reversely driven column

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104006798A (en) * 2014-06-16 2014-08-27 贵州路桥集团有限公司 Measuring instrument for perpendicularity of pier column
US10773860B2 (en) * 2014-07-24 2020-09-15 Al Ibtikar Packaging & Investment Co., Ltd. Method for safe and tight closure using safety strip and cap for closing bottle's neck
CN104499485A (en) * 2014-12-08 2015-04-08 上海建工集团股份有限公司 One-column one-pile full-automatic hydraulic verticality adjusting system and method
CN104499485B (en) * 2014-12-08 2017-01-04 上海建工集团股份有限公司 One pile for one column fully automatic hydraulic verticality-regulating system and vertical adjustment method
FR3041774A1 (en) * 2015-09-24 2017-03-31 Airbus Operations Sas DIMENSIONAL SPACING SYSTEM FOR ADJUSTING A HIGH HEAD DISPLAY SYSTEM IN AN AIRCRAFT
CN105604103A (en) * 2016-02-24 2016-05-25 中国地质大学(武汉) Installing device of strain gauge inside miniature steel pipe pile and strain gauge installing method thereof
JP2020172817A (en) * 2019-04-12 2020-10-22 株式会社大林組 Position adjustment device, and position adjustment method of underground piled column
JP7364105B2 (en) 2019-04-12 2023-10-18 株式会社大林組 Position adjustment device and method for adjusting the position of the structure pillar
JP7275793B2 (en) 2019-04-12 2023-05-18 株式会社大林組 Position adjusting device and method for adjusting position of structural column
JP7141981B2 (en) 2019-05-28 2022-09-26 鹿島建設株式会社 Measuring instrument for erection adjustment and erection method
JP2020193482A (en) * 2019-05-28 2020-12-03 鹿島建設株式会社 Building adjustment measuring instrument and building method
CN112228091A (en) * 2020-12-14 2021-01-15 北京建工土木工程有限公司 Bottom sealing method for mechanical construction vertical shaft in tunnel
CN112228091B (en) * 2020-12-14 2021-03-12 北京建工土木工程有限公司 Bottom sealing method for mechanical construction vertical shaft in tunnel
KR102423420B1 (en) * 2021-04-13 2022-07-21 권우성 Apparatus for adjusting height and slope of the manhole structure for the valve chamber
CN113587909A (en) * 2021-06-22 2021-11-02 上海建工五建集团有限公司 Verticality measurement and adjustment integrated system and method for latticed column
CN114277803A (en) * 2021-12-13 2022-04-05 深圳市工勘岩土集团有限公司 Reverse construction method steel pipe structure column rear insertion method positioning construction method
CN114277802A (en) * 2021-12-13 2022-04-05 深圳市工勘岩土集团有限公司 Positioning construction structure of reverse construction method steel pipe structure column rear insertion method
CN114277802B (en) * 2021-12-13 2023-08-25 深圳市工勘岩土集团有限公司 Post-insertion method positioning construction structure for reverse construction method steel pipe structural column
CN114277803B (en) * 2021-12-13 2023-08-25 深圳市工勘岩土集团有限公司 Post-insertion method positioning construction method for reverse construction method steel pipe structural column

Also Published As

Publication number Publication date
JP6039994B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP6039994B2 (en) Vertical accuracy control method for structural pillars
ES2758550T3 (en) Ascending formwork and procedure for the erection of a concrete structure
JP5486863B2 (en) Vertical accuracy control method for structural pillars
KR101737931B1 (en) Method of installing a foundation for an offshore wind turbine and a template for use herein
JP5585059B2 (en) Measuring method of steel pipe installation error
CN109610441B (en) One-column one-pile construction method adopting hydraulic vertical adjustment frame reverse construction method
KR102319250B1 (en) Stabilizer system for level survey
JP6044360B2 (en) Installation error measuring system for building member, measuring error measuring method for building member, and erection method for struts
CN109238254A (en) A kind of hole stake cultellation method
WO2004081294A1 (en) Method and apparatus for monitoring element alignment
JP6264745B2 (en) Adjusting method for erection of reverse strut and adjustment system for erection of reverse strut
US7484913B2 (en) Placing elements in piles
JP5648311B2 (en) Vertical accuracy measurement system for back struts
JP2011007574A (en) Target for measuring vertical precision of steel pipe and method of installing the target
JP5786644B2 (en) Steel pipe erection error measurement system, steel pipe erection error measurement method, and reverse strut erection method
JP2000304536A (en) Install mount for measuring device and measuring method
KR101009195B1 (en) Verticality measuring method
JP3192290U (en) Laser distance meter installation equipment
KR200447626Y1 (en) Using laser beam for height measure apparatus
JP2012251827A (en) Measuring method for build-in error of steel pipe, and steel pipe
JP2019131990A (en) Permanent sub-structural column erection method and permanent sub-structural column erection apparatus
JP2917751B2 (en) Column accuracy measurement system
CN112284301B (en) Verticality detection system with telescopic circular pipe column circle center self-positioning function
JP6988049B2 (en) How to manage the verticality of the shaft member and how to build the retaining wall
JP7141981B2 (en) Measuring instrument for erection adjustment and erection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161107

R150 Certificate of patent or registration of utility model

Ref document number: 6039994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250