JP2014080750A - Method for recovering impervious performance of impervious wall - Google Patents

Method for recovering impervious performance of impervious wall Download PDF

Info

Publication number
JP2014080750A
JP2014080750A JP2012227912A JP2012227912A JP2014080750A JP 2014080750 A JP2014080750 A JP 2014080750A JP 2012227912 A JP2012227912 A JP 2012227912A JP 2012227912 A JP2012227912 A JP 2012227912A JP 2014080750 A JP2014080750 A JP 2014080750A
Authority
JP
Japan
Prior art keywords
water
wall
groundwater
water shielding
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012227912A
Other languages
Japanese (ja)
Other versions
JP6095319B2 (en
Inventor
Yuichi Komura
雄一 甲村
Yoshio Hirai
芳雄 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2012227912A priority Critical patent/JP6095319B2/en
Publication of JP2014080750A publication Critical patent/JP2014080750A/en
Application granted granted Critical
Publication of JP6095319B2 publication Critical patent/JP6095319B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To close a crack of an impervious wall constructed from a soil improvement body, by supplying carbon dioxide through the use of a flow of water.SOLUTION: A method for recovering impervious performance of an impervious wall 10 includes a step of injecting carbon dioxide into a section with a higher ground water level on the inside or outside of the impervious wall 10 constructed from a soil improvement body.

Description

本発明は、遮水壁の遮水性能回復方法に関する。   The present invention relates to a method for restoring the water shielding performance of a water shielding wall.

近年、セメントで土壌を改良した地盤改良体の遮水機能が注目され、例えば地中に埋設された汚染物質(汚染土壌、汚染水)の封じ込め等、地盤改良体で構築された遮水壁のニーズが増大している。しかし、地震により遮水壁に部分的にクラックを生じる可能性が残されており、地中に構築された遮水壁のクラック対策が求められている。
そこで、地中の微生物を利用して遮蔽機能を自己修復させる技術が提案されている(特許文献1)。
特許文献1には、地中に設けた空洞から周囲の岩盤中にボーリング孔を開け、放射性廃棄物を封じ込める技術が記載されている。このとき、ボーリング孔の掘削時に岩盤に発生したクラックに、圧力を加えて二酸化炭素を注入し、クラック位置における微生物の繁殖を利用してクラックを修復している。
In recent years, the water-blocking function of ground improvement bodies whose soil has been improved with cement has attracted attention. For example, the containment of water-impervious walls constructed with ground improvement bodies, such as containment of pollutants (contaminated soil, contaminated water) buried in the ground Needs are increasing. However, there is still a possibility of partial cracks in the impermeable walls due to the earthquake, and there is a demand for countermeasures against cracks in the impermeable walls built in the ground.
Therefore, a technique for self-repairing the shielding function using underground microorganisms has been proposed (Patent Document 1).
Patent Document 1 describes a technique for making a boring hole in a surrounding rock mass from a cavity provided in the ground to contain radioactive waste. At this time, carbon dioxide is injected by applying pressure to the crack generated in the rock during the drilling of the borehole, and the crack is repaired by utilizing the propagation of microorganisms at the crack position.

特許第4632998号Japanese Patent No. 4632998

しかし、特許文献1の方法は、微生物が存在する天然の岩盤におけるクラックを対象としており、人工的に構築された地盤改良体には、微生物の存在は期待できない。
また、特許文献1の方法は、クラックの位置を把握した上で、クラックの位置に圧力を加えて二酸化炭素を注入している。しかし、地中に構築された遮水壁のクラック位置を把握して、クラック位置に圧力を加えて二酸化炭素を注入するのは現実的には困難である。
本発明は、上記事実に鑑み、水の流れを利用して二酸化炭素を供給し、地盤改良体で構築された遮水壁のクラックを閉塞させる遮水性能回復方法を提供することを目的とする。
However, the method of Patent Document 1 targets cracks in natural rock where microorganisms exist, and the presence of microorganisms cannot be expected from artificially constructed ground improvement bodies.
In the method of Patent Document 1, carbon dioxide is injected by applying pressure to the crack position after grasping the position of the crack. However, it is actually difficult to grasp the crack position of the impermeable wall built in the ground and inject carbon dioxide by applying pressure to the crack position.
In view of the above-described facts, the present invention aims to provide a method for recovering the water shielding performance by supplying carbon dioxide using the flow of water and closing the cracks of the water shielding wall constructed by the ground improvement body. .

請求項1に記載の発明に係る遮水壁の遮水性能回復方法は、地盤改良体で構築された遮水壁の内側又は外側の地下水位が高い方へ二酸化炭素を注入する工程を有することを特徴としている。   The method for recovering water-impervious performance of a water-impervious wall according to claim 1 has a step of injecting carbon dioxide into a higher groundwater level inside or outside the water-impervious wall constructed of a ground improvement body. It is characterized by.

請求項1に記載の発明によれば、水位の高い地下水側へ注入(混入)された二酸化炭素が、水位差により地下水と共にクラックから遮水壁に滲入する。
これにより、下記化学反応式で示すように、水中に溶けたCO 2−がセメントペースト中のCa2+を引き寄せ、炭酸カルシウムの結晶となり、セメントペーストなどに付着する。炭酸カルシウムの結晶が付着すると、水中のカルシウムイオンの減少を補うようにして、Ca2+がコンクリートの内部から移動し、更にCO 2−と結合する。このような反応が繰り返され、炭酸カルシウムの結晶が次々と生成され、セメントペーストなどに付着沈殿して遮水壁のクラックが徐々に修復される。

O+CO⇔ HCO⇔ H+HCO ⇔ 2H+CO 2−
Ca2++CO 2− ⇔ CaCO(pHWATER > 8)
Ca2++HCO ⇔ CaCO+H(7.5<pHWATER < 8)
According to the first aspect of the present invention, carbon dioxide injected (mixed) into the groundwater side having a high water level infiltrates from the crack into the impermeable wall together with the groundwater due to the water level difference.
Thereby, as shown by the following chemical reaction formula, CO 3 2− dissolved in water attracts Ca 2+ in the cement paste to form calcium carbonate crystals, which adhere to the cement paste and the like. When calcium carbonate crystals adhere, Ca 2+ moves from the inside of the concrete and further binds to CO 3 2− so as to compensate for the decrease in calcium ions in the water. Such a reaction is repeated, and calcium carbonate crystals are generated one after another, which adheres and settles on cement paste and the like, and the cracks in the impermeable wall are gradually repaired.

H 2 O + CO 2 ⇔ H 2 CO 3 ⇔ H + + HCO 3 ⇔ 2H + + CO 3 2−
Ca 2+ + CO 3 2− ⇔ CaCO 3 (pH WATER > 8)
Ca 2+ + HCO 3 − − CaCO 3 + H + (7.5 <pH WATER <8)

即ち、クラックへ流れ込む水の流れを利用することで、クラックの位置を特定しなくても、遮水壁の内部でクラックが閉塞され遮水壁の遮水性能が回復される。   That is, by utilizing the flow of water that flows into the crack, the crack is blocked inside the impermeable wall and the impermeable performance of the impermeable wall is recovered without specifying the position of the crack.

請求項2に記載の発明は、請求項1に記載の遮水壁の遮水性能回復方法において、前記遮水壁は格子状に構築され、格子状の前記遮水壁の内側又は外側に水を注入又は揚水し、前記地下水位に高低差を発生させる工程を有することを特徴としている。   According to a second aspect of the present invention, in the method for recovering the water shielding performance of the impermeable wall according to the first aspect, the impermeable wall is constructed in a lattice shape, and water is placed inside or outside the lattice-shaped impermeable wall. Injecting or pumping water and generating a difference in height in the groundwater level.

請求項2に記載の発明によれば、格子状に構築された遮水壁の内側又は外側に水を注入又は揚水することにより、遮水壁の内側又は外側で地下水の水位に高低差を発生させることができる。
これにより、遮水壁の内側又は外側のいずれかを選択して、地下水の水位に高低差を発生させ、地下水の水位の高い側へ二酸化炭素を注入することができる。これにより、遮水壁の内部へ二酸化炭素が供給され、クラックの位置を特定しなくても、水の流れで遮水壁のクラックの修復を促進させることができる。
According to the invention described in claim 2, by injecting or pumping water inside or outside the impermeable wall constructed in a lattice shape, a difference in level of groundwater level is generated inside or outside the impermeable wall. Can be made.
Thereby, either the inner side or the outer side of the water-impervious wall is selected, a difference in level is generated in the water level of the groundwater, and carbon dioxide can be injected into the side of the higher water level of the groundwater. Thereby, carbon dioxide is supplied to the inside of the impermeable wall, and repair of cracks in the impermeable wall can be promoted by the flow of water without specifying the position of the crack.

請求項3に記載の発明は、請求項1又は2に記載の遮水壁の遮水性能回復方法において、前記遮水壁に沿って設けられた複数のボーリング孔と、隣接する前記ボーリング孔の一方から地下水を揚水して地下水位を低下させる揚水ポンプと、を有し、隣接する前記ボーリング孔の他方から前記二酸化炭素を注入し、地下水位の高低差で発生する前記地下水の流れで前記二酸化炭素を、前記遮水壁の壁面に拡散させることを特徴としている。   The invention according to claim 3 is the method of recovering the water shielding performance of the water shielding wall according to claim 1 or 2, wherein a plurality of boring holes provided along the water shielding wall and the adjacent boring holes are provided. A pump for lowering the groundwater level by pumping groundwater from one side, injecting the carbon dioxide from the other of the adjacent boreholes, and generating the carbon dioxide in the groundwater flow generated by the difference in groundwater level Carbon is diffused in the wall surface of the impermeable wall.

請求項3に記載の発明によれば、隣り合うボーリング孔の一方の水位を低くし、隣り合うボーリング孔の間で、地下水の水位に高低差でボーリング孔を含む面上の広い範囲に二酸化炭素を分布させることができ、遮水壁のクラックがどの位置にあったとしてもクラックへ二酸化炭素を注入させることができる。 According to the third aspect of the present invention, the water level of one of the adjacent boreholes is lowered, and the carbon dioxide in a wide range on the surface including the borehole due to the difference in the groundwater level between the adjacent boreholes. Can be distributed, and carbon dioxide can be injected into the crack regardless of the position of the crack of the impermeable wall.

請求項4に記載の発明は、請求項1〜3のいずれか1項に記載の遮水壁の遮水性能回復方法において、前記遮水壁で囲まれた内部には汚染土壌が封じ込まれていることを特徴としている。
これにより、汚染土壌が封じ込まれた遮水壁のクラックを、クラックの位置を特定しなくても、水の流れで遮水壁の自己修復機能で閉塞させることができ、遮水壁のクラックから汚染土壌や汚染水が流出するのを抑制することができる。
According to a fourth aspect of the present invention, in the water shielding performance recovery method for a water shielding wall according to any one of the first to third aspects, contaminated soil is enclosed in the interior surrounded by the water shielding wall. It is characterized by having.
As a result, cracks in the impermeable walls that contain contaminated soil can be blocked by the self-repair function of the impermeable walls with the flow of water without specifying the position of the cracks. It is possible to suppress the outflow of contaminated soil and contaminated water.

請求項5に記載の発明は、請求項1に記載の遮水壁の遮水性能回復方法において、前記遮水壁は山留め壁であり、前記山留め壁の漏水位置へ向けて地山側からボーリング孔を設け、前記ボーリング孔から二酸化炭素を注入することを特徴としている。   According to a fifth aspect of the present invention, in the method for recovering the water-impervious performance of the impermeable wall according to the first aspect, the impermeable wall is a mountain retaining wall, and a borehole is formed from the natural mountain side toward the water leakage position of the mountain retaining wall. And carbon dioxide is injected from the borehole.

地盤改良体で構築された山留め壁において、山留め壁から掘削空間側への漏水が発見されたとき、山留め壁の地山側から漏水位置へ向けてボーリング孔が設けられ、ボーリング孔から二酸化炭素を注入する。
この結果、地山側の地下水により漏水位置に二酸化炭素が運ばれ、山留め壁を自己修復機能で閉塞させることができる。
When water leakage from the retaining wall to the excavation space is detected in the retaining wall constructed from the ground improvement body, a borehole is provided from the ground wall side of the retaining wall to the leakage position, and carbon dioxide is injected from the borehole. To do.
As a result, the carbon dioxide is carried to the leakage position by the groundwater on the natural ground side, and the mountain retaining wall can be blocked by the self-repair function.

本発明は、上記構成としてあるので、水の流れを利用して二酸化炭素を供給し、地盤改良体で構築された遮水壁のクラックを閉塞させることができる。   Since this invention is set as the said structure, a carbon dioxide can be supplied using the flow of water and the crack of the impermeable wall constructed with the ground improvement body can be obstruct | occluded.

本発明の第1実施形態に係る遮水壁の遮水性能回復方法を説明するための平面図である。It is a top view for demonstrating the water shielding performance recovery method of the water shielding wall which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る遮水壁の遮水性能回復方法を説明するための平面図である。It is a top view for demonstrating the water shielding performance recovery method of the water shielding wall which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る遮水壁の遮水性能回復方法を説明するための図2のX−X線断面図である。It is XX sectional drawing of FIG. 2 for demonstrating the water-blocking performance recovery method of the water-blocking wall which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る遮水壁の遮水性能回復方法を説明するための図2のX−X線断面図である。It is XX sectional drawing of FIG. 2 for demonstrating the water-blocking performance recovery method of the water-blocking wall which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る遮水壁の遮水性能回復方法を説明するための図2のX−X線断面図である。It is XX sectional drawing of FIG. 2 for demonstrating the water-blocking performance recovery method of the water-blocking wall concerning 3rd Embodiment of this invention. 本発明の第4実施形態に係る遮水壁の遮水性能回復方法を説明するための断面図である。It is sectional drawing for demonstrating the water-blocking performance recovery method of the water-blocking wall which concerns on 4th Embodiment of this invention.

(第1実施形態)
図1〜図3を用いて、第1実施形態に係る遮水壁10の遮水性能回復方法について説明する。図1、2の平面図、図3の垂直断面図に示すように、遮水壁10は、地盤改良体で平面視が格子状に構築されている。本明細書では便宜上、最外周部10Gのみでなく、格子状部分10Nも含めた地盤改良体全体を遮水壁10と呼ぶ。遮水壁10には、汚染土壌(汚染水を含む)12が封じ込められている。
(First embodiment)
The water-blocking performance recovery method for the water-blocking wall 10 according to the first embodiment will be described with reference to FIGS. 1 to 3. As shown in the plan views of FIGS. 1 and 2 and the vertical sectional view of FIG. 3, the water shielding wall 10 is a ground improvement body and is constructed in a lattice shape in plan view. In this specification, for the sake of convenience, the entire ground improvement body including not only the outermost peripheral portion 10G but also the lattice-like portion 10N is referred to as a water-impervious wall 10. Contaminated soil (including contaminated water) 12 is contained in the impermeable wall 10.

遮水壁10は、完全ラップで施工された最外周部10Gで汚染土壌12を囲み、最外周部10Gの内部に施工された内部改良体10Nで平面視が格子状に構築されている。一例として、最外周部10Gの一辺がL1の正方形とされ、内部改良体10Nで、一辺がL2の正方形16個に分割された遮水壁10について説明する。
遮水壁10は、地表面32から上層の砂層18を貫通し、砂層18の下の粘土層20まで到達する深さに構築され、遮水壁10の下端部は粘土層20に根入れされている。これにより、遮水壁10の内部と外部との間で地下水の移動が禁止され、汚染土壌12及び汚染水を、遮水壁10の内部に封じ込めることができる。
The impermeable wall 10 surrounds the contaminated soil 12 with the outermost peripheral portion 10G constructed with a complete lap, and the plan view is constructed in a lattice shape with the internal improved body 10N constructed within the outermost peripheral portion 10G. As an example, a description will be given of a water shielding wall 10 in which one side of the outermost peripheral portion 10G is a square of L1 and is divided into 16 squares of L2 with an internal improvement body 10N.
The impermeable wall 10 is constructed to a depth that penetrates the upper sand layer 18 from the ground surface 32 to reach the clay layer 20 below the sand layer 18, and the lower end of the impermeable wall 10 is embedded in the clay layer 20. ing. Thereby, the movement of groundwater is prohibited between the inside and the outside of the impermeable wall 10, and the contaminated soil 12 and the contaminated water can be contained inside the impermeable wall 10.

また、遮水壁10の内部地盤は、格子状に構築された内部改良体10Nで、一辺がL2の16個の正方形に分割されている。これにより、遮水壁10の内部地盤の液状化が抑制され、建物の耐震性を確保するとともに、汚染土壌12の封じ込め機能の向上に寄与することができる。
なお、一辺がL2で正方形に分割された16個の内部地盤を、その位置により区分けして、少なくとも一つの辺が最外周部10Gと接する部分を外側地盤42A〜42Lと呼び、外側地盤42A〜42Lで周囲が囲まれた部分を内側地盤44A〜44Dと呼ぶこととする(図2参照)。
Further, the internal ground of the impermeable wall 10 is an internal improvement body 10N constructed in a lattice shape, and is divided into 16 squares each having L2. Thereby, the liquefaction of the internal ground of the impermeable wall 10 is suppressed, and the earthquake resistance of the building can be ensured and the function of containing the contaminated soil 12 can be improved.
In addition, 16 internal grounds divided into squares with one side being L2 are divided according to their positions, and portions where at least one side is in contact with the outermost peripheral part 10G are referred to as outer grounds 42A to 42L. The portion surrounded by 42L is referred to as inner ground 44A to 44D (see FIG. 2).

遮水壁10は、セメントで土壌改良され、高い遮水性能を有しているが、地震によりクラックが発生する可能性がある。遮水壁10にクラックが発生すると、遮水壁10の遮水性能が低下する。特に、遮水壁10の最外周部10Gの遮水性能が低下すると、封じ込めた汚染土壌12及び汚染水が、遮水壁10の外部へ漏れ出す恐れがある。
本実施形態では、地中に構築された遮水壁10のクラックの修復手段として、炭酸カルシウム結晶が生成する化学反応を利用して、コンクリートのひび割れを自己修復する方法を用いている。具体的には、下記の方法で最外周部10Gの遮水性能を回復させる。
なお、炭酸カルシウム結晶を確実に確保するため、地下水に図示しない二酸化炭素を混入させた。これにより、地下水の流れを利用して、最外周部10Gのクラックの閉塞が可能となる。
Although the water-impervious wall 10 is soil-improved with cement and has high water-impervious performance, cracks may occur due to an earthquake. If a crack occurs in the water-impervious wall 10, the water-impervious performance of the water-impervious wall 10 decreases. In particular, when the water shielding performance of the outermost peripheral portion 10 </ b> G of the water shielding wall 10 is deteriorated, the contained contaminated soil 12 and the contaminated water may leak out of the water shielding wall 10.
In the present embodiment, as a means for repairing cracks in the impermeable wall 10 built in the ground, a method of self-repairing concrete cracks using a chemical reaction generated by calcium carbonate crystals is used. Specifically, the water shielding performance of the outermost peripheral part 10G is recovered by the following method.
In order to ensure calcium carbonate crystals, carbon dioxide (not shown) was mixed in the groundwater. Thereby, the crack of the outermost peripheral part 10G can be closed using the flow of groundwater.

即ち、水位の高い地下水側へ注入された二酸化炭素が、水位差により地下水と共に最外周部10Gのクラックから遮水壁に滲入する。これにより、下記化学反応式で示すように、水中に溶けたCO 2−がセメントペースト中のCa2+を引き寄せ、炭酸カルシウムの結晶となり、セメントペーストなどに付着する。炭酸カルシウムの結晶が付着すると、水中のカルシウムイオンの減少を補うようにして、Ca2+がコンクリートの内部から移動し、更にCO 2−と結合する。このような反応が繰り返され、炭酸カルシウムの結晶が次々と生成され、セメントペーストなどに付着沈殿して遮水壁のクラックが徐々に修復される。

O+CO⇔ HCO⇔ H+HCO ⇔ 2H+CO 2−
Ca2++CO 2− ⇔ CaCO(pHWATER > 8)
Ca2++HCO ⇔ CaCO+H(7.5<pHWATER < 8)
That is, carbon dioxide injected into the groundwater side having a high water level infiltrates into the water-impervious wall from the crack in the outermost peripheral portion 10G together with the groundwater due to the difference in water level. Thereby, as shown by the following chemical reaction formula, CO 3 2− dissolved in water attracts Ca 2+ in the cement paste to form calcium carbonate crystals, which adhere to the cement paste and the like. When calcium carbonate crystals adhere, Ca 2+ moves from the inside of the concrete and further binds to CO 3 2− so as to compensate for the decrease in calcium ions in the water. Such a reaction is repeated, and calcium carbonate crystals are generated one after another, which adheres and settles on cement paste and the like, and the cracks in the impermeable wall are gradually repaired.

H 2 O + CO 2 ⇔ H 2 CO 3 ⇔ H + + HCO 3 ⇔ 2H + + CO 3 2−
Ca 2+ + CO 3 2− ⇔ CaCO 3 (pH WATER > 8)
Ca 2+ + HCO 3 − − CaCO 3 + H + (7.5 <pH WATER <8)

上述したように、クラックへ流れ込む地下水の流れを利用することで、クラックの位置を特定しなくても、遮水壁の内部でクラックが閉塞され遮水壁の遮水性能を回復することができる。なお、遮水壁10のクラックは、遮水壁10の表面にランダムに広範囲に分布するので、地下水を有効に活用する下記構成を採用することで、遮水壁10の最外周部10Gを広い範囲で自己修復させることができる。   As described above, by utilizing the flow of groundwater flowing into the crack, the crack is blocked inside the impermeable wall and the impermeable performance of the impermeable wall can be recovered without specifying the position of the crack. . In addition, since the crack of the impermeable wall 10 is randomly distributed over a wide range on the surface of the impermeable wall 10, the outermost peripheral portion 10G of the impermeable wall 10 is widened by adopting the following configuration that effectively uses groundwater. Can be self-healing in range.

図1に示すように、遮水壁10の最外周部10Gの四周の外側地盤には、最外周部10Gを囲み、最外周部10Gと平行な位置(破線R1〜R4で囲む範囲)に、複数のボーリング孔が掘削されている。ボーリング孔は、用途により、地下水を揚水するための8個の揚水孔16A〜16Hと、二酸化炭素を地下水に混入させるための8個の注入孔14A〜14Hの2種類に分けられている。   As shown in FIG. 1, the outer periphery 10G of the outermost peripheral portion 10G of the impermeable wall 10 surrounds the outermost peripheral portion 10G and is parallel to the outermost peripheral portion 10G (range surrounded by broken lines R1 to R4). A plurality of drilling holes are drilled. The boreholes are divided into two types, eight pumping holes 16A to 16H for pumping groundwater and eight injection holes 14A to 14H for mixing carbon dioxide into the groundwater depending on the application.

ここに、注入孔14A〜14Hと揚水孔16A〜16Hは、最外周部10Gから所定距離L3だけ離れた位置に、交互に一列に並べて掘削されており、注入孔14A〜14Hは、各辺の両端部と中央部に配置され、揚水孔16A〜16Hは、注入孔14A〜14Hの間にそれぞれ配置されている。   Here, the injection holes 14A to 14H and the pumping holes 16A to 16H are excavated in a line alternately at positions separated by a predetermined distance L3 from the outermost peripheral portion 10G. The injection holes 14A to 14H are formed on each side. It arrange | positions at both ends and a center part, and the pumping holes 16A-16H are each arrange | positioned between the injection holes 14A-14H.

揚水孔16A〜16Hには、図示しない揚水ポンプがそれぞれ取り付けられており、揚水ポンプで揚水孔16A〜16Hから地下水を汲み上げ、地下水の水位(地下水位)を下げることができる。これにより、揚水ポンプで地下水を汲み上げる揚水孔16A〜16Hの地下水位と、地下水を汲み上げない注入孔14A〜14Hの地下水位に高低差が生じる。この状態で、注入孔14A〜14Hから二酸化炭素を地下水に混入させる。これにより、地下水の流れを利用して、注入孔14A〜14Hと揚水孔16A〜16Hが掘削された、破線R1〜R4で囲まれた範囲の地下水に、二酸化炭素を広範囲に分布させることができる。   Pumping pumps (not shown) are respectively attached to the pumping holes 16A to 16H, and the groundwater can be pumped from the pumping holes 16A to 16H by the pumping pump to lower the groundwater level (groundwater level). As a result, there is a difference in level between the groundwater levels of the pumping holes 16A to 16H that pump up the groundwater with the pumping pump and the groundwater levels of the injection holes 14A to 14H that do not pump up the groundwater. In this state, carbon dioxide is mixed into the groundwater from the injection holes 14A to 14H. Thereby, using the flow of groundwater, carbon dioxide can be distributed over a wide range in the groundwater in the range surrounded by broken lines R1 to R4 in which the injection holes 14A to 14H and the pumping holes 16A to 16H are excavated. .

図2の平面図、図2のX−X線断面図である図3に示すように、遮水壁10の上には建物22が建てられ、最外周部10Gの外側の地表面32上には、地下水を一時貯留する2つの水槽24A、24Bが設けられ、砂層18の地下水位26の下には、地下水が流れている。
また、水槽24A又は水槽24Bと、外側地盤42A〜42Lとの間には、斜めボーリングで掘削された斜め孔28がそれぞれ設けられ、外側地盤42A〜42Lから水槽24A又は水槽24Bへ、地下水を汲み上げることができる。また、水槽24A又は水槽24Bと内側地盤44A〜44Dとの間には、斜めボーリングで掘削された斜め孔30がそれぞれ設けられ、水槽24A又は水槽24Bから内側地盤44A〜44Dへ、地下水を注水することができる。
As shown in FIG. 3, which is a plan view of FIG. 2 and a cross-sectional view taken along line XX of FIG. 2, a building 22 is built on the water-impervious wall 10, Are provided with two water tanks 24 </ b> A and 24 </ b> B for temporarily storing groundwater, and the groundwater flows under the groundwater level 26 of the sand layer 18.
Moreover, between the water tank 24A or the water tank 24B and the outer ground 42A to 42L, the oblique holes 28 excavated by the oblique boring are respectively provided, and the ground water is pumped from the outer ground 42A to 42L to the water tank 24A or the water tank 24B. be able to. Moreover, between the water tank 24A or the water tank 24B and the inner ground 44A to 44D, the oblique holes 30 excavated by oblique boring are respectively provided, and the ground water is poured from the water tank 24A or the water tank 24B to the inner ground 44A to 44D. be able to.

これにより、外側地盤42A〜42Lの地下水を、斜め孔28を用いて汲み出して地下水位27を下げることができる。このとき、汲み出した地下水は、水槽24A又は水槽24Bに一時貯留させる。なお、水槽24A又は水槽24Bをなるべく小規模なものにするため、汲み出した地下水は、内側地盤44A〜44Dに移動させ、内側地盤44A〜44Dに貯留させる。
他の方法としては、一時的に全ての地下水を、水槽24A、24Bに貯留しておき、クラックの修復後に地下に戻す方法、或いは汲み上げた地下水を浄化して、処分するという方法等がある。しかし、これらの方法は、いずれも保管用の水槽24A、24Bが大規模になりコストが高くなる、水を浄化するコストが高くなる等の問題がある。
Thereby, the groundwater level of the outer ground 42A-42L can be pumped out using the diagonal hole 28, and the groundwater level 27 can be lowered | hung. At this time, the groundwater pumped out is temporarily stored in the water tank 24A or the water tank 24B. In order to make the water tank 24A or the water tank 24B as small as possible, the groundwater pumped out is moved to the inner ground 44A to 44D and stored in the inner ground 44A to 44D.
As other methods, there are a method of temporarily storing all groundwater in the water tanks 24A and 24B and returning them to the basement after repairing cracks, or a method of purifying and disposing of the pumped-up groundwater. However, both of these methods have problems such as the storage water tanks 24A and 24B becoming large and costly, and the cost of purifying water becomes high.

ここに、斜め孔28、30の掘削は、地下水位26より上部(浅い位置)で行うものとし、斜め孔28、30の壁面を安定させるため、斜め孔28、30にはケーシングが挿入されている。また、斜め孔28、30の内部にフレキシブルホースを挿入し、フレキシブルホースの内部に水を流すことで、斜め孔28、30の止水性を確保している。   Here, the oblique holes 28 and 30 are excavated above the shallow water level 26 (shallow position). In order to stabilize the wall surfaces of the oblique holes 28 and 30, a casing is inserted into the oblique holes 28 and 30. Yes. In addition, a water hose is secured in the slanted holes 28 and 30 by inserting a flexible hose into the slanted holes 28 and 30 and flowing water into the flexible hose.

本構成では、斜め孔28、30が、最外周部10G及び内部改良体10Nを貫通する構成である。しかし、貫通位置が地下水位26より上部(浅い位置)であるため、遮水壁10の内部地盤が液状化することはない。また、汚染土壌12及び汚染水の外部への漏出も生じない。また、後述するように、クラックの修復完了後には、斜め孔28、30をセメントミルクで閉塞することにより、長期的にも液状化や汚染物質の漏出は生じない。   In this structure, the diagonal holes 28 and 30 are the structures which penetrate the outermost peripheral part 10G and the internal improvement body 10N. However, since the penetration position is above the shallow water level 26 (shallow position), the inner ground of the impermeable wall 10 is not liquefied. In addition, leakage of the contaminated soil 12 and contaminated water to the outside does not occur. Further, as will be described later, after the repair of the crack is completed, the slant holes 28 and 30 are closed with cement milk, so that liquefaction and leakage of contaminants do not occur for a long time.

以上説明した構成とすることで、格子状に構築された遮水壁10の外側地盤42A〜42Lから、地下水をポンプで水槽24A又は水槽24Bまで汲み上げ、地上に設置した水槽24A又は水槽24Bとの水位差により、内側地盤44A〜44Dへ地下水を移動させることができる。これにより、最外周部10Gの内側を外側より低くして、水位差を発生させることができ、水位の高い外側の地下水に二酸化炭素を注入して、地下水位の高低差で発生する地下水の流れで二酸化炭素を、最外周部10Gのクラックに滲入させることができる。   With the configuration described above, the groundwater is pumped up to the water tank 24A or the water tank 24B from the outer ground 42A to 42L of the impermeable wall 10 constructed in a lattice shape, and the water tank 24A or the water tank 24B installed on the ground. The groundwater can be moved to the inner ground 44A to 44D due to the water level difference. Thereby, the inside of the outermost peripheral part 10G can be made lower than the outside, and a water level difference can be generated. Carbon dioxide is injected into the groundwater on the outside with a high water level, and the flow of groundwater generated due to the difference in level of the groundwater level. Thus, carbon dioxide can be infiltrated into the crack in the outermost peripheral portion 10G.

また、揚水ポンプで、遮水壁10の外側の揚水孔16A〜16Hから地下水を汲み上げることで、最外周部10Gの外側の地下水位26に高低差を発生させることができる。この状態で、地下水位の高い注入孔14A〜14Hから二酸化炭素を注入し、地下水位の高低差で発生する地下水の流れで二酸化炭素を、遮水壁の壁面全体に拡散させることができる。   Moreover, by pumping up the groundwater from the pumping holes 16A to 16H outside the impermeable wall 10 with the pump, it is possible to generate a height difference in the groundwater level 26 outside the outermost peripheral part 10G. In this state, carbon dioxide can be injected from the injection holes 14 </ b> A to 14 </ b> H having a high groundwater level, and the carbon dioxide can be diffused throughout the wall of the impermeable wall by the flow of groundwater generated by the difference in the groundwater level.

これにより、地下水位26の高い最外周部10Gの外側へ二酸化炭素を注入することができる。この結果、最外周部10Gの内部へ二酸化炭素が供給され、クラックの位置を特定しなくても、地下水の流れで、最外周部10Gのクラックの修復を促進させることができる。   Thereby, carbon dioxide can be injected to the outside of the outermost peripheral portion 10G where the groundwater level 26 is high. As a result, carbon dioxide is supplied to the inside of the outermost peripheral portion 10G, and repair of cracks in the outermost peripheral portion 10G can be promoted by the flow of groundwater without specifying the position of the crack.

以下に本実施形態における地下水の移動量、移動速度等の試算例を示す。
地下水位26の勾配を1/1000、遮水壁10の最外周部10Gの一辺L1を50m、内部地盤の分割寸法L2を12.5mとする。この場合、地下水位26の変化は50mで5cmとなる。また、注入孔14A〜14H及び揚水孔16A〜16Hと最外周部10Gとの所定距離L3を50cmとする。これは、本来、所定距離L3は短いほど望ましいため、ボーリングマシンの設置上の制約から、最小値を採用して50cmとした。
An example of trial calculation of the amount of movement of the groundwater, the moving speed, etc. in the present embodiment will be shown below.
The gradient of the groundwater level 26 is 1/1000, the one side L1 of the outermost peripheral part 10G of the impermeable wall 10 is 50 m, and the division dimension L2 of the internal ground is 12.5 m. In this case, the change of the groundwater level 26 is 5 cm at 50 m. Further, the predetermined distance L3 between the injection holes 14A to 14H and the pumping holes 16A to 16H and the outermost peripheral part 10G is set to 50 cm. Originally, it is desirable that the predetermined distance L3 is as short as possible. Therefore, the minimum value is set to 50 cm due to restrictions on the installation of the boring machine.

遮水壁10の内部地盤の最外周部の12ブロック(外側地盤42A〜42L)では、斜め孔28内に設置した水中ポンプを用いて、地下水位27を10cm下げた。汲み上げた地下水を、一旦、水槽24A又は水槽24Bに貯留させ、遮水壁10の内部地盤の4ブロック(内側地盤44A〜44D)に注入した。この結果、内側地盤44A〜44Dの地下水位25は、外側地盤42A〜42Lとの体積比から、それぞれ30cm上昇する。   In the 12 blocks (outer grounds 42A to 42L) of the outermost peripheral portion of the inner ground of the impermeable wall 10, the groundwater level 27 was lowered by 10 cm using a submersible pump installed in the oblique hole 28. The pumped-up groundwater was once stored in the water tank 24A or the water tank 24B and injected into the four blocks (inner grounds 44A to 44D) of the inner ground of the impermeable wall 10. As a result, the groundwater level 25 of the inner grounds 44A to 44D rises by 30 cm from the volume ratio with the outer grounds 42A to 42L, respectively.

また、地震時に生じたクラックにより、最外周部10Gの透水係数が10-6cm/sから10-4cm/sに低下したと仮定する。更に、地下水位26を地表面32の下方2m(GL−2.0m)とすると、1日当たり最外周部10Gへ入ってくる地下水の量Q1は以下となる。
Q1=A×v×t
=800cm×5000cm×4×10-4cm/s×10cm/50cm
×86400s
=27,648,000cm3 /日
In addition, it is assumed that the hydraulic conductivity of the outermost peripheral portion 10G has decreased from 10 −6 cm / s to 10 −4 cm / s due to a crack generated during the earthquake. Furthermore, when the groundwater level 26 is 2 m below the ground surface 32 (GL-2.0 m), the amount Q1 of groundwater that enters the outermost peripheral portion 10G per day is as follows.
Q1 = A × v × t
= 800 cm × 5000 cm × 4 × 10 −4 cm / s × 10 cm / 50 cm
× 86400s
= 27,648,000 cm 3 / day

また、注入孔14A〜14H及び揚水孔16A〜16Hと、最外周部10Gとの間の地下水の量Q2は、所定距離L3を50cm、間隙比を0.3と仮定すると下記となる。
Q2=50cm×800cm×5000cm×4×0.3
=240,000,000cm
この地下水の量Q2が、全て最外周部10Gに流れ込み、地下水中の二酸化炭素が遮水壁と接触するのに要する時間tは、
t=240,000,000 ÷ 27,648,000
≒ 9日
となる。即ち、9日目から、地下水に混入させた二酸化炭素により生じたCO 2−が、最外周部10Gのセメント成分からのCa2+と反応して、炭酸カルシウムCaCOを生じることで、最外周部10Gのクラックの閉塞を開始する。
In addition, the amount of groundwater Q2 between the injection holes 14A to 14H and the pumping holes 16A to 16H and the outermost periphery 10G is as follows assuming that the predetermined distance L3 is 50 cm and the gap ratio is 0.3.
Q2 = 50 cm × 800 cm × 5000 cm × 4 × 0.3
= 240,000,000 cm 3
The amount of groundwater Q2 all flows into the outermost peripheral portion 10G, and the time t required for carbon dioxide in the groundwater to contact the impermeable wall is:
t = 240,000,000 ÷ 27,648,000
≒ 9 days. That is, from the 9th day, CO 3 2− generated by carbon dioxide mixed in the groundwater reacts with Ca 2+ from the cement component of the outermost peripheral portion 10G to produce calcium carbonate CaCO 3. The closing of cracks in the outer peripheral portion 10G is started.

この反応が始まるまでの間、最外周部10Gに入ってきた地下水は、揚水ポンプで汲み上げて、内側地盤44A〜44Dに移動させる。移動によって上昇する内側地盤44A〜44Dの水位上昇量H1は、下記となる。
H1=0.5m×8m×50m×4÷25m÷25m
=1.28m
上述した最初の水位上昇量30cmと合計すると、地下水位25は1.58mとなる。
Until this reaction starts, the groundwater that has entered the outermost peripheral part 10G is pumped up by a pump and moved to the inner ground 44A to 44D. The water level rise amount H1 of the inner grounds 44A to 44D rising by the movement is as follows.
H1 = 0.5m × 8m × 50m × 4 ÷ 25m ÷ 25m
= 1.28m
When the total water level rise of 30 cm is added, the groundwater level 25 is 1.58 m.

二酸化炭素が最外周部10Gのクラック内に侵入して、炭酸カルシウムを析出し、最外周部10Gの透水係数が10-4cm/sから10-6cm/sに回復したとする。回復に20日間要するとすると、この間の透水係数を−4乗と−6乗の平均値である−5乗と仮定したとき、最外周部10Gに流れ込む地下水量Q3は以下の計算で求めることができる。
Q3=A・v・t
=800cm×5000cm×4×10-5cm/s×10cm/50cm
×1,728,000s
=55,296,000cm3
It is assumed that carbon dioxide penetrates into the crack of the outermost peripheral part 10G, precipitates calcium carbonate, and the water permeability coefficient of the outermost peripheral part 10G recovers from 10 −4 cm / s to 10 −6 cm / s. If it takes 20 days to recover, assuming that the hydraulic conductivity during this period is -5th power, which is the average value of -4th power and -6th power, the amount of groundwater Q3 flowing into the outermost periphery 10G can be obtained by the following calculation. it can.
Q3 = A ・ v ・ t
= 800 cm × 5000 cm × 4 × 10 −5 cm / s × 10 cm / 50 cm
× 1,728,000s
= 55,296,000 cm 3

この地下水量Q3を内側地盤44A〜44Dに移動させるので、内側地盤44A〜44Dの地下水位25の上昇量H2は、下記となる。
H2=55.296m÷25m÷25m÷0.3(間隙比)
=0.29m
地下水位25は、1.58mと合わせて1.87mとなる。この結果から、最初の地下水位(GL−2.0)mに比べて、13cmの余裕があることがわかる。20日経過後、ボーリング孔内にセメントミルクを充填し、ボーリング孔を閉塞して作業終了となる。
Since the groundwater amount Q3 is moved to the inner grounds 44A to 44D, the amount of increase H2 of the groundwater level 25 of the inner grounds 44A to 44D is as follows.
H2 = 55.296m 3 ÷ 25m ÷ 25m ÷ 0.3 (gap ratio)
= 0.29m
The groundwater level 25 is 1.87 m when combined with 1.58 m. From this result, it can be seen that there is a margin of 13 cm compared to the initial groundwater level (GL-2.0) m. After 20 days, cement milk is filled in the boring hole, the boring hole is closed, and the operation ends.

なお、石灰岩質の地盤(カルシウムが主成分の地盤)や、農地等でカルシウムを肥料として散布した地盤では、上述した化学反応が地盤中で生じてしまい、地盤の透水係数を下げることとなる。その結果、遮水壁にCO 2−が到達しない場合が考えられるため、適用においては注意が必要である。 In addition, in the limestone ground (the ground mainly composed of calcium) and the ground where calcium is dispersed as a fertilizer in agricultural land or the like, the above-described chemical reaction occurs in the ground, and the hydraulic conductivity of the ground is lowered. As a result, there may be a case where CO 3 2− does not reach the water-impervious wall, so care must be taken in application.

上述したように、本実施形態では、地下水中に溶けたCO 2−がセメントペースト中のCa2+を引き寄せ、炭酸カルシウムの結晶となり、セメントペーストなどに付着する。炭酸カルシウムの結晶が付着すると、水中のカルシウムイオンの減少を補うようにして、Ca2+がコンクリートの内部から移動し、更にCO 2−と結合する。このような反応が繰り返され、炭酸カルシウムの結晶が次々と生成され、セメントペーストなどに付着沈殿して遮水壁のクラックが徐々に修復される。 As described above, in the present embodiment, CO 3 2− dissolved in the ground water attracts Ca 2+ in the cement paste, becomes calcium carbonate crystals, and adheres to the cement paste and the like. When calcium carbonate crystals adhere, Ca 2+ moves from the inside of the concrete and further binds to CO 3 2− so as to compensate for the decrease in calcium ions in the water. Such a reaction is repeated, and calcium carbonate crystals are generated one after another, which adheres and settles on cement paste and the like, and the cracks in the impermeable wall are gradually repaired.

この結果、地下水の流れを利用して二酸化炭素を供給することで、地盤改良体で構築された遮水壁10のクラックを閉塞させることができる。また、本実施形態においては、ボーリング費用が施工コストの大半を占めるため、従来技術である薬液注入や遮水壁の再施工による方法よりも安価となる。更に、地球温暖化物質である二酸化炭素の固定化という効果もあわせ持つものである。   As a result, by supplying carbon dioxide using the flow of groundwater, it is possible to close the cracks in the impermeable wall 10 constructed with the ground improvement body. Moreover, in this embodiment, since a boring cost accounts for most construction costs, it becomes cheaper than the method by the chemical | medical solution injection | pouring which is a prior art, and the re-construction of a water-impervious wall. Furthermore, it also has the effect of fixing carbon dioxide, a global warming substance.

なお、本実施形態では、遮水壁10を一辺がL1の正方形で説明した、しかし、これに限定されることはなく、遮水壁10の平面視は長方形や、正方形と長方形の組み合わせ等でもよい。また、地下水に所定量以上の二酸化炭素が含まれている場合には、地下水に二酸化炭素を混入しなくてもよい。   In the present embodiment, the impermeable wall 10 has been described as a square having a side L1. However, the present invention is not limited to this, and the planar view of the impermeable wall 10 may be a rectangle or a combination of a square and a rectangle. Good. Further, when the groundwater contains a predetermined amount or more of carbon dioxide, it is not necessary to mix carbon dioxide into the groundwater.

(第2実施形態)
図4を用いて、第2実施形態に係る遮水壁40の遮水性能回復方法について説明する。
図4の垂直断面図に示すように、遮水壁40は、建物22から鉛直下方にボーリング孔34、36を掘削する方法である点において、第1実施形態に係る遮水壁10と相違する。相違点を中心に説明する。
(Second Embodiment)
With reference to FIG. 4, a water shielding performance recovery method for the water shielding wall 40 according to the second embodiment will be described.
As shown in the vertical sectional view of FIG. 4, the impermeable wall 40 is different from the impermeable wall 10 according to the first embodiment in that it is a method of excavating boring holes 34 and 36 vertically downward from the building 22. . The difference will be mainly described.

遮水壁40は、遮水壁40の外部から内部への斜めボーリングは必要なく、建物22の内部から鉛直下方にボーリング孔34、36を掘削して構築される。
即ち、外側地盤42A〜42Lに、建物22の内部から鉛直下方に、それぞれボーリング孔34を掘削する。また、内側地盤44A〜44Dに、建物22の内部から鉛直下方にボーリング孔36を掘削する。
The impermeable wall 40 does not require oblique boring from the outside to the inside of the impermeable wall 40, and is constructed by excavating boring holes 34 and 36 vertically downward from the inside of the building 22.
That is, the boring holes 34 are excavated in the outer grounds 42A to 42L vertically downward from the inside of the building 22, respectively. Further, a bored hole 36 is excavated vertically downward from the inside of the building 22 in the inner ground 44A to 44D.

外側地盤42A〜42Lと水槽24は、配管35でつながれており、揚水ポンプで汲み上げられた地下水は、配管35を通り水槽24へ貯留される。また、水槽24と内側地盤44A〜44Dは、配管37でつながれており、水槽24に貯留された地下水は、配管37を通り内側地盤44A〜44Dに注入される。なお、本実施形態で移動させる地下水の量や速度は、第1実施形態と同じである。   The outer grounds 42 </ b> A to 42 </ b> L and the water tank 24 are connected by a pipe 35, and groundwater pumped up by the pump is stored in the water tank 24 through the pipe 35. The water tank 24 and the inner ground 44A to 44D are connected by a pipe 37, and the groundwater stored in the water tank 24 passes through the pipe 37 and is injected into the inner ground 44A to 44D. In addition, the quantity and speed of the groundwater moved by this embodiment are the same as 1st Embodiment.

この構成とすることにより、第1実施形態に係る遮水壁10と同様に、外側地盤42A〜42Lの地下水を汲み上げて、配管35を利用して、内側地盤44A〜44Dへ地下水を移動させることができる。この結果、外側地盤42A〜42Lの地下水位27を、砂層18の地下水位26より低くすることができ、最外周部10Gの内外で地下水位に高低差を発生させることができる。これにより、地下水位の高低差で発生する地下水の流れを、最外周部10Gの内部で発生させることができ、二酸化炭素による自己修復が可能となる。   By adopting this configuration, similarly to the impermeable wall 10 according to the first embodiment, the groundwater of the outer grounds 42A to 42L is pumped up, and the groundwater is moved to the inner grounds 44A to 44D using the pipe 35. Can do. As a result, the groundwater level 27 of the outer grounds 42A to 42L can be made lower than the groundwater level 26 of the sand layer 18, and a difference in height can be generated in the groundwater level inside and outside the outermost peripheral part 10G. Thereby, the flow of the groundwater generated by the difference in level of the groundwater level can be generated inside the outermost peripheral portion 10G, and self-repair with carbon dioxide is possible.

更に、この構成においては、遮水壁40の内部に鉛直下方向にボーリングを実施するため、斜めボーリングに比べて掘削するボーリングの距離を短くでき、経済的に安価に掘削できる。しかしながら、建物22の内部に配管35、37を設置する手間を要すること、また、建物22の躯体(耐圧盤等)を貫通してボーリングを行う必要があり、躯体鉄筋を切断する可能性がある。躯体鉄筋の切断は、躯体強度を低下させるので、十分な事前検討が必要である。他の構成は、第1実施形態と同じであり説明は省略する。   Further, in this configuration, since boring is performed vertically downward in the impermeable wall 40, the boring distance to be excavated can be shortened compared to oblique boring, and the excavation can be performed economically and inexpensively. However, it takes time and labor to install the pipes 35 and 37 inside the building 22, and it is necessary to drill through the building 22 (pressure board, etc.), which may cut the building rebar. . The cutting of the rod rebars reduces the strength of the rods, so a thorough study is necessary. Other configurations are the same as those of the first embodiment, and a description thereof will be omitted.

(第3実施形態)
図5を用いて、第3実施形態に係る遮水壁50の遮水性能回復方法について説明する。
図5の垂直断面図に示すように、遮水壁50は、建物22から外側地盤42A〜42Lへ鉛直下方にボーリング孔54を掘削し、更に遮水壁50の外側へボーリング孔56を掘削する方法である。斜めボーリング孔が不要であり、ボーリング孔56の位置が、第2実施形態と相違する。相違点を中心に説明する。
(Third embodiment)
With reference to FIG. 5, a water shielding performance recovery method for the water shielding wall 50 according to the third embodiment will be described.
As shown in the vertical sectional view of FIG. 5, the impermeable wall 50 excavates a boring hole 54 vertically downward from the building 22 to the outer grounds 42 </ b> A to 42 </ b> L, and further excavates a boring hole 56 to the outside of the impermeable wall 50. Is the method. An oblique boring hole is unnecessary, and the position of the boring hole 56 is different from that of the second embodiment. The difference will be mainly described.

第3の実施形態に係る遮水壁50は、第1実施形態、第2実施形態と異なり、遮水壁50の外側地盤42A〜42Lの地下水位27を、砂層18の地下水位26より高くする方法である。このため、遮水壁50の外側に設けた揚水孔56から揚水ポンプで汲み上げた地下水を、配管57を用いて水槽24に貯留させた後、配管55を用いて、注水孔54から外側地盤42A〜42Lに注水する構成である。これにより、外側地盤42A〜42Lの地下水位27を、遮水壁50の外側の地下水位26より高くすることができる。なお、内側地盤44A〜44Dへのボーリング孔の掘削は不要である。   Unlike the first embodiment and the second embodiment, the impermeable wall 50 according to the third embodiment makes the groundwater level 27 of the outer grounds 42A to 42L of the impermeable wall 50 higher than the underground water level 26 of the sand layer 18. Is the method. For this reason, after the groundwater pumped up by the pumping pump from the pumping hole 56 provided outside the impermeable wall 50 is stored in the water tank 24 using the pipe 57, the outer ground 42 </ b> A is formed from the water injection hole 54 using the pipe 55. It is the structure which pours water into -42L. Thereby, the groundwater level 27 of the outer grounds 42 </ b> A to 42 </ b> L can be made higher than the groundwater level 26 outside the impermeable wall 50. In addition, excavation of the boring hole to inner side ground 44A-44D is unnecessary.

これにより、内側の地下水位27が外側の地下水位26より高い状態で、最外周部10Gの内側と外側で水位差を設けることができる。即ち、外側地盤42A〜42Lに混入させた二酸化炭素を、最外周部10Gの内側と外側の水位差で最外周部10Gに供給することができる。なお、図示は省略するが、最外周部50Gの広範囲に渡り、二酸化炭素を最外周部50Gに浸み込ませるために、それぞれの外側地盤42A〜42Lに、注水孔54と並べて揚水孔を設け、揚水ポンプで揚水し、注水孔54と揚水孔との間で水位差を生じさせ、水流を作るのが望ましい。   Thereby, a water level difference can be provided between the inner side and the outer side of the outermost peripheral part 10G in a state where the inner ground water level 27 is higher than the outer ground water level 26. That is, the carbon dioxide mixed in the outer grounds 42A to 42L can be supplied to the outermost peripheral part 10G by the difference in water level between the inner side and the outer side of the outermost peripheral part 10G. In addition, although illustration is abbreviate | omitted, in order to make carbon dioxide permeate into the outermost periphery part 50G over the wide range of the outermost periphery part 50G, a pumping hole is provided along with the water injection hole 54 in each outer ground 42A-42L. It is desirable that the water is pumped by a pump and a water level difference is generated between the water injection hole 54 and the water pumping hole to create a water flow.

この構成とすることで、ボーリング孔54を、地下水を注入するための注入孔、及び二酸化炭素を地下水に混入させる注入孔に兼用することができる。但し、本実施形態は、遮水壁50の最外周部50Gから、遮水壁50の外部へと地下水を流出させるため、汚染土壌52は、全体が遮水壁50の内側地盤44A〜44Dの内部に収まっている場合に限られる。なお、ボーリング孔54は鉛直方向のボーリングを例に説明したが、これに限定されることはなく、第1の実施形態のような斜めボーリングでもよい。他の構成は、第2実施形態と同じであり、説明は省略する。   With this configuration, the boring hole 54 can be used both as an injection hole for injecting groundwater and an injection hole for mixing carbon dioxide into the groundwater. However, in this embodiment, since groundwater flows out from the outermost peripheral portion 50G of the impermeable wall 50 to the outside of the impermeable wall 50, the contaminated soil 52 is entirely composed of the inner ground 44A to 44D of the impermeable wall 50. Only if it is inside. In addition, although the boring hole 54 demonstrated the boring of the perpendicular direction as an example, it is not limited to this, Diagonal boring like 1st Embodiment may be sufficient. Other configurations are the same as those of the second embodiment, and a description thereof will be omitted.

(第4実施形態)
図6を用いて、第4実施形態に係る遮水壁60の遮水性能回復方法について説明する。
図6の断面図に示すように、遮水壁60は、地盤改良体で構築された山留め壁64である点において、第1実施形態に係る遮水壁10と相違する。相違点を中心に説明する。
(Fourth embodiment)
The water-blocking performance recovery method for the water-blocking wall 60 according to the fourth embodiment will be described with reference to FIG.
As shown in the sectional view of FIG. 6, the impermeable wall 60 is different from the impermeable wall 10 according to the first embodiment in that the impermeable wall 60 is a retaining wall 64 constructed of a ground improvement body. The difference will be mainly described.

遮水を目的とし、地盤改良体で構築された建設工事で用いられる山留め壁64は、施工不良等に起因して、遮水性能が部分的に低く構築され、地下水が出水する漏水部66が生じる場合がある。この場合、根切りに伴って、地山部68から掘削部70へ向けて、地下水が出水する。
掘削部70の地盤表面72は、地山部68より下がっており、漏水部66が目視で確認できる。このため、広範囲に二酸化炭素を分散させる必要はなく、漏水部66の背面(地山部68)にボーリング孔62を掘削し、ボーリング孔62から地下水に二酸化炭素を混入させればよい。
The mountain retaining wall 64 used in the construction work constructed with the ground improvement body for the purpose of water shielding is partially constructed with a low water shielding performance due to poor construction or the like, and the water leakage portion 66 from which groundwater flows out is provided. May occur. In this case, groundwater flows from the natural ground part 68 toward the excavation part 70 along with the root cutting.
The ground surface 72 of the excavation part 70 is lowered from the natural ground part 68, and the water leakage part 66 can be visually confirmed. For this reason, it is not necessary to disperse carbon dioxide over a wide range, and it is only necessary to excavate the borehole 62 on the back surface (the ground portion 68) of the water leaking portion 66 and mix carbon dioxide into the groundwater from the borehole 62.

これにより、水位が高い地山部68側の地下水により、混入された二酸化炭素を漏水部66に運ぶことができる。この二酸化炭素の存在により、地盤改良体で構築された山留め壁の自己修復機能が促進され、山留め壁64の漏水部66を閉塞させることができる。
この結果、薬液注入により止水処理を行っている現状の対応方法に比べ、安価に漏水部66を修復することができる。
Thereby, the mixed carbon dioxide can be carried to the water leakage part 66 by the groundwater on the ground mountain part 68 side where the water level is high. Due to the presence of carbon dioxide, the self-repairing function of the retaining wall constructed of the ground improvement body is promoted, and the water leakage portion 66 of the retaining wall 64 can be blocked.
As a result, the water leaking portion 66 can be repaired at a lower cost than the current countermeasure method in which the water stop treatment is performed by injecting the chemical solution.

10 遮水壁
12 汚染土壌
14 注入孔(ボーリング孔)
16 揚水孔(ボーリング孔)
25 地下水位
26 地下水位
27 地下水位
64 山留め壁(遮水壁)
66 漏水部(漏水位置)
68 地山部
10 Impermeable wall 12 Contaminated soil 14 Injection hole (boring hole)
16 Pumping hole (boring hole)
25 Groundwater level 26 Groundwater level 27 Groundwater level 64 Mountain retaining wall (water-impervious wall)
66 Water leakage part (water leakage position)
68

Claims (5)

地盤改良体で構築された遮水壁の内側又は外側の地下水位が高い方へ二酸化炭素を注入する工程を有する遮水壁の遮水性能回復方法。 A method for recovering the water shielding performance of a water shielding wall, comprising the step of injecting carbon dioxide into a higher groundwater level inside or outside the water shielding wall constructed of a ground improvement body. 前記遮水壁は格子状に構築され、
格子状の前記遮水壁の内側又は外側に水を注入又は揚水し、前記地下水位に高低差を発生させる工程を有する請求項1に記載の遮水壁の遮水性能回復方法。
The impermeable wall is constructed in a lattice shape,
The method for recovering the water shielding performance of the water shielding wall according to claim 1, further comprising a step of injecting or pumping water inside or outside the lattice shaped water shielding wall to generate a difference in height in the groundwater level.
前記遮水壁に沿って設けられた複数のボーリング孔と、
隣接する前記ボーリング孔の一方から地下水を揚水して地下水位を低下させる揚水ポンプと、
を有し、隣接する前記ボーリング孔の他方から前記二酸化炭素を注入し、地下水位の高低差で発生する前記地下水の流れで前記二酸化炭素を、前記遮水壁の壁面に拡散させる請求項1又は2に記載の遮水壁の遮水性能回復方法。
A plurality of boring holes provided along the impermeable wall;
A pump for lowering the groundwater level by pumping groundwater from one of the adjacent boreholes;
The carbon dioxide is injected from the other of the adjacent boring holes, and the carbon dioxide is diffused in the wall surface of the water-impervious wall by the flow of the groundwater generated due to a difference in groundwater level. 2. The method for recovering the water shielding performance of the water shielding wall according to 2.
前記遮水壁で囲まれた内部には汚染土壌が封じ込まれている請求項1〜3のいずれか1項に記載の遮水壁の遮水性能回復方法。   The method for recovering water shielding performance of a water shielding wall according to any one of claims 1 to 3, wherein contaminated soil is enclosed in the interior surrounded by the water shielding wall. 前記遮水壁は山留め壁であり、前記山留め壁の漏水位置へ向けて地山側からボーリング孔を設け、前記ボーリング孔から二酸化炭素を注入する請求項1に記載の遮水壁の遮水性能回復方法。   The water shielding performance of the water shielding wall according to claim 1, wherein the water shielding wall is a mountain retaining wall, a borehole is provided from a natural mountain side toward a water leakage position of the mountain retaining wall, and carbon dioxide is injected from the borehole. Method.
JP2012227912A 2012-10-15 2012-10-15 How to recover the water barrier performance Active JP6095319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012227912A JP6095319B2 (en) 2012-10-15 2012-10-15 How to recover the water barrier performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012227912A JP6095319B2 (en) 2012-10-15 2012-10-15 How to recover the water barrier performance

Publications (2)

Publication Number Publication Date
JP2014080750A true JP2014080750A (en) 2014-05-08
JP6095319B2 JP6095319B2 (en) 2017-03-15

Family

ID=50785183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012227912A Active JP6095319B2 (en) 2012-10-15 2012-10-15 How to recover the water barrier performance

Country Status (1)

Country Link
JP (1) JP6095319B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611722A (en) * 1984-05-23 1986-01-07 エーデー チユブリン アクチエンゲゼルシヤフト Method and apparatus for preventing leakage of penetrated water in garbage disposal area
JPH0711622A (en) * 1993-06-24 1995-01-13 Raito Kogyo Co Ltd Treatment method of cut-off wall of contaminant
JPH1136280A (en) * 1997-07-15 1999-02-09 Ohbayashi Corp Chemical feeding method
JP2001159131A (en) * 1999-12-01 2001-06-12 Tenox Corp Impervious soil improved structure and land-formatin method therefor
JP2001262555A (en) * 2000-03-21 2001-09-26 Sumitomo Metal Ind Ltd Liquefaction measures construction method of ground
JP2012112162A (en) * 2010-11-24 2012-06-14 Takenaka Komuten Co Ltd Earth retaining wall and construction method of earth retaining wall

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611722A (en) * 1984-05-23 1986-01-07 エーデー チユブリン アクチエンゲゼルシヤフト Method and apparatus for preventing leakage of penetrated water in garbage disposal area
JPH0711622A (en) * 1993-06-24 1995-01-13 Raito Kogyo Co Ltd Treatment method of cut-off wall of contaminant
JPH1136280A (en) * 1997-07-15 1999-02-09 Ohbayashi Corp Chemical feeding method
JP2001159131A (en) * 1999-12-01 2001-06-12 Tenox Corp Impervious soil improved structure and land-formatin method therefor
JP2001262555A (en) * 2000-03-21 2001-09-26 Sumitomo Metal Ind Ltd Liquefaction measures construction method of ground
JP2012112162A (en) * 2010-11-24 2012-06-14 Takenaka Komuten Co Ltd Earth retaining wall and construction method of earth retaining wall

Also Published As

Publication number Publication date
JP6095319B2 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
CN107983761A (en) The method for repairing and constructing of heavy metal and VOCs combined contamination soils
Feng et al. Failure of a retaining structure in a metro station excavation in Nanchang City, China
CN104099943A (en) Underground diaphragm wall and deserted underground civil air defense engineering intersection processing method
Fischer et al. Karst site remediation grouting
CN109339079A (en) A kind of foundation pit water-stopping system and its construction technology close to river permeable stratum
CN108867673A (en) A kind of underwater prevention method in the foundation pit based on the curtain that draws water
KR101021915B1 (en) A method for constructing cut-off temporary structure for sheathing work
CN101121176A (en) Method for treating chemical production thiamine crystallization tank region local geological foundation pollution
JP2007100416A (en) Structure and construction method for steel sheet pile and water passing soil retaining wall
JP2019015100A (en) Removing method of earth retaining wall
JP6095319B2 (en) How to recover the water barrier performance
JP6730121B2 (en) Underground wall construction method
CN213897154U (en) Soft soil foundation pit bottom curing structure
Milanovic Prevention and remediation in karst engineering
JP4888293B2 (en) Earth retaining wall made of parent pile sheet pile, water stop structure of earth retaining wall made of parent pile side sheet pile, construction method of earth retaining wall made of parent pile side sheet pile, and retaining wall of earth retaining wall made of parent pile side sheet pile Water method
CN211690401U (en) Impervious wall structure and ecological seepage-control solid bed system
JP2014202007A (en) Earth retaining wall and construction method for the same
RU131747U1 (en) ANTI-FILTRATION SCREEN
JPH03281826A (en) Excavation method in cohesive soil ground
CN112252348A (en) Design and construction method of U-shaped grouting body waterproof layer structure based on foundation pit
WO2009139510A1 (en) Construction method for continuous cut-off wall using overlap casing
CN109778873A (en) Ejection for water plugging method and device between a kind of fender post
JP2005282130A (en) Ground excavation method
Schmall et al. Ground freezing—a viable and versatile construction technique
Mostafa et al. Special Geotechnical Works for Metro Cairo (Egypt)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170214

R150 Certificate of patent or registration of utility model

Ref document number: 6095319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150