JP2014079264A - Method for stopping fermentation of fermented food product by non-heat sterilization - Google Patents
Method for stopping fermentation of fermented food product by non-heat sterilization Download PDFInfo
- Publication number
- JP2014079264A JP2014079264A JP2014025827A JP2014025827A JP2014079264A JP 2014079264 A JP2014079264 A JP 2014079264A JP 2014025827 A JP2014025827 A JP 2014025827A JP 2014025827 A JP2014025827 A JP 2014025827A JP 2014079264 A JP2014079264 A JP 2014079264A
- Authority
- JP
- Japan
- Prior art keywords
- yeast
- pressure
- mpa
- low
- fermentation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Alcoholic Beverages (AREA)
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
- General Preparation And Processing Of Foods (AREA)
Abstract
Description
本発明は、非加熱殺菌の利点を損なわない圧力値での圧力処理によって殺菌が可能となる低耐圧性酵母を用いて製造する発酵食品の非加熱殺菌による発酵停止方法に関するものである。 The present invention relates to a method for stopping fermentation by non-heat sterilization of fermented foods produced using low-pressure yeast that can be sterilized by pressure treatment at a pressure value that does not impair the advantages of non-heat sterilization.
味噌、醤油、酒などの発酵・醸造食品は、いずれも酵母の発酵作用を利用して製造されている。 Fermented and brewed foods such as miso, soy sauce, and liquor are all manufactured using the fermenting action of yeast.
また、これらの発酵・醸造食品は、通常、一定の発酵・熟成期間を経過した後、過発酵などを防ぐために濾過や加熱処理により酵母の分離、殺菌が行われる。 In addition, these fermented and brewed foods are usually subjected to yeast separation and sterilization by filtration or heat treatment to prevent overfermentation after a certain period of fermentation and aging.
例えば、味噌は50〜70℃で60分、醤油は70〜85℃で10〜30分の加熱処理が行われる。また、清酒ではおり引き、濾過した生酒を60〜70℃で10分間加熱処理して殺菌と酵素の失活を行う。 For example, miso is heated at 50 to 70 ° C. for 60 minutes, and soy sauce is heated at 70 to 85 ° C. for 10 to 30 minutes. In addition, the sake that has been pulled and filtered with sake is heat-treated at 60 to 70 ° C. for 10 minutes to sterilize and deactivate the enzyme.
しかし、このような従来の分離・殺菌方法では、加熱処理を伴うことで食品の風味、色合いが変化してしまう恐れがあり、加熱処理後には速やかに冷却する必要があるなど、手間を要するものであった。 However, such conventional separation / sterilization methods may change the flavor and color of food due to heat treatment, and require time-consuming cooling, such as quick cooling after heat treatment. Met.
さらに均一な加熱処理が必要であり、この加熱処理が不十分であると、残存する酵母による過発酵や、炭酸ガスの発生によりパック詰めされた製品の膨れが起こって商品価値が失われるなどの問題もある。 More uniform heat treatment is necessary, and if this heat treatment is insufficient, the product value is lost due to over-fermentation by remaining yeast and swelling of the packed product due to the generation of carbon dioxide gas. There is also a problem.
そこで、このような問題を解決するために、従来、特開平7−213277号(特許文献1)のように発酵・熟成後、0〜15℃の低温域において発酵を抑える方法や、特開2004−73063号(特許文献2)のように低温感受性酵母と乳酸菌を併用した発酵食品の製造方法が提案されている。 Therefore, in order to solve such a problem, conventionally, as in JP-A-7-213277 (Patent Document 1), a method for suppressing fermentation in a low-temperature range of 0 to 15 ° C. after fermentation and ripening, As described in JP-A-73063 (Patent Document 2), a method for producing fermented foods using a combination of low-temperature sensitive yeast and lactic acid bacteria has been proposed.
しかし、これらの方法では酵母が殺菌されるわけではないので、新たに発酵後の温度管理が必要となってしまうものであった。 However, since yeast is not sterilized by these methods, temperature control after fermentation is newly required.
発酵(醸造)食品において、発酵・熟成後に食品の有用成分を変質させず、色合いを損なわずに酵母を殺菌できる方法が望まれている。 In fermented (brewed) foods, there is a demand for a method that can sterilize yeast without altering useful components of foods after fermentation and ripening, and without losing color.
出願人は、これまでに圧力処理(高圧処理とも称される。)をテーマに食品に対する様々な研究・実験を行っており、この圧力処理によって上記課題を解決できないかと考えていた。 The applicant has so far conducted various studies and experiments on foods under the theme of pressure treatment (also referred to as high pressure treatment), and thought that the above problems could be solved by this pressure treatment.
この圧力処理は、およそ100MPa以上の圧力を加えて食品の加工・殺菌を行う技術で、従来から、ジャム、米飯、めんつゆ、加工玄米等のほかに、味噌、醤油などの発酵食品の製造にも用いられているという実績がある。 This pressure treatment is a technology that processes and sterilizes food by applying a pressure of about 100 MPa or more, and has traditionally been used to produce fermented foods such as miso and soy sauce in addition to jam, cooked rice, noodle soup, and processed brown rice. There is a track record of being used.
また、非加熱殺菌技術であるこの圧力処理は、食品の有用成分を変質させずに、酵母だけを選択的に殺菌することが可能であり、さらには、一般的に酵母の殺菌には300MPa、10分以上の圧力処理を行えばよいこともわかっている。 In addition, this pressure treatment, which is a non-heat sterilization technique, can selectively sterilize only yeast without altering useful components of food. Furthermore, generally, 300 MPa, It has also been found that pressure treatment for 10 minutes or more may be performed.
従って、この圧力処理によれば、発酵・熟成後に食品の有用成分を変質させず、色合いを損なわずに酵母を殺菌できるのではないかと出願人は着目したのである。 Therefore, the applicant has paid attention to this pressure treatment that yeast can be sterilized without deteriorating useful components of food after fermentation and ripening, and without losing color.
しかし、実験を繰り返したところ、300MPa、10分間の圧力処理を行っても、酵母によっては生残する可能性があり、確実とは言えない結果であった。 However, when the experiment was repeated, even if pressure treatment was performed at 300 MPa for 10 minutes, there was a possibility of survival depending on the yeast, which was not a reliable result.
300MPa以上の圧力を加えれば、さらに高い殺菌効果が得られることになるのであるが、処理設備が大型化・高額化して処理コスト高ともなるほか、食品にも加熱殺菌と同様に有用成分の低減、色合いの変化が生じてしまい、非加熱殺菌としての利点を生かすことができなくなってしまう。また、圧力値が高すぎると、ケフィアヨーグルトを代表とする酵母と乳酸菌の並行複合発酵食品においては、酵母だけでなく、発酵後でも有用な乳酸菌まで死滅させてしまう恐れもある。 If a pressure of 300 MPa or more is applied, a higher sterilization effect can be obtained, but the processing equipment becomes larger and more expensive, resulting in a higher processing cost. Therefore, a change in hue occurs, and the advantage as non-heat sterilization cannot be utilized. In addition, if the pressure value is too high, in the parallel complex fermented food of yeast and lactic acid bacteria represented by kefir yogurt, not only yeast but also useful lactic acid bacteria may be killed after fermentation.
出願人は、このような現状に鑑み、何とか非加熱殺菌技術である圧力処理を利用して食品の変質・色合いの変化などを生じずに酵母を殺菌できる方法はないかと研究を進めた末に、発想の転換を図り、予め圧力に対して耐性の低い酵母を用いて発酵食品を製造すれば、その後の圧力処理によって確実に酵母を殺菌できるのではないかと着眼した。 In light of the current situation, the applicant has been researching whether there is a method that can sterilize yeast without causing alteration or color change of food by using pressure treatment, which is a non-heat sterilization technique. The idea was changed, and if fermented foods were produced in advance using yeast having low resistance to pressure, it was noted that yeast could be reliably sterilized by subsequent pressure treatment.
即ち、本発明は、非加熱殺菌の利点を損なわない圧力値での圧力処理によって簡単に殺菌可能となる低耐圧性酵母を用いて製造した発酵食品の非加熱殺菌による発酵停止方法を提供することを目的とする。 That is, the present invention provides a method for stopping fermentation by non-heat sterilization of fermented foods produced using a low pressure resistant yeast that can be easily sterilized by pressure treatment at a pressure value that does not impair the advantages of non-heat sterilization. With the goal.
添付図面を参照して本発明の要旨を説明する。 The gist of the present invention will be described with reference to the accompanying drawings.
サッカロミセス属の野生酵母菌株または突然変異処理を施したサッカロミセス属の酵母菌株からスクリーニングした静水圧1MPa以上200MPa以下の非加熱での圧力処理で殺菌されることを確認した低耐圧性酵母を用いて食材を発酵させてなる発酵食品に対して、静水圧1MPa以上200MPa以下の非加熱での圧力処理を行って前記発酵食品の前記低耐圧性酵母を殺菌し発酵を停止させることを特徴とする発酵食品の非加熱殺菌による発酵停止方法に係るものである。 Ingredients using low-pressure-resistant yeast that was screened from wild yeast strains of Saccharomyces spp. Or yeast strains of Saccharomyces spp. Fermented food obtained by subjecting the fermented food obtained by fermenting the fermented food to non-heating pressure treatment at a hydrostatic pressure of 1 MPa to 200 MPa to sterilize the low pressure-resistant yeast of the fermented food and stop the fermentation. This relates to a method for stopping fermentation by non-heat sterilization.
本発明は上述のようにしたから、発酵食品の発酵を停止させる際に、大型で高額な圧力処理設備を要しない静水圧1MPa以上200MPa以下の非加熱での圧力処理によって、即ち非加熱殺菌の利点を損なわない圧力値での圧力処理によって簡単に発酵食品の酵母を殺菌して発酵食品の発酵を停止させることが可能となり、しかも圧力処理によって有用成分が変質したり、色合いが損なわれたりすることもなく発酵食品の発酵を停止できる極めて実用性に秀れた画期的な発酵食品の非加熱殺菌による発酵停止方法となる。 Since the present invention has been described above, when stopping fermentation of fermented foods, it is possible to perform non-heat sterilization by non-heating pressure treatment with a hydrostatic pressure of 1 MPa to 200 MPa which does not require a large and expensive pressure treatment facility. It is possible to easily sterilize fermented food yeast by stopping the fermentation of the fermented food by pressure treatment at a pressure value that does not impair the advantages, and the pressure treatment may change the useful components or damage the color. It becomes a fermentation stopping method by non-heat sterilization of an innovative fermented food excellent in practicality that can stop fermentation of fermented food without any problems.
好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。 An embodiment of the present invention which is considered to be suitable will be briefly described with reference to the drawings showing the operation of the present invention.
本発明に用いる発酵食品は、サッカロミセス属の野生酵母菌株または突然変異処理を施したサッカロミセス属の酵母菌株からスクリーニングした静水圧1MPa以上200MPa以下の非加熱での圧力処理で殺菌されることを確認した低耐圧性酵母を用いて食材を発酵させて成る発酵食品である。 It was confirmed that the fermented food used in the present invention was sterilized by non-heating pressure treatment at a hydrostatic pressure of 1 MPa or more and 200 MPa or less screened from a wild yeast strain of the genus Saccharomyces or a yeast strain of the genus Saccharomyces subjected to mutation treatment. It is a fermented food made by fermenting ingredients using low-pressure yeast.
例えば、この低耐圧性酵母を用いて、定法に従い食材を発酵させて清酒、ビール、ワイン、パン、醤油、味噌等各種の発酵食品を製造可能である。 For example, using this low-pressure resistant yeast, various fermented foods such as sake, beer, wine, bread, soy sauce, and miso can be produced by fermenting food materials according to a conventional method.
尚、本発明でいう「発酵食品」とは、酵母による発酵作用を利用して製造される醸造食品も含む意味合いで用いている。 In addition, the "fermented food" as used in the field of this invention is used in the meaning including the brewed food manufactured using the fermenting action by yeast.
本発明は、この低耐圧性酵母を用いて食材を発酵させた発酵食品に対して、一定の発酵・熟成期間を経過した後、この発酵食品に静水圧1MPa以上200MPa以下の非加熱での圧力処理を行って、この発酵食品の発酵に用いた低耐圧性酵母を殺菌し、この発酵食品の発酵を停止させるものである。 In the present invention, the fermented food obtained by fermenting food using this low pressure-resistant yeast is subjected to a non-heated pressure of hydrostatic pressure of 1 MPa or more and 200 MPa or less after a certain fermentation / ripening period. The low-pressure yeast used for fermentation of this fermented food is sterilized by processing, and fermentation of this fermented food is stopped.
このような静水圧1MPa以上200MPa以下の圧力値での圧力処理は、既存の圧力処理設備で問題なく行うことができるので、追加の設備投資を必要とせず、また、食品の変質・色合いの変化なども生じさせることがない。 Such hydrostatic pressure treatment at a pressure value of 1 MPa or more and 200 MPa or less can be carried out without any problems with existing pressure treatment equipment, so no additional equipment investment is required, and the quality of food is altered or changed. And so on.
即ち、本発明によれば、新たに大型で高額な設備を要せずとも、有用成分や色合いを損なわずに発酵食品の酵母(低耐圧性酵母)を殺菌でき、発酵食品の発酵を停止させることができる。 That is, according to the present invention, yeast (low pressure-resistant yeast) of fermented food can be sterilized without damaging useful components and colors without requiring new large and expensive equipment, and fermentation of fermented food is stopped. be able to.
以下、本発明に用いる発酵食品の発酵に用いられる低耐圧性酵母のスクリーニング方法の具体例について説明する。 Hereinafter, the specific example of the screening method of the low pressure resistant yeast used for fermentation of the fermented food used for this invention is demonstrated.
[具体例1]
具体例1は、サッカロミセス属の野生酵母菌株または突然変異処理を施したサッカロミセス属の酵母菌株について、20℃以下の低温域での増殖が可能な酵母をスクリーニングすることを特徴とする低耐圧性酵母のスクリーニング方法である。
[Specific Example 1]
Specific example 1 is a low-pressure-resistant yeast characterized by screening a yeast capable of growing in a low temperature range of 20 ° C. or lower for a wild yeast strain of Saccharomyces or a yeast strain of Saccharomyces that has been subjected to mutation treatment. Screening method.
具体的には、例えば、サッカロミセス属の野生酵母菌株または突然変異処理を施したサッカロミセス属の酵母菌株を、0℃から20℃までの低温域内で段階的に温度を変更して培養することにより、この低温域にて増殖が可能な酵母をスクリーニングする。 Specifically, for example, by culturing a wild yeast strain of the genus Saccharomyces or a yeast strain of the genus Saccharomyces that has been subjected to a mutation treatment in a low temperature range from 0 ° C. to 20 ° C., by changing the temperature stepwise. Yeast that can grow in this low temperature range is screened.
更に具体的には、例えば、サッカロミセス属の野生菌株(突然変異処理を施していない菌株)または突然変異処理を施したサッカロミセス属の酵母菌株をYPD寒天培地等のプレート上に、形成されるコロニー数が200個程度となるように接種する。 More specifically, for example, the number of colonies formed on a plate such as a YPD agar medium when a Saccharomyces wild strain (a strain not subjected to mutation treatment) or a mutant Saccharomyces yeast strain subjected to a mutation treatment is used. Inoculate so that there are about 200.
プレートを0℃にて7日間程度まで培養し、コロニーの形成(増殖性の良否)を確認する。0℃にて良好に形成されるコロニーがある場合は、それを白金耳等で釣菌し、低耐圧性酵母の候補として、再び培養を行う。 The plate is cultured at 0 ° C. for about 7 days to confirm colony formation (proliferative quality). If there is a colony that is favorably formed at 0 ° C., the colony is caught with a platinum loop or the like and cultured again as a candidate for a low pressure resistant yeast.
0℃にてコロニーの形成が見られないか、各コロニーの生育能の有意差が見られない場合は培養温度を2℃程度上げて、再度7日間程度まで培養を行い、コロニーの形成を確認する。 If colony formation is not observed at 0 ° C, or if there is no significant difference in the viability of each colony, increase the culture temperature by about 2 ° C and repeat the culture for about 7 days to confirm the formation of colonies. To do.
2℃での培養において、コロニーの形成が良好であるものが認められる場合は、そのコロニーを釣菌し、低耐圧性酵母の候補として培養を行う。 In the case of culturing at 2 ° C., if a colony is formed well, the colony is picked and cultured as a candidate for a low pressure resistant yeast.
以下、同様にして0℃から20℃程度までの適宜選択した低温域で3日から7日程度培養後にコロニーの形成の有無を確認し、コロニーの形成が良好であれば低耐圧性酵母の候補として培養し、コロニーの形成が見られないか、各コロニーの生育能の有意差が見られない場合は培養温度を段階的に上げて培養を行うという手順を繰り返して、低温にて増殖が良好であるコロニーを選抜する。 In the same manner, the presence or absence of colonies was confirmed after culturing for about 3 to 7 days in an appropriately selected low temperature range from about 0 ° C. to about 20 ° C. If the colony formation is not observed, or if there is no significant difference in the growth ability of each colony, repeat the procedure of increasing the culture temperature step by step, and grow well at low temperature Select the colonies that are
このようにして選抜された酵母は、静水圧1MPa以上200MPa以下の非加熱での圧力処理を施すことによって殺菌されることが出願人の実験により確認されている。即ち、一般的な酵母の培養至適温度が30℃前後であるのに対し、低耐圧性の酵母は、0℃〜20℃程度の低温域にて良好に増殖するという特性を有することを見い出し、この特性を利用して低耐圧性菌株をスクリーニングすることに成功した。 It has been confirmed by the applicant's experiment that the yeast thus selected is sterilized by applying non-heating pressure treatment at a hydrostatic pressure of 1 MPa to 200 MPa. That is, it is found that the optimum temperature for culturing yeast is around 30 ° C., whereas the low pressure resistant yeast has a characteristic that it grows well in a low temperature range of about 0 ° C. to 20 ° C. Using this property, we succeeded in screening low-pressure-resistant strains.
以下、更に詳しく説明する。 This will be described in more detail below.
スクリーニングの対象菌株としては、例えば、サッカロミセス・セレビシエに属する酵母菌株で、突然変異処理を施していない野生菌株、または突然変異処理した株を対象とすることができる。突然変異処理は、X線、UV照射、エチルメタンスルホン酸(EMS)、ニトロソグアニジン(NTG)処理など何らかの方法で行うものとする。通常、変異処理後の生存率が10%以下となるように処理を行う。これ以上生存率を低くすると、余分な変異が生じ、好ましくない。変異処理は、2倍体の酵母でもよいが、1倍体の胞子株を用いる方がより効率的である。 As a target strain for screening, for example, a yeast strain belonging to Saccharomyces cerevisiae, which has not been subjected to mutation treatment, or a mutant treatment strain can be used. Mutation treatment is carried out by some method such as X-ray, UV irradiation, ethylmethanesulfonic acid (EMS), nitrosoguanidine (NTG) treatment. Usually, the treatment is performed so that the survival rate after the mutation treatment is 10% or less. If the survival rate is further reduced, an extra mutation occurs, which is not preferable. Although the diploid yeast may be used for the mutation treatment, it is more efficient to use a haploid spore strain.
また、使用する培地としては、炭素源、窒素源、無機イオン、さらに必要に応じて有機微量栄養素を含有する通常の培地が使用できる。例えば、YPD寒天培地(酵母エキス、グルコース、ポリペプトン、寒天、蒸留水)、YM寒天培地(酵母エキス、麦芽エキス、ペプトン、グルコース、寒天、蒸留水、pH5〜6)等が用いられる(液体培地では寒天を除く)。培養方法として、例えば30℃、3日間培養し、遠心分離(3000rpm、10分)にて集菌後、生理食塩水で2回遠心洗浄し、適当な菌濃度になるように生理食塩水に懸濁する。 Moreover, as a culture medium to be used, the normal culture medium which contains a carbon source, a nitrogen source, an inorganic ion, and also an organic trace nutrient as needed can be used. For example, YPD agar medium (yeast extract, glucose, polypeptone, agar, distilled water), YM agar medium (yeast extract, malt extract, peptone, glucose, agar, distilled water, pH 5-6), etc. are used (in liquid medium) Except agar). As a culture method, for example, it is cultured at 30 ° C. for 3 days, collected by centrifugation (3000 rpm, 10 minutes), washed twice with physiological saline, and suspended in physiological saline to obtain an appropriate bacterial concentration. It becomes cloudy.
培養は一般的な条件でよく、培養温度は一般に20〜30℃、好ましくは30℃前後、培養日数は1〜7日間、好ましくは3日間程度である。 The culture may be performed under general conditions, and the culture temperature is generally 20 to 30 ° C., preferably around 30 ° C., and the culture days are 1 to 7 days, preferably about 3 days.
変異処理を行う場合、この懸濁液をUV、NTG、EMSなどの変異剤を用いて、生存率がおよそ10%以下になるように処理し、遠心集菌後、生菌数が約4×107程度になるように液体培地に懸濁し、30℃、12時間振とう培養する。 When mutation treatment is performed, this suspension is treated with a mutation agent such as UV, NTG, EMS or the like so that the survival rate is about 10% or less. After centrifugation, the number of viable bacteria is about 4 ×. Suspend in a liquid medium to about 10 7 and culture with shaking at 30 ° C. for 12 hours.
尚、以上の点は、後述の具体例2〜5においても同様である。 In addition, the above point is the same also in the specific examples 2-5 mentioned later.
Saccharomyces cerevisiae NBRC1136(生物基盤技術評価研究所 分譲株)の野生菌株をYM培地にて30℃、3日間初期培養を行った。 A wild strain of Saccharomyces cerevisiae NBRC1136 (distributed strain of Biotechnology Research Institute) was initially cultured in a YM medium at 30 ° C. for 3 days.
菌体を3000rpm、3分間の遠心分離により回収した後、滅菌水を5ml添加して洗浄した。 The cells were collected by centrifugation at 3000 rpm for 3 minutes, and then washed by adding 5 ml of sterilized water.
この洗浄操作を2回繰返した後、適当な濃度となるように生理食塩水に懸濁した。 This washing operation was repeated twice and then suspended in physiological saline so as to obtain an appropriate concentration.
懸濁液を希釈した後、プレート上に形成されるコロニー数が200程度となるように接種した。 After the suspension was diluted, it was inoculated so that the number of colonies formed on the plate was about 200.
0℃で3日から7日間程度培養を行い、コロニーの形成の有無を日々確認した。 Cultivation was performed at 0 ° C. for about 3 to 7 days, and the presence or absence of colony formation was confirmed every day.
コロニーの形成が認められない場合、20℃までの低温域内で温度を2℃ずつ段階的に上げながら培養を行い、低温域にて増殖可能なコロニーを形成させた。 When colony formation was not observed, the cells were cultured in a low temperature range up to 20 ° C. while gradually increasing the temperature by 2 ° C. to form colonies capable of growing in the low temperature range.
その結果、10℃、5日から7日間にて目視で確認できる程度のコロニーが形成され、その中より、特に生育の良好なものを複数個(10〜20個程度)白金耳にて採取し、YM培地にて再び30℃、3日間培養を行い、これを低耐圧性株として取得した。 As a result, colonies of a degree that can be visually confirmed at 10 ° C. for 5 to 7 days are formed. Among them, a plurality (about 10 to 20) of particularly good growth are collected with platinum ears. Then, the culture was again carried out in YM medium at 30 ° C. for 3 days, and this was obtained as a low pressure-resistant strain.
その後、取得した低耐圧性株に200MPaの圧力処理を行って耐圧性を評価した。 Thereafter, the obtained low pressure resistant strain was subjected to a pressure treatment of 200 MPa to evaluate the pressure resistance.
図1は、具体例1でスクリーニングした酵母と無処理の酵母との各圧力条件における耐圧性を検証したグラフである。 FIG. 1 is a graph showing the pressure resistance of each of the yeast screened in Example 1 and the untreated yeast under pressure conditions.
この結果から、無処理の酵母は、殺菌に300MPa程度の圧力処理を要するが、具体例1でスクリーニングした酵母は、200MPa程度の圧力処理で殺菌が可能であることが確認された。 From this result, it was confirmed that untreated yeast requires a pressure treatment of about 300 MPa for sterilization, but the yeast screened in Example 1 can be sterilized by a pressure treatment of about 200 MPa.
尚、ここでいう圧力処理は、水などの液体を媒体とした静水圧処理をいい、以下に記載する具体例2〜5の圧力処理もすべてこれを意味している。 In addition, the pressure process here means the hydrostatic pressure process which used liquids, such as water, as a medium, and all the pressure processes of the specific examples 2-5 described below also mean this.
[具体例2]
具体例2は、サッカロミセス属の野生酵母菌株または突然変異処理を施したサッカロミセス属の酵母菌株について、栄養型細胞のサイズが、その菌株内の各酵母が持つ栄養型細胞の平均サイズよりも大きい酵母をスクリーニングすることを特徴とする低耐圧性酵母のスクリーニング方法である。
[Specific Example 2]
Specific Example 2 is a yeast having a vegetative cell size larger than the average size of the vegetative cells possessed by each yeast in the strain of a Saccharomyces genus wild yeast strain or a mutant Saccharomyces genus yeast strain. Is a screening method for low pressure-resistant yeast, characterized by screening.
具体的には、例えば、サッカロミセス属の野生酵母菌株または突然変異処理を施したサッカロミセス属の酵母菌株を培養し集菌した後、生理食塩水に懸濁し、この懸濁液から自然沈下法あるいは遠心分離法あるいは密度勾配遠心法あるいはエルトリエータロータ分離により形態サイズが大きい酵母(栄養型細胞のサイズが大きい酵母は形態サイズが大きい。)をスクリーニングする。 Specifically, for example, a wild yeast strain of Saccharomyces sp. Or a yeast strain of Saccharomyces sp. That has been subjected to mutation treatment is cultured and collected, and then suspended in physiological saline. A yeast having a large morphological size (a yeast having a large size of vegetative cells has a large morphological size) is screened by a separation method, density gradient centrifugation, or L-triator rotor separation.
更に具体的には、例えば、サッカロミセス属の野生酵母菌株または突然変異処理を施したサッカロミセス属の酵母菌株を培養し、集菌、洗浄後に、適当な菌濃度になるように生理食塩水に懸濁する。 More specifically, for example, a wild yeast strain of Saccharomyces sp. Or a yeast strain of Saccharomyces sp. That has been subjected to mutation treatment is cultured, collected and washed, and then suspended in physiological saline so as to obtain an appropriate bacterial concentration. To do.
懸濁液の菌濃度は好ましくは103〜104/ml程度であり、菌体の凝集塊を解離させるために、懸濁液を超音波装置に低出力条件にて15〜30秒程度かけるとよい。 The bacterial concentration of the suspension is preferably about 10 3 to 10 4 / ml. In order to dissociate the aggregates of the bacterial cells, the suspension is subjected to an ultrasonic device for about 15 to 30 seconds under low output conditions. Good.
このようにして調整した懸濁液から、例えば、自然沈降法、遠心分離法、密度勾配遠心法、エルトリエータロータなどの方法により形態上のサイズが大きい酵母を選抜する。 From the suspension thus prepared, for example, yeast having a large morphological size is selected by a method such as natural sedimentation, centrifugation, density gradient centrifugation, or L-triator rotor.
例えば、自然沈降法としては、適当な濃度に調整したショ糖溶液等に菌液を懸濁し、一定時間静置し、細胞密度の大きいものを沈降させる。酵母等の微生物においては、概して栄養型細胞のサイズの大きいものの方が細胞密度が大きく、細胞密度の小さいものはサイズが小さい。 For example, as a natural sedimentation method, a bacterial solution is suspended in a sucrose solution or the like adjusted to an appropriate concentration and allowed to stand for a certain period of time to precipitate a cell having a high cell density. In microorganisms such as yeast, cells having larger vegetative cells generally have a higher cell density, and cells having a lower cell density have a smaller size.
よって一定時間静置後の沈殿物を採取することにより、栄養型細胞のサイズの大きい酵母を分離することが可能である。 Therefore, it is possible to isolate yeast having a large size of vegetative cells by collecting the precipitate after standing for a certain period of time.
また、密度勾配遠心法としては、例えば60%ショ糖溶液などの密度の高い液体を遠沈管の底におき、15%ショ糖などの密度の低い液体を上部において、その間を密度が順次変わるように調整する。 In the density gradient centrifugation method, for example, a high-density liquid such as a 60% sucrose solution is placed at the bottom of the centrifuge tube, and a low-density liquid such as 15% sucrose is placed at the top, and the density is changed sequentially between them. Adjust to.
また、もう一つの密度勾配を作る方法として、塩化セシウム溶液のように強い遠心を施すとその遠心力により自然に密度勾配が生じるものもある。 As another method for creating a density gradient, there is a method in which a density gradient is naturally generated by centrifugal force when a strong centrifugation is performed like a cesium chloride solution.
このような方法により形成した密度勾配液の上層部に適当に希釈した菌液を静かに重層し、一定時間放置した後、遠心分離機にかけると、各溶液層の密度に応じて酵母を密度ごとに分離することができる。 Gently overlay the appropriately diluted bacterial solution on the upper part of the density gradient solution formed by such a method, leave it for a certain period of time, and centrifuge it, and the yeast will have a density according to the density of each solution layer. Can be separated.
また、エルトリエータロータは、遠心力と懸濁液を流す流速に応じて、種々の大きさに応じて、各フラクションとして分離することができる。 In addition, the L triator rotor can be separated as each fraction according to various sizes according to the centrifugal force and the flow rate of flowing the suspension.
酵母のサイズとして、出芽酵母であるサッカロミセス・セレビシエの一倍体細胞では長径5μm程度の卵形をしており、二倍体細胞はそれより若干大きく、両端が多少とがったようなレモン形をしている。 Saccharomyces cerevisiae haploid cells, which are the budding yeast, have an oval shape with a major axis of about 5 μm, and the diploid cells are slightly larger than that and have a lemon shape with both ends slightly cut off. ing.
上記のような方法により、酵母を栄養型細胞のサイズごとに分離する場合、予め光学顕微鏡、ミクロメーター等で混在する酵母のサイズ、形態等を観察しておく必要があり、好ましくはフローサイトメトリー法などにより懸濁液中の酵母の粒度分布を計測しておくことが望ましい。 When separating yeast according to the size of the vegetative cell by the method as described above, it is necessary to observe the size and form of the yeast mixed with an optical microscope, a micrometer, etc., preferably flow cytometry. It is desirable to measure the particle size distribution of the yeast in the suspension by a method or the like.
酵母の分離、分画は、好ましくは1μm程度ごとの範囲が望ましいが、手法や使用する装置にもよるため、確認した懸濁液中の酵母サイズ、形態をもとに、適切な手法、装置を選択することとする。 The separation and fractionation of yeast is preferably in the range of about 1 μm. However, since it depends on the method and the device used, an appropriate method and device are used based on the confirmed yeast size and form in the suspension. Will be selected.
選抜する酵母のサイズの基準として、特に明確なものはないが、概ね全体の細胞サイズの粒径分布のうち、サイズの大きい方から10%以下の範囲を対象に選抜を行うものとする。 Although there is no particular standard for the size of yeast to be selected, selection is generally made for a range of 10% or less from the larger size of the particle size distribution of the overall cell size.
このようにして選抜された酵母は、静水圧1MPa以上200MPa以下の非加熱での圧力処理によって殺菌されることが出願人の実験により確認されている。即ち、低耐圧性の酵母は、栄養型細胞のサイズが、菌株内の各酵母が持つ栄養型細胞の平均サイズよりも大きいという特性を有することを見い出し、この特性を利用して低耐圧性菌株をスクリーニングすることに成功した。 It has been confirmed by the applicant's experiment that the yeast thus selected is sterilized by non-heating pressure treatment at a hydrostatic pressure of 1 MPa to 200 MPa. That is, the low-pressure-resistant yeast has the characteristic that the size of the vegetative cells is larger than the average size of the vegetative cells of each yeast in the strain. Succeeded in screening.
以下、更に詳しく説明する。 This will be described in more detail below.
具体例1と同様にして調整した懸濁液を、CR22GII形高速冷却遠心機(日立工機(株)製)、R5E形エルトリエータロータ(日立工機(株)製)からなるエルトリエータ分離システムにより、栄養細胞のサイズによる各フラクションごとに分画を行い、栄養型細胞のサイズが、菌株内に存在する菌の栄養型細胞の平均サイズよりも大きい酵母(低耐圧性株)を取得した(図2参照。)。処理条件として、温度4℃、回転速度3000rpm、流速9ml/min〜23ml/minである(表1参照。)。
The suspension prepared in the same manner as in Example 1 is an L-triator separation system consisting of CR22GII type high-speed cooling centrifuge (manufactured by Hitachi Koki Co., Ltd.) and R5E type L-triator rotor (manufactured by Hitachi Koki Co., Ltd.). Thus, fractionation was performed for each fraction depending on the size of vegetative cells, and yeast (low pressure resistant strain) was obtained in which the size of vegetative cells was larger than the average size of vegetative cells present in the strain ( (See FIG. 2). The processing conditions are a temperature of 4 ° C., a rotational speed of 3000 rpm, and a flow rate of 9 ml / min to 23 ml / min (see Table 1).
図3は、具体例2でスクリーニングした酵母と無処理の酵母との各圧力条件における耐圧性を検証したグラフである。 FIG. 3 is a graph showing the pressure resistance of each of the yeast screened in Example 2 and untreated yeast under pressure conditions.
この結果から、無処理の酵母は、殺菌に300MPa程度の圧力処理を要するが、具体例2でスクリーニングした酵母は、200MPa程度の圧力処理で殺菌が可能であることが確認された。 From this result, it was confirmed that untreated yeast requires a pressure treatment of about 300 MPa for sterilization, but the yeast screened in Example 2 can be sterilized by a pressure treatment of about 200 MPa.
[具体例3]
具体例3は、サッカロミセス属の野生酵母菌株または突然変異処理を施したサッカロミセス属の酵母菌株について、湿度20%以下の低湿度条件下での増殖(生育)が困難な酵母、あるいは湿度80%以上の高湿度条件下での増殖(生育)が可能な酵母をスクリーニングすることを特徴とする低耐圧性酵母のスクリーニング方法である。
[Specific Example 3]
Specific Example 3 is a Saccharomyces genus yeast strain or a Saccharomyces genus yeast strain that has been subjected to a mutation treatment, yeast that is difficult to grow (grow) under low humidity conditions of 20% or less of humidity, or humidity of 80% or more. A method for screening low-pressure-resistant yeast, characterized by screening yeast capable of growing (growing) under high humidity conditions.
具体的には、例えば、サッカロミセス属の野生酵母菌株または突然変異処理を施したサッカロミセス属の酵母菌株を、湿度20%以下の低湿度条件下で培養してこの低湿度条件下で増殖が困難な酵母をスクリーニングするか、若しくはサッカロミセス属の野生酵母菌株または突然変異処理を施したサッカロミセス属の酵母菌株を、湿度80%以上の高湿度条件下で培養してこの高湿度条件下で増殖が可能な酵母をスクリーニングする。 Specifically, for example, a wild yeast strain of Saccharomyces or a yeast strain of Saccharomyces that has been subjected to a mutation treatment is cultured under a low humidity condition with a humidity of 20% or less and is difficult to grow under this low humidity condition. A yeast strain of Saccharomyces sp. Or a Saccharomyces spp. Yeast strain that has been screened or mutated can be cultured under high-humidity conditions with a humidity of 80% or more and can be grown under these high-humidity conditions. Screen for yeast.
更に具体的には、例えば、サッカロミセス属の野生酵母菌株または突然変異処理を施したサッカロミセス属の酵母菌株をYPD培地等のプレート上に形成されるコロニー数が200程度となるように接種する。 More specifically, for example, a Saccharomyces genus wild yeast strain or a mutant Saccharomyces genus yeast strain is inoculated so that the number of colonies formed on a plate such as a YPD medium is about 200.
プレートを30℃などの適当な温度と、湿度10%以下の低湿度条件下にて3日から7日間程度の培養を行い、生育が悪く増殖性の悪い菌株、つまり形成されるコロニーの小さいものを選抜する。 The plate is cultured for about 3 to 7 days under a suitable temperature such as 30 ° C. and a low humidity condition of 10% or less, and the strain has poor growth and poor growth, that is, a small colony is formed. To select.
あるいは30℃、湿度90%以上の高湿度条件下にて良好に生育し増殖する菌株、つまり形成されるコロニーの大きいものを選抜する。 Alternatively, a strain that grows and grows well under a high humidity condition of 30 ° C. and a humidity of 90% or more, that is, a large colony formed is selected.
本方法により、低湿度条件下にて増殖が困難である酵母、高湿度条件下にて増殖が良好である酵母、つまり乾燥に対して耐性の弱い酵母を選抜することが可能である。 By this method, it is possible to select yeasts that are difficult to grow under low humidity conditions, yeasts that grow well under high humidity conditions, that is, yeasts that have low resistance to drying.
このようにして選抜された酵母は、静水圧1MPa以上200MPa以下の非加熱での圧力処理によって殺菌されることが出願人の実験により確認されている。即ち、低耐圧性の酵母は、湿度20%以下の低湿度条件下にて増殖が特に困難であり、湿度80%以上の高湿度条件下にて増殖が良好であること、即ち乾燥に対して耐性が弱いという特性を有することを見い出し、この特性を利用して低耐圧性菌株をスクリーニングすることに成功した。 It has been confirmed by the applicant's experiment that the yeast thus selected is sterilized by non-heating pressure treatment at a hydrostatic pressure of 1 MPa to 200 MPa. That is, low pressure-resistant yeast is particularly difficult to grow under low humidity conditions with a humidity of 20% or less, and has good growth under high humidity conditions with a humidity of 80% or more. We found that it has the characteristic that resistance is weak, and succeeded in screening a low-pressure-resistant strain using this characteristic.
以下、更に詳しく説明する。 This will be described in more detail below.
具体例1と同様に調整した菌液を形成されるコロニー数が200程度となるようにプレートに接種する。30℃、湿度90%にて培養を開始し、経時的にコロニー形成の様子を確認した。 The plate is inoculated so that the number of colonies forming the bacterial solution prepared in the same manner as in Example 1 is about 200. Cultivation was started at 30 ° C. and a humidity of 90%, and colony formation was confirmed over time.
3日から7日間程度の培養にて目視でコロニーの形成が確認でき、その中で特に生育性の良好であるものを10〜20個程度を白金耳にて採取し、YM培地にて再び30℃、3日間培養を行い、これを低耐圧性株として取得した。 The formation of colonies can be confirmed visually by culturing for about 3 to 7 days. Among them, about 10 to 20 samples having particularly good growth are collected with platinum ears, and again in YM medium. Culturing was carried out at 3 ° C. for 3 days, and this was obtained as a low pressure-resistant strain.
その後、取得した低耐圧性株を含む菌液を200MPaまでの圧力処理を行って耐圧性を評価した。 Thereafter, the bacterial solution containing the obtained low-pressure-resistant strain was subjected to pressure treatment up to 200 MPa, and pressure resistance was evaluated.
図4は、具体例3でスクリーニングした酵母と無処理の酵母との各圧力条件における耐圧性を検証したグラフである。 FIG. 4 is a graph in which the pressure resistance of the yeast screened in specific example 3 and the untreated yeast under each pressure condition is verified.
この結果から、無処理の酵母は、殺菌に300MPa程度の圧力処理を要するが、具体例3でスクリーニングした酵母は、200MPa程度の圧力処理で殺菌が可能であることが確認された。 From this result, it was confirmed that the untreated yeast requires a pressure treatment of about 300 MPa for sterilization, but the yeast screened in Example 3 can be sterilized by a pressure treatment of about 200 MPa.
[具体例4]
具体例1と同様にして調整した懸濁液について、凝集塊を破壊したり、また成熟した出芽娘細胞をその母細胞より分離したりするために、菌の希釈液を軽く超音波処理(低出力で10〜15秒)し、その後無菌ペトリ皿に移し紫外線照射を行った。
[Specific Example 4]
For the suspension prepared in the same manner as in Example 1, in order to break up aggregates and separate mature budding daughter cells from their mother cells, the diluted solution of the bacteria is gently sonicated (low 10 to 15 seconds at output), then transferred to a sterile petri dish and irradiated with ultraviolet light.
紫外線照射は、滅菌シャーレに5ml採取し、5cmの距離から出力15Wの殺菌灯にて行った。殺菌灯は松下電工製のGL-15殺菌灯を用いた。 For ultraviolet irradiation, 5 ml was collected in a sterilized petri dish and subjected to a germicidal lamp with an output of 15 W from a distance of 5 cm. As the germicidal lamp, a GL-15 germicidal lamp manufactured by Matsushita Electric Works was used.
処理後の菌液をYM寒天培地に段階希釈した後に接種し、30℃、3日間培養した。 The treated bacterial solution was inoculated after serial dilution in YM agar medium and cultured at 30 ° C. for 3 days.
コロニーの形成されたプレートをマスタープレートとして、レプリカを作製した。 A replica was prepared using the plate on which the colony was formed as a master plate.
レプリカした平板培地を無菌的にパウチに封入し、なるべく空気を排出しつつ、ヒートシールして密封した。 The replicated plate medium was aseptically sealed in a pouch and heat sealed while discharging air as much as possible.
密封した平板培地ごと200MPaの圧力処理を行なった後、無菌的に開封し、再び滅菌シャーレに移して、30℃、3日程度培養させてコロニーを形成させた。 After the sealed flat plate medium was pressure treated at 200 MPa, it was opened aseptically, transferred again to a sterile petri dish, and cultured at 30 ° C. for about 3 days to form colonies.
無処理区と比較して、コロニーの形成されないものを低耐圧性酵母として取得した。 Compared with the untreated section, the one in which no colony was formed was obtained as a low pressure resistant yeast.
具体例4での紫外線照射後の生菌数は2.3×102(処理前は6.3×106)であり、紫外線照射による殺菌率は99.9%である。 In Example 4, the number of viable bacteria after ultraviolet irradiation is 2.3 × 10 2 (6.3 × 10 6 before treatment), and the sterilization rate by ultraviolet irradiation is 99.9%.
また、紫外線照射後に形成されたコロニー100個をレプリカし、そのうち200MPaの圧力処理で死滅するコロニーを2個取得した。 In addition, 100 colonies formed after ultraviolet irradiation were replicated, and 2 colonies that died by pressure treatment of 200 MPa were obtained.
また、取得した2個のコロニーを増殖させ、100MPaの圧力処理で死滅するものは0個であった。 In addition, two colonies obtained were proliferated, and 0 were killed by pressure treatment of 100 MPa.
図5は、具体例4でスクリーニングした酵母と無処理の酵母との各圧力条件における耐圧性を検証したグラフである。 FIG. 5 is a graph in which the pressure resistance of each of the yeast screened in Example 4 and the untreated yeast under pressure conditions is verified.
この結果から、無処理の酵母は、殺菌に300MPa程度の圧力処理を要するが、具体例4でスクリーニングした酵母は、200MPa程度の圧力処理で殺菌が可能であることが確認された。 From this result, it was confirmed that the untreated yeast requires a pressure treatment of about 300 MPa for sterilization, but the yeast screened in Example 4 can be sterilized by a pressure treatment of about 200 MPa.
[具体例5]
具体例5は、前記具体例1〜4のいずれか2以上の低耐圧性酵母のスクリーニング方法を併用して酵母をスクリーニングすることを特徴とする低耐圧性酵母のスクリーニング方法である。
[Specific Example 5]
Specific Example 5 is a low-pressure-resistant yeast screening method characterized in that yeast is screened in combination with any two or more low-pressure-resistant yeast screening methods of Specific Examples 1-4.
上記した低耐圧性酵母のスクリーニング方法のうちのいずれか2つ以上を併用して酵母をスクリーニングすると、より精度良く効果的に低耐圧性酵母をスクリーニングできる。 When yeast is screened by using any two or more of the low-pressure-resistant yeast screening methods described above, the low-pressure-resistant yeast can be screened more accurately and effectively.
尚、これらスクリーニング方法の併用数や、順序は特に限定されるものではない。また、選択した2つ以上の各スクリーニング方法を順序だてて行う必要性はなく、例えば2つの方法を同時的に行うことも可能である。 The number and order of these screening methods used are not particularly limited. Further, it is not necessary to perform the selected two or more screening methods in order, and for example, the two methods can be performed simultaneously.
具体的には、具体例5は、前記具体例1と前記具体例4を組み合わせた場合である。 Specifically, the specific example 5 is a case where the specific example 1 and the specific example 4 are combined.
具体例1と同様に調整した菌液を形成されるコロニー数が200程度となるようにプレートに接種する。 The plate is inoculated so that the number of colonies forming the bacterial solution prepared in the same manner as in Example 1 is about 200.
10℃にて7日間程度培養を行い、形成されるコロニーのうち、特に生育の良好なもの約300個を採取して、プレートに移し、マスタープレートとした。 Cultivation was carried out at 10 ° C. for about 7 days, and about 300 colonies with particularly good growth among the formed colonies were collected and transferred to a plate to obtain a master plate.
マスタープレートより、レプリカを作製し、具体例4と同様に圧力処理を施し、低耐圧性酵母を取得した。 A replica was prepared from the master plate and subjected to pressure treatment in the same manner as in Example 4 to obtain a low pressure-resistant yeast.
具体例5では低耐圧性酵母の一次スクリーニングとして具体例1の方法により、約300個のコロニーを分離した。 In Example 5, about 300 colonies were isolated by the method of Example 1 as a primary screening for low-pressure yeast.
その後、二次スクリーニングとして具体例4の方法により、4個の低耐圧性酵母を取得した。 Thereafter, four low-pressure-resistant yeasts were obtained by the method of Example 4 as secondary screening.
具体例1あるいは具体例4単独でのスクリーニング方法に比べて、高確率で低耐圧性酵母をスクリーニングすることができた。 Compared with the screening method of Specific Example 1 or Specific Example 4 alone, low-pressure yeast could be screened with high probability.
図6は、具体例5でスクリーニングした酵母と無処理の酵母との各圧力条件における耐圧性を検証したグラフである。 FIG. 6 is a graph in which the pressure resistance of the yeast screened in Example 5 and the untreated yeast under each pressure condition is verified.
この結果から、無処理の酵母は、殺菌に300MPa程度の圧力処理を要するが、具体例5でスクリーニングした酵母は、200MPa程度の圧力処理で殺菌が可能であることが確認された。 From this result, it was confirmed that untreated yeast requires a pressure treatment of about 300 MPa for sterilization, but the yeast screened in Example 5 can be sterilized by a pressure treatment of about 200 MPa.
本発明の具体的な実施例について図面に基づいて説明する。 Specific embodiments of the present invention will be described with reference to the drawings.
本実施例は、低耐圧性酵母を用いた発酵食品の非加熱殺菌による発酵停止方法である。 A present Example is the fermentation stop method by the non-heat sterilization of the fermented food using the low pressure resistant yeast.
具体的には、発酵食品は、例えば上記した具体例1〜5のスクリーニング方法のいずれかの方法により得た低耐圧性酵母を使用して発酵させた発酵食品を用いる。 Specifically, for example, fermented food fermented using low-pressure-resistant yeast obtained by any one of the screening methods of Specific Examples 1 to 5 described above is used.
例えばこの低耐圧性酵母を用いて、定法に従い食材を発酵させて得られる発酵食品としては、清酒、ビール、ワイン、パン、醤油、味噌等各種の発酵食品がある。 For example, as fermented foods obtained by fermenting ingredients according to a conventional method using this low pressure resistant yeast, there are various fermented foods such as sake, beer, wine, bread, soy sauce and miso.
本実施例は、この発酵食品が一定の発酵・熟成期間を経過した後、静水圧1MPa以上200MPa以下の非加熱での圧力処理を行うことで、この発酵食品の発酵に用いた低耐圧性酵母を殺菌し発酵を停止させている。 In this example, the low-pressure-resistant yeast used for fermentation of this fermented food by performing non-heating pressure treatment with a hydrostatic pressure of 1 MPa to 200 MPa after the fermented food has passed a certain fermentation / ripening period. Is sterilized to stop fermentation.
このような1MPa以上200MPa以下圧力値での圧力処理は、既存の圧力処理設備で問題なく行うことができるので、追加の設備投資を必要とせず、また、食品の変質・色合いの変化なども生じない。 Such pressure treatment at a pressure value of 1 MPa or more and 200 MPa or less can be carried out without problems with existing pressure treatment equipment, so there is no need for additional equipment investment, and there is also a change in food quality and color. Absent.
従って、新たに大型で高額な設備を要せずとも、有用成分を変質させず、色合いを損なわずに発酵食品の発酵を停止させることができる。 Therefore, the fermentation of the fermented food can be stopped without deteriorating useful components and without impairing the hue without requiring a new large and expensive facility.
尚、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。 Note that the present invention is not limited to this embodiment, and the specific configuration of each component can be designed as appropriate.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014025827A JP5753599B2 (en) | 2014-02-13 | 2014-02-13 | Fermentation stop method by non-heat sterilization of fermented food |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014025827A JP5753599B2 (en) | 2014-02-13 | 2014-02-13 | Fermentation stop method by non-heat sterilization of fermented food |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007340439A Division JP5517406B2 (en) | 2007-12-28 | 2007-12-28 | Fermentation stop method by non-heat sterilization of fermented food |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014079264A true JP2014079264A (en) | 2014-05-08 |
JP5753599B2 JP5753599B2 (en) | 2015-07-22 |
Family
ID=50784084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014025827A Expired - Fee Related JP5753599B2 (en) | 2014-02-13 | 2014-02-13 | Fermentation stop method by non-heat sterilization of fermented food |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5753599B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003210136A (en) * | 2002-01-23 | 2003-07-29 | Enzamin Kenkyusho:Kk | Method for producing health nutritive food |
JP2004229563A (en) * | 2003-01-30 | 2004-08-19 | Nippon Beet Sugar Mfg Co Ltd | Method for producing new bread |
JP2006224042A (en) * | 2005-02-21 | 2006-08-31 | National Research Inst Of Brewing | Breeding method of wastewater treatment yeast, yeast bred by the method, and phosphorus removing and recovering method using the yeast |
-
2014
- 2014-02-13 JP JP2014025827A patent/JP5753599B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003210136A (en) * | 2002-01-23 | 2003-07-29 | Enzamin Kenkyusho:Kk | Method for producing health nutritive food |
JP2004229563A (en) * | 2003-01-30 | 2004-08-19 | Nippon Beet Sugar Mfg Co Ltd | Method for producing new bread |
JP2006224042A (en) * | 2005-02-21 | 2006-08-31 | National Research Inst Of Brewing | Breeding method of wastewater treatment yeast, yeast bred by the method, and phosphorus removing and recovering method using the yeast |
Non-Patent Citations (1)
Title |
---|
JPN6012030004; 日本農芸化学会誌 Vol. 69, No. 8, 199508, pp. 1021-1026 * |
Also Published As
Publication number | Publication date |
---|---|
JP5753599B2 (en) | 2015-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4918412B2 (en) | Fruit and vegetable fermented products and food and drink containing fruit and vegetable fermented products | |
JP5517406B2 (en) | Fermentation stop method by non-heat sterilization of fermented food | |
CN103849581B (en) | Raw brevibacterium and screen purification process and purposes in a kind of Pericarpium Zanthoxyli | |
JP4630389B1 (en) | Novel yeast and method for producing food fermented with the yeast | |
CN110699273B (en) | Lactobacillus casei and application thereof | |
CN104073457B (en) | Carotenoid high-yield strain and application thereof | |
DK3140416T3 (en) | COLLECTION OF PROPIONI BACTERIUM AND Yeast | |
CN104498372B (en) | Fusarium oxysporum BM201, its compound pectinase produced and compound pectinase preparation method and application | |
JP5753599B2 (en) | Fermentation stop method by non-heat sterilization of fermented food | |
JP6618792B2 (en) | Natto that can be heat sterilized | |
CN105816417B (en) | The test method of Lactobacillus rhamnosus extract bacteriostasis in skin care item | |
JP5579774B2 (en) | Fermentation stop method by non-heat sterilization of fermented food | |
CN107058283A (en) | Method using plasma mutagenesis ganoderma lucidum protoplast to build mutant strain | |
JP2904879B2 (en) | Low temperature sensitive lactic acid bacterium mutant, fermented plant produced using the same, and method for producing the same | |
JP2013233111A (en) | Method of culturing laver by adding microbe promoting growth of laver | |
CN116555097A (en) | Lactobacillus plantarum capable of resisting capsaicin stress, microbial inoculum and application thereof | |
CN103275921B (en) | Method for improving cholate tolerance of lactobacillus | |
CN109486731A (en) | A kind of resistance to acetate ethanol bacterium and its application | |
CN111304108B (en) | Leuconostoc lactis and application thereof | |
JP5953544B2 (en) | Production method of pressure sensitive yeast | |
CN107541505A (en) | A kind of method of acidifying low temperature lactic acid bacteria mutant strain after seed selection is weak | |
JP4570202B2 (en) | Cold-sensitive mutant strains of lactic acid bacteria, plant fermented products or fermented fruits obtained using the same, and methods for producing them | |
Buruleanu et al. | Kinetic parameters of lactic acid growth and production for Bifidobacterium lactis BB12 in cabbage juices | |
CN104531570B (en) | Acinetobacter baumannii for producing laccase, method for producing laccase and application | |
JP6567915B2 (en) | Salt-tolerant Shoro strain |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140312 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150423 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150522 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5753599 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |