JP2014079793A - Rotation plastic processing apparatus - Google Patents

Rotation plastic processing apparatus Download PDF

Info

Publication number
JP2014079793A
JP2014079793A JP2012230178A JP2012230178A JP2014079793A JP 2014079793 A JP2014079793 A JP 2014079793A JP 2012230178 A JP2012230178 A JP 2012230178A JP 2012230178 A JP2012230178 A JP 2012230178A JP 2014079793 A JP2014079793 A JP 2014079793A
Authority
JP
Japan
Prior art keywords
roller
transmission gear
axis
rotation
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012230178A
Other languages
Japanese (ja)
Other versions
JP5866643B2 (en
Inventor
Koji Higaki
孝二 檜垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Spindle Manufacturing Co Ltd
Original Assignee
Nihon Spindle Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Spindle Manufacturing Co Ltd filed Critical Nihon Spindle Manufacturing Co Ltd
Priority to JP2012230178A priority Critical patent/JP5866643B2/en
Priority to PCT/JP2013/070464 priority patent/WO2014061331A1/en
Publication of JP2014079793A publication Critical patent/JP2014079793A/en
Application granted granted Critical
Publication of JP5866643B2 publication Critical patent/JP5866643B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/50Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members
    • F16D3/60Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members comprising pushing or pulling links attached to both parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H5/00Making gear wheels, racks, spline shafts or worms
    • B21H5/02Making gear wheels, racks, spline shafts or worms with cylindrical outline, e.g. by means of die rolls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/02Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions
    • F16D3/04Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted to allow radial displacement, e.g. Oldham couplings

Abstract

PROBLEM TO BE SOLVED: To provide a rotation plastic processing apparatus capable of improving plastic processing accuracy.SOLUTION: A synchronous rotation mechanism S of a rotation plastic processing apparatus comprises: a synchronous gear 8; a transmission gear 9; a decentering coupling 10; and a transmission gear position holding mechanism K. In the decentering coupling 10, a drive plate 14 is concentrically connected with the transmission gear 9 to be capable of integrally rotating with the transmission gear 9, and a driven plate 12 is concentrically connected with a roller 4 to be capable of integrally rotating with the roller 4. The decentering coupling 10 includes a rotation axis A2 of the driven plate 12 arranged in parallel with a main shaft 1. A press mechanism D is provide to move the roller 4 and the driven plate 12 while the rotation axis A2 of the roller 4 passes through the perpendicular line α between shaft centers. The transmission gear position holding mechanism K holds the transmission gear 9 in a state that engages with the synchronous gear 8 at the position where the rotation axis A4 of the transmission gear 9 is biased from the perpendicular line α between shaft centers α by a determined distance in a direction orthogonal to the perpendicular line α between shaft centers α.

Description

本発明は、軸心方向視で円状の外周面を有する被加工素材を支持する状態で、主軸周りに回転駆動手段により回転駆動される素材支持部と、被加工素材を塑性加工するローラを主軸に直交する方向に移動して当該ローラを被加工素材に押し付ける押し付け機構と、ローラを素材支持部と同期回転させるように、主軸の回転を前記ローラに伝達する同期回転機構とが設けられた回転塑性加工装置に関する。   The present invention includes a material support portion that is rotationally driven by a rotational drive means around a main shaft and a roller that plastically processes the material to be processed while supporting a material to be processed having a circular outer peripheral surface as viewed in the axial direction. A pressing mechanism that moves in a direction perpendicular to the main shaft and presses the roller against the material to be processed, and a synchronous rotation mechanism that transmits the rotation of the main shaft to the roller so as to rotate the roller synchronously with the material support portion are provided. The present invention relates to a rotary plastic processing apparatus.

かかる回転塑性加工装置は、被加工素材を支持した素材支持部を回転駆動し、並びに、同期回転機構によってローラを素材支持部と同期回転させる状態で、押し付け機構によりローラを被加工素材に押し付けることにより、被加工素材を塑性加工するものである。例えば、外歯を有する歯車を製造する場合は、ローラとして、外周面に外歯成形型が備えられたものを用いて、被加工素材の一例である円盤状素材の外周面に外歯を成形する。   Such a rotary plastic working apparatus rotates the material support part that supports the work material, and presses the roller against the work material by the pressing mechanism in a state in which the roller rotates synchronously with the material support part by the synchronous rotation mechanism. Thus, the workpiece material is plastically processed. For example, when manufacturing a gear having external teeth, the external teeth are formed on the outer peripheral surface of a disk-shaped material, which is an example of a material to be processed, using a roller having an outer tooth forming die on the outer peripheral surface. To do.

このような回転塑性加工装置において、従来は、同期回転機構として、素材支持部と共に回転する同期ギアと、ローラと共に回転し且つ同期ギアに噛み合わせ可能な従動ギアと、ローラ及び従動ギアを主軸と直交する方向に一体的に移動させて、従動ギアを同期ギアに噛み合わせると共にその噛み合わせと同時にローラを被加工素材に押し付ける押し付け機構とを備えて構成していた(例えば、特許文献1参照。)。
そして、押し付け機構を働かせることにより、被加工素材を塑性加工していた。
In such a rotary plastic working apparatus, conventionally, as a synchronous rotation mechanism, a synchronous gear that rotates together with the material support portion, a driven gear that rotates together with the roller and meshes with the synchronous gear, and the roller and the driven gear as the main shaft. It is configured to include a pressing mechanism that integrally moves in the orthogonal direction to engage the driven gear with the synchronous gear and simultaneously presses the roller against the workpiece (see, for example, Patent Document 1). ).
And the workpiece material was plastically processed by making the pressing mechanism work.

特許第3429711号公報Japanese Patent No. 3429711

ところで、ローラを的確に素材支持部と同期回転させるには、従動ギアを同期ギアに十分に深く噛み合わせて、同期ギアの回転を従動ギアに的確に伝達する必要がある。
しかしながら、従来の回転塑性加工装置では、ローラ及び従動ギアを主軸と直交する方向に一体的に移動させる構成であるため、ローラが被加工素材に接触してから、加工が完了する位置まで移動する間に従動ギアも同様に移動することになり、加工当初は従動ギアと同期ギアが深く噛み合わずに、バックラッシが生じてしまい、結果、被加工素材を塑性加工する加工精度が悪くなる虞があった。
By the way, in order to accurately rotate the roller synchronously with the material support portion, it is necessary to mesh the driven gear sufficiently deeply with the synchronous gear and accurately transmit the rotation of the synchronous gear to the driven gear.
However, in the conventional rotary plastic processing apparatus, since the roller and the driven gear are integrally moved in a direction orthogonal to the main shaft, the roller moves to a position where the processing is completed after contacting the workpiece. The driven gear also moves in the same manner, and the driven gear and the synchronous gear do not mesh deeply at the beginning of processing, resulting in backlash, and as a result, the processing accuracy for plastic processing of the workpiece may be deteriorated. It was.

そこで、上述の如きローラが被加工素材に強く押し付けられ過ぎるという問題を解消するために、図13に示すように、所謂、偏心カップリング40を用いる比較例が想定される。尚、図13は、偏心カップリング40を用いた場合の回転塑性加工装置の比較例を示し、図13(a)は、回転塑性加工装置における偏心カップリング40の周辺の正面図であり、図13(b)は、横断平面図である。   Therefore, in order to solve the problem that the roller as described above is pressed too strongly against the workpiece, a comparative example using a so-called eccentric coupling 40 is assumed as shown in FIG. FIG. 13 shows a comparative example of the rotary plastic working apparatus when the eccentric coupling 40 is used, and FIG. 13 (a) is a front view of the periphery of the eccentric coupling 40 in the rotary plastic working apparatus. 13 (b) is a transverse plan view.

図13に示すように、偏心カップリング40は、リング状の従動プレート41、回転軸心A3が従動プレート41の回転軸心A2と偏心し且つ従動プレート41に回転を伝達可能に複数(例えば3本)の従動側リンク44により従動プレート41に連結されたリング状の中間プレート42、及び、回転軸心A4が中間プレート42の回転軸心A3と偏心し且つ中間プレート42に回転を伝達可能に複数(例えば3本)の駆動側リンク45により中間プレート42に連結されたリング状の駆動プレート43を備えて構成されている。   As shown in FIG. 13, the eccentric coupling 40 includes a ring-shaped driven plate 41 and a plurality of (for example, 3) rotation axes A3 that are eccentric with the rotation axis A2 of the driven plate 41 and that can transmit rotation to the driven plate 41. The ring-shaped intermediate plate 42 connected to the driven plate 41 by the driven side link 44 and the rotation axis A4 are eccentric from the rotation axis A3 of the intermediate plate 42, and the rotation can be transmitted to the intermediate plate 42. A ring-shaped drive plate 43 connected to the intermediate plate 42 by a plurality of (for example, three) drive-side links 45 is provided.

複数の従動側リンク44は、互いに平行になる状態で、従動プレート41の回転軸心A2周りに分散配置され、複数の駆動側リンク45も、互いに平行になる状態で、駆動プレート43の回転軸心A4周りに分散配置されている。各従動側リンク44の一端及び各駆動側リンク45の一端は、同心の枢支軸心にて中間プレート42に枢支され、各従動側リンク44の他端は従動プレート41に枢支され、並びに、各駆動側リンク45の他端は駆動プレート43に枢支されている。複数の従動側リンク44夫々における両側の枢支軸心間の間隔、及び、複数の駆動側リンク45夫々における両側の枢支軸心間の間隔は、全て同一である。つまり、この偏心カップリング40は、所謂、シュミットカップリングであり、駆動プレート43の回転が中間プレート42を介して従動プレート41に同期伝達可能で、且つ、駆動プレート43の回転軸心A4と従動プレート41の回転軸心A2とが偏心可能に構成されている。
そして、駆動プレート43における中間プレート42の側とは反対側に、伝達ギア9が回転軸心A4にて同心状で一体回転可能に連結され、従動プレート41における中間プレート42の側とは反対側に、ローラ4が可動軸46を介して回転軸心A2にて同心状で一体回転可能に連結されている。
つまり、伝達ギア9の回転軸心A4は、ローラ4の回転軸心A2と偏心可能である。
The plurality of driven side links 44 are dispersedly arranged around the rotation axis A2 of the driven plate 41 in a state of being parallel to each other, and the plurality of driving side links 45 are also in a state of being parallel to each other. Distributed around the center A4. One end of each driven side link 44 and one end of each drive side link 45 are pivotally supported by the intermediate plate 42 at a concentric pivot axis, and the other end of each driven side link 44 is pivotally supported by the driven plate 41. In addition, the other end of each drive side link 45 is pivotally supported by the drive plate 43. The distance between the pivot axes on both sides in each of the plurality of driven links 44 and the distance between the pivot axes on both sides in each of the plurality of drive links 45 are all the same. That is, the eccentric coupling 40 is a so-called Schmidt coupling, and the rotation of the drive plate 43 can be transmitted synchronously to the driven plate 41 via the intermediate plate 42 and is also driven by the rotational axis A4 of the drive plate 43. The rotation axis A2 of the plate 41 is configured to be eccentric.
The transmission gear 9 is concentrically connected to the drive plate 43 on the opposite side to the intermediate plate 42 side so as to rotate integrally therewith, and the driven plate 41 is opposite to the intermediate plate 42 side. In addition, the roller 4 is concentrically connected to the rotation axis A2 via the movable shaft 46 so as to be integrally rotatable.
That is, the rotational axis A4 of the transmission gear 9 can be eccentric with the rotational axis A2 of the roller 4.

そして、押し付け機構(図示省略)を、同心状で一体回転可能に連結されたローラ4及び従動プレート41を、ローラ4の回転軸心A2が当該ローラ4の回転軸心A2と主軸1の回転軸心A1とを結ぶ軸心間垂線α上を通る状態で移動するように設ける。
又、伝達ギア位置保持機構(図示省略)を、伝達ギア9を、当該伝達ギア9の回転軸心A4が軸心間垂線α上に位置する位置にて、主軸周りに素材支持部(図示省略)と一体回転する同期ギア(図示省略)に噛み合わせた状態で保持するように構成する。
そして、伝達ギア位置保持機構により、伝達ギア9を同期ギアに噛み合わせた状態で、押し付け機構により、ローラ4を被加工素材(図示省略)に押し付けることにより、被加工素材を塑性加工する。
つまり、伝達ギア9を同期ギア(図示省略)に十分に深く噛み合わせた状態で、既に素材支持部と同期回転しているローラ4を、被加工素材から離間した位置から被加工素材に近づけて被加工素材に押し付けることができるので、ローラ4が被加工素材に押し付けられる当初から、伝達ギア9にバックラッシが生じないようにすることができる。
Then, the pressing mechanism (not shown) is connected to the roller 4 and the driven plate 41 that are concentrically connected so as to be integrally rotatable. The rotation axis A2 of the roller 4 is the rotation axis A2 of the roller 4 and the rotation axis of the main shaft 1 It is provided so as to move in a state where it passes on a vertical axis α connecting the centers A1.
Further, the transmission gear position holding mechanism (not shown), the transmission gear 9, and the material support portion (not shown) around the main shaft at a position where the rotational axis A4 of the transmission gear 9 is located on the axis-centered perpendicular α. ) And a synchronous gear (not shown) that rotates integrally therewith.
Then, in a state where the transmission gear 9 is engaged with the synchronous gear by the transmission gear position holding mechanism, the workpiece 4 is plastically processed by pressing the roller 4 against the workpiece (not shown) by the pressing mechanism.
That is, with the transmission gear 9 meshed sufficiently deeply with a synchronous gear (not shown), the roller 4 that has already been rotated synchronously with the material support portion is moved closer to the workpiece material from a position away from the workpiece material. Since it can be pressed against the workpiece, it is possible to prevent backlash from occurring in the transmission gear 9 from the beginning when the roller 4 is pressed against the workpiece.

しかしながら、この比較例の場合、素材支持部と同期回転するローラ4が軸心間垂線αに沿って主軸1に向けて移動されるに従って、同期ギアと同心状で一体回転する駆動プレート43の回転軸心A4とローラ4と同心状で一体回転する従動プレート41の回転軸心A2とが近付いて、加工中あるいは加工終了時に、駆動プレート43の回転軸心A4と従動プレート41の回転軸心A2とがほぼ同心状となる場合がある。
そして、駆動プレート43の回転軸心A4と従動プレート41の回転軸心A2とが同心状になると、従動プレート41の回転軸心方向視において、従動側リンク44の両側の枢支軸心(図示省略)を結ぶ直線(図示省略)と駆動側リンク45の両側の枢支軸心(図示省略)を結ぶ直線(図示省略)とが平行状態となる。即ち、従動側リンク44の一方の枢支軸心と駆動側リンク45の一方の枢支軸心とが同心であるので、駆動プレート43の回転軸心A4と従動プレート41の回転軸心A2とが同心状になると、従動プレート41の回転軸心方向視において、従動側リンク44の両側の枢支軸心を結ぶ直線と駆動側リンク45の両側の枢支軸心を結ぶ直線とが平行状態で重なる。
従動側リンク44の両側の枢支軸心を結ぶ直線と駆動側リンク45の両側の枢支軸心を結ぶ直線とが平行状態となる(この比較例では、重なる)と、ローラ4の回転軸心A2と伝達ギア9の回転軸心A4との相対位置関係が所期の関係からずれて、塑性加工精度が低下する虞があり、被加工素材の塑性加工精度を向上し難い。
However, in the case of this comparative example, the rotation of the drive plate 43 that rotates concentrically and integrally with the synchronous gear as the roller 4 that rotates synchronously with the material support portion moves toward the main shaft 1 along the axis-centered perpendicular α. The axis A4 and the rotational axis A2 of the driven plate 41 that rotates concentrically with the roller 4 approach each other, and during or at the end of processing, the rotational axis A4 of the drive plate 43 and the rotational axis A2 of the driven plate 41 May be almost concentric.
When the rotational axis A4 of the drive plate 43 and the rotational axis A2 of the driven plate 41 are concentric, the pivotal shafts on both sides of the driven side link 44 in the direction of the rotational axis of the driven plate 41 (shown in the figure). A straight line (not shown) that connects the pivot axes (not shown) on both sides of the drive side link 45 is in a parallel state. That is, since one pivot axis of the driven side link 44 and one pivot axis of the drive side link 45 are concentric, the rotation axis A4 of the drive plate 43 and the rotation axis A2 of the driven plate 41 are Is concentric, the straight line connecting the pivot axes on both sides of the driven side link 44 and the straight line connecting the pivot axes on both sides of the drive side link 45 are parallel to each other when the driven plate 41 is viewed in the direction of the rotational axis. Overlap.
When the straight line connecting the pivot axes on both sides of the driven side link 44 and the straight line connecting the pivot axes on both sides of the drive side link 45 are in parallel (overlapping in this comparative example), the rotation axis of the roller 4 The relative positional relationship between the center A2 and the rotational axis A4 of the transmission gear 9 may deviate from the intended relationship, and the plastic processing accuracy may decrease, and it is difficult to improve the plastic processing accuracy of the workpiece.

図14に基づいて説明を加える。但し、図14では、従動側リンク44及び駆動側リンク45が4本ずつ設けられた場合について示す。
図14(a)に示すように、従動側リンク44の両側の枢支軸心を結ぶ直線と駆動側リンク45の両側の枢支軸心を結ぶ直線とが平行状態で重なると、図14(b)に示すように、従動側リンク44における従動プレート41への枢支軸心と駆動側リンク45における駆動プレート43への枢支軸心とが略同心状になる。すると、駆動プレート43及び従動プレート41のどちらにも直接結合されていない(従動側リンク44及び駆動側リンク44を介してのみ接続されている)中間プレート42は、従動側リンク44における従動プレート41への枢支軸心及び駆動側リンク45における駆動プレート43への枢支軸心を軸心として揺動することが可能となる。その結果、図14(b)に示すように、中間プレート42の回転軸心A3が所定の位置から外れ、それに伴って、図14(c)に示すように、例えば、駆動プレート43の回転軸心A4が本来位置すべき軸心間垂線α上から外れた位置に移動する。すると、駆動プレート43と同心状で一体回転する伝達ギア9と主軸1と同心状で一体回転する同期ギアとが噛み合う位置が、本来の位置(軸心間垂線α上の位置)からずれ、その瞬間に、それまでに被加工素材に成形加工された既加工部(例えば外歯)における主軸1の回転軸心A1回りの位相とローラ4の外周面の成形型(例えば、外歯成形型)におけるローラ4の回転軸心A2周りの位相との関係が、それまでの関係からずれることとなり、塑性加工精度が低下する。
A description will be added based on FIG. However, FIG. 14 shows a case where four driven side links 44 and four driving side links 45 are provided.
As shown in FIG. 14A, when the straight line connecting the pivot axes on both sides of the driven side link 44 and the straight line connecting the pivot axes on both sides of the drive side link 45 overlap in parallel, FIG. As shown in b), the pivot axis of the driven side link 44 to the driven plate 41 and the pivot axis of the drive side link 45 to the drive plate 43 are substantially concentric. Then, the intermediate plate 42 that is not directly coupled to either the drive plate 43 or the driven plate 41 (connected only via the driven side link 44 and the driven side link 44) is the driven plate 41 in the driven side link 44. It is possible to oscillate with the pivot axis of the pivot and the pivot axis of the drive side link 45 to the drive plate 43 as the axis. As a result, as shown in FIG. 14 (b), the rotational axis A3 of the intermediate plate 42 deviates from a predetermined position, and as a result, as shown in FIG. 14 (c), for example, the rotational axis of the drive plate 43 The center A4 moves to a position deviated from the axis-to-axis perpendicular α that should be originally positioned. Then, the position at which the transmission gear 9 concentrically rotating integrally with the drive plate 43 and the synchronous gear rotating concentrically with the main shaft 1 is shifted from the original position (position on the interaxial center α). Instantly, the phase around the rotation axis A1 of the main shaft 1 and the molding die on the outer peripheral surface of the roller 4 (for example, an external tooth molding die) in a processed part (for example, external teeth) that has been molded into the workpiece material so far The relationship with the phase around the rotation axis A2 of the roller 4 at this time is deviated from the relationship so far, and the plastic working accuracy is lowered.

本発明は、かかる実情に鑑みてなされたものであり、その目的は、加工精度を向上し得る回転塑性加工装置を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to provide a rotary plastic working apparatus capable of improving the working accuracy.

上記目的を達成するための本発明に係る回転塑性加工装置は、軸心方向視で円状の外周面を有する被加工素材を支持する状態で、主軸周りに回転駆動手段により回転駆動される素材支持部と、被加工素材を塑性加工するローラを前記主軸に直交する方向に移動して当該ローラを被加工素材に押し付ける押し付け機構と、前記ローラを前記素材支持部と同期回転させるように、前記主軸の回転を前記ローラに伝達する同期回転機構とが設けられた回転塑性加工装置であって、その特徴構成は、
前記同期回転機構が、
前記主軸周りに前記素材支持部と一体回転する同期ギアと、
当該同期ギアに噛み合う状態で配設された伝達ギアと、
従動プレート、当該従動プレートの回転軸心と回転軸心が偏心し且つ前記従動プレートに回転を伝達可能に複数の従動側リンクにより前記従動プレートに連結された中間プレート、及び、当該中間プレートの回転軸心と回転軸心が偏心し且つ前記中間プレートに回転を伝達可能に複数の駆動側リンクにより前記中間プレートに連結された駆動プレートを備えた偏心カップリングと、
前記伝達ギアの位置を、前記同期ギアに噛み合わせた状態で保持する伝達ギア位置保持機構とを備えて構成され、
前記偏心カップリングにおいて、前記駆動プレートが前記伝達ギアに同心状で一体回転可能に連結され、且つ、前記従動プレートが前記ローラに同心状で一体回転可能に連結されて、当該偏心カップリングが、前記従動プレートの回転軸心を前記主軸に平行にした姿勢で設けられ、
前記押し付け機構が、同心状で一体回転可能に連結された前記ローラ及び前記従動プレートを、前記ローラの回転軸心が当該ローラの回転軸心と前記主軸の回転軸心とを結ぶ軸心間垂線上を通る状態で移動するように設けられ、
前記伝達ギア位置保持機構が、前記伝達ギアを、当該伝達ギアの回転軸心を前記軸心間垂線から当該軸心間垂線に直交する方向に設定量偏倚させた位置にて、前記同期ギアに噛み合わせた状態で保持するように構成されている点にある。
In order to achieve the above object, a rotary plastic working apparatus according to the present invention is a material that is rotationally driven by a rotational drive means around a main shaft in a state of supporting a work material having a circular outer peripheral surface as viewed in the axial direction. A support unit, a pressing mechanism for plastically processing a workpiece material in a direction perpendicular to the main shaft, and pressing the roller against the workpiece material; and the roller to rotate synchronously with the material support unit, A rotary plastic working apparatus provided with a synchronous rotation mechanism for transmitting the rotation of the main shaft to the roller, the characteristic configuration is
The synchronous rotation mechanism is
A synchronous gear that rotates integrally with the material support around the main shaft;
A transmission gear arranged in mesh with the synchronous gear;
A driven plate, an intermediate plate connected to the driven plate by a plurality of driven links so that the rotational axis and the rotational axis of the driven plate are eccentric and transmit rotation to the driven plate, and rotation of the intermediate plate An eccentric coupling comprising a drive plate connected to the intermediate plate by a plurality of drive side links so that the shaft center and the rotational axis are eccentric and capable of transmitting rotation to the intermediate plate;
A transmission gear position holding mechanism that holds the position of the transmission gear in a state of meshing with the synchronous gear;
In the eccentric coupling, the drive plate is concentrically connected to the transmission gear so as to be integrally rotatable, and the driven plate is concentrically connected to the roller so as to be integrally rotatable. Provided in a posture in which the rotational axis of the driven plate is parallel to the main axis;
The pressing mechanism includes a concentric roller and the driven plate that are connected so as to be integrally rotatable, and a rotation center of the roller connects a rotation axis of the roller and a rotation axis of the main shaft. It is provided to move while passing on the line,
The transmission gear position holding mechanism moves the transmission gear to the synchronous gear at a position where the rotational axis of the transmission gear is biased by a set amount in a direction perpendicular to the axis-centered perpendicular from the axis-centered perpendicular. It is in the point comprised so that it may hold | maintain in the state engaged.

上記特徴構成によれば、伝達ギア位置保持機構により、伝達ギアの位置が同期ギアに噛み合わされた状態で位置保持されるので、素材支持部の回転が同期ギアを介して伝達ギアに同期伝達されて、伝達ギアが素材支持部と同期回転する。そして、その伝達ギアと共に駆動プレートが一体回転し、その駆動プレートの回転が、複数の駆動側リンク、中間プレート、複数の従動側リンクを介して従動プレートに同期伝達されるので、その従動プレートに同心状で一体回転可能に連結されたローラが、その回転軸心が駆動プレート(即ち、伝達ギア)の回転軸心と偏心可能な状態で、素材支持部と同期回転する。
そして、ローラの回転軸心は伝達ギアの回転軸心と偏心可能であるので、素材支持部と同期回転する伝達ギアの回転軸心が一定の位置に保持された状態で、押し付け機構により、素材支持部と同期回転するローラを軸心間垂線に沿って主軸に向けて移動することができる。
つまり、伝達ギアを同期ギアに十分に深く噛み合わせた状態で、既に素材支持部と同期回転しているローラを、被加工素材から離間した位置から被加工素材に近づけて被加工素材に押し付けることができるので、ローラが被加工素材に押し付けられる当初から、伝達ギアにバックラッシが生じないようにすることができて、被加工素材の加工精度を向上することができる。
According to the above characteristic configuration, the position of the transmission gear is held in a state where the transmission gear is engaged with the synchronous gear by the transmission gear position holding mechanism, so that the rotation of the material support portion is synchronously transmitted to the transmission gear via the synchronous gear. Thus, the transmission gear rotates in synchronization with the material support portion. The drive plate rotates together with the transmission gear, and the rotation of the drive plate is synchronously transmitted to the driven plate via a plurality of drive side links, intermediate plates, and a plurality of driven side links. The rollers that are concentrically connected so as to be integrally rotatable rotate synchronously with the material support portion in a state in which the rotation axis can be eccentric with the rotation axis of the drive plate (that is, transmission gear).
Since the rotation axis of the roller can be eccentric with the rotation axis of the transmission gear, the material is supported by the pressing mechanism while the rotation axis of the transmission gear rotating in synchronization with the material support is held at a fixed position. A roller that rotates synchronously with the support portion can be moved toward the main axis along the perpendicular line between the axis centers.
In other words, with the transmission gear meshed with the synchronous gear sufficiently deeply, the roller that is already rotating synchronously with the material support part is pressed against the work material from a position away from the work material, against the work material. Therefore, it is possible to prevent the transmission gear from causing backlash from the beginning when the roller is pressed against the workpiece material, and the processing accuracy of the workpiece material can be improved.

しかも、伝達ギアが、その回転軸心を軸心間垂線から当該軸心間垂線に直交する方向に設定量偏倚させた位置にて同期ギアに噛み合わされた状態で位置保持されているので、押し付け機構により、既に素材支持部と同期回転しているローラが軸心間垂線に沿って主軸に向けて移動される間中、同期ギアと同心状で一体回転する駆動プレートの回転軸心とローラと同心状で一体回転する従動プレートの回転軸心とが軸心間垂線に直交する方向に離間する状態に維持される。
そして、駆動プレートの回転軸心と従動プレートの回転軸心とが軸心間垂線に直交する方向に離間する状態では、従動プレートの回転軸心方向視において、従動側リンクの両側の枢支軸心を結ぶ直線と駆動側リンクの両側の枢支軸心を結ぶ直線とが交差する状態(以下、「従動側リンクの長手方向と駆動側リンクの長手方向とが交差する状態」と記載する場合がある)となる。
従って、素材支持部と同期回転するローラを、被加工素材から離間する位置から被加工素材に近づけて被加工素材に押し付けて加工を終了するまでの間中、従動側リンクの長手方向と駆動リンクの長手方向とが交差する状態に維持することができて、従動側リンクにおける従動プレートへの枢支軸心と駆動側リンクにおける駆動プレートへの枢支軸心とが同心状になるのを回避することができる。
これにより、加工の間中、中間プレートの回転軸心のふらつきを抑制することができて、従動プレートの回転軸心と駆動プレートの回転軸心との相対位置関係、即ち、ローラの回転軸心と伝達ギアの回転軸心との相対位置関係が所期の関係からずれるのを回避することができるので、被加工素材の加工精度を向上することができる。
要するに、加工精度を向上し得る回転塑性加工装置を提供することができる。
In addition, the transmission gear is held in a state where it is meshed with the synchronous gear at a position where the rotational axis is deviated by a set amount in a direction perpendicular to the axis-to-center perpendicular from the axis-to-axis perpendicular. While the roller that is already rotating synchronously with the material support portion is moved toward the main shaft along the axis center perpendicular line by the mechanism, the rotation axis of the drive plate and the roller that rotate concentrically and integrally with the synchronous gear The rotational axis of the driven plate that rotates concentrically and integrally is maintained in a state of being separated in a direction perpendicular to the perpendicular between the axial centers.
When the rotation axis of the drive plate and the rotation axis of the driven plate are separated from each other in a direction perpendicular to the axis-to-axis perpendicular, the pivot shafts on both sides of the driven side link are viewed in the direction of the rotation axis of the driven plate. When the straight line connecting the centers intersects with the straight line connecting the pivot axes on both sides of the drive side link (hereinafter referred to as “the state where the longitudinal direction of the driven side link and the longitudinal direction of the drive side link intersect”) Is).
Therefore, the longitudinal direction of the driven side link and the drive link during the period from when the roller rotating synchronously with the material support unit is pressed against the material to be processed from the position apart from the material to be processed and pressed against the material to be processed Can be maintained so that the longitudinal direction of the shaft intersects with each other, and the pivot axis of the driven side link to the driven plate and the pivot axis of the drive side link to the drive plate are prevented from being concentric. can do.
As a result, the wobbling of the rotation axis of the intermediate plate can be suppressed during processing, and the relative positional relationship between the rotation axis of the driven plate and the rotation axis of the drive plate, that is, the rotation axis of the roller. Since it is possible to prevent the relative positional relationship between the rotation axis of the transmission gear and the transmission gear from deviating from the intended relationship, the processing accuracy of the workpiece can be improved.
In short, it is possible to provide a rotary plastic processing apparatus that can improve the processing accuracy.

本発明に係る回転塑性加工装置の更なる特徴構成は、前記偏心カップリングが、リング状の前記中間プレート、前記駆動プレート及び前記伝達ギアに挿通され、且つ、前記従動プレートに同心状で一体回転可能に連結された可動軸を備えて構成され、
前記可動軸における前記伝達ギアを貫通した部分が、前記ローラに同心状で一体回転可能に連結され、当該可動軸が、前記主軸に平行な姿勢で両端を軸受にて回転可能に支持した状態で設けられ、
前記押し付け機構が、前記可動軸をその回転軸心が前記軸心間垂線上を通る状態で移動するように設けられている点にある。
According to a further feature of the rotary plastic working apparatus according to the present invention, the eccentric coupling is inserted through the ring-shaped intermediate plate, the drive plate and the transmission gear, and is concentrically and integrally rotated with the driven plate. Composed of movable shafts connected to each other,
A portion of the movable shaft that passes through the transmission gear is concentrically connected to the roller so as to be integrally rotatable, and the movable shaft is rotatably supported by bearings at both ends in a posture parallel to the main shaft. Provided,
The pressing mechanism is provided such that the movable shaft moves in a state where the rotation axis passes through the perpendicular line between the axes.

上記特徴構成によれば、押し付け機構により、ローラを同心状に一体回転可能に支持した可動軸が、その回転軸心が軸心間垂線上を通る状態で主軸に向けて移動される。
そして、ローラを同心状に一体回転可能に支持した可動軸は、その両端が軸受を介して支持部材にて支持された状態で素材支持部と同期回転するので、ローラのブレを抑制することができ、被加工素材の加工精度を更に向上することができる。
説明を加えると、ローラが被加工素材に押し付けられると、ローラの回転軸心に直交する方向に剪断力が作用するが、その剪断力を両端が軸受にて支持された可動軸で支えるので、ローラのブレを一層抑制することができるのである。
従って、伝達ギアの回転軸心とローラの回転軸心とを偏心可能な偏心カップリングを用いながらも、その偏心カップリングに、ローラを同心状に一体回転可能に支持する可動軸を備えて、その可動軸の両端が軸受にて支持された状態で素材支持部と同期回転させる構成とすることにより、ローラのブレを一層抑制することができるので、被加工素材の加工精度を更に向上することができる。
According to the above characteristic configuration, the movable shaft that supports the roller concentrically and integrally so as to be integrally rotatable is moved by the pressing mechanism toward the main shaft in a state in which the rotation axis passes on the axis-center perpendicular line.
The movable shaft that supports the roller concentrically so as to rotate integrally is rotated synchronously with the material support portion with both ends thereof supported by the support member via the bearing, so that it is possible to suppress roller blurring. This can further improve the processing accuracy of the workpiece material.
In addition, when the roller is pressed against the work material, a shearing force acts in the direction perpendicular to the rotational axis of the roller, but the shearing force is supported by a movable shaft supported at both ends by a bearing. Roller blurring can be further suppressed.
Therefore, while using an eccentric coupling that can eccentrically rotate the rotation shaft center of the transmission gear and the rotation shaft center of the roller, the eccentric coupling includes a movable shaft that supports the roller so that it can rotate integrally and concentrically. By adopting a configuration in which both ends of the movable shaft are synchronously rotated with the material support portion while being supported by bearings, it is possible to further suppress roller blurring, thereby further improving the processing accuracy of the material to be processed. Can do.

本発明に係る回転塑性加工装置の更なる特徴構成は、前記ローラの外周面に外歯成形型が備えられ、
前記被加工素材の外周面に外歯を成形して、外歯を有する歯車を製造する点にある。
According to a further feature of the rotary plastic working apparatus according to the present invention, an outer tooth forming die is provided on the outer peripheral surface of the roller,
The present invention resides in that external teeth are formed on the outer peripheral surface of the workpiece material to produce a gear having external teeth.

上記特徴構成によれば、回転状態にあるローラの外歯成形型が、回転状態にある素材支持部に支持された被加工素材に押し付けられるので、被加工素材の外周面に外歯が成形されて、外歯を有する歯車が製造される。
従って、外歯を有する歯車の加工精度を向上することができる。
According to the above characteristic configuration, the external tooth forming die of the roller in the rotating state is pressed against the work material supported by the material support portion in the rotating state, so that the external teeth are formed on the outer peripheral surface of the work material. Thus, a gear having external teeth is manufactured.
Therefore, the processing accuracy of the gear having the external teeth can be improved.

本発明に係る回転塑性加工装置の更なる特徴構成は、前記主軸と同心状に回転可能な保持部材を前記素材支持部に向けて移動させて、前記素材支持部に支持された被加工素材を前記素材支持部とにより挟持する素材保持機構と、
前記素材保持機構を働かせて、被加工素材を前記素材支持部と前記保持部材とにより挟持する素材保持工程を実行し、前記押し付け機構を働かせて、前記伝達ギア位置保持機構により前記伝達ギアが前記同期ギアに噛み合わされた状態で、前記ローラにより被加工素材を塑性加工する加工工程を実行する制御手段とが設けられている点にある。
According to a further feature of the rotary plastic working apparatus according to the present invention, a workpiece supported by the material support portion is moved by moving a holding member that can rotate concentrically with the main shaft toward the material support portion. A material holding mechanism clamped by the material support part;
The material holding mechanism is operated to execute a material holding process for holding the workpiece material between the material support portion and the holding member, the pressing mechanism is operated, and the transmission gear is held by the transmission gear position holding mechanism. Control means is provided for executing a processing step of plastic processing the workpiece material by the roller in a state of being engaged with the synchronous gear.

上記特徴構成によれば、被加工素材を素材支持部と保持部材とにより挟持する素材保持工程が実行され、伝達ギアが同期ギアに噛み合わされた状態で、素材支持部と同期回転するローラを被加工素材から離間した位置から被加工素材に押し付けて、被加工素材を塑性加工する加工工程が実行される。
従って、加工精度を向上し得るように被加工素材を加工する工程が、順次自動的に実行される。
According to the above characteristic configuration, the material holding step of holding the workpiece material between the material support portion and the holding member is performed, and the roller that rotates in synchronization with the material support portion is covered with the transmission gear meshed with the synchronization gear. A machining process is performed in which the workpiece material is plastically pressed by pressing against the workpiece material from a position away from the workpiece material.
Accordingly, the process of processing the material to be processed so as to improve the processing accuracy is automatically executed sequentially.

第1実施形態に係る回転塑性加工装置の全体構成を示す一部切り欠き正面図1 is a partially cutaway front view showing the overall configuration of the rotary plastic working apparatus according to the first embodiment. 第1実施形態に係る偏心カップリングを示す図The figure which shows the eccentric coupling which concerns on 1st Embodiment 第1実施形態に係る偏心カップリングを示す図The figure which shows the eccentric coupling which concerns on 1st Embodiment Y方向位置調整部を示す図The figure which shows a Y direction position adjustment part 第1実施形態に係る外歯を有する歯車の製造手順を説明する図The figure explaining the manufacture procedure of the gear which has the external teeth concerning a 1st embodiment. 第1実施形態に係る外歯を有する歯車の製造手順を説明する図The figure explaining the manufacture procedure of the gear which has the external teeth concerning a 1st embodiment. 第1実施形態に係る外歯を有する歯車の製造手順を説明する図The figure explaining the manufacture procedure of the gear which has the external teeth concerning a 1st embodiment. 第1実施形態に係る外歯を有する歯車の製造手順を説明する図The figure explaining the manufacture procedure of the gear which has the external teeth concerning a 1st embodiment. 第2実施形態に係る回転塑性加工装置の概略の全体構成及び偏心カップリングを示す図The figure which shows the general whole structure and eccentric coupling of the rotary plastic working apparatus which concerns on 2nd Embodiment. 第2施形態に係る偏心カップリングを示す横断平面図Transverse plan view showing the eccentric coupling according to the second embodiment 回転塑性加工装置における素材支持部及びローラ周辺の横断平面図Transverse plan view around the material support and rollers in the rotary plastic processing machine 円盤状素材及び外歯を有する歯車を示す斜視図A perspective view showing a gear having a disk-shaped material and external teeth 偏心カップリングを用いた場合の比較例に係る回転塑性加工装置の要部を示す図The figure which shows the principal part of the rotary plastic working apparatus which concerns on the comparative example at the time of using an eccentric coupling. 偏心カップリングを用いた場合の比較例に係る回転塑性加工装置の要部を示す横断平面図Cross-sectional plan view showing the main part of a rotary plastic working apparatus according to a comparative example using an eccentric coupling

以下、図面に基づいて、本発明を外歯を有する歯車を製造する回転塑性加工装置に適用した場合の実施形態を説明する。
〔第1実施形態〕
先ず、図1に基づいて、第1実施形態の回転塑性加工装置の全体構成を説明する。
図1に示すように、回転塑性加工装置は、円盤状素材(軸心方向視で円状の外周面を有する被加工素材の一例)Wを支持する状態で、主軸1周りに回転駆動装置(回転駆動手段の一例)2により回転駆動される素材支持部3と、円盤状素材Wを塑性加工するローラ4を主軸1に直交する方向に移動して当該ローラ4を円盤状素材Wに押し付ける押し付け機構Dと、ローラ4を素材支持部3と同期回転させるように、主軸1の回転をローラ4に伝達する同期回転機構Sとを備えて構成されている。
更に、回転塑性加工装置には、主軸1と同心状に回転可能な押圧部材5(保持部材の一例)を素材支持部3に向けて移動させて、素材支持部3に支持された円盤状素材Wを押圧部材5と素材支持部3とにより挟持するワーク保持機構(素材保持機構の一例)H、及び、回転塑性加工装置の運転を制御する制御部7が設けられている。
Hereinafter, based on the drawings, an embodiment when the present invention is applied to a rotary plastic working apparatus for producing a gear having external teeth will be described.
[First Embodiment]
First, based on FIG. 1, the whole structure of the rotary plastic working apparatus of 1st Embodiment is demonstrated.
As shown in FIG. 1, the rotary plastic working device is a rotary drive device around the main shaft 1 in a state of supporting a disk-shaped material (an example of a work material having a circular outer peripheral surface as viewed in the axial direction). An example of rotation driving means) The material support portion 3 that is rotationally driven by 2 and the roller 4 that plastically processes the disk-shaped material W are moved in a direction perpendicular to the main shaft 1 to press the roller 4 against the disk-shaped material W. A mechanism D and a synchronous rotation mechanism S that transmits the rotation of the main shaft 1 to the roller 4 are configured to rotate the roller 4 synchronously with the material support portion 3.
Further, in the rotary plastic working apparatus, a pressing member 5 (an example of a holding member) that can rotate concentrically with the main shaft 1 is moved toward the material support portion 3 to be supported by the material support portion 3. A workpiece holding mechanism (an example of a material holding mechanism) H that holds W between the pressing member 5 and the material support portion 3 and a control portion 7 that controls the operation of the rotary plastic working apparatus are provided.

この第1実施形態の回転塑性加工装置は、図11にも示すように、ローラ4の外周面に外歯成形型4mが備えられ、図12に示すように、円盤状素材Wの外周面に外歯Woを成形して、外歯Woを有する歯車(以下、単に歯車と記載する場合がある)Wを製造する。尚、図12(a)は、塑性加工前の円盤状素材Wの斜視図であり、図12(b)は歯車Wの斜視図である。図12(a)に示すように、円盤状素材Wは、軸心方向視で円状の外周面を有すると共に、軸心と同心状で貫通する軸孔Whを有する。ローラ4の外歯成形型4mの長さ(軸心方向での長さに該当する)が、円盤状素材Wの外周面に形成する外歯の目標長さよりも多少長くなるように設定されている。   As shown in FIG. 11, the rotary plastic working apparatus of the first embodiment is provided with an external tooth forming die 4m on the outer peripheral surface of the roller 4, and on the outer peripheral surface of the disk-shaped material W, as shown in FIG. The external teeth Wo are formed to produce a gear W (hereinafter sometimes simply referred to as a gear) W having the external teeth Wo. 12A is a perspective view of the disk-shaped material W before plastic working, and FIG. 12B is a perspective view of the gear W. As shown in FIG. 12A, the disc-shaped material W has a circular outer peripheral surface as viewed in the axial direction, and has an axial hole Wh that is concentric with and penetrates the axial center. The length of the external tooth forming die 4m of the roller 4 (corresponding to the length in the axial direction) is set to be slightly longer than the target length of the external teeth formed on the outer peripheral surface of the disc-shaped material W. Yes.

尚、以下の説明では、図1に示すように、主軸1の回転軸心A1に沿った方向をZ方向、主軸1の回転軸心A1に直交する方向をX方向、Z方向及びX方向の両方向に直交する方向をY方向と夫々記載する場合がある。又、Z方向において、主軸1の基端(回転駆動装置2に伝動連結される端部)に近づく方向を−Z方向とし、主軸1の基端から遠ざかる方向を+Z方向とする。又、X方向において、主軸1の回転軸心A1に近づく方向を−X方向とし、主軸1の回転軸心A1から遠ざかる方向を+X方向とする。   In the following description, as shown in FIG. 1, the direction along the rotation axis A1 of the main shaft 1 is the Z direction, the direction orthogonal to the rotation axis A1 of the main shaft 1 is the X direction, the Z direction, and the X direction. The direction orthogonal to both directions may be described as the Y direction. Further, in the Z direction, the direction approaching the base end of the main shaft 1 (the end connected to the rotary drive device 2) is defined as the -Z direction, and the direction away from the base end of the main shaft 1 is defined as the + Z direction. In the X direction, a direction approaching the rotation axis A1 of the main shaft 1 is defined as a -X direction, and a direction away from the rotation axis A1 of the main shaft 1 is defined as a + X direction.

図1〜図3に示すように、本発明では、同期回転機構Sが、主軸1周りに素材支持部3と一体回転する同期ギア8と、当該同期ギア8に噛み合う状態で配設された伝達ギア9と、従動プレート12、当該従動プレート12の回転軸心A2と回転軸心A3が偏心し且つ従動プレート12に回転を伝達可能に複数の従動側リンク15により従動プレート12に連結された中間プレート13、及び、当該中間プレート13の回転軸心A3と回転軸心A4が偏心し且つ中間プレート13に回転を伝達可能に複数の駆動側リンク16により中間プレート13に連結された駆動プレート14を備えた偏心カップリング10と、伝達ギア9の位置を、同期ギア8に噛み合わせた状態で保持する伝達ギア位置保持機構Kとを備えて構成されている。
そして、偏心カップリング10において、駆動プレート14が伝達ギア9に同心状で一体回転可能に連結され、且つ、従動プレート12がローラ4に同心状で一体回転可能に連結されて、当該偏心カップリング10が、従動プレート12の回転軸心A2を主軸1に平行にした姿勢で設けられ、押し付け機構Dが、同心状で一体回転可能に連結されたローラ4及び従動プレート12を、ローラ4の回転軸心A2が当該ローラ4の回転軸心A2と主軸1の回転軸心A1とを結ぶ軸心間垂線α上を通る状態で移動するように設けられ、伝達ギア位置保持機構Kが、伝達ギア9を、当該伝達ギア9の回転軸心A4を軸心間垂線αから当該軸心間垂線αに直交する方向にY方向設定量(設定量の具体例)偏倚させた位置にて、同期ギア8に噛み合わせた状態で保持するように構成されている。つまり、X方向は、軸心間垂線αに沿う方向となる。尚、この第1実施形態では、軸心間垂線αは、移動開始時点において所定の開始位置Ps(図6参照)に位置するローラ4の回転軸心A2と主軸1の回転軸心A1とを結ぶ垂線として、定義される。
As shown in FIG. 1 to FIG. 3, in the present invention, the synchronous rotation mechanism S is provided with a synchronous gear 8 that rotates integrally with the material support portion 3 around the main shaft 1 and a transmission that is arranged in mesh with the synchronous gear 8. The gear 9, the driven plate 12, and the rotation axis A <b> 2 and the rotation axis A <b> 3 of the driven plate 12 are eccentric and connected to the driven plate 12 by a plurality of driven links 15 so that rotation can be transmitted to the driven plate 12. A plate 13 and a drive plate 14 connected to the intermediate plate 13 by a plurality of drive side links 16 so that the rotation axis A3 and the rotation axis A4 of the intermediate plate 13 are eccentric and can transmit the rotation to the intermediate plate 13. The eccentric coupling 10 is provided, and a transmission gear position holding mechanism K that holds the position of the transmission gear 9 in a state of meshing with the synchronous gear 8 is provided.
In the eccentric coupling 10, the drive plate 14 is concentrically connected to the transmission gear 9 so as to be integrally rotatable, and the driven plate 12 is concentrically connected to the roller 4 so as to be integrally rotatable. 10 is provided with a posture in which the rotational axis A2 of the driven plate 12 is parallel to the main shaft 1, and the pressing mechanism D rotates the roller 4 and the driven plate 12 which are concentrically connected so as to be integrally rotatable. The shaft center A2 is provided so as to move in a state of passing on the axis-center perpendicular line α connecting the rotation axis A2 of the roller 4 and the rotation axis A1 of the main shaft 1, and the transmission gear position holding mechanism K is provided with the transmission gear. 9 at a position where the rotational axis A4 of the transmission gear 9 is biased in the Y direction set amount (specific example of the set amount) in a direction perpendicular to the axis center perpendicular α from the axis center perpendicular α. 8 meshed In is configured to hold. That is, the X direction is a direction along the axis-centered perpendicular α. In the first embodiment, the axis-to-center perpendicular α is defined between the rotation axis A2 of the roller 4 and the rotation axis A1 of the main shaft 1 that are located at a predetermined start position Ps (see FIG. 6) at the start of movement. Defined as a connecting perpendicular.

ここで、上記のように、同心状のローラ4の回転軸心と従動プレート12の回転軸心を共に、符号A2にて示し、同心状の駆動プレート14の回転軸心と伝達ギア9の回転軸心を共に、符号A4にて示す。
尚、図2及び図3は、偏心カップリング10の周辺を詳細に示す図であり、図2(a)は斜視図であり、図2(b)は分解斜視図であり、図3(a)は一部切り欠き正面図であり、図3(b)は横断平面図である
Here, as described above, the rotational axis of the concentric roller 4 and the rotational axis of the driven plate 12 are both indicated by the reference numeral A2, and the rotational axis of the concentric drive plate 14 and the rotation of the transmission gear 9 are rotated. Both axes are denoted by reference numeral A4.
2 and FIG. 3 are views showing in detail the periphery of the eccentric coupling 10, FIG. 2 (a) is a perspective view, FIG. 2 (b) is an exploded perspective view, and FIG. ) Is a partially cutaway front view, and FIG. 3B is a cross-sectional plan view.

次に、回転塑性加工装置の各部について、説明を加える。
図1に示すように、架台(図示省略)上に、主軸1が鉛直方向に沿う回転軸心A1周りに回転自在に支持されて設けられ、電動モータ等の回転駆動装置2が、この主軸1を回転駆動するように設けられ、この主軸1の先端に素材支持部3が装着され、主軸1における素材支持部3の下方の外周面に、同期ギア8が設けられている。素材支持部3は、円柱状の本体部3bと、その本体部3bの先端面から同心状に突出する本体部3bよりも小径の円柱状の挿通軸部3aを備えて構成され、その挿通軸部3aは、円盤状素材Wの軸孔Whに内嵌可能である。この素材支持部3が、主軸1の先端に、その回転軸心A1と同心状になる状態で装着されている。
つまり、円盤状素材Wが、その軸孔Whに素材支持部3の挿通軸部3aを挿通させて、素材支持部3の本体部3bの先端面に当接された状態で、素材支持部3に、主軸1の回転軸心A1と同心状に装着される。
そして、回転駆動装置2が作動されると、主軸1の回転軸心A1回りに素材支持部3と同期ギア8が同心で一体回転する。
Next, description will be added about each part of the rotary plastic working apparatus.
As shown in FIG. 1, a main shaft 1 is provided on a gantry (not shown) so as to be rotatable around a rotation axis A <b> 1 along the vertical direction, and a rotary drive device 2 such as an electric motor is provided on the main shaft 1. The material support 3 is attached to the tip of the main shaft 1, and a synchronous gear 8 is provided on the outer peripheral surface of the main shaft 1 below the material support 3. The material support portion 3 includes a cylindrical main body portion 3b and a columnar insertion shaft portion 3a having a smaller diameter than the main body portion 3b projecting concentrically from the distal end surface of the main body portion 3b. The part 3a can be fitted in the shaft hole Wh of the disk-shaped material W. The material support portion 3 is attached to the tip of the main shaft 1 in a state of being concentric with the rotation axis A1.
That is, the disk-shaped material W is inserted into the shaft hole Wh through the insertion shaft portion 3a of the material support portion 3 and is in contact with the distal end surface of the main body portion 3b of the material support portion 3. Are mounted concentrically with the rotational axis A1 of the main shaft 1.
When the rotation driving device 2 is operated, the material support portion 3 and the synchronous gear 8 rotate concentrically and integrally around the rotation axis A1 of the main shaft 1.

図1に示すように、ワーク保持機構Hは、押圧部材5と、その押圧部材5を主軸1の回転軸心A1方向(Z方向)に沿って往復移動駆動するワーク保持用油圧シリンダ6とを備えて構成され、押圧部材5が素材支持部3に対向して位置するように配設されている。押圧部材5は、主軸1の回転軸心A1と同心で回転可能なようにベアリング(図示省略)等を介してワーク保持用油圧シリンダ6のシリンダロッドの先端に回転可能に支持されている。
押圧部材5を素材支持部3に装着された円盤状素材Wに押し付けるようにワーク保持用油圧シリンダ6を作動させることにより、円盤状素材Wを素材支持部3と押圧部材5とにより挟持するように構成されている。
そして、回転駆動装置2により主軸1を回転駆動することにより、円盤状素材Wを素材支持部3と押圧部材5とにより挟持した状態で素材支持部3と一体的に回転させるように構成されている。
As shown in FIG. 1, the workpiece holding mechanism H includes a pressing member 5 and a workpiece holding hydraulic cylinder 6 that reciprocally drives the pressing member 5 along the rotation axis A1 direction (Z direction) of the main shaft 1. The pressing member 5 is disposed so as to face the material support portion 3. The pressing member 5 is rotatably supported at the tip of the cylinder rod of the work holding hydraulic cylinder 6 via a bearing (not shown) so as to be rotatable concentrically with the rotational axis A1 of the main shaft 1.
By operating the work holding hydraulic cylinder 6 so as to press the pressing member 5 against the disk-shaped material W mounted on the material support portion 3, the disk-shaped material W is held between the material support portion 3 and the pressing member 5. It is configured.
And it is comprised so that the main shaft 1 may be rotationally driven by the rotation drive device 2, and the disk-shaped raw material W may be rotated integrally with the raw material support part 3 in the state clamped by the raw material support part 3 and the press member 5. Yes.

図1〜図3に基づいて、偏心カップリング10について説明を加える。
この第1実施形態では、従動プレート12、中間プレート13及び駆動プレート14は、夫々、リング状に構成されている。
又、3本の従動側リンク15が、互いに平行になる状態で従動プレート12の回転軸心A2周りに分散配置され、各従動側リンク15の一端が、回転軸心A3が従動プレート12の回転軸心A2に平行な中間プレート13に枢支され、他端が従動プレート12に枢支されている。又、3本の駆動側リンク16が、互いに平行になる状態で、駆動プレート14の回転軸心A4周りに分散配置され、各駆動側リンク16の一端が中間プレート13に枢支され、他端が、回転軸心A4が従動プレート12の回転軸心A2に平行な駆動プレート14に枢支されている。
The eccentric coupling 10 will be described with reference to FIGS.
In the first embodiment, the driven plate 12, the intermediate plate 13, and the drive plate 14 are each configured in a ring shape.
The three driven side links 15 are distributed around the rotation axis A2 of the driven plate 12 in a state of being parallel to each other, and one end of each driven side link 15 is rotated by the rotation axis A3 of the driven plate 12. It is pivotally supported by an intermediate plate 13 parallel to the axis A <b> 2 and the other end is pivotally supported by the driven plate 12. In addition, the three drive side links 16 are arranged around the rotation axis A4 of the drive plate 14 in a state of being parallel to each other, and one end of each drive side link 16 is pivotally supported by the intermediate plate 13 and the other end. However, the rotational axis A4 is pivotally supported by the drive plate 14 parallel to the rotational axis A2 of the driven plate 12.

この第1実施形態では、各従動側リンク15の一端及び各駆動側リンク16の一端は、同心の枢支軸心a1にて中間プレート13に枢支されている。ここで、各従動側リンク15の他端が従動プレート12に枢支されている枢支軸心を、符号a2で示し、各駆動側リンク16の他端が駆動プレート14に枢支されている枢支軸心を、符号a3で示す。3本の従動側リンク15夫々における両側の枢支軸心a1,a2間の間隔、及び、3本の駆動側リンク16夫々における両側の枢支軸心a1,a3間の間隔は、全て同一である。
図示を省略するが、従動プレート12の回転軸心A2と駆動プレート14の回転軸心A4とが同心状になると、従動プレート12の回転軸心方向(Z方向)視において、従動側リンク15の両側の枢支軸心a1,a2を結ぶ直線(図示省略)と駆動側リンク16の両側の枢支軸心a1,a3を結ぶ直線(図示省略)とが平行状態で重なるように構成されている。
In the first embodiment, one end of each driven side link 15 and one end of each drive side link 16 are pivotally supported on the intermediate plate 13 by a concentric pivot axis a1. Here, a pivot axis in which the other end of each driven side link 15 is pivotally supported by the driven plate 12 is indicated by reference numeral a <b> 2, and the other end of each drive side link 16 is pivotally supported by the drive plate 14. The pivot axis is indicated by reference numeral a3. The distance between the pivot axes a1 and a2 on both sides of the three driven links 15 and the distance between the pivot axes a1 and a3 on both sides of the three drive links 16 are all the same. is there.
Although illustration is omitted, when the rotational axis A2 of the driven plate 12 and the rotational axis A4 of the drive plate 14 are concentric, the driven link 15 of the driven link 12 is viewed in the rotational axis direction (Z direction) of the driven plate 12. A straight line (not shown) connecting the pivot axes a1 and a2 on both sides and a straight line (not shown) connecting the pivot axes a1 and a3 on both sides of the drive side link 16 are configured to overlap in a parallel state. .

偏心カップリング10において、中間プレート13の回転軸心A3に対する駆動プレート14の回転軸心A4及び従動プレート12の回転軸心A2夫々の相対位置が各別に変更自在に構成されて、駆動プレート14の回転軸心A4と従動プレート12の回転軸心A2とが偏心可能に構成されている。
そして、駆動プレート14が回転すると、その駆動プレート14の回転が3本の駆動側リンク16により中間プレート13に同期伝達されると共に、その中間プレート13の回転が3本の従動側リンク15により従動プレート12に同期伝達されるので、駆動プレート14が回転すると、中間プレート13及び従動プレート12が駆動プレート14と同期回転する。
つまり、この第1実施形態における偏心カップリング10は、所謂、シュミットカップリングにて構成されている。
In the eccentric coupling 10, the relative positions of the rotation axis A4 of the drive plate 14 and the rotation axis A2 of the driven plate 12 with respect to the rotation axis A3 of the intermediate plate 13 are configured to be freely changeable. The rotation axis A4 and the rotation axis A2 of the driven plate 12 are configured to be eccentric.
When the drive plate 14 rotates, the rotation of the drive plate 14 is synchronously transmitted to the intermediate plate 13 by the three drive side links 16, and the rotation of the intermediate plate 13 is driven by the three driven side links 15. Since it is transmitted synchronously to the plate 12, when the drive plate 14 rotates, the intermediate plate 13 and the driven plate 12 rotate synchronously with the drive plate 14.
That is, the eccentric coupling 10 in the first embodiment is configured by a so-called Schmitt coupling.

偏心カップリング10は、従動プレート12、中間プレート13及び駆動プレート14の並び方向が主軸1の回転軸心A1方向に沿い、且つ、従動プレート12が主軸1の回転軸心A1方向における素材支持部3の側を向く姿勢で配設される。
そして、偏心カップリング10において、駆動プレート14が、その中間プレート13に連結された側とは反対側にて、伝達ギア9に同心状で一体回転可能に連結され、且つ、従動プレート12が、その中間プレート13に連結された側とは反対側にて、ローラ4に同心状で一体回転可能に連結されている。
The eccentric coupling 10 includes a material support portion in which the alignment direction of the driven plate 12, the intermediate plate 13 and the drive plate 14 is along the direction of the rotation axis A1 of the main shaft 1, and the driven plate 12 is in the direction of the rotation axis A1 of the main shaft 1. 3 is arranged in a posture facing the 3 side.
In the eccentric coupling 10, the drive plate 14 is concentrically connected to the transmission gear 9 on the side opposite to the side connected to the intermediate plate 13, and the driven plate 12 is connected to the transmission gear 9. The roller 4 is concentrically connected to the roller 4 on the side opposite to the side connected to the intermediate plate 13 so as to be integrally rotatable.

従動プレート12が回転軸心A2にて同心状に一体回転可能に連結されたローラ4は、ローラ用軸受31を介してローラ回転支持体32に回転可能に支持されている。
そして、ローラ4を回転可能に支持したローラ回転支持体32が、架台(図示省略)に固定設置された一対の案内レール33に、ローラ4の回転軸心A2が軸心間垂線α上を通る状態でX方向に往復移動自在に支持され、このように一対の案内レール33に支持されたローラ回転支持体32に、回転軸心を軸心間垂線αに沿わせたネジ軸34が螺挿されている。
そして、ネジ軸34を正逆回転させることにより、回転軸心A2にて同心状で一体回転するように連結されたローラ4及び従動プレート12をX方向に往復移動させるパルスモータ等のX方向駆動装置35が設けられている。つまり、ローラ4がX方向に往復移動する際は、ローラ4の回転軸心A2が軸心間垂線α上を通る状態で往復移動する。
The roller 4 to which the driven plate 12 is concentrically connected to the rotation axis A2 so as to be integrally rotatable is supported by a roller rotation support 32 via a roller bearing 31 so as to be rotatable.
A roller rotation support body 32 that rotatably supports the roller 4 passes through a pair of guide rails 33 fixedly installed on a gantry (not shown), and the rotation axis A2 of the roller 4 passes on the axis-center perpendicular α. In this state, the screw shaft 34 is supported by the pair of guide rails 33 and supported by the pair of guide rails 33, and a screw shaft 34 having a rotational axis centered along the axis-to-center perpendicular line α is screwed. Has been.
Then, by rotating the screw shaft 34 forward and backward, an X direction drive such as a pulse motor that reciprocally moves the roller 4 and the driven plate 12 concentrically and integrally rotated at the rotation axis A2 in the X direction. A device 35 is provided. That is, when the roller 4 reciprocates in the X direction, the roller 4 reciprocates in a state where the rotation axis A2 of the roller 4 passes on the axis-centered perpendicular α.

つまり、X方向駆動装置35が、ローラ4を主軸1に直交する方向(X方向)に移動してローラ4を円盤状素材Wに押し付ける押し付け機構Dとして機能させるように構成されている。そして、押し付け機構Dが、回転軸心A2にて同心状で一体回転可能に連結されたローラ4及び従動プレート12を、ローラ4の回転軸心A2が軸心間垂線α上を通る状態で移動するように設けられていることになる。   That is, the X direction driving device 35 is configured to function as a pressing mechanism D that moves the roller 4 in a direction (X direction) orthogonal to the main shaft 1 and presses the roller 4 against the disk-shaped material W. Then, the pressing mechanism D moves the roller 4 and the driven plate 12 concentrically connected to the rotation axis A2 so as to be integrally rotatable in a state where the rotation axis A2 of the roller 4 passes over the axis-centered perpendicular α. It will be provided to do.

次に、伝達ギア位置保持機構Kについて説明を加えると、図1に示すように、この第1実施形態では、伝達ギア位置保持機構Kは、駆動プレート14が回転軸心A4にて同心状で一体回転可能に連結された伝達ギア9を伝達ギア用軸受36を介して回転可能に支持する伝達ギア回転支持体37、その伝達ギア回転支持体37に回転可能に支持された伝達ギア9の位置(回転軸心A4の位置)を軸心間垂線α及び主軸1の回転軸心A1に直交する方向(即ち、Y方向)に調整するY方向位置調整部40、及び、そのY方向位置調整部40によりY方向での位置が調整された伝達ギア9を軸心間垂線αに平行な方向に沿って移動させる伝達ギア保持用油圧シリンダ38を備えて構成されている。   Next, the transmission gear position holding mechanism K will be described. As shown in FIG. 1, in the first embodiment, the transmission gear position holding mechanism K is configured such that the drive plate 14 is concentric with the rotation axis A4. A transmission gear rotation support 37 that rotatably supports the transmission gear 9 that is coupled so as to rotate integrally with the transmission gear bearing 36, and a position of the transmission gear 9 that is rotatably supported by the transmission gear rotation support 37. Y-direction position adjustment unit 40 that adjusts (position of rotation axis A4) in a direction orthogonal to the axis-to-center perpendicular α and rotation axis A1 of main shaft 1 (that is, Y direction), and its Y-direction position adjustment unit A transmission gear holding hydraulic cylinder 38 is configured to move the transmission gear 9 whose position in the Y direction is adjusted by 40 along a direction parallel to the axis-to-center perpendicular α.

図4に示すように、Y方向位置調整部40は、伝達ギア保持用油圧シリンダ38のシリンダロッドの先端に取り付けられる基台41と、その基台41に対してY方向に移動自在に支持された可動台42と、その可動台42をY方向に往復移動させる4本のアジャスタボルト43と、可動台42を基台41とにより挟持して固定する固定板44と、可動台42を基台41と固定板44とにより挟持して固定するための6本の固定ボルト45とを備えて構成されている。尚、図4(a)は、Y方向位置調整部40の斜視図を示し、図4(b)は、Y方向位置調整部40の分解斜視図を示す。   As shown in FIG. 4, the Y-direction position adjustment unit 40 is supported by a base 41 attached to the tip of the cylinder rod of the transmission gear holding hydraulic cylinder 38 and movably in the Y direction with respect to the base 41. The movable table 42, four adjuster bolts 43 for reciprocating the movable table 42 in the Y direction, a fixed plate 44 that fixes the movable table 42 by sandwiching it with the base 41, and the movable table 42 as a base. 41 and six fixing bolts 45 for holding and fixing between the fixing plate 44 and the fixing plate 44. 4A is a perspective view of the Y-direction position adjusting unit 40, and FIG. 4B is an exploded perspective view of the Y-direction position adjusting unit 40.

そして、伝達ギア9を回転可能に支持した伝達ギア回転支持体37が、Y方向位置調整部40の可動台42に固定状に連結されている。又、伝達ギア保持用油圧シリンダ38は、そのシリンダロッドを軸心間垂線αに平行な方向に沿って伸縮可能な姿勢で、架台(図示省略)に固定設置され、その伝達ギア保持用油圧シリンダ38のシリンダロッドの先端に、Y方向位置調整部40の基台41が固定状に連結されている。   A transmission gear rotation support 37 that rotatably supports the transmission gear 9 is fixedly connected to the movable base 42 of the Y-direction position adjustment unit 40. The transmission gear holding hydraulic cylinder 38 is fixedly installed on a gantry (not shown) in a posture in which the cylinder rod can be expanded and contracted along a direction parallel to the axis-to-center perpendicular α, and the transmission gear holding hydraulic cylinder 38 A base 41 of the Y-direction position adjusting unit 40 is fixedly connected to the tip of the 38 cylinder rods.

各アジャスタボルト43は、可動台42のネジ挿通孔(図示省略)を通過させて固定板44に螺挿され、4本のアジャスタボルト43を正逆回転させることにより、可動台42を、伝達ギア保持用油圧シリンダ38のシリンダロッドの先端に連結された基台41に対してY方向に往復移動させることが可能である。
可動台42には、固定ボルト45を挿通可能でY方向に長い長孔46が2個形成され、各固定ボルト45は、固定板44のネジ挿通孔(図示省略)及び可動台42の長孔46を通過させて基台41に螺挿されている。
Each adjuster bolt 43 passes through a screw insertion hole (not shown) of the movable base 42 and is screwed into the fixed plate 44. By rotating the four adjuster bolts 43 forward and backward, the movable base 42 is transferred to the transmission gear. The holding hydraulic cylinder 38 can be reciprocated in the Y direction with respect to the base 41 connected to the tip of the cylinder rod.
The movable base 42 is formed with two long holes 46 that can be inserted with the fixing bolts 45 and are long in the Y direction. Each of the fixing bolts 45 includes a screw insertion hole (not shown) of the fixed plate 44 and a long hole of the movable base 42. 46 is passed through and screwed into the base 41.

そして、4本のアジャスタボルト43により可動台42を軸心間垂線αからY方向に偏倚した所定の位置に位置させて、6本の固定ボルト45を締め付け、更に、伝達ギア保持用油圧シリンダ38により、伝達ギア9の位置を同期ギア8に押し付けて噛み合わせた状態で保持することにより、伝達ギア9を、当該伝達ギア9の回転軸心A4を軸心間垂線αからY方向にY方向設定量偏倚させた位置にて、同期ギア8に噛み合わせた状態で保持することが可能である。   Then, the movable base 42 is positioned at a predetermined position biased in the Y direction from the axial center vertical line α by the four adjuster bolts 43, the six fixing bolts 45 are tightened, and the transmission gear holding hydraulic cylinder 38. Thus, by holding the position of the transmission gear 9 in a state where it is pressed against the synchronous gear 8 and meshed, the transmission gear 9 can be connected to the rotation axis A4 of the transmission gear 9 in the Y direction from the centerline perpendicular α to the Y direction. It can be held in a state of being meshed with the synchronous gear 8 at a position where the set amount is biased.

この第1実施形態では、図6に示すように、伝達ギア9の回転軸心A4方向視において、伝達ギア9の回転軸心A4の位置が、主軸1(即ち、同期ギア8)の回転軸心A1を中心とする円において、軸心間垂線αとにより形成される中心角βが例えば5°となる半径の延長線上に位置して、伝達ギア9が同期ギア8に噛み合う位置に設定されている。   In the first embodiment, as shown in FIG. 6, the position of the rotation axis A4 of the transmission gear 9 in the direction of the rotation axis A4 of the transmission gear 9 is the rotation axis of the main shaft 1 (that is, the synchronous gear 8). In the circle centered on the center A1, the central angle β formed by the axis-centered perpendicular α is positioned on an extension line of a radius of, for example, 5 °, and the transmission gear 9 is set to a position where the transmission gear 9 meshes with the synchronous gear 8. ing.

次に、図5〜図8に基づいて、この回転塑性加工装置により歯車を製造するときの制御部7の制御動作を説明する。尚、図5は、回転塑性加工装置における偏心カップリング10の周辺の一部切り欠き正面図であり、図6〜図8の夫々において、(a)は、回転塑性加工装置における偏心カップリング10の周辺の一部切り欠き正面図であり、(b)は、横断平面図である。
尚、X方向駆動装置35により、ローラ4を−X方向に移動して円盤状素材Wを成形するに当たって、開始時にローラ4を位置させる開始位置Ps(ローラ4の回転軸心A2の位置)、及び、成形を終了する終了位置Pe(ローラ4の回転軸心A2の位置)が、X方向において予め設定されて制御部7のメモリに記憶されている。
Next, based on FIGS. 5-8, the control operation of the control part 7 when manufacturing a gear with this rotary plastic working apparatus is demonstrated. 5 is a partially cutaway front view of the periphery of the eccentric coupling 10 in the rotary plastic working apparatus. In each of FIGS. 6 to 8, (a) is the eccentric coupling 10 in the rotary plastic working apparatus. It is a partially cutaway front view of the periphery of, and (b) is a transverse plan view.
In addition, when the roller 4 is moved in the −X direction by the X-direction drive device 35 to form the disk-shaped material W, a start position Ps (position of the rotation axis A2 of the roller 4) at which the roller 4 is positioned at the start, An end position Pe (position of the rotational axis A2 of the roller 4) for finishing the molding is preset in the X direction and stored in the memory of the control unit 7.

この第1実施形態では、図5及び図6に示すように、開始位置Psは、伝達ギア位置保持機構Kにより同期ギア8に噛み合わせた状態で位置が保持された伝達ギア9の回転軸心A4に対して、回転軸心A2が軸心間垂線αに沿う方向(X方向)に主軸1とは反対側にX方向設定量(例えば5mm)偏倚したローラ4の位置に設定されている。ローラ4がこの開始位置Psに位置する状態では、ローラ4は、素材支持部3に支持された円盤状素材Wから軸心間垂線αに沿う方向に離間している。
又、図8に示すように、終了位置Peは、回転状態にあるローラ4の外歯成形型4mが、円盤状素材Wの外周面に押し付けられて、円盤状素材Wの外周面に所定の高さの外歯Woを成型可能な位置である。例えば、伝達ギア位置保持機構Kにより同期ギア8に噛み合わせた状態で位置が保持された伝達ギア9の回転軸心A4と、回転軸心A2が軸心間垂線αに沿う方向(X方向)において同位置となるローラ4の位置に設定されている。
In the first embodiment, as shown in FIGS. 5 and 6, the start position Ps is the rotational axis of the transmission gear 9 whose position is held in a state of being meshed with the synchronous gear 8 by the transmission gear position holding mechanism K. The rotational axis A2 is set at a position of the roller 4 that is offset in the X direction set amount (for example, 5 mm) on the opposite side to the main shaft 1 in the direction along the axis center perpendicular line α (X direction) with respect to A4. In a state where the roller 4 is located at the start position Ps, the roller 4 is separated from the disk-shaped material W supported by the material support portion 3 in a direction along the axis-centered perpendicular α.
Further, as shown in FIG. 8, the end position Pe is set at a predetermined position on the outer peripheral surface of the disk-shaped material W by pressing the outer tooth forming die 4m of the roller 4 in a rotating state against the outer peripheral surface of the disk-shaped material W. This is a position where the height external teeth Wo can be molded. For example, the rotation axis A4 of the transmission gear 9 whose position is held in a state of being engaged with the synchronous gear 8 by the transmission gear position holding mechanism K and the direction in which the rotation axis A2 is along the axis-center perpendicular line α (X direction) Is set to the position of the roller 4 at the same position.

つまり、ローラ4が開始位置Psに位置する状態(図5及び図6参照)、ローラ4が終了位置Peに位置する状態(図8参照)、及び、ローラ4が開始位置Psと終了位置Peとの間のいずれの箇所に位置する状態でも、駆動プレート14の回転軸心A4は、軸心間垂線αからその軸心間垂線αに直交する方向(Y方向)にY方向設定量偏倚している。
図5及び図6に示すように、ローラ4が開始位置Psに位置する状態では、従動プレート12の回転軸心A2は、駆動プレート14の回転軸心A4に対して、軸心間垂線αに沿う方向(X方向)に主軸1とは反対側にX方向設定量偏倚している。又、図8に示すように、ローラ4が終了位置Peに位置すると、従動プレート12の回転軸心A2は、駆動プレート14の回転軸心A4と軸心間垂線αに沿う方向(X方向)で同位置となる。
That is, the state in which the roller 4 is located at the start position Ps (see FIGS. 5 and 6), the state in which the roller 4 is located at the end position Pe (see FIG. 8), and the state where the roller 4 is in the start position Ps and the end position Pe. The rotational axis A4 of the drive plate 14 is biased in the Y direction by a set amount in the direction (Y direction) perpendicular to the axis center vertical line α. Yes.
As shown in FIGS. 5 and 6, in the state where the roller 4 is located at the start position Ps, the rotational axis A <b> 2 of the driven plate 12 is perpendicular to the axial center line α with respect to the rotational axis A <b> 4 of the drive plate 14. The set amount in the X direction is biased to the opposite side of the main shaft 1 in the direction along the direction (X direction). As shown in FIG. 8, when the roller 4 is located at the end position Pe, the rotational axis A2 of the driven plate 12 is in a direction (X direction) along the rotational axis A4 of the drive plate 14 and the vertical axis α between the axes. At the same position.

従って、図5〜図8に示すように、ローラ4が開始位置Psから終了位置Peに移動する間中、従動プレート12の回転軸心A2方向視において、従動側リンク15の両側の枢支軸心a1,a2を結ぶ直線(図示省略)と駆動側リンク16の両側の枢支軸心a1,a3を結ぶ直線(図示省略)とが交差する状態に維持される。この第1実施形態では、各従動側リンク15の一端及び各駆動側リンク16の一端が、同心の枢支軸心a1にて中間プレート13に枢支されているので、従動プレート12の回転軸心A2方向視において、従動側リンク15の両側の枢支軸心a1,a2を結ぶ直線(図示省略)と駆動側リンク16の両側の枢支軸心a1,a3を結ぶ直線(図示省略)とがV字状(以下、「従動側リンク15と駆動側リンク16とがV字状」と記載する場合がある)となる。   Accordingly, as shown in FIGS. 5 to 8, while the roller 4 moves from the start position Ps to the end position Pe, the pivot shafts on both sides of the driven side link 15 in the direction of the rotational axis A <b> 2 of the driven plate 12. The straight line (not shown) connecting the centers a1 and a2 and the straight line (not shown) connecting the pivot axes a1 and a3 on both sides of the drive side link 16 are maintained in an intersecting state. In the first embodiment, one end of each driven side link 15 and one end of each drive side link 16 are pivotally supported on the intermediate plate 13 by a concentric pivot axis a1. A straight line (not shown) connecting the pivot axes a1 and a2 on both sides of the driven side link 15 and a straight line (not shown) connecting the pivot axes a1 and a3 on both sides of the drive side link 16 when viewed in the direction of the center A2. Becomes V-shaped (hereinafter, “the driven-side link 15 and the drive-side link 16 may be described as V-shaped”).

図5〜図8に示すように、歯車の製造を開始する前に、伝達ギア保持用油圧シリンダ38により、伝達ギア9が、当該伝達ギア9の回転軸心A4を軸心間垂線αからY方向にY方向設定量偏倚させた位置にて、同期ギア8に噛み合わせた状態で保持されている。
図5に示すように、制御部7は、開始指令が指令されると、X方向駆動装置35を働かせて、ローラ4を開始位置Psに位置させ、並びに、ワーク供給装置(図示省略)を働かせて、加工対象の円盤状素材Wを素材支持部3に対向する位置に位置させると共に、ワーク保持用油圧シリンダ6を働かせて、図6に示すように、押圧部材5を−Z方向に移動させて、円盤状素材Wを素材支持部3と押圧部材5とにより挟持するワーク保持工程(素材保持工程に相当する)を実行する。すると、円盤状素材Wが、その軸孔Whに素材支持部3の挿通軸部3aが挿通された状態で、素材支持部3(具体的には本体部3b)と押圧部材5とにより挟持される。
As shown in FIGS. 5 to 8, before starting the production of the gear, the transmission gear 9 causes the transmission gear 9 to rotate the rotation axis A <b> 4 of the transmission gear 9 from the axis-center perpendicular line α to Y by the transmission gear holding hydraulic cylinder 38. It is held in a state where it is meshed with the synchronous gear 8 at a position shifted in the Y direction by a set amount in the Y direction.
As shown in FIG. 5, when the start command is instructed, the control unit 7 operates the X-direction drive device 35 to position the roller 4 at the start position Ps, and also operates the work supply device (not shown). Then, the disk-shaped material W to be processed is positioned at a position facing the material support 3 and the work holding hydraulic cylinder 6 is operated to move the pressing member 5 in the -Z direction as shown in FIG. Then, a work holding process (corresponding to the material holding process) for holding the disk-shaped material W between the material support portion 3 and the pressing member 5 is executed. Then, the disc-shaped material W is sandwiched between the material support portion 3 (specifically, the main body portion 3b) and the pressing member 5 in a state where the insertion shaft portion 3a of the material support portion 3 is inserted into the shaft hole Wh. The

続いて、制御部7は、図6に示すように、伝達ギア9の位置が同期ギア8に噛み合わされた状態で保持され、且つ、円盤状素材Wが素材支持部3と押圧部材5とにより挟持された状態で、回転駆動装置2を所定の回転速度で作動させる。すると、素材支持部3に支持された円盤状素材Wが素材支持部3と一体回転すると共に、主軸1の回転が、同期ギア8、伝達ギア9及び偏心カップリング10によりローラ4に同期伝達されて、ローラ4が素材支持部3と同期回転する。
続いて、制御部7は、X方向駆動装置35を働かせて、図7に示すように、素材支持部3と同期回転しているローラ4を、軸心間垂線αに沿って所定の速度で−X方向に移動させて、素材支持部3に支持されて素材支持部3と一体回転する円盤状素材Wに押し付ける加工工程を実行する。すると、回転状態にあるローラ4の外歯成形型4mが円盤状素材Wの外周面に当接して、円盤状素材Wの外周面に外歯Woが成型され始め、そのように成型される外歯Woの高さが徐々に高くなる。
Subsequently, as shown in FIG. 6, the control unit 7 is held in a state where the position of the transmission gear 9 is engaged with the synchronous gear 8, and the disc-shaped material W is moved by the material support unit 3 and the pressing member 5. While being held, the rotation driving device 2 is operated at a predetermined rotation speed. Then, the disk-shaped material W supported by the material support portion 3 rotates integrally with the material support portion 3, and the rotation of the main shaft 1 is synchronously transmitted to the roller 4 by the synchronous gear 8, the transmission gear 9 and the eccentric coupling 10. Thus, the roller 4 rotates in synchronization with the material support portion 3.
Subsequently, the control unit 7 operates the X-direction drive device 35 to move the roller 4 rotating in synchronization with the material support unit 3 at a predetermined speed along the axis-to-center perpendicular α as shown in FIG. A processing step of pressing the disc-shaped material W supported by the material support portion 3 and rotating integrally with the material support portion 3 is performed by moving in the −X direction. Then, the external tooth forming die 4m of the roller 4 in a rotating state comes into contact with the outer peripheral surface of the disk-shaped material W, and external teeth Wo start to be formed on the outer peripheral surface of the disk-shaped material W. The height of the tooth Wo gradually increases.

そして、図8に示すように、ローラ4が終了位置Psに達して、円盤状素材Wの外周面に成型される外歯Woの高さが所定の高さに達して、円盤状素材Wの成形が終了すると、制御部7は、X方向駆動装置35を働かせて、ローラ4を開始位置Psに戻し、次いで、回転駆動装置2を停止し、次いで、ワーク保持用油圧シリンダ6をそのシリンダロッドを引っ込めるように作動させると共に、ワーク排出装置(図示省略)を作動させて、製造された歯車を素材支持部3から取り外す。   Then, as shown in FIG. 8, the roller 4 reaches the end position Ps, the height of the external teeth Wo molded on the outer peripheral surface of the disk-shaped material W reaches a predetermined height, and the disk-shaped material W When molding is completed, the control unit 7 operates the X-direction drive device 35 to return the roller 4 to the start position Ps, then stops the rotation drive device 2, and then moves the work holding hydraulic cylinder 6 to its cylinder rod. And the workpiece discharging device (not shown) is operated to remove the manufactured gear from the material support portion 3.

つまり、制御部7が、ワーク保持機構Hを働かせて、円盤状素材Wを素材支持部3と押圧部材5とにより挟持する素材保持工程を実行し、後続して、押し付け機構Dを働かせて、伝達ギア位置保持機構Kにより伝達ギア9が同期ギア8に噛み合わされた状態で、ローラ4により円盤状素材Wを塑性加工する加工工程を実行するように構成されていることになる。   That is, the control unit 7 operates the workpiece holding mechanism H to execute a material holding step of clamping the disc-shaped material W between the material support unit 3 and the pressing member 5, and subsequently operates the pressing mechanism D, In the state where the transmission gear 9 is engaged with the synchronous gear 8 by the transmission gear position holding mechanism K, the processing step of plastic processing the disk-shaped material W by the roller 4 is executed.

従って、伝達ギア9を同期ギア8に十分に深く噛み合わせた状態で、既に素材支持部3と同期回転しているローラ4を、円盤状素材Wから離間した位置から円盤状素材Wに近づけて円盤状素材Wに押し付けることができるので、ローラ4が円盤状素材Wに押し付けられる当初から、伝達ギア9にバックラッシが生じないようにすることができて、歯車の加工精度を向上することができる。
しかも、素材支持部3と同期回転するローラ4を、円盤状素材Wから離間する位置から円盤状素材Wに近づけて円盤状素材Wに押し付けて加工を終了するまでの間中、各従動側リンク15と各駆動側リンク16とがV字状になる状態に維持することができるので、従動側リンク15における従動プレート12への枢支軸心a2と駆動側リンク16における駆動プレート14への枢支軸心a3とが同心状になるのを回避することができる。
そして、ローラ4が円盤状素材Wに押し付けられている状態では、従動プレート12の回転軸心A2に直交する方向に力が作用するが、各従動側リンク15と各駆動側リンク16とがV字状になっていると、加工の間中、中間プレート13の回転軸心A3のふらつきを抑制することができるので、駆動プレート14の回転軸心A4、即ち、伝達ギア9の回転軸心A4が当初(ローラ4の移動開始時点)の位置からずれるのを回避することができると共に、従動プレート12の回転軸心A2、即ち、ローラ4の回転軸心A2が軸心間垂線α上からずれるのを回避することができることとなり、円盤状素材Wの加工精度を向上することができる。
従って、歯車の加工精度を効果的に向上することができる。
Accordingly, with the transmission gear 9 engaged with the synchronous gear 8 sufficiently deeply, the roller 4 that has already been rotated synchronously with the material support portion 3 is brought close to the disk-shaped material W from a position away from the disk-shaped material W. Since the roller 4 can be pressed against the disk-shaped material W, the transmission gear 9 can be prevented from generating backlash from the beginning when the roller 4 is pressed against the disk-shaped material W, and the processing accuracy of the gear can be improved. .
In addition, each driven side link during the period from when the roller 4 that rotates synchronously with the material support portion 3 is pressed from the position separated from the disk-shaped material W to the disk-shaped material W and pressed against the disk-shaped material W is finished. 15 and each drive side link 16 can be maintained in a V-shaped state, so that the pivot axis a2 to the driven plate 12 in the driven side link 15 and the pivot to the drive plate 14 in the drive side link 16 are provided. It is possible to avoid concentricity with the support shaft center a3.
In the state where the roller 4 is pressed against the disk-shaped material W, a force acts in a direction perpendicular to the rotational axis A2 of the driven plate 12, but each driven side link 15 and each driving side link 16 is V If it is in the shape of a letter, it is possible to suppress the wobbling of the rotation axis A3 of the intermediate plate 13 during processing, so that the rotation axis A4 of the drive plate 14, that is, the rotation axis A4 of the transmission gear 9 can be suppressed. Can be prevented from deviating from the initial position (when the roller 4 starts to move), and the rotational axis A2 of the driven plate 12, that is, the rotational axis A2 of the roller 4 is deviated from the vertical axis α between the axes. Can be avoided, and the processing accuracy of the disk-shaped material W can be improved.
Therefore, the processing accuracy of the gear can be effectively improved.

〔第2実施形態〕
以下、本発明の第2実施形態を説明するが、この第2実施形態は偏心カップリング10の別の実施形態を説明するものであり、偏心カップリング10及びそれに関連する構成以外は上記の第1実施形態と同様である。従って、重複説明を避けるために、第1実施形態と同じ構成要素や同じ作用を有する構成要素については、同じ符号を付すことにより説明を省略して、主として、偏心カップリング10及びそれに関連する構成について説明する。
図9及び図10に示すように、この第2実施形態では、偏心カップリング10が、リング状の中間プレート13、駆動プレート14及び伝達ギア9に挿通され、且つ、従動プレート12に同心状で一体回転可能に連結された可動軸11を備えて構成され、可動軸11における伝達ギア9を貫通した部分が、ローラ4に同心状で一体回転可能に連結され、当該可動軸11が、主軸1に平行な姿勢で両端を可動軸用軸受21にて回転可能に支持した状態で設けられている。ここで、従動プレート12の回転軸心A2と同心状の可動軸11の回転軸心も、符号A2にて示す。
そして、押し付け機構Dが、可動軸11をその回転軸心A2が軸心間垂線α上を通る状態で移動するように設けられている。この第2実施形態でも、軸心間垂線αは、移動開始時点において所定の開始位置(図示省略)に位置するローラ4の回転軸心A2と主軸1の回転軸心A1とを結ぶ垂線として、定義される。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described. This second embodiment is a description of another embodiment of the eccentric coupling 10, and the configuration other than the eccentric coupling 10 and the related configuration is described above. This is the same as in the first embodiment. Therefore, in order to avoid redundant description, the same constituent elements as those in the first embodiment and the constituent elements having the same functions are denoted by the same reference numerals, and the description thereof is omitted. Mainly, the eccentric coupling 10 and related constituent elements are omitted. Will be described.
As shown in FIGS. 9 and 10, in the second embodiment, the eccentric coupling 10 is inserted through the ring-shaped intermediate plate 13, the drive plate 14 and the transmission gear 9, and is concentric with the driven plate 12. The movable shaft 11 is configured so as to be integrally rotatable, and a portion of the movable shaft 11 passing through the transmission gear 9 is concentrically connected to the roller 4 so as to be integrally rotatable. The movable shaft 11 is connected to the main shaft 1. Are supported in a state where both ends are rotatably supported by the movable shaft bearing 21. Here, the rotational axis of the movable shaft 11 concentric with the rotational axis A2 of the driven plate 12 is also denoted by reference numeral A2.
The pressing mechanism D is provided so as to move on the movable shaft 11 in a state in which the rotational axis A2 passes through the axis-interval perpendicular α. Also in the second embodiment, the axis center perpendicular line α is a perpendicular line that connects the rotation axis A2 of the roller 4 and the rotation axis A1 of the main shaft 1 that are located at a predetermined start position (not shown) at the start of movement. Defined.

図9及び図10に基づいて、偏心カップリング10について説明を加える。尚、図9(a)は、回転塑性加工装置の概略の全体構成を示す一部切り欠き正面図であり、図9(b)は、偏心カップリング10の分解斜視図である。
従動プレート12は、可動軸11に回転軸心A2周りに一体回転可能に外嵌状に取り付けられている。
駆動プレート14及び中間プレート13は、夫々、内径が可動軸11よりも大径のリング状に構成され、リング状の中間プレート13が、可動軸11の外周部に位置し(可動軸11が中間プレート13に挿通され)且つその回転軸心A3が従動プレート12の回転軸心A2と平行になる状態で、可動軸11に取り付けられた従動プレート12に4本の従動側リンク15により連結され、並びに、リング状の駆動プレート14が、可動軸11の外周部に位置し(可動軸11が駆動プレート14に挿通され)且つその回転軸心A4が従動プレート12の回転軸心A2と平行になる状態で、4本の駆動側リンク16により中間プレート13に連結されている。
駆動プレート14における中間プレート13の側とは反対側に、内径が可動軸11よりも大径のリング状の伝達ギア9が、可動軸11の外周部に位置する状態(可動軸11が伝達ギア9に挿通された状態)で、その回転軸心A4を駆動プレート14の回転軸心A4と同心状にして固定されている。つまり、駆動プレート14が伝達ギア9に回転軸心A4周りに同心状で一体回転可能に連結されていることになる。
Based on FIGS. 9 and 10, the eccentric coupling 10 will be described. 9A is a partially cutaway front view showing a schematic overall configuration of the rotary plastic working apparatus, and FIG. 9B is an exploded perspective view of the eccentric coupling 10.
The driven plate 12 is attached to the movable shaft 11 in an outer fitting shape so as to be integrally rotatable around the rotation axis A2.
The drive plate 14 and the intermediate plate 13 are each configured in a ring shape having an inner diameter larger than that of the movable shaft 11, and the ring-shaped intermediate plate 13 is positioned on the outer peripheral portion of the movable shaft 11 (the movable shaft 11 is in the middle). And is connected to the driven plate 12 attached to the movable shaft 11 by the four driven side links 15 in a state in which the rotational axis A3 is parallel to the rotational axis A2 of the driven plate 12. In addition, the ring-shaped drive plate 14 is positioned on the outer peripheral portion of the movable shaft 11 (the movable shaft 11 is inserted through the drive plate 14), and the rotation axis A4 thereof is parallel to the rotation axis A2 of the driven plate 12. In the state, it is connected to the intermediate plate 13 by four drive side links 16.
On the opposite side of the drive plate 14 from the intermediate plate 13 side, a ring-shaped transmission gear 9 having an inner diameter larger than that of the movable shaft 11 is positioned on the outer periphery of the movable shaft 11 (the movable shaft 11 is the transmission gear). 9), the rotation axis A4 is fixed concentrically with the rotation axis A4 of the drive plate. That is, the drive plate 14 is concentrically connected to the transmission gear 9 around the rotation axis A4 so as to be integrally rotatable.

可動軸11は、従動プレート12及び伝達ギア9のいずれからも突出し、その可動軸11における伝達ギア9からの突出部分の中間に、ローラ4が同心状で一体回転可能に外嵌状に取り付けられている。つまり、従動プレート12が、ローラ4に回転軸心A2周りに同心状で一体回転可能に連結されていることになる。   The movable shaft 11 protrudes from both the driven plate 12 and the transmission gear 9, and the roller 4 is concentrically attached to the intermediate portion of the protruding portion from the transmission gear 9 on the movable shaft 11 so as to be integrally fitted. ing. That is, the driven plate 12 is concentrically connected to the roller 4 around the rotation axis A2 so as to be integrally rotatable.

4本の従動側リンク15は、互いに平行になる状態で可動軸11の周方向に分散配置され、4本の駆動側リンク16も、互いに平行になる状態で可動軸11の周方向に分散配置されている。
この第2実施形態でも、上記の第1実施形態と同様に、各従動側リンク15の一端及び各駆動側リンク16の一端が、同心の枢支軸心a1にて中間プレート13に枢支されている。ここで、第1実施形態と同様に、各従動側リンク15の他端が従動プレート12に枢支されている枢支軸心を、符号a2で示し、各駆動側リンク16の他端が駆動プレート14に枢支されている枢支軸心を、符号a3で示す。4本の従動側リンク15夫々における両側の枢支軸心a1,a2間の間隔、及び、4本の駆動側リンク16夫々における両側の枢支軸心a1,a3間の間隔は、全て同一である。
The four driven links 15 are distributed in the circumferential direction of the movable shaft 11 in a state of being parallel to each other, and the four drive side links 16 are also distributed in the circumferential direction of the movable shaft 11 in a state of being parallel to each other. Has been.
Also in the second embodiment, as in the first embodiment, one end of each driven side link 15 and one end of each drive side link 16 are pivotally supported on the intermediate plate 13 by a concentric pivot axis a1. ing. Here, as in the first embodiment, the pivot axis in which the other end of each driven side link 15 is pivotally supported by the driven plate 12 is indicated by reference numeral a2, and the other end of each driving side link 16 is driven. A pivot axis that is pivotally supported by the plate 14 is indicated by a3. The distance between the pivot axes a1 and a2 on both sides of the four driven links 15 and the distance between the pivot axes a1 and a3 on both sides of the four drive links 16 are all the same. is there.

駆動プレート14の回転軸心A4と従動プレート12の回転軸心A2とを必要とされる所定の範囲で偏心させても、従動プレート12、中間プレート13、駆動プレート14、4本の従動側リンク15及び4本の駆動側リンク16が可動軸11と干渉しないように構成されて、偏心カップリング10が、駆動プレート14の回転軸心A4と従動プレート12の回転軸心A2とを所定の範囲で偏心可能に構成されている。
そして、駆動プレート14が回転すると、その駆動プレート14の回転が4本の駆動側リンク16により中間プレート13に同期伝達されると共に、その中間プレート13の回転が4本の従動側リンク15により従動プレート12に同期伝達されるので、駆動プレート14が回転すると、中間プレート13、従動プレート12及び可動軸11が駆動プレート14と同期回転する。
Even if the rotation axis A4 of the drive plate 14 and the rotation axis A2 of the driven plate 12 are decentered within a required range, the driven plate 12, the intermediate plate 13, the drive plate 14, and the four driven links. The 15 and 4 drive side links 16 are configured not to interfere with the movable shaft 11, and the eccentric coupling 10 has a predetermined range between the rotation axis A4 of the drive plate 14 and the rotation axis A2 of the driven plate 12. It is configured to be eccentric.
When the drive plate 14 rotates, the rotation of the drive plate 14 is synchronously transmitted to the intermediate plate 13 by the four drive side links 16, and the rotation of the intermediate plate 13 is driven by the four driven side links 15. Since it is transmitted synchronously to the plate 12, when the drive plate 14 rotates, the intermediate plate 13, the driven plate 12 and the movable shaft 11 rotate synchronously with the drive plate 14.

図示を省略するが、従動プレート12の回転軸心A2と駆動プレート14の回転軸心A4とが同心状になると、上記の第1実施形態と同様に、従動プレート12の回転軸心方向(Z方向)視において、従動側リンク15の両側の枢支軸心a1,a2を結ぶ直線(図示省略)と駆動側リンク16の両側の枢支軸心a1,a3を結ぶ直線(図示省略)とが平行状態で重なるように構成されている。   Although illustration is omitted, when the rotation axis A2 of the driven plate 12 and the rotation axis A4 of the drive plate 14 are concentric, as in the first embodiment, the direction of the rotation axis (Z In the direction), a straight line (not shown) connecting the pivot axes a1 and a2 on both sides of the driven link 15 and a straight line (not shown) connecting the pivot axes a1 and a3 on both sides of the drive side link 16 are shown. It is comprised so that it may overlap in a parallel state.

そして、図9(a)に示すように、伝達ギア9及びローラ4が上述のように組み付けられた偏心カップリング10の可動軸11の両端が、一対の可動軸用軸受21により、正面視でコの字形状の可動軸回転支持体22に回転可能に支持されて、ユニット状の加工ユニットUが構成されている。
この加工ユニットUが、可動軸11を主軸1に平行にした姿勢で、X方向に往復移動可能に可動軸回転支持体22にて支持台23上の一対の案内レール24に支持され、このように一対の案内レール24に支持された加工ユニットUの可動軸回転支持体22に、回転軸心を軸心間垂線αに沿わせたネジ軸25が螺挿されている。
そして、ネジ軸25を正逆回転させることにより、加工ユニットUをX方向に往復移動させるパルスモータ等のX方向駆動装置26が設けられている。つまり、加工ユニットUがX方向に往復移動する際は、可動軸11の回転軸心A2が軸心間垂線α上を通る状態で往復移動する。
Then, as shown in FIG. 9A, both ends of the movable shaft 11 of the eccentric coupling 10 in which the transmission gear 9 and the roller 4 are assembled as described above are connected to each other by a pair of movable shaft bearings 21 in a front view. A unit-shaped processing unit U is configured to be rotatably supported by a U-shaped movable shaft rotation support body 22.
The machining unit U is supported by a pair of guide rails 24 on a support base 23 by a movable shaft rotating support 22 so as to be reciprocally movable in the X direction with the movable shaft 11 parallel to the main shaft 1. A threaded shaft 25 having a rotational axis centered along the vertical axis α is screwed into the movable shaft rotation support 22 of the processing unit U supported by the pair of guide rails 24.
An X-direction drive device 26 such as a pulse motor that reciprocally moves the machining unit U in the X direction by rotating the screw shaft 25 forward and backward is provided. That is, when the processing unit U reciprocates in the X direction, the reciprocating movement is performed in a state in which the rotation axis A2 of the movable shaft 11 passes on the perpendicular line α between the axes.

つまり、X方向駆動装置26が、ローラ4を主軸1に直交する方向(X方向)に移動してローラ4を円盤状素材Wに押し付ける押し付け機構Dとして機能させるように構成されている。そして、押し付け機構Dが、回転軸心A2にて同心状で一体回転可能に連結されたローラ4及び従動プレート12を、ローラ4の回転軸心A2が軸心間垂線α上を通る状態で移動するように設けられていることになる。   That is, the X-direction drive device 26 is configured to function as a pressing mechanism D that moves the roller 4 in a direction orthogonal to the main shaft 1 (X direction) and presses the roller 4 against the disc-shaped material W. Then, the pressing mechanism D moves the roller 4 and the driven plate 12 concentrically connected to the rotation axis A2 so as to be integrally rotatable in a state where the rotation axis A2 of the roller 4 passes over the axis-centered perpendicular α. It will be provided to do.

次に、伝達ギア位置保持機構Kについて説明を加えると、図9(a)に示すように、この第2実施形態では、伝達ギア位置保持機構Kは、伝達ギア9が回転軸心A4にて同心状に一体回転可能に連結された駆動プレート14を駆動プレート用軸受27を介して回転可能に支持する回転支持フレーム28、その回転支持フレーム28に支持された駆動プレート14の位置(即ち、伝達ギア9の位置(回転軸心A4の位置))を軸心間垂線α及び主軸1の回転軸心A1に直交する方向(即ち、Y方向)に調整するY方向位置調整部40、及び、そのY方向位置調整部40によりY方向での位置が調整された駆動プレート14(即ち、伝達ギア9)を軸心間垂線αに平行な方向に沿って移動させる伝達ギア保持用油圧シリンダ29を備えて構成されている。つまり、駆動プレート14は、駆動プレート用軸受27を介して回転支持フレーム28により、回転可能に支持されている。   Next, the transmission gear position holding mechanism K will be described. As shown in FIG. 9A, in the second embodiment, the transmission gear position holding mechanism K is configured such that the transmission gear 9 is at the rotational axis A4. A rotation support frame 28 that rotatably supports a drive plate 14 that is concentrically connected so as to be integrally rotatable via a drive plate bearing 27, and a position of the drive plate 14 supported by the rotation support frame 28 (that is, transmission). A Y-direction position adjustment unit 40 that adjusts the position of the gear 9 (the position of the rotation axis A4) in a direction perpendicular to the axis-centered perpendicular α and the rotation axis A1 of the main shaft 1 (that is, the Y direction); A transmission gear holding hydraulic cylinder 29 is provided for moving the drive plate 14 (ie, the transmission gear 9) whose position in the Y direction has been adjusted by the Y-direction position adjusting unit 40 along a direction parallel to the perpendicular line α between the axes. Configured Yes. That is, the drive plate 14 is rotatably supported by the rotation support frame 28 via the drive plate bearing 27.

Y方向位置調整部40は、上記の第1実施形態と同様に構成されている。
そして、駆動プレート14(即ち、伝達ギア9)を回転可能に支持した回転支持フレーム28が、Y方向位置調整部40の可動台42に固定状に連結されている。又、伝達ギア保持用油圧シリンダ29は、そのシリンダロッドを軸心間垂線αに平行な方向に沿って伸縮可能な姿勢で、架台(図示省略)に固定設置され、その伝達ギア保持用油圧シリンダ28のシリンダロッドの先端に、Y方向位置調整部40の基台41が固定状に連結されている。
The Y-direction position adjustment unit 40 is configured in the same manner as in the first embodiment.
A rotation support frame 28 that rotatably supports the drive plate 14 (that is, the transmission gear 9) is fixedly connected to the movable base 42 of the Y-direction position adjustment unit 40. The transmission gear holding hydraulic cylinder 29 is fixedly installed on a gantry (not shown) in a posture in which the cylinder rod can be expanded and contracted along a direction parallel to the vertical axis α, and the transmission gear holding hydraulic cylinder 29 A base 41 of the Y-direction position adjusting unit 40 is fixedly connected to the tip of the 28 cylinder rods.

そして、4本のアジャスタボルト43により可動台42を軸心間垂線αからY方向に偏倚した所定の位置に位置させて、6本の固定ボルト45を締め付け、更に、伝達ギア保持用油圧シリンダ29により、伝達ギア9の位置を同期ギア8に押し付けて噛み合わせた状態で保持することにより、伝達ギア9を、当該伝達ギア9の回転軸心A4を軸心間垂線αからY方向にY方向設定量偏倚させた位置にて、同期ギア8に噛み合わせた状態で保持することが可能である。   Then, the movable table 42 is positioned at a predetermined position biased in the Y direction from the axis-centered perpendicular α by the four adjuster bolts 43, the six fixing bolts 45 are tightened, and the transmission gear holding hydraulic cylinder 29 is further tightened. Thus, by holding the position of the transmission gear 9 in a state where it is pressed against the synchronous gear 8 and meshed, the transmission gear 9 can be connected to the rotation axis A4 of the transmission gear 9 in the Y direction from the centerline perpendicular α to the Y direction. It can be held in a state of being meshed with the synchronous gear 8 at a position where the set amount is biased.

詳細な図示を省略して、図10に簡単に示すように、この第2実施形態でも、上記の第1実施形態と同様に、伝達ギア9の回転軸心A4方向視において、伝達ギア9の回転軸心A4の位置が、主軸1(即ち、同期ギア8)の回転軸心A1を中心とする円において、軸心間垂線αとにより形成される中心角βが例えば5°となる半径の延長線上に位置して、伝達ギア9が同期ギア8に噛み合う位置に設定されている。   As shown in FIG. 10, with detailed illustration omitted, in the second embodiment as well as in the first embodiment, when the transmission gear 9 is viewed in the direction of the rotation axis A <b> 4, The position of the rotational axis A4 is a circle whose center angle β formed by the axis-centered perpendicular α is 5 °, for example, in a circle centered on the rotational axis A1 of the main shaft 1 (that is, the synchronous gear 8). Positioned on the extension line, the transmission gear 9 is set to a position where it meshes with the synchronous gear 8.

次に、この回転塑性加工装置により歯車を製造するときの制御部7の制御動作を説明するが、その制御動作は、上記の第1実施形態と同様であるので、簡単に説明する。
第1実施形態と同様に、開始位置Ps及び終了位置Peが設定されて、制御部7のメモリに記憶されている。
尚、図10は、ローラ4が終了位置Peに位置する状態を示している。
そして、ローラ4が終了位置Peに位置する状態を図10に示すように、ローラ4が開始位置Psから終了位置Peに移動する間中、従動側リンク15と駆動側リンク16とがV字状となる状態が維持される。
Next, the control operation of the control unit 7 when the gear is manufactured by the rotary plastic working apparatus will be described. Since the control operation is the same as that in the first embodiment, it will be described briefly.
Similar to the first embodiment, the start position Ps and the end position Pe are set and stored in the memory of the control unit 7.
FIG. 10 shows a state where the roller 4 is located at the end position Pe.
Then, as shown in FIG. 10, the state where the roller 4 is located at the end position Pe, the driven side link 15 and the drive side link 16 are V-shaped while the roller 4 moves from the start position Ps to the end position Pe. Is maintained.

歯車の製造を開始する前に、伝達ギア保持用油圧シリンダ29により、伝達ギア9が、当該伝達ギア9の回転軸心A4を軸心間垂線αからY方向にY方向設定量偏倚させた位置にて、同期ギア8に噛み合わせた状態で保持されている。
制御部7は、開始指令が指令されると、X方向駆動装置26を働かせて、ローラ4を開始位置Psに位置させ、並びに、ワーク供給装置(図示省略)を働かせて、加工対象の円盤状素材Wを素材支持部3に対向する位置に位置させると共に、ワーク保持用油圧シリンダ6を働かせて、円盤状素材Wを素材支持部3と押圧部材5とにより挟持するワーク保持工程(素材保持工程に相当する)を実行する。
Before starting the production of the gear, the transmission gear 9 is displaced by the transmission gear holding hydraulic cylinder 29 so that the rotational axis A4 of the transmission gear 9 is biased in the Y direction by a set amount in the Y direction from the axial center line α. And held in a state engaged with the synchronous gear 8.
When the start command is instructed, the control unit 7 operates the X-direction drive device 26 to position the roller 4 at the start position Ps, and operates the work supply device (not shown) to form a disk shape to be processed. A workpiece holding step (material holding step) in which the material W is positioned at a position facing the material support portion 3 and the workpiece holding hydraulic cylinder 6 is operated to hold the disk-shaped material W between the material support portion 3 and the pressing member 5. Equivalent to).

続いて、制御部7は、伝達ギア9の位置が同期ギア8に噛み合わされた状態で保持され、且つ、円盤状素材Wが素材支持部3と押圧部材5とにより挟持された状態で、回転駆動装置2を所定の回転速度で作動させる。
続いて、制御部7は、X方向駆動装置26を働かせて、素材支持部3と同期回転しているローラ4を、軸心間垂線αに沿って所定の速度で−X方向に移動させて、素材支持部3に支持されて素材支持部3と一体回転する円盤状素材Wに押し付ける加工工程を実行する。
そして、図10に示すように、制御部7は、ローラ4が終了位置Psに達すると、X方向駆動装置26を働かせて、ローラ4を開始位置Psに戻し、次いで、回転駆動装置2を停止し、次いで、ワーク保持用油圧シリンダ6をそのシリンダロッドを引っ込めるように作動させると共に、ワーク排出装置(図示省略)を作動させて、製造された歯車を素材支持部3から取り外す。
Subsequently, the control unit 7 rotates while the position of the transmission gear 9 is held in a state where the transmission gear 9 is engaged with the synchronous gear 8 and the disk-shaped material W is sandwiched between the material support unit 3 and the pressing member 5. The drive device 2 is operated at a predetermined rotational speed.
Subsequently, the control unit 7 operates the X-direction drive device 26 to move the roller 4 rotating in synchronization with the material support unit 3 in the −X direction at a predetermined speed along the axis center perpendicular line α. Then, a processing step of pressing the disk-shaped material W supported by the material support portion 3 and rotating integrally with the material support portion 3 is executed.
Then, as shown in FIG. 10, when the roller 4 reaches the end position Ps, the control unit 7 operates the X-direction drive device 26 to return the roller 4 to the start position Ps, and then stops the rotation drive device 2. Then, the workpiece holding hydraulic cylinder 6 is operated so as to retract the cylinder rod, and the workpiece discharging device (not shown) is operated to remove the manufactured gear from the material support portion 3.

つまり、制御部7が、ワーク保持機構Hを働かせて、円盤状素材Wを素材支持部3と押圧部材5とにより挟持する素材保持工程を実行し、後続して、押し付け機構Dを働かせて、伝達ギア位置保持機構Kにより伝達ギア9が同期ギア8に噛み合わされた状態で、ローラ4により円盤状素材Wを塑性加工する加工工程を実行するように構成されていることになる。   That is, the control unit 7 operates the workpiece holding mechanism H to execute a material holding step of clamping the disc-shaped material W between the material support unit 3 and the pressing member 5, and subsequently operates the pressing mechanism D, In the state where the transmission gear 9 is engaged with the synchronous gear 8 by the transmission gear position holding mechanism K, the processing step of plastic processing the disk-shaped material W by the roller 4 is executed.

従って、上記の第1実施形態と同様に、既に素材支持部3と同期回転しているローラ4を、円盤状素材Wから離間した位置から円盤状素材Wに近づけて円盤状素材Wに押し付けること、及び、円盤状素材Wの塑性加工を実行している間中、各従動側リンク15と各駆動側リンク16とがV字状になる状態に維持できることの相乗作用により、歯車の加工精度を効果的に向上することができる。
しかも、この第2実施形態では、伝達ギア9の回転軸心A4とローラ4の回転軸心A2とを偏心可能な偏心カップリング10を用いながらも、その偏心カップリング10に、ローラ4を同心状に一体回転可能に支持する可動軸11を備えて、その可動軸11を両端が可動軸用軸受21を介して支持枠22にて支持された状態で素材支持部3と同期回転させる構成とすることにより、ローラ4の回転軸心A2のブレを抑制することができ、このことによっても、歯車の加工精度を向上することができる。
従って、歯車の加工精度を更に向上することができる。
Therefore, as in the first embodiment, the roller 4 that has already been rotated synchronously with the material support portion 3 is pressed against the disk-shaped material W from the position away from the disk-shaped material W and approaching the disk-shaped material W. And, while performing the plastic working of the disk-shaped material W, the working accuracy of the gears is improved by the synergistic action that each driven side link 15 and each driving side link 16 can be maintained in a V-shaped state. It can be effectively improved.
Moreover, in the second embodiment, while using the eccentric coupling 10 that can eccentrically rotate the rotational axis A4 of the transmission gear 9 and the rotational axis A2 of the roller 4, the roller 4 is concentric with the eccentric coupling 10. And a movable shaft 11 that is supported so as to be integrally rotatable, and is configured to rotate the movable shaft 11 synchronously with the material support portion 3 in a state where both ends are supported by a support frame 22 via a movable shaft bearing 21. By doing so, the blurring of the rotation axis A2 of the roller 4 can be suppressed, and this also improves the processing accuracy of the gear.
Therefore, the processing accuracy of the gear can be further improved.

〔別実施形態〕
(A)複数の従動側リンク15の本数及び複数の駆動側リンク16の本数は、夫々、上記の各実施形態において例示した3本や4本に限定されるものではない。
又、上記の各実施形態では、各従動側リンク15の一端及び各駆動側リンク16の一端を、同心の枢支軸心a1にて中間プレート13に枢支したが、別々の枢支軸心にて中間プレート13に枢支しても良い。
[Another embodiment]
(A) The number of the plurality of driven side links 15 and the number of the plurality of driving side links 16 are not limited to the three or four illustrated in the above embodiments, respectively.
In each of the above embodiments, one end of each driven side link 15 and one end of each drive side link 16 are pivotally supported on the intermediate plate 13 by a concentric pivot axis a1, but separate pivot axes are provided. May be pivotally supported by the intermediate plate 13.

(B)ローラ4の外歯成形型4mの軸心方向での長さを、円盤状素材Wに成形する外歯Woの軸心方向の長さよりも短くなるように設定しても良い。この場合、X方向駆動装置26に加えて、加工ユニットUを主軸1の回転軸心A1に沿うZ方向に往復移動させるZ方向駆動装置を設けて、そのZ方向駆動装置によりローラ4をZ方向に移動させることにより、円盤状素材Wにローラ4の外歯成形型4mよりも長い所望の長さの外歯Woを形成することができる。 (B) The length of the roller 4 in the axial direction of the external tooth forming die 4m may be set to be shorter than the length of the external tooth Wo formed in the disk-shaped material W in the axial direction. In this case, in addition to the X-direction drive device 26, a Z-direction drive device that reciprocates the machining unit U in the Z direction along the rotation axis A1 of the main shaft 1 is provided, and the roller 4 is moved in the Z direction by the Z-direction drive device. The outer teeth Wo having a desired length longer than the external tooth forming mold 4m of the roller 4 can be formed on the disc-shaped material W.

(C)駆動プレート14の外周面に、同期ギア8に噛み合う歯を形成して、駆動プレート14を伝達ギア9に兼用しても良い。 (C) On the outer peripheral surface of the drive plate 14, teeth that mesh with the synchronous gear 8 may be formed so that the drive plate 14 is also used as the transmission gear 9.

(D)ローラ4を−X方向に移動して円盤状素材Wを成形する際のローラ4の開始位置Psや終了位置Peは、適宜変更可能である。例えば、上記の各実施形態では、終了位置Peを、ローラ4の回転軸心A2が伝達ギア9の回転軸心A4と軸心間垂線α上において同位置となるように設定したが、ローラ4の回転軸心A2が伝達ギア9の回転軸心A4と軸心間垂線α上において異なるように設定しても良い。 (D) The start position Ps and the end position Pe of the roller 4 when the disk 4 is formed by moving the roller 4 in the −X direction can be appropriately changed. For example, in each of the embodiments described above, the end position Pe is set so that the rotation axis A2 of the roller 4 is at the same position as the rotation axis A4 of the transmission gear 9 on the axis center perpendicular line α. The rotation axis A2 of the transmission gear 9 may be set different from the rotation axis A4 of the transmission gear 9 on the axis-interval perpendicular α.

(E)被加工素材を塑性加工する形態は、上記の各実施形態のように、外周面に外歯Woを成形する形態に限定されるものではなく、例えば、被加工素材の軸心周りに沿って一定のピッチで凹凸を形成する形態でも良い。
又、被加工素材の具体的な例としては、上記の各実施形態において例示した如き円盤状素材Wに限定されるものではない。
(E) The form in which the work material is plastically processed is not limited to the form in which the outer teeth Wo are formed on the outer peripheral surface as in each of the above embodiments. For example, the work material is formed around the axis of the work material. It is also possible to form an unevenness at a constant pitch along.
Further, a specific example of the material to be processed is not limited to the disk-shaped material W as exemplified in the above embodiments.

以上説明したように、塑性加工精度を向上し得る回転塑性加工装置を提供することができる。   As described above, it is possible to provide a rotary plastic working apparatus that can improve plastic working accuracy.

1 主軸
2 回転駆動装置(回転駆動手段)
3 素材支持部
4 ローラ
4m 外歯成形型
5 押圧部材(保持部材)
7 制御部(制御手段)
8 同期ギア
9 伝達ギア
10 偏心カップリング
11 可動軸
12 従動プレート
13 中間プレート
14 駆動プレート
15 従動側リンク
16 駆動側リンク
21 可動軸用軸受(軸受)
A1 主軸の回転軸心
A2 ローラの回転軸心、従動プレートの回転軸心、可動軸の回転軸心
A3 中間プレートの回転軸心
A4 駆動プレートの回転軸心、伝達ギアの回転軸心
D 押し付け機構
H ワーク保持機構(素材保持機構)
K 伝達ギア位置保持機構
S 同期回転機構
W 円盤状素材(被加工素材)
Wo 外歯
α 軸心間垂線
1 Spindle 2 Rotation drive device (Rotation drive means)
3 Material support 4 Roller 4m External tooth forming die 5 Pressing member (holding member)
7 Control unit (control means)
8 Synchronous gear 9 Transmission gear 10 Eccentric coupling 11 Movable shaft 12 Driven plate 13 Intermediate plate 14 Drive plate 15 Driven side link 16 Driven side link 21 Bearing for movable shaft (bearing)
A1 Axis of rotation of main shaft A2 Axis of rotation of roller, rotation axis of driven plate, rotation axis of movable shaft A3 rotation axis of intermediate plate A4 rotation axis of drive plate, rotation axis of transmission gear D Pressing mechanism H Work holding mechanism (material holding mechanism)
K transmission gear position holding mechanism S synchronous rotation mechanism W disk-shaped material (work material)
Wo external tooth α axis center perpendicular

Claims (4)

軸心方向視で円状の外周面を有する被加工素材を支持する状態で、主軸周りに回転駆動手段により回転駆動される素材支持部と、被加工素材を塑性加工するローラを前記主軸に直交する方向に移動して当該ローラを被加工素材に押し付ける押し付け機構と、前記ローラを前記素材支持部と同期回転させるように、前記主軸の回転を前記ローラに伝達する同期回転機構とが設けられた回転塑性加工装置であって、
前記同期回転機構が、
前記主軸周りに前記素材支持部と一体回転する同期ギアと、
当該同期ギアに噛み合う状態で配設された伝達ギアと、
従動プレート、当該従動プレートの回転軸心と回転軸心が偏心し且つ前記従動プレートに回転を伝達可能に複数の従動側リンクにより前記従動プレートに連結された中間プレート、及び、当該中間プレートの回転軸心と回転軸心が偏心し且つ前記中間プレートに回転を伝達可能に複数の駆動側リンクにより前記中間プレートに連結された駆動プレートを備えた偏心カップリングと、
前記伝達ギアの位置を、前記同期ギアに噛み合わせた状態で保持する伝達ギア位置保持機構とを備えて構成され、
前記偏心カップリングにおいて、前記駆動プレートが前記伝達ギアに同心状で一体回転可能に連結され、且つ、前記従動プレートが前記ローラに同心状で一体回転可能に連結されて、当該偏心カップリングが、前記従動プレートの回転軸心を前記主軸に平行にした姿勢で設けられ、
前記押し付け機構が、同心状で一体回転可能に連結された前記ローラ及び前記従動プレートを、前記ローラの回転軸心が当該ローラの回転軸心と前記主軸の回転軸心とを結ぶ軸心間垂線上を通る状態で移動するように設けられ、
前記伝達ギア位置保持機構が、前記伝達ギアを、当該伝達ギアの回転軸心を前記軸心間垂線から当該軸心間垂線に直交する方向に設定量偏倚させた位置にて、前記同期ギアに噛み合わせた状態で保持するように構成されている回転塑性加工装置。
In a state of supporting a workpiece having a circular outer peripheral surface as viewed in the axial direction, a material support portion rotated by a rotation driving means around the main shaft and a roller for plastic processing of the workpiece are orthogonal to the main shaft. And a pressing mechanism for moving the roller against the workpiece material, and a synchronous rotation mechanism for transmitting the rotation of the main shaft to the roller so as to rotate the roller synchronously with the material support portion. A rotary plastic working device,
The synchronous rotation mechanism is
A synchronous gear that rotates integrally with the material support around the main shaft;
A transmission gear arranged in mesh with the synchronous gear;
A driven plate, an intermediate plate connected to the driven plate by a plurality of driven links so that the rotational axis and the rotational axis of the driven plate are eccentric and transmit rotation to the driven plate, and rotation of the intermediate plate An eccentric coupling comprising a drive plate connected to the intermediate plate by a plurality of drive side links so that the shaft center and the rotational axis are eccentric and capable of transmitting rotation to the intermediate plate;
A transmission gear position holding mechanism that holds the position of the transmission gear in a state of meshing with the synchronous gear;
In the eccentric coupling, the drive plate is concentrically connected to the transmission gear so as to be integrally rotatable, and the driven plate is concentrically connected to the roller so as to be integrally rotatable. Provided in a posture in which the rotational axis of the driven plate is parallel to the main axis;
The pressing mechanism includes a concentric roller and the driven plate that are connected so as to be integrally rotatable, and a rotation center of the roller connects a rotation axis of the roller and a rotation axis of the main shaft. It is provided to move while passing on the line,
The transmission gear position holding mechanism moves the transmission gear to the synchronous gear at a position where the rotational axis of the transmission gear is biased by a set amount in a direction perpendicular to the axis-centered perpendicular from the axis-centered perpendicular. A rotary plastic working apparatus configured to be held in an engaged state.
前記偏心カップリングが、リング状の前記中間プレート、前記駆動プレート及び前記伝達ギアに挿通され、且つ、前記従動プレートに同心状で一体回転可能に連結された可動軸を備えて構成され、
前記可動軸における前記伝達ギアを貫通した部分が、前記ローラに同心状で一体回転可能に連結され、当該可動軸が、前記主軸に平行な姿勢で両端を軸受にて回転可能に支持した状態で設けられ、
前記押し付け機構が、前記可動軸をその回転軸心が前記軸心間垂線上を通る状態で移動するように設けられている請求項1に記載の回転塑性加工装置。
The eccentric coupling is configured to include a movable shaft that is inserted through the ring-shaped intermediate plate, the drive plate, and the transmission gear, and is concentrically connected to the driven plate so as to be integrally rotatable.
A portion of the movable shaft that passes through the transmission gear is concentrically connected to the roller so as to be integrally rotatable, and the movable shaft is rotatably supported by bearings at both ends in a posture parallel to the main shaft. Provided,
The rotary plastic working apparatus according to claim 1, wherein the pressing mechanism is provided so as to move the movable shaft in a state in which a rotation axis passes through a perpendicular between the axis centers.
前記ローラの外周面に外歯成形型が備えられ、
前記被加工素材の外周面に外歯を成形して、外歯を有する歯車を製造する請求項1又は2に記載の回転塑性加工装置。
An outer tooth mold is provided on the outer peripheral surface of the roller,
The rotary plastic working apparatus according to claim 1 or 2, wherein external gears are formed on an outer peripheral surface of the workpiece material to produce a gear having external teeth.
前記主軸と同心状に回転可能な保持部材を前記素材支持部に向けて移動させて、前記素材支持部に支持された被加工素材を前記素材支持部とにより挟持する素材保持機構と、
前記素材保持機構を働かせて、被加工素材を前記素材支持部と前記保持部材とにより挟持する素材保持工程を実行し、前記押し付け機構を働かせて、前記伝達ギア位置保持機構により前記伝達ギアが前記同期ギアに噛み合わされた状態で、前記ローラにより被加工素材を塑性加工する加工工程を実行する制御手段とが設けられている請求項1〜3のいずれか1項に記載の回転塑性加工装置。
A material holding mechanism that moves a holding member that can rotate concentrically with the main shaft toward the material support portion, and holds the work material supported by the material support portion with the material support portion;
The material holding mechanism is operated to execute a material holding process for holding the workpiece material between the material support portion and the holding member, the pressing mechanism is operated, and the transmission gear is held by the transmission gear position holding mechanism. The rotary plastic working apparatus according to any one of claims 1 to 3, further comprising a control unit that executes a machining step of plastic working the material to be processed by the roller in a state of being engaged with the synchronous gear.
JP2012230178A 2012-10-17 2012-10-17 Rotary plastic processing equipment Expired - Fee Related JP5866643B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012230178A JP5866643B2 (en) 2012-10-17 2012-10-17 Rotary plastic processing equipment
PCT/JP2013/070464 WO2014061331A1 (en) 2012-10-17 2013-07-29 Rotational-plasticity forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012230178A JP5866643B2 (en) 2012-10-17 2012-10-17 Rotary plastic processing equipment

Publications (2)

Publication Number Publication Date
JP2014079793A true JP2014079793A (en) 2014-05-08
JP5866643B2 JP5866643B2 (en) 2016-02-17

Family

ID=50487909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012230178A Expired - Fee Related JP5866643B2 (en) 2012-10-17 2012-10-17 Rotary plastic processing equipment

Country Status (2)

Country Link
JP (1) JP5866643B2 (en)
WO (1) WO2014061331A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108406746A (en) * 2018-03-19 2018-08-17 薛豪俊 Drive lacking stroke adjustable crank device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4894773A (en) * 1972-03-18 1973-12-06
JPS4934937Y1 (en) * 1973-10-12 1974-09-21
JPH09267243A (en) * 1996-01-29 1997-10-14 Nippei Toyama Corp Crankpin phase-indexing device and phase-indexing method
JP2001173671A (en) * 1999-12-22 2001-06-26 Nippon Piston Ring Co Ltd Link type coupling
JP2010284662A (en) * 2009-06-09 2010-12-24 Nippon Spindle Mfg Co Ltd Apparatus and method for manufacturing cup-like gear

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4894773A (en) * 1972-03-18 1973-12-06
JPS4934937Y1 (en) * 1973-10-12 1974-09-21
JPH09267243A (en) * 1996-01-29 1997-10-14 Nippei Toyama Corp Crankpin phase-indexing device and phase-indexing method
JP2001173671A (en) * 1999-12-22 2001-06-26 Nippon Piston Ring Co Ltd Link type coupling
JP2010284662A (en) * 2009-06-09 2010-12-24 Nippon Spindle Mfg Co Ltd Apparatus and method for manufacturing cup-like gear

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108406746A (en) * 2018-03-19 2018-08-17 薛豪俊 Drive lacking stroke adjustable crank device

Also Published As

Publication number Publication date
JP5866643B2 (en) 2016-02-17
WO2014061331A1 (en) 2014-04-24

Similar Documents

Publication Publication Date Title
JP2010284662A (en) Apparatus and method for manufacturing cup-like gear
JP5866642B2 (en) Rotary plastic processing equipment
EP1151812B1 (en) Spinning device
KR101757036B1 (en) Gear cutting attachment, machine tool, and gear cutting processing method
EP2896470A1 (en) Form rolling apparatus and form rolling method
JP5866643B2 (en) Rotary plastic processing equipment
KR20160028198A (en) Worm producing apparatus
WO2015012330A1 (en) Rolling machine and gear rolling method using said rolling machine
JP3917844B2 (en) Cutting gears on both sides
KR20140050790A (en) Bead wire gripper
JP2001047162A (en) Spinning device
RU2686426C1 (en) Composite for cutting of long-length workpiece
JP2007519528A (en) Apparatus and method for producing a tooth-shaped molded part on a workpiece
JP2015182170A (en) Machine tool
JP2003145348A (en) Gear tooth surface regular position machining method and device
JP2017013086A (en) Feeding device and press device unit
JP6214152B2 (en) Jig grinding machine
JP2015160220A (en) Tool driving device
JP6471692B2 (en) Multi-axis automatic lathe
JP5161292B2 (en) Forging roll
TWI814479B (en) Janggu shaped worm shaft processing device
JP6273715B2 (en) Processing apparatus and processing method for variable gear ratio rack
JP4429944B2 (en) Method of manufacturing a rolling die for hourglass worms and an apparatus for manufacturing a rolling die for hourglass worms
JP2008238218A (en) Forging roll
TWI511817B (en) A B-axis device that automatically adjusts the backlash

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20150210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151210

R150 Certificate of patent or registration of utility model

Ref document number: 5866643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees