JP2014080356A - Inorganic hollow particle and method of producing the same - Google Patents
Inorganic hollow particle and method of producing the same Download PDFInfo
- Publication number
- JP2014080356A JP2014080356A JP2013182489A JP2013182489A JP2014080356A JP 2014080356 A JP2014080356 A JP 2014080356A JP 2013182489 A JP2013182489 A JP 2013182489A JP 2013182489 A JP2013182489 A JP 2013182489A JP 2014080356 A JP2014080356 A JP 2014080356A
- Authority
- JP
- Japan
- Prior art keywords
- salt
- inorganic
- alkaline earth
- earth metal
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 title claims abstract description 108
- 238000000034 method Methods 0.000 title claims abstract description 16
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 40
- -1 inorganic acid alkaline earth metal salt Chemical class 0.000 claims abstract description 40
- 229910052910 alkali metal silicate Inorganic materials 0.000 claims abstract description 38
- 239000002131 composite material Substances 0.000 claims abstract description 16
- 150000003839 salts Chemical class 0.000 claims abstract description 7
- 229910052751 metal Inorganic materials 0.000 claims abstract description 6
- 239000002184 metal Substances 0.000 claims abstract description 6
- 238000001694 spray drying Methods 0.000 claims description 23
- 239000007864 aqueous solution Substances 0.000 claims description 16
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 14
- 150000004760 silicates Chemical class 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 13
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 10
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 7
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 5
- 159000000009 barium salts Chemical class 0.000 claims description 4
- 159000000007 calcium salts Chemical group 0.000 claims description 4
- 229910010272 inorganic material Inorganic materials 0.000 claims description 4
- 239000011147 inorganic material Substances 0.000 claims description 4
- 229910003002 lithium salt Inorganic materials 0.000 claims description 4
- 159000000002 lithium salts Chemical class 0.000 claims description 4
- 159000000003 magnesium salts Chemical class 0.000 claims description 4
- 150000007522 mineralic acids Chemical class 0.000 claims description 4
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 claims description 4
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 4
- 235000012239 silicon dioxide Nutrition 0.000 claims description 4
- 159000000000 sodium salts Chemical group 0.000 claims description 4
- 229910052914 metal silicate Inorganic materials 0.000 claims 1
- 239000010410 layer Substances 0.000 description 31
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 23
- 239000004111 Potassium silicate Substances 0.000 description 16
- 229910052913 potassium silicate Inorganic materials 0.000 description 16
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 16
- 235000019353 potassium silicate Nutrition 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 239000011575 calcium Substances 0.000 description 12
- 235000010216 calcium carbonate Nutrition 0.000 description 11
- 229910000019 calcium carbonate Inorganic materials 0.000 description 10
- 239000000243 solution Substances 0.000 description 9
- 238000001035 drying Methods 0.000 description 8
- 239000000725 suspension Substances 0.000 description 7
- 239000001506 calcium phosphate Substances 0.000 description 6
- 229910000389 calcium phosphate Inorganic materials 0.000 description 6
- 235000011010 calcium phosphates Nutrition 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 6
- 229910052791 calcium Inorganic materials 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 238000013507 mapping Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 3
- 239000001095 magnesium carbonate Substances 0.000 description 3
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000012798 spherical particle Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- HECLRDQVFMWTQS-UHFFFAOYSA-N Dicyclopentadiene Chemical compound C1C2C3CC=CC3C1C=C2 HECLRDQVFMWTQS-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- WAKZZMMCDILMEF-UHFFFAOYSA-H barium(2+);diphosphate Chemical compound [Ba+2].[Ba+2].[Ba+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O WAKZZMMCDILMEF-UHFFFAOYSA-H 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- NKWPZUCBCARRDP-UHFFFAOYSA-L calcium bicarbonate Chemical compound [Ca+2].OC([O-])=O.OC([O-])=O NKWPZUCBCARRDP-UHFFFAOYSA-L 0.000 description 1
- 229910000020 calcium bicarbonate Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- OABQFEHDVMFLLE-UHFFFAOYSA-L calcium;dihydrogen phosphate;dihydrate Chemical compound O.O.[Ca+2].OP(O)([O-])=O.OP(O)([O-])=O OABQFEHDVMFLLE-UHFFFAOYSA-L 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 235000019700 dicalcium phosphate Nutrition 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012767 functional filler Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 description 1
- 229910052912 lithium silicate Inorganic materials 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000004452 microanalysis Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Description
本発明は、携帯電子機器、自動車等の樹脂成形部品、部材、各種建築材料等の充填材、電線被覆材、半導体封止材などに有用な無機質中空粒子及びその製造法に関する。 TECHNICAL FIELD The present invention relates to inorganic hollow particles useful for resin-molded parts, members such as portable electronic devices and automobiles, fillers such as various building materials, wire coating materials, semiconductor encapsulants, and the like, and a method for producing the same.
各種樹脂成形部品等の充填材として無機質中空粒子が用いられており、そのような中空粒子としては、シリカ、アルミナ、ジルコニア、チタニア等の金属酸化物粒子(特許文献1、2)、炭酸カルシウム粒子(特許文献3)、リン酸カルシウム粒子(特許文献4)等が報告されている。しかしながら、これらの中空粒子の製造法は、特殊な構造を有する装置を使用する、核となる有機物を高温で焼却する、1000℃以上の高温での焼結工程を必要とする等の問題がある。 Inorganic hollow particles are used as fillers for various resin molded parts. Examples of such hollow particles include silica, alumina, zirconia, titania and other metal oxide particles (Patent Documents 1 and 2), calcium carbonate particles. (Patent Document 3), calcium phosphate particles (Patent Document 4) and the like have been reported. However, these hollow particle production methods have problems such as using a device having a special structure, incineration of organic substances as a core at a high temperature, and requiring a sintering process at a high temperature of 1000 ° C. or higher. .
一方、本発明者は噴霧乾燥法により、簡便に炭酸カルシウム、炭酸マグネシウム等の中空粒子が得られることを報告している(非特許文献1、2)。 On the other hand, the present inventor has reported that hollow particles such as calcium carbonate and magnesium carbonate can be easily obtained by spray drying (Non-patent Documents 1 and 2).
しかしながら、前記従来の無機質中空粒子は、高温処理、特殊な装置を必要とする等の点で工業的に量産できるものではない。一方、噴霧乾燥法は大量生産に適した方法ではあるが、従来の方法では炭酸カルシウムや炭酸マグネシウムで形成された中空粒子を得ることは可能であるが、その強度は十分ではなかった。
従って、本発明の課題は、簡便な手段により得られる、強度の高い無機質中空粒子及びその製造法を提供することにある。
However, the conventional inorganic hollow particles cannot be industrially mass-produced in terms of high-temperature treatment and special equipment. On the other hand, although the spray drying method is suitable for mass production, the conventional method can obtain hollow particles formed of calcium carbonate or magnesium carbonate, but its strength is not sufficient.
Therefore, the subject of this invention is providing the inorganic hollow particle with high intensity | strength obtained by a simple means, and its manufacturing method.
そこで本発明者は、噴霧乾燥法により強度の高い無機質中空粒子を得るべく検討した結果、水に対する溶解性の低い無機酸アルカリ土類金属塩と、水に対する溶解性の比較的高いケイ酸アルカリ金属塩の両者を水に溶解し、得られた水溶液を噴霧乾燥すれば、優れた強度を有する無機質中空粒子が得られることを見出し、本発明を完成した。 Therefore, the present inventor studied to obtain inorganic hollow particles having high strength by spray drying, and as a result, inorganic acid alkaline earth metal salt having low solubility in water and alkali metal silicate having relatively high solubility in water. It was found that inorganic hollow particles having excellent strength can be obtained by dissolving both of the salts in water and spray-drying the resulting aqueous solution, thereby completing the present invention.
すなわち、本発明は次の〔1〕〜〔12〕を提供するものである。
〔1〕無機酸アルカリ土類金属塩及びケイ酸アルカリ金属塩を含む多層殻又は複合殻を有する無機質中空粒子。
〔2〕外層に無機酸アルカリ土類金属塩を含み、内層にケイ酸アルカリ金属塩を含む多層殻を有するものである〔1〕記載の無機質中空粒子。
〔3〕無機酸アルカリ土類金属塩及びケイ酸アルカリ金属塩を含有する水溶液を噴霧乾燥することにより得られる〔1〕又は〔2〕記載の無機質中空粒子。
〔4〕平均粒子径が0.1〜100μmであり、嵩密度が0.02〜0.5g/cm3であり、球形度が0.85以上である〔1〕〜〔3〕のいずれかに記載の無機質中空粒子。〔5〕多層殻又は複合殻の外層側が無機酸アルカリ土類金属塩を主成分とする層であり、内層側がケイ酸アルカリ金属塩を主成分とする層である〔2〕〜〔4〕のいずれかに記載の無機質中空粒子。
〔6〕無機酸アルカリ土類金属塩が、炭酸、リン酸及び硫酸から選ばれる酸のカルシウム塩、バリウム塩又はマグネシウム塩であり、ケイ酸アルカリ金属塩が、ケイ酸のナトリウム塩、カリウム塩又はリチウム塩である〔1〕〜〔5〕のいずれかに記載の無機質中空粒子。
〔7〕無機酸アルカリ土類金属塩及びケイ酸アルカリ金属塩を含有する水溶液を噴霧乾燥することを特徴とする、無機酸アルカリ土類金属塩及びケイ酸アルカリ金属塩を含む多層殻又は複合殻を有する無機質中空粒子の製造法。
〔8〕得られる無機質中空粒子が、外層に無機酸アルカリ土類金属塩を含み、内層にケイ酸アルカリ金属塩を含む多層殻又は複合殻を有する無機質中空粒子である〔7〕記載の製造法。
〔9〕噴霧乾燥温度が80〜200℃である〔7〕又は〔8〕記載の製造法。
〔10〕無機質中空粒子の平均粒子径が0.1〜100μmであり、嵩密度が0.02〜0.5g/cm3であり、球形度が0.85以上である〔7〕〜〔9〕のいずれかに記載の製造法。
〔11〕多層殻又は複合殻の外層側が無機酸アルカリ土類金属塩を主成分とする層であり、内層側がケイ酸アルカリ金属塩を主成分とする層である〔8〕〜〔10〕のいずれかに記載の製造法。
〔12〕無機酸アルカリ土類金属塩が、炭酸、リン酸及び硫酸から選ばれる酸のカルシウム塩、バリウム塩又はマグネシウム塩であり、ケイ酸アルカリ金属塩が、ケイ酸のナトリウム塩、カリウム塩又はリチウム塩である〔7〕〜〔11〕のいずれかに記載の製造法。
That is, the present invention provides the following [1] to [12].
[1] An inorganic hollow particle having a multilayer shell or composite shell containing an inorganic acid alkaline earth metal salt and an alkali metal silicate salt.
[2] The inorganic hollow particles according to [1], wherein the outer layer contains an inorganic acid alkaline earth metal salt and the inner layer has a multilayer shell containing an alkali metal silicate salt.
[3] The inorganic hollow particles according to [1] or [2], which are obtained by spray drying an aqueous solution containing an alkaline earth metal salt of an inorganic acid and an alkali metal silicate.
[4] Any of [1] to [3] having an average particle diameter of 0.1 to 100 μm, a bulk density of 0.02 to 0.5 g / cm 3 , and a sphericity of 0.85 or more. The inorganic hollow particle according to 1. [5] The outer layer side of the multilayer shell or composite shell is a layer mainly composed of an inorganic acid alkaline earth metal salt, and the inner layer side is a layer mainly composed of an alkali metal silicate metal salt. The inorganic hollow particle in any one.
[6] The inorganic acid alkaline earth metal salt is a calcium salt, barium salt or magnesium salt of an acid selected from carbonic acid, phosphoric acid and sulfuric acid, and the alkali metal silicate is a sodium salt, potassium salt of silicic acid or The inorganic hollow particle according to any one of [1] to [5], which is a lithium salt.
[7] A multilayer shell or composite shell containing an inorganic acid alkaline earth metal salt and an alkali metal silicate characterized by spray-drying an aqueous solution containing the inorganic acid alkaline earth metal salt and the alkali metal silicate salt The manufacturing method of the inorganic hollow particle which has this.
[8] The method according to [7], wherein the obtained inorganic hollow particles are inorganic hollow particles having a multilayer shell or a composite shell containing an inorganic acid alkaline earth metal salt in the outer layer and an alkali metal silicate salt in the inner layer. .
[9] The production method according to [7] or [8], wherein the spray drying temperature is 80 to 200 ° C.
[10] The average particle diameter of the inorganic hollow particles is 0.1 to 100 μm, the bulk density is 0.02 to 0.5 g / cm 3 , and the sphericity is 0.85 or more [7] to [9 ] The manufacturing method in any one of.
[11] The outer layer side of the multilayer shell or composite shell is a layer mainly composed of an inorganic acid alkaline earth metal salt, and the inner layer side is a layer mainly composed of an alkali metal silicate metal salt. The manufacturing method in any one.
[12] The inorganic acid alkaline earth metal salt is a calcium salt, barium salt or magnesium salt of an acid selected from carbonic acid, phosphoric acid and sulfuric acid, and the alkali metal silicate is a sodium salt, potassium salt of silicic acid or The production method according to any one of [7] to [11], which is a lithium salt.
本発明によれば、噴霧乾燥法という簡便な手法で、強度の高い無機質中空粒子が得られ、得られた無機質中空粒子は球状であり、強度が向上していることから、断熱用、遮熱用、或いは低誘電率材料用等の各種材料の充填材、軽質粉末、化粧品用粉体等として有用である。 According to the present invention, high-strength inorganic hollow particles can be obtained by a simple method called spray drying, and the obtained inorganic hollow particles are spherical and have improved strength. It is useful as a filler for various materials such as a low dielectric constant material, a light powder, and a cosmetic powder.
本発明の無機質中空粒子は、2種の成分により形成される外層と内層とを有する多層殻、又は2種の成分からなる複合殻を有し、それらの2種の成分は無機酸アルカリ土類金属塩及びケイ酸アルカリ金属塩を含む。このうち、多層殻を有する形態が好ましく、さらに外層に無機酸アルカリ土類金属塩を含み、内層にケイ酸アルカリ金属塩を含む多層殻を有する形態が好ましい。 The inorganic hollow particle of the present invention has a multilayer shell having an outer layer and an inner layer formed by two kinds of components, or a composite shell composed of two kinds of components, and these two kinds of components are inorganic acid alkaline earths. Includes metal salts and alkali metal silicates. Among these, a form having a multilayer shell is preferable, and a form having a multilayer shell containing an inorganic acid alkaline earth metal salt in the outer layer and an alkali metal silicate salt in the inner layer is preferable.
多層殻構造においては、外層は無機酸アルカリ土類金属塩を含有すればよいが、無機酸アルカリ土類金属塩を主成分とする層であるのが好ましい。ここで主成分とするとは、無機酸アルカリ土類金属塩を60〜100質量%含有することをいう。 In the multilayer shell structure, the outer layer may contain an inorganic acid alkaline earth metal salt, but is preferably a layer mainly composed of an inorganic acid alkaline earth metal salt. Here, the main component means that 60 to 100% by mass of the inorganic acid alkaline earth metal salt is contained.
無機酸アルカリ土類金属塩の無機酸としては、炭酸、リン酸、硫酸等が挙げられ、このうち炭酸、リン酸が特に好ましい。またアルカリ土類金属塩としては、カルシウム、バリウム、マグネシウム、ストロンチウムが挙げられるが、カルシウム、バリウム、マグネシウムがより好ましく、カルシウムが特に好ましい。具体的には、炭酸カルシウム、リン酸カルシウム、リン酸水素カルシウム、硫酸カルシウム、塩基性炭酸マグネシウム、リン酸マグネシウム、炭酸バリウム、リン酸バリウム、硫酸バリウムが挙げられ、炭酸カルシウム、リン酸カルシウムが特に好ましい。 Examples of the inorganic acid of the inorganic acid alkaline earth metal salt include carbonic acid, phosphoric acid, and sulfuric acid. Among these, carbonic acid and phosphoric acid are particularly preferable. Examples of the alkaline earth metal salt include calcium, barium, magnesium, and strontium, but calcium, barium, and magnesium are more preferable, and calcium is particularly preferable. Specific examples include calcium carbonate, calcium phosphate, calcium hydrogen phosphate, calcium sulfate, basic magnesium carbonate, magnesium phosphate, barium carbonate, barium phosphate, and barium sulfate, with calcium carbonate and calcium phosphate being particularly preferable.
多層殻構造においては、内層はケイ酸アルカリ金属塩を含有すればよいが、ケイ酸アルカリ金属塩を主成分とする層であるのが好ましい。ここで、主成分とするとは、ケイ酸アルカリ金属塩を60〜100質量%含有することをいう。 In the multilayer shell structure, the inner layer may contain an alkali metal silicate, but is preferably a layer mainly composed of an alkali metal silicate. Here, the main component means containing 60 to 100% by mass of an alkali metal silicate salt.
ケイ酸アルカリ金属塩としては、ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸リチウムが挙げられる。 Examples of the alkali metal silicate include sodium silicate, potassium silicate, and lithium silicate.
複合殻構造においては無機酸アルカリ土類金属塩とケイ酸アルカリ金属塩が複合化した構造を有する。一方、多層殻構造においては、無機酸アルカリ土類金属塩層とケイ酸アルカリ金属塩層とが外層と内層とを形成しているが、外層に無機酸アルカリ土類金属塩が、内層にケイ酸アルカリ金属塩が存在するのが好ましい。外層と内層の界面は、無機酸アルカリ土類金属塩層とケイ酸アルカリ金属塩層とが明確に分離している必要はなく、それらの一部が互いに混在している状態、すなわち組成傾斜型になっていてもよい。
なお、本発明の無機質中空粒子が、中空状になっていること及び複合殻や多層殻を有していることは、中央部断面の走査式電子顕微鏡(SEM)及び電子線マイクロアナリシス(EPMA)により確認することができる。例えば、SEMとEPMAを行い、SEM画像をEPMAマッピングすれば、中空部分、外層(Caが緑色)、内層(Siが赤色)が確認できる。
The composite shell structure has a structure in which an inorganic acid alkaline earth metal salt and an alkali metal silicate are combined. On the other hand, in a multi-layer shell structure, an inorganic acid alkaline earth metal salt layer and an alkali metal silicate salt layer form an outer layer and an inner layer. It is preferred that an acid alkali metal salt is present. The interface between the outer layer and the inner layer does not require the inorganic acid alkaline earth metal salt layer and the alkali metal silicate salt layer to be clearly separated. It may be.
The inorganic hollow particles of the present invention are hollow and have a composite shell or a multilayer shell. That is, the scanning electron microscope (SEM) and electron beam microanalysis (EPMA) of the cross section at the center. Can be confirmed. For example, if SEM and EPMA are performed and the SEM image is EPMA mapped, the hollow portion, the outer layer (Ca is green), and the inner layer (Si is red) can be confirmed.
無機酸アルカリ土類金属塩(A)とケイ酸アルカリ金属塩(B)との質量比(A:B)は、目的とする強度、溶解度等により適宜調整可能であり、100:1〜1:10が好ましく、50:1〜1:1がより好ましく、10:1〜1:1がさらに好ましい。かかる質量比は、原料として用いる無機酸アルカリ土類金属塩及びケイ酸アルカリ金属塩の水溶液の濃度等によって調整可能である。 The mass ratio (A: B) of the inorganic acid alkaline earth metal salt (A) and the alkali metal silicate (B) can be appropriately adjusted depending on the intended strength, solubility, and the like. 10 is preferable, 50: 1 to 1: 1 is more preferable, and 10: 1 to 1: 1 is more preferable. Such a mass ratio can be adjusted by adjusting the concentration of an aqueous solution of an inorganic acid alkaline earth metal salt and an alkali metal silicate used as a raw material.
本発明の無機質中空粒子の平均粒子径は、噴霧乾燥機のノズル径、乾燥温度、噴霧圧力により調整可能であり、粉体としての取り扱い性、充填材として混合した製品表面の平滑性の点から、0.1〜100μmが好ましく、さらに0.1〜50μmが好ましく、さらに0.3〜50μmが好ましい。 The average particle diameter of the inorganic hollow particles of the present invention can be adjusted by the nozzle diameter of the spray dryer, the drying temperature, and the spray pressure. From the viewpoint of handling as a powder and the smoothness of the product surface mixed as a filler. 0.1-100 μm is preferable, 0.1-50 μm is more preferable, and 0.3-50 μm is more preferable.
本発明の無機質中空粒子の嵩密度は、強度、断熱性、軽量性、誘電性等の点から、0.02〜0.5g/cm3が好ましく、0.03〜0.20g/cm3がより好ましく、0.05〜0.15g/cm3がさらに好ましい。この嵩密度は、中空粒子の中空率と逆相関する。なお、嵩密度はタップ法により測定できる。 The bulk density of the inorganic hollow particles of the present invention, strength, heat insulation, light weight, in terms of a dielectric such as, preferably 0.02 to 0.5 g / cm 3, is 0.03~0.20g / cm 3 More preferred is 0.05 to 0.15 g / cm 3 . This bulk density is inversely correlated with the hollowness of the hollow particles. The bulk density can be measured by a tap method.
本発明の多層殻又は複合殻の膜厚は、断面のSEM像から測定可能であり、100〜400nmの範囲とすることができ、200〜300nm、特に250nmであるのが好ましい。 The film thickness of the multilayer shell or composite shell of the present invention can be measured from a cross-sectional SEM image, can be in the range of 100 to 400 nm, and is preferably 200 to 300 nm, particularly 250 nm.
本発明の無機質中空粒子の形状は、噴霧乾燥法で製造される限り、球状であり、樹脂などの基材に混合したときの分散性、混合性や流動性の点から、平均球形度は0.85以上であるのが好ましい。
ここで、平均球形度は、走査型電子顕微鏡写真から粒子の投影面積(A)と周囲長(PM)を測定し、周囲長(PM)に対する真円の面積を(B)とすると、その粒子の球形度はA/Bとして表される。そこで、試料粒子の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πr2であるから、B=π×(PM/2π)2となり、この粒子の球状度は、球形度=A/B=A/4π/(PM)2として算出される。100個の粒子について球形度を測定し、その平均値でもって平均球形度とする。なお、本発明の無機質中空粒子は、噴霧乾燥法で製造する限り、平均球形度は、改めて測定するまでもなく0.85以上、好ましくは0.90以上である。
The shape of the inorganic hollow particles of the present invention is spherical as long as it is produced by a spray drying method, and the average sphericity is 0 from the viewpoint of dispersibility, mixing properties and fluidity when mixed with a substrate such as a resin. .85 or more is preferable.
Here, the average sphericity is determined by measuring the projected area (A) and the perimeter (PM) of a particle from a scanning electron micrograph, and assuming that the area of a perfect circle with respect to the perimeter (PM) is (B). Is expressed as A / B. Therefore, assuming a perfect circle having the same circumference as that of the sample particle (PM), PM = 2πr and B = πr 2 , so that B = π × (PM / 2π) 2 , The sphericity is calculated as sphericity = A / B = A / 4π / (PM) 2 . The sphericity is measured for 100 particles, and the average value is taken as the average sphericity. As long as the inorganic hollow particles of the present invention are produced by the spray drying method, the average sphericity is 0.85 or more, preferably 0.90 or more, without needing to measure again.
本発明の無機質中空粒子の圧縮強度は、無機酸アルカリ土類金属塩で形成された単層の中空粒子に比べて数十倍向上している。圧縮強度は、ケイ酸アルカリ金属塩の添加量により調整可能である。 The compressive strength of the inorganic hollow particles of the present invention is improved by several tens of times compared to the single-layer hollow particles formed of an inorganic acid alkaline earth metal salt. The compressive strength can be adjusted by the amount of alkali metal silicate added.
本発明の無機質中空粒子は、無機酸アルカリ土類金属塩及びケイ酸アルカリ金属塩を含有する水溶液を噴霧乾燥することにより製造することができる。本発明においては、これらの成分を含有する水溶液を噴霧乾燥することが、多層殻又は複合殻を有する中空粒子を得るうえで重要である。これらの2成分を含有するスラリーを噴霧乾燥すると、固形分が核となって粒子が成長するため中空粒子は得られない。本発明で用いる無機酸アルカリ土類金属塩は一般に水に対する溶解度が低いので最初に噴霧された液滴の外側で析出し、その内部に閉じこめられたケイ酸アルカリ金属塩が後に析出し、その結果、多層殻を有する中空粒子が形成されるものと推定される。2成分の溶解度が近似する場合は複合殻を有する中空粒子が形成される。 The inorganic hollow particles of the present invention can be produced by spray drying an aqueous solution containing an inorganic acid alkaline earth metal salt and an alkali metal silicate salt. In the present invention, spray drying of an aqueous solution containing these components is important for obtaining hollow particles having a multilayer shell or a composite shell. When a slurry containing these two components is spray-dried, solid particles become nuclei and particles grow, so that hollow particles cannot be obtained. The inorganic acid alkaline earth metal salt used in the present invention generally has low solubility in water, so that it precipitates outside the first sprayed droplet, and the alkali metal silicate confined in the inside later precipitates. It is presumed that hollow particles having a multilayer shell are formed. When the solubility of the two components approximates, hollow particles having a composite shell are formed.
より詳細には、無機酸アルカリ土類金属とケイ酸金属塩を含有する水溶液を微細な液滴にして、乾燥機内に噴霧し、乾燥機内で熱風と接触させながら乾燥させて、中空粒子を製造する。水溶液を微細な液滴にする方法として、二流体ノズル、加圧ノズル、回転円盤ノズルなどを用いた噴霧器が使用でき、このときノズルは二流体ノズル、加圧ノズルなどが粒径制御可能なため好ましい。 More specifically, an aqueous solution containing an inorganic alkaline earth metal and a silicate metal salt is made into fine droplets, sprayed into a dryer, and dried in contact with hot air in the dryer to produce hollow particles. To do. As a method to make the aqueous solution into fine droplets, a sprayer using a two-fluid nozzle, a pressure nozzle, a rotating disk nozzle, etc. can be used. At this time, the particle diameter can be controlled by the two-fluid nozzle, the pressure nozzle, etc. preferable.
噴霧乾燥に用いる噴霧器又はスプレーノズルの口径の調整により、粒子径を制御することができる。また、無機酸アルカリ土類金属塩濃度とケイ酸アルカリ金属塩濃度の調整により、これらの成分の質量比を制御することができる。好ましい無機酸アルカリ土類金属塩濃度は0.1〜10.0g/Lであり、ケイ酸アルカリ金属塩濃度は0.05〜3.00g/Lが好ましい。なお、無機酸アルカリ土類金属塩の溶解度は低いため高濃度の溶液を調製することは困難であるが、二酸化炭素を吹き込み炭酸水素塩とすることで溶解度を高めることが可能である。一方、ケイ酸アルカリ金属塩の溶解度は高いので広い範囲から選択可能である。 The particle size can be controlled by adjusting the diameter of the sprayer or spray nozzle used for spray drying. Moreover, the mass ratio of these components can be controlled by adjusting the inorganic acid alkaline earth metal salt concentration and the alkali metal silicate concentration. The preferred inorganic acid alkaline earth metal salt concentration is 0.1 to 10.0 g / L, and the alkali metal silicate concentration is preferably 0.05 to 3.00 g / L. Although it is difficult to prepare a high-concentration solution because the solubility of the inorganic acid alkaline earth metal salt is low, the solubility can be increased by blowing carbon dioxide into a bicarbonate. On the other hand, since the solubility of alkali metal silicate is high, it can be selected from a wide range.
噴霧乾燥の温度は、乾燥性、収率、強度、球状殻の形成性、球状粒子の収率の点から、80〜200℃が好ましく、さらに90〜120℃が好ましい。また噴霧乾燥の圧力は50〜500kPaが好ましい。 The temperature for spray drying is preferably 80 to 200 ° C., more preferably 90 to 120 ° C., from the viewpoints of drying property, yield, strength, spherical shell formation, and yield of spherical particles. The pressure for spray drying is preferably 50 to 500 kPa.
噴霧乾燥により得られた中空粒子は非常に軽いため、サイクロンにて全量回収することはできない。そこで、本発明における回収方法としては、バグフィルターが好適に用いられる。また、サイクロンとバグフィルターを直列で用いることにより、粗粒子はサイクロンで、微粒子はバグフィルターでそれぞれ回収できることから、粒度の調整も行われ、用途展開がしやすくなる。 Since the hollow particles obtained by spray drying are very light, they cannot be recovered in their entirety with a cyclone. Therefore, a bag filter is preferably used as the collection method in the present invention. In addition, by using a cyclone and a bag filter in series, coarse particles can be collected by the cyclone and fine particles can be collected by the bag filter. Therefore, the particle size can be adjusted and the application can be easily developed.
得られた本発明の無機質中空粒子は、噴霧乾燥法を採用しているため、粒度分布が小さく、粒子径が制御された粒子を効率良く得られる。また、強度も高いため、プラスチック充填用機能性フィラー、軽量粉末、化粧品用粉体断熱用、遮熱用、或いは低誘電率材料用などの各種材料の充填材等の分野で広く利用することができる。 Since the obtained inorganic hollow particles of the present invention employ a spray drying method, particles having a small particle size distribution and a controlled particle size can be obtained efficiently. In addition, because of its high strength, it can be widely used in the field of fillers for various materials such as functional fillers for plastic filling, lightweight powder, powder insulation for cosmetics, heat insulation, or low dielectric constant materials. it can.
次に実施例を挙げて本発明をさらに詳細に説明する。 EXAMPLES Next, an Example is given and this invention is demonstrated still in detail.
実施例1
純水1リットル中にケイ酸カリウム水溶液(SiO2/K2Oモル比=4.0、濃度35wt%)を0〜5.0g添加し、この水溶液にCa/P原子比1.67となるように炭酸カルシウムとリン酸−水素カルシウム二水和物(DCPD)を加え、懸濁液濃度0.1mass%の懸濁液を調製した。この懸濁液に二酸化炭素を流量1dm3・min-1で1時間吹き込みながら溶解させ、ろ過することで濃度約0.5g/Lのリン酸カルシウム水溶液を得た。また、この水溶液を二流体ノズル(ノズル径0.71mm)により噴霧溶液とし、乾燥温度100℃、噴霧圧力200kPa、送液流量500cm3/h、乾燥空気量0.75m3/minの条件で噴霧乾燥を行うことで粉体試料を得た。
Example 1
0 to 5.0 g of potassium silicate aqueous solution (SiO 2 / K 2 O molar ratio = 4.0, concentration 35 wt%) is added to 1 liter of pure water, and the Ca / P atomic ratio is 1.67. Thus, calcium carbonate and phosphoric acid-calcium hydrogen phosphate dihydrate (DCPD) were added to prepare a suspension having a suspension concentration of 0.1 mass%. Carbon dioxide was dissolved in this suspension while blowing at a flow rate of 1 dm 3 · min −1 for 1 hour and filtered to obtain an aqueous calcium phosphate solution having a concentration of about 0.5 g / L. Further, this aqueous solution is made into a spray solution with a two-fluid nozzle (nozzle diameter 0.71 mm) and sprayed under the conditions of a drying temperature of 100 ° C., a spraying pressure of 200 kPa, a liquid feed flow rate of 500 cm 3 / h, and a dry air amount of 0.75 m 3 / min. A powder sample was obtained by drying.
得られた試料のキャラクタリゼーションはX線回折、走査型電子顕微鏡(SEM)観察、電子線マイクロアナライザー(EPMA)を用いて行った。また、粒子径の測定はSEM観察により行い、写真法にて粒子100個以上を計測することにより行った。中空粒子の膜厚測定は粒子をエポキシ樹脂に含浸させ、ミクロトームにて切断し、SEM観察により行った。かさ密度の測定はタップ法により測定した。また、得られた生成物の圧縮強さはダイナミック超微小硬度計により粒子1粒の圧縮強さを測定した。 The obtained sample was characterized using X-ray diffraction, scanning electron microscope (SEM) observation, and electron beam microanalyzer (EPMA). The particle size was measured by SEM observation and was measured by measuring 100 or more particles by photographic method. The thickness of the hollow particles was measured by impregnating the particles with an epoxy resin, cutting with a microtome, and SEM observation. The bulk density was measured by the tap method. Further, the compressive strength of the obtained product was determined by measuring the compressive strength of one particle with a dynamic ultra-micro hardness meter.
(1)ケイ酸カリウム水溶液添加量の異なる水溶液を噴霧乾燥して得られた生成物はいずれも球状中空粒子であり、その粒径は噴霧乾燥条件が同一条件ならばほぼ同じ4μmであり、球形度は0.90以上と球状粒子の外観にもほとんど相違は見られなかった。しかし、球状中空粒子の膜厚はケイ酸カリウム水溶液無添加(0g)のときには200nm程度であったが、添加量の増大に伴い膜厚は増加する傾向が見られ、添加量5.0g/Lでは300nmにまで増加した(図1)。かさ密度は、0.11g/cm3であった。 (1) Products obtained by spray-drying aqueous solutions with different amounts of potassium silicate aqueous solution are all spherical hollow particles, and the particle size is about 4 μm if the spray-drying conditions are the same. The degree was 0.90 or more, and there was almost no difference in the appearance of the spherical particles. However, the film thickness of the spherical hollow particles was about 200 nm when no potassium silicate aqueous solution was added (0 g), but the film thickness tended to increase as the amount added increased, and the amount added was 5.0 g / L. Then, it increased to 300 nm (FIG. 1). The bulk density was 0.11 g / cm 3 .
(2)つぎに、ケイ酸カリウム水溶液添加量3.0g/Lのときの生成物のSEM写真及びEPMAマッピングを図2に示す。平均粒径約4μm、平均膜厚約500nmの粒子(図2(a))のSiとCaについてマッピングを行ったところ、球状中空粒子の中空壁中にはCa及びSiが含有していることがわかった(図2(b))。さらに、中空壁の外側にはCaが多く含有しており、内側にはSiが多く含有していることから、この粒子は組成傾斜粒子であることが確認できた。 (2) Next, an SEM photograph and EPMA mapping of the product when the potassium silicate aqueous solution addition amount is 3.0 g / L are shown in FIG. When mapping was performed on Si and Ca of particles having an average particle diameter of about 4 μm and an average film thickness of about 500 nm (FIG. 2A), it was found that Ca and Si were contained in the hollow walls of the spherical hollow particles. Okay (Figure 2 (b)). Furthermore, since the outer side of the hollow wall contains a large amount of Ca and the inner side contains a large amount of Si, it was confirmed that the particles were composition gradient particles.
(3)得られた組成傾斜型球状粒子1粒の圧縮強さを測定したところ、無添加では約0.6MPaであった圧縮強さはケイ酸カリウムを添加することで増大し、3.0g添加では約16.9MPaと無添加のときの約26倍も増大していることが確認でき、中空粒子でありながらHAp中実体とほぼ同様の強さを示した(図3)。HAp中実体は、水酸化カルシウム懸濁液にリン酸水溶液をCa/P原子比が1.67となるように加えて調整したリン酸カルシウム懸濁液を噴霧乾燥して作製したものを使用した。 (3) When the compressive strength of the obtained composition-graded spherical particles was measured, the compressive strength, which was about 0.6 MPa without addition, increased with the addition of potassium silicate to 3.0 g. It was confirmed that the addition was about 16.9 MPa, an increase of about 26 times that in the case of no addition, and the strength was almost the same as that of the HAp solid substance although it was a hollow particle (FIG. 3). The HAp solid substance used was prepared by spray-drying a calcium phosphate suspension prepared by adding an aqueous phosphoric acid solution to the calcium hydroxide suspension so that the Ca / P atomic ratio was 1.67.
(4)得られた中空粒子を、水に1週間浸漬することにより、水に対する安定性を検討した。すなわち、リン酸カルシウム単層(ケイ酸カリウム無添加)の中空粒子は水に浸漬すると短時間で崩壊してしまうが(図4(a))、本発明の中空粒子は1週間水中で浸漬しても形状を保持していた(図4(b))。また、1週間水中に浸漬してもその圧縮強度はほとんど変化しなかった(図5)。 (4) The resulting hollow particles were immersed in water for 1 week to examine the stability to water. That is, the hollow particles of the calcium phosphate monolayer (without potassium silicate added) collapse in a short time when immersed in water (FIG. 4 (a)), but the hollow particles of the present invention can be immersed in water for one week. The shape was maintained (FIG. 4B). Moreover, the compression strength hardly changed even when immersed in water for one week (FIG. 5).
実施例2
純水に試薬炭酸カルシウムを懸濁液濃度0.15質量%となるよう懸濁させ、3℃の恒温水槽内でCO2ガスを流量1dm3・min-1で1時間吹き込むことにより炭酸カルシウムを溶解させた。その後、この懸濁液をろ過することでCa2+イオン濃度約400ppm(0.01mol・dm-3)の炭酸水素カルシウム過飽和溶液を得た。さらに、この溶液にケイ酸カリウムを0〜0.40質量%となるよう添加したものを噴霧溶液とした。この噴霧溶液を乾燥温度100〜200℃、噴霧圧力50〜200kPa、送液流量0.5dm3・h-1、乾燥空気量0.75m3・min-1の条件下で噴霧乾燥を行い、組成傾斜型球状中空粒子を作製した。
Example 2
Calcium carbonate is suspended by suspending reagent calcium carbonate in pure water to a suspension concentration of 0.15 mass% and blowing CO 2 gas at a flow rate of 1 dm 3 · min −1 for 1 hour in a constant temperature water bath at 3 ° C. Dissolved. Thereafter, this suspension was filtered to obtain a calcium hydrogen carbonate supersaturated solution having a Ca 2+ ion concentration of about 400 ppm (0.01 mol · dm −3 ). Furthermore, what added potassium silicate so that it might become 0-0.40 mass% to this solution was used as the spray solution. This spray solution is spray-dried under the conditions of a drying temperature of 100 to 200 ° C., a spraying pressure of 50 to 200 kPa, a liquid flow rate of 0.5 dm 3 · h −1 , and a dry air amount of 0.75 m 3 · min −1. Tilted spherical hollow particles were produced.
実施例1と同様にして、得られた中空粒子の特性を評価した。
(1)ケイ酸カリウム添加量が多くなると、粒子の形状は歪となり表面は多孔質となるため、球状を維持できる最大添加量は0.25質量%であった。また、図6に球状中空粒子の平均粒径と膜厚に及ぼすケイ酸カリウム添加量の影響および内部構造を示す。添加量の増加に伴い球状中空粒子の膜厚は約0.17μmから0.31μmに増加したが、平均粒径は変化せず2.0μm程度だった。一方、内部構造はEPMAマッピングから、中空壁の外側にCaが多く存在しており、内部にかけてSiが組成傾斜しながら析出した構造を有しているのが確認できた。つぎに、乾燥温度について検討したところ、温度を高くすると平均粒径は大きくなり、粒度分布が広くなる傾向がみられた。また、粒子の形状は100℃ではきれいな球状中空粒子が得られるが、乾燥温度が高くなると形状は歪で、かつ多孔質になる傾向がみられた。一方、噴霧圧力が高いほど平均粒径は小さくなり、膜厚も減少した。
In the same manner as in Example 1, the characteristics of the obtained hollow particles were evaluated.
(1) When the amount of potassium silicate added increases, the shape of the particles becomes distorted and the surface becomes porous, so the maximum amount added that can maintain a spherical shape was 0.25% by mass. FIG. 6 shows the influence of the amount of added potassium silicate on the average particle diameter and film thickness of the spherical hollow particles and the internal structure. The film thickness of the spherical hollow particles increased from about 0.17 μm to 0.31 μm as the addition amount increased, but the average particle size did not change and was about 2.0 μm. On the other hand, from the EPMA mapping, it was confirmed from the EPMA mapping that a large amount of Ca was present on the outer side of the hollow wall, and that Si was deposited while being compositionally inclined toward the inside. Next, the drying temperature was examined. As the temperature was increased, the average particle size increased and the particle size distribution tended to widen. In addition, clean spherical hollow particles were obtained at 100 ° C., but the shape tended to be distorted and porous as the drying temperature increased. On the other hand, the higher the spraying pressure, the smaller the average particle size and the film thickness.
(2)X線回折結果からは、ケイ酸カリウム無添加の球状中空粒子はカルサイト型炭酸カルシウムの単一相であるが、ケイ酸カリウムを添加するとバテライト型の生成が認められ、添加量の増大に伴い結晶性は低下し、0.35質量%以上では非晶質となった。また、乾燥温度100および125℃ではバテライト型の生成が確認されたが、150℃以上では非晶質となった。さらに、作製した組成傾斜型球状中空粒子の圧縮強さを測定したところ、圧縮強さは13.7MPaであり、ケイ酸カリウム無添加のものと比べて50%ほど強度が向上した。 (2) From the X-ray diffraction results, the spherical hollow particles to which potassium silicate is not added are a single phase of calcite-type calcium carbonate, but when potassium silicate is added, the formation of a vaterite type is recognized, The crystallinity decreased with the increase, and became amorphous at 0.35% by mass or more. Further, the formation of a vaterite type was confirmed at drying temperatures of 100 and 125 ° C., but it became amorphous at 150 ° C. or higher. Furthermore, when the compressive strength of the produced composition-graded spherical hollow particles was measured, the compressive strength was 13.7 MPa, and the strength was improved by about 50% compared to the one without added potassium silicate.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013182489A JP6191987B2 (en) | 2012-09-26 | 2013-09-03 | Inorganic hollow particles and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012212108 | 2012-09-26 | ||
JP2012212108 | 2012-09-26 | ||
JP2013182489A JP6191987B2 (en) | 2012-09-26 | 2013-09-03 | Inorganic hollow particles and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014080356A true JP2014080356A (en) | 2014-05-08 |
JP6191987B2 JP6191987B2 (en) | 2017-09-06 |
Family
ID=50784913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013182489A Active JP6191987B2 (en) | 2012-09-26 | 2013-09-03 | Inorganic hollow particles and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6191987B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016023095A (en) * | 2014-07-17 | 2016-02-08 | 太平洋セメント株式会社 | Inorganic oxide fine hollow particle |
JP2016098155A (en) * | 2014-11-25 | 2016-05-30 | 太平洋セメント株式会社 | Method for manufacturing hollow particle |
JP2016172656A (en) * | 2015-03-17 | 2016-09-29 | 太平洋セメント株式会社 | Fine calcium carbonate hollow particle |
JP2017057100A (en) * | 2015-09-15 | 2017-03-23 | 太平洋セメント株式会社 | Fine strontium carbonate particle |
JP2017088448A (en) * | 2015-11-11 | 2017-05-25 | 太平洋セメント株式会社 | Manufacturing method of fine magnesium oxide hollow particles |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5755454B2 (en) * | 1975-01-25 | 1982-11-24 | ||
JP2005213093A (en) * | 2004-01-29 | 2005-08-11 | Taiheiyo Cement Corp | Chemical-releasable grain and cement composition containing the same |
-
2013
- 2013-09-03 JP JP2013182489A patent/JP6191987B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5755454B2 (en) * | 1975-01-25 | 1982-11-24 | ||
JP2005213093A (en) * | 2004-01-29 | 2005-08-11 | Taiheiyo Cement Corp | Chemical-releasable grain and cement composition containing the same |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016023095A (en) * | 2014-07-17 | 2016-02-08 | 太平洋セメント株式会社 | Inorganic oxide fine hollow particle |
JP2016098155A (en) * | 2014-11-25 | 2016-05-30 | 太平洋セメント株式会社 | Method for manufacturing hollow particle |
JP2016172656A (en) * | 2015-03-17 | 2016-09-29 | 太平洋セメント株式会社 | Fine calcium carbonate hollow particle |
JP2017057100A (en) * | 2015-09-15 | 2017-03-23 | 太平洋セメント株式会社 | Fine strontium carbonate particle |
JP2017088448A (en) * | 2015-11-11 | 2017-05-25 | 太平洋セメント株式会社 | Manufacturing method of fine magnesium oxide hollow particles |
Also Published As
Publication number | Publication date |
---|---|
JP6191987B2 (en) | 2017-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6191987B2 (en) | Inorganic hollow particles and method for producing the same | |
Jiang et al. | Hierarchical shelled ZnO structures made of bunched nanowire arrays | |
Jiang et al. | Nanohollow carbon for rechargeable batteries: ongoing progresses and challenges | |
TWI518034B (en) | Method for producing spherical alumina powder | |
TWI713729B (en) | Hollow silicon dioxide particles and manufacturing method thereof | |
Han et al. | A novel approach to synthesize hollow calcium carbonate particles | |
JP6316153B2 (en) | Fine alumina hollow particles | |
JP6324247B2 (en) | Inorganic oxide micro hollow particles | |
US20140287236A1 (en) | Hollow nanoparticles and method for producing same | |
JP6385168B2 (en) | Method for producing hollow particles | |
KR20170063506A (en) | Method for producing porous calcium deficient hydroxyapatite granules | |
Zaki et al. | Acceleration of ammonium phosphate hydrolysis using TiO 2 microspheres as a catalyst for hydrogen production | |
CN104445224A (en) | Method for preparing micro silica aerogel powder | |
CN102718255B (en) | Preparation method of titanium dioxide hollow nano structure | |
WO2015146961A1 (en) | Production method for forsterite fine particles | |
Wu et al. | Hydrothermal crystallization of ZnOHF: an integration of nanoparticles into hollow architectures | |
Yu et al. | Preparation of porosity-controlled calcium carbonate by thermal decomposition of volume content-variable calcium carboxylate derivatives | |
JP6389431B2 (en) | Fine aluminosilicate hollow particles | |
KR102175902B1 (en) | The method for producing a silica-modified calcium carbonate surface coating | |
Su et al. | A facile synthesis of Cu2O/SiO2 and Cu/SiO2 core–shell octahedral nanocomposites | |
Wu et al. | Template route to chemically engineering cavities at nanoscale: a case study of Zn (OH) 2 template | |
Virtudazo et al. | Facile ambient temperature synthesis and characterization of a stable nano-sized hollow silica particles using soluble-poly (methacrylic acid) sodium salt templating | |
Fuji | Hollow particles as controlled small space to functionalize materials | |
JP2015218071A (en) | Fine mullite hollow particle | |
JP6386949B2 (en) | Fine calcium carbonate hollow particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160422 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160422 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170327 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170718 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170731 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6191987 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |