JP2014077643A - Anemometer device - Google Patents

Anemometer device Download PDF

Info

Publication number
JP2014077643A
JP2014077643A JP2012223845A JP2012223845A JP2014077643A JP 2014077643 A JP2014077643 A JP 2014077643A JP 2012223845 A JP2012223845 A JP 2012223845A JP 2012223845 A JP2012223845 A JP 2012223845A JP 2014077643 A JP2014077643 A JP 2014077643A
Authority
JP
Japan
Prior art keywords
pair
ultrasonic transmission
ultrasonic
wind speed
wind direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012223845A
Other languages
Japanese (ja)
Other versions
JP6089550B2 (en
Inventor
Takuya Furuichi
卓也 古市
Noritomo Hirayama
紀友 平山
Yasuyuki Masunaga
靖行 増永
Hiroaki Norisada
宏明 則定
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012223845A priority Critical patent/JP6089550B2/en
Publication of JP2014077643A publication Critical patent/JP2014077643A/en
Application granted granted Critical
Publication of JP6089550B2 publication Critical patent/JP6089550B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a compact anemometer device with reduced acoustic noise which enables highly accurate measurement of wind direction and velocity.SOLUTION: An anemometer device 100 includes a housing 4 with a flow channel section 6 for a measured fluid 2 to flow formed therein and a pair of ultrasonic transceiver units 1A and 1B, each mounted at a predetermined tilt angle with respect to the flow channel section 6, and is designed to measure wind direction and velocity of the measured fluid 2 on the basis of propagation time of an ultrasonic wave transceived between the pair of ultrasonic transceiver units 1A and 1B. A pair of separate fixing plates 51 and 52 is provided with a space therebetween along an axial direction of the flow channel section 6 to fix the pair of ultrasonic transceiver units 1A and 1B onto the housing 4. The effect of acoustic noise is reduced by attaching each of the pair of ultrasonic transceivers 1A and 1B to each of the pair of the separate fixing plates 51 and 52 with an anti-vibration member 20 for preventing transmission of vibration therebetween.

Description

本発明は、気流監視が必要な装置や施設下で正確に風向風速の計測を行うための風向風速計測装置に係り、特に、半導体製造装置の排気管、クリーンルームやサーバールーム内などの風向風速の計測を行うに好適な装置に関する。   The present invention relates to a wind direction and wind speed measurement device for accurately measuring the wind direction and wind speed under an apparatus or facility that requires air flow monitoring, and in particular, the wind direction and wind speed in an exhaust pipe, a clean room, a server room, etc. of a semiconductor manufacturing apparatus. The present invention relates to an apparatus suitable for performing measurement.

気体の風向風速を計測する装置として、特開昭53−43574号公報(特許文献1)に記載されている熱線式のもの、特開平8−304435号公報(特許文献2)や特開2012−103040号公報(特許文献3)に記載されている超音波式のものが知られている。   As a device for measuring the wind direction and speed of gas, a hot-wire type device described in JP-A-53-43574 (Patent Document 1), JP-A-8-304435 (Patent Document 2), and JP-A-2012- An ultrasonic type described in Japanese Patent No. 103040 (Patent Document 3) is known.

このうち、超音波式の風向風速計測装置は、原理的にゼロ風速の計測が可能で、風速に対してリニアな出力が得られるという特徴があり、高精度な風向風速計測が要求される分野で用いられている。また、この超音波式の風向風速計測装置に、温度変化に起因する音速変化の影響を除去するための音速補正手段を付加することにより、使用環境や気体の温度に依存せず高精度で風速を計測することが可能になる。   Among these, the ultrasonic wind direction and wind speed measuring device is characterized in that it can measure zero wind speed in principle and can obtain a linear output with respect to the wind speed, which requires high-precision wind direction and wind speed measurement. It is used in. In addition, by adding sound velocity correction means for removing the effects of changes in sound velocity due to temperature changes to this ultrasonic wind direction and wind velocity measuring device, the wind velocity is highly accurate regardless of the operating environment and gas temperature. Can be measured.

超音波式風向風速計測装置の測定方法に関しては、一対の超音波送受信部を気体の流れる流路部を間に挟んで相対向するように配置する「Z法(図3参照)」と呼ばれる測定方法や、一対の超音波送受信部を流路部の一方の壁側に配置する「V法(図4参照)」と呼ばれる測定方法などが知られている。ここでは、原理を説明する上で理解しやすいZ法を適用した超音波式風向風速計測装置を例にして従来装置の概要について説明する。   As for the measurement method of the ultrasonic wind direction and wind speed measuring device, a measurement called “Z method (see FIG. 3)” in which a pair of ultrasonic transmission / reception units are arranged so as to face each other with a gas flow channel between them. There are known a method and a measurement method called “V method (see FIG. 4)” in which a pair of ultrasonic transmission / reception units are arranged on one wall side of a flow path unit. Here, an outline of a conventional apparatus will be described by taking as an example an ultrasonic wind direction and wind speed measuring apparatus to which the Z method, which is easy to understand in explaining the principle, is applied.

図3は、Z法による超音波式風向風速計測装置の測定原理を示す図である。
超音波式風向風速計測装置は、超音波の送受信を行う一対の超音波送受信部1A,1B、被測定対象としての気体が流れる流路部6、図示しない伝播時間計測回路等を含む信号処理回路から構成される。超音波送受信部1Aは、流路部6の中心軸に対してθだけ傾けて設置され、かつ、超音波送受信部1Aと超音波送受信部1Bとは流路部6を間に挟んで相対向するように設置される。
FIG. 3 is a diagram showing the measurement principle of the ultrasonic wind direction and wind speed measuring device based on the Z method.
The ultrasonic wind direction and wind speed measuring device includes a pair of ultrasonic transmission / reception units 1A and 1B that transmit and receive ultrasonic waves, a flow path unit 6 through which a gas as a measurement target flows, a propagation time measurement circuit (not shown), and the like. Consists of The ultrasonic transmission / reception unit 1A is installed with an inclination of θ with respect to the central axis of the flow path unit 6, and the ultrasonic transmission / reception unit 1A and the ultrasonic transmission / reception unit 1B face each other with the flow path unit 6 therebetween. To be installed.

いま、圧電振動子からなる超音波送受信部1Aに、図5(a)に示すようなパルス電圧を印加すると、超音波送受信部1Aから流路部6内に向けて超音波が出射され、流路内を伝播した超音波は超音波送受信部1Bで受信され、図5(b)に示すような超音波受信信号が得られる。   Now, when a pulse voltage as shown in FIG. 5A is applied to the ultrasonic transmission / reception unit 1A made of a piezoelectric vibrator, an ultrasonic wave is emitted from the ultrasonic transmission / reception unit 1A into the flow path unit 6 and flows. The ultrasonic wave propagated in the road is received by the ultrasonic transmission / reception unit 1B, and an ultrasonic reception signal as shown in FIG. 5B is obtained.

ここで、風速がゼロの時の超音波の伝播時間Tは、次式(1)
T=L/C・・・(1)
で表される。但し、Lは超音波の伝播経路長、Cは流路中を流れる気体固有の音速である。
Here, the propagation time T of the ultrasonic wave when the wind speed is zero is expressed by the following equation (1).
T = L / C (1)
It is represented by However, L is the propagation path length of the ultrasonic wave, and C is the sound speed inherent to the gas flowing in the flow path.

いま、流路部6中を気体が風速V1で流れると、伝播時間T1は図5(c)のように変化する。このときの超音波の伝播時間T1は、次式(2)
T1=L/C1・・・(2)
で表される。
Now, when the gas flows through the flow path portion 6 at the wind speed V1, the propagation time T1 changes as shown in FIG. The ultrasonic wave propagation time T1 at this time is expressed by the following equation (2).
T1 = L / C1 (2)
It is represented by

ここでC1は風速の影響を受けた時の気体の流速であり、次式(3)
C1=C+V1cosθ・・・(3)
で表される。
Here, C1 is the flow velocity of the gas when affected by the wind speed, and the following equation (3)
C1 = C + V1 cos θ (3)
It is represented by

式(3)を式(2)に代入して風速V1について解くと、次式(4)
V1=L/T1cosθ―C・・・(4)
となり、超音波の伝播時間T1を計測することで風速V1を計測できる。またこのときのV1の符号が風向を示すこととなる。
Substituting equation (3) into equation (2) and solving for wind speed V1, the following equation (4)
V1 = L / T1 cos θ−C (4)
Thus, the wind speed V1 can be measured by measuring the ultrasonic propagation time T1. In addition, the sign of V1 at this time indicates the wind direction.

特開昭53−43574号公報JP-A-53-43574 特開平8−304435号公報(段落〔0005〕〜〔0006〕、図1)JP-A-8-304435 (paragraphs [0005] to [0006], FIG. 1) 特開2012−1−3040号公報(段落〔0023〕〜〔0025〕、図1)JP 2012-1-3040 A (paragraphs [0023] to [0025], FIG. 1)

ところで、気流監視が必要な各種の装置や施設における取付けスペースに関する制約から最近では風向風速計測装置の小型化が強く求められているが、風向風速計測装置を小型化しようとして1対をなす超音波送受信部相互間の距離(配置間隔)を短く設定すると音響的な分離が難しくなり、場合によっては、直接的に筐体中を伝わる超音波の信号レベルが気中を伝わる超音波の信号レベルより大きくなって、風向風速計測が出来なくなるという問題がある。   By the way, recently, downsizing of the wind direction and wind speed measuring device has been strongly demanded due to the restrictions on the installation space in various devices and facilities that require airflow monitoring. If the distance between transmitters and receivers (arrangement interval) is set short, acoustic separation becomes difficult, and in some cases, the ultrasonic signal level directly transmitted through the housing is higher than the ultrasonic signal level transmitted through the air. There is a problem that the wind direction and wind speed cannot be measured due to the increase.

本発明は、上記問題点に鑑みてなされたものであって、小型で、しかも、筐体中を伝わる超音波を低減して高精度で風向風速の計測を行うことのできる風向風速計測装置を提供することを目的としている。   The present invention has been made in view of the above-described problems, and is a compact wind-direction wind speed measuring device capable of measuring the wind direction and wind speed with high accuracy by reducing ultrasonic waves transmitted through the housing. It is intended to provide.

請求項1の発明は、被測定流体が流れる流路部が形成された筐体と、前記流路部に対して所定の角度をもって設置される一対の超音波送受信部とを備え、前記一対の超音波送受信部の間で送受される超音波の伝播時間に基づいて被測定流体の風向と風速を計測する風向風速計測装置において、前記流路部の軸方向に沿って間隔を保って設けられ、前記一対の超音波送受信部を前記筐体に固定する2枚一対の分離された固定プレートを備え、前記一対の超音波送受信部の夫々を、振動の伝達を防止するための防振部材を介して前記2枚一対の分離された固定プレートの夫々に取り付けることにより、音響ノイズの影響を低減するようにしたことを特徴とする。   The invention of claim 1 includes a housing in which a flow path portion through which a fluid to be measured flows is formed, and a pair of ultrasonic transmission / reception sections installed at a predetermined angle with respect to the flow path portion. In a wind direction and wind speed measuring device that measures the wind direction and the wind speed of a fluid to be measured based on the propagation time of ultrasonic waves transmitted and received between ultrasonic transmission / reception units, provided at intervals along the axial direction of the flow path unit. A pair of separated fixing plates for fixing the pair of ultrasonic transmission / reception units to the housing, and a vibration isolating member for preventing transmission of vibration for each of the pair of ultrasonic transmission / reception units The effect of acoustic noise is reduced by attaching to each of the pair of separated fixed plates.

請求項2の発明は、請求項1に記載の風向風速計測装置において、前記超音波送受信部はセンサ本体から外方に張り出したフランジを有し、前記固定プレートには前記超音波送受信部のセンサ本体と嵌合する取り付け穴が設けられており、前記超音波送受信部のフランジ部の下面と前記固定プレートの上面との間にゴム材料からなる前記防振部材を介挿し、前記一対の超音波送受信部を保持するようにしたことを特徴とする。   According to a second aspect of the present invention, in the wind direction and wind speed measuring device according to the first aspect, the ultrasonic transmission / reception unit has a flange projecting outward from the sensor body, and the sensor of the ultrasonic transmission / reception unit is provided on the fixed plate. An attachment hole for fitting with the main body is provided, and the vibration isolating member made of a rubber material is interposed between the lower surface of the flange portion of the ultrasonic transmission / reception unit and the upper surface of the fixing plate, and the pair of ultrasonic waves The transmission / reception unit is held.

請求項3の発明は、請求項1又は請求項2に記載の風向風速計測装置において、前記一対の超音波送受信部が配置されている側と反対側の前記流路部の内壁面に超音波を反射する反射部材を設けたことを特徴とする。   According to a third aspect of the present invention, in the wind direction and wind speed measuring device according to the first or second aspect, the ultrasonic wave is applied to the inner wall surface of the flow path portion on the side opposite to the side where the pair of ultrasonic transmission / reception units are disposed. A reflection member that reflects the light is provided.

請求項4の発明は、請求項1乃至請求項3の何れかに記載の風向風速計測装置において、前記固定プレートと前記流路部との間にメッシュからなる整流部材を設けるようにしたことを特徴とする。   According to a fourth aspect of the present invention, in the wind direction and wind speed measuring device according to any one of the first to third aspects, a rectifying member made of a mesh is provided between the fixed plate and the flow path portion. Features.

本発明によれば、流路部の中心軸に対して所定の傾き角をもって設置される一対の超音波送受信部の夫々を、流路部の軸方向に沿って間隔を保って設けられている2枚一対の分離された固定プレートの夫々に防振部材を介して取り付ける構成としたことにより、一対の超音波送受信部を近接配置しても、超音波送受信部から発生する音響ノイズが筐体側へ伝わることがなく、超音波送受信部は被測定流体中を伝搬してきた超音波を確実に検知することができるので、装置全体をコンパクトにし、しかも高精度で風向風速の計測を行うことが可能となる。   According to the present invention, each of the pair of ultrasonic transmission / reception units installed at a predetermined inclination angle with respect to the central axis of the flow path unit is provided with a gap along the axial direction of the flow path unit. By adopting a configuration in which each of a pair of separated fixed plates is attached via a vibration isolating member, even if the pair of ultrasonic transmission / reception units are arranged close to each other, acoustic noise generated from the ultrasonic transmission / reception units is The ultrasonic transmitter / receiver can reliably detect the ultrasonic waves that have propagated through the fluid under measurement, making it possible to make the entire device compact and to measure the wind direction and wind speed with high accuracy. It becomes.

本発明の風向風速計測装置の構成を示す図である。It is a figure which shows the structure of the wind direction wind speed measuring apparatus of this invention. 超音波送受信部を保持する固定プレートの筐体への取付けを説明するための図で、図1のA-A線に沿った下面図である。It is a figure for demonstrating attachment to the housing | casing of the stationary plate holding an ultrasonic transmission / reception part, and is a bottom view along the AA line of FIG. Z法を用いた従来の超音波式風向風速計測装置の原理図である。It is a principle figure of the conventional ultrasonic type wind direction wind speed measuring apparatus using Z method. V法を用いた従来の超音波式風向風速計測装置の原理図である。It is a principle figure of the conventional ultrasonic type wind direction wind speed measuring apparatus using V method. 超音波送受信部の駆動波形、風速ゼロの時の受信波形、及び風速V1の時の受信波形の一例である。It is an example of the drive waveform of an ultrasonic transmission / reception part, the reception waveform at the time of wind speed zero, and the reception waveform at the time of wind speed V1.

以下に、添付図面を参照して、本発明に係る風向風速計測装置の好適な実施の形態について詳細に説明する。
図1は風向風速計測装置の構成を示す図である。本発明の風向風速計測装置100は、小型化した場合でも十分な超音波の伝搬経路長を確保できるように、基本構成としてV法を用いるものとしている。
Exemplary embodiments of a wind direction and wind speed measuring device according to the present invention will be described below in detail with reference to the accompanying drawings.
FIG. 1 is a diagram showing a configuration of a wind direction and wind speed measuring apparatus. The wind direction and wind speed measuring device 100 of the present invention uses the V method as a basic configuration so that a sufficient propagation path length of ultrasonic waves can be ensured even when downsized.

風向風速計測装置100は、被測定対象流体2の流れる流路部6を有する筐体4、流路部6の上方に配置された一対の超音波送受信部1A,1B、超音波送受信部1A,1Bを保持する2枚の固定プレート51,52、パルス発生器7、切替SW8、増幅回路9、及び時間計測回路10からなる電子回路部、流路部6の内壁面に設けられた反射板13などで構成される。   The wind direction and wind speed measuring device 100 includes a housing 4 having a flow path section 6 through which a fluid 2 to be measured 2 flows, a pair of ultrasonic transmission / reception sections 1A and 1B disposed above the flow path section 6, an ultrasonic transmission / reception section 1A, 2 fixed plates 51 and 52 for holding 1B, a pulse generator 7, a switching SW 8, an amplifier circuit 9, and an electronic circuit unit comprising a time measuring circuit 10, and a reflector 13 provided on the inner wall surface of the flow channel unit 6 Etc.

超音波送受信部1A,1Bは、センサ本体の上部から外方に張り出したフランジ11を有している。また、図2に示すように、矩形状の固定プレート51,52には、超音波送受信部1A,1Bのセンサ本体と嵌合する取付け穴51a,52aが設けられている。20は、振動の伝達を防止するためのゴム材料からなる防振部材で、固定プレート51,52と同様に超音波送受信部1A,1Bのセンサ本体が貫通する穴が設けられている。   The ultrasonic transmission / reception units 1A and 1B have a flange 11 projecting outward from the upper part of the sensor body. In addition, as shown in FIG. 2, mounting holes 51 a and 52 a that are fitted to the sensor main bodies of the ultrasonic transmission / reception units 1 </ b> A and 1 </ b> B are provided in the rectangular fixed plates 51 and 52. Reference numeral 20 denotes a vibration isolating member made of a rubber material for preventing transmission of vibration, and is provided with a hole through which the sensor main body of the ultrasonic transmission / reception units 1A and 1B penetrates like the fixing plates 51 and 52.

超音波送受信部1A,1Bのセンサ本体を防振部材20の穴に嵌め込んだ後、固定プレート51,52の取付け穴に挿入し、超音波送受信部1A,1Bのフランジ11の2箇所をねじ12で固定プレート51,52に固定する。超音波送受信部1A,1Bのフランジ11の下面と固定プレート51,52の上面との間に介挿された防振部材20が圧縮変形し、超音波送受信部1A,1Bは固定プレート上に保持固定される。   After the sensor body of the ultrasonic transmission / reception parts 1A and 1B is fitted into the hole of the vibration isolating member 20, it is inserted into the mounting holes of the fixing plates 51 and 52, and the two flanges 11 of the ultrasonic transmission / reception parts 1A and 1B are screwed. 12 is fixed to the fixing plates 51 and 52. The vibration isolating member 20 inserted between the lower surface of the flange 11 of the ultrasonic transmission / reception units 1A and 1B and the upper surface of the fixed plates 51 and 52 is compressed and deformed, and the ultrasonic transmission / reception units 1A and 1B are held on the fixed plate. Fixed.

そして、超音波送受信部1A,1Bを保持する固定プレート51,52は、筐体4の両側壁に設けられたガイド溝41に一方の端縁を支持され、流路部6の中心軸に対して所定の傾き角θをもって筐体4に固定される。なお、固定プレート51,52は、筐体4へ取り付けられた状態で固定プレート51,52の他方の端縁同士が接触しないように、流路部6の軸方向に沿って僅かな間隔を保って配置される。   The fixing plates 51 and 52 that hold the ultrasonic transmission / reception units 1 </ b> A and 1 </ b> B are supported at one end edge by guide grooves 41 provided on both side walls of the housing 4, and with respect to the central axis of the flow path unit 6 Are fixed to the housing 4 with a predetermined inclination angle θ. The fixed plates 51 and 52 are kept at a slight distance along the axial direction of the flow path portion 6 so that the other edges of the fixed plates 51 and 52 do not contact each other when attached to the housing 4. Arranged.

このように2枚の固定プレート51,52を筐体4に固定することにより、一方の超音波送受信部1A(1B)から出射された超音波は、超音波送受信部が設置されている側と反対側の流路部6の中央部分に埋め込まれた高い反射率を有する反射板13で反射し、他方の超音波送受信部1B(1A)にて受信される。   By fixing the two fixing plates 51 and 52 to the housing 4 in this way, the ultrasonic wave emitted from one ultrasonic transmission / reception unit 1A (1B) is connected to the side where the ultrasonic transmission / reception unit is installed. The light is reflected by the reflection plate 13 having a high reflectivity embedded in the central portion of the channel portion 6 on the opposite side, and is received by the other ultrasonic transmission / reception unit 1B (1A).

また、21は、固定プレート51,52と流路部6との間に設置されたメッシュからなる整流部材である。この整流部材21は、流路部6の入口から出口に渡って設けられており、流路部6を通過する被測定流体の流れに乱れが生じないようにしている。   Reference numeral 21 denotes a rectifying member made of a mesh installed between the fixed plates 51 and 52 and the flow path section 6. The rectifying member 21 is provided from the inlet to the outlet of the flow path section 6 so that the flow of the fluid to be measured that passes through the flow path section 6 is not disturbed.

43は、固定プレート51,52の上方に設けられた隔壁で、上述した電子回路部の収納空間を形成している。この収納空間に、パルス発生器7、切替SW8、増幅回路9、及び時間計測回路10などからなる電子回路部を収納した後、筐体4の側壁上端にパッキン14を装着し、蓋体42で塞ぐことにより、収納空間内部を気密にしている。   Reference numeral 43 denotes a partition wall provided above the fixed plates 51 and 52, and forms a storage space for the electronic circuit section described above. In this storage space, the electronic circuit unit including the pulse generator 7, the switching SW 8, the amplifier circuit 9, the time measurement circuit 10, and the like is stored, and then the packing 14 is attached to the upper end of the side wall of the housing 4. By closing, the inside of the storage space is made airtight.

上述の如く構成された風向風速計測装置100によれば、一対の超音波送受信部1A,1Bの夫々を、振動の伝達を防止するための防振部材20を介し、流路部6の軸方向に沿って間隔を保って設けられている2枚一対の分離された固定プレート51,52の夫々に取り付けるようにしたことにより、一対の超音波送受信部1A,1Bを近接させても、超音波送受信部1A,1Bから発生する音響ノイズが固定プレート51、52を経由して筐体4側へ伝わることがなく、超音波送受信部1A,1Bは被測定流体2を伝搬してきた超音波を確実に検知することができるので、装置の流体の流れ方向の寸法を小さくして小型化を図ると共に、高精度で風向風速の計測を行うことが可能になる。   According to the wind direction and wind velocity measuring apparatus 100 configured as described above, the pair of ultrasonic transmission / reception units 1A and 1B is passed through the vibration isolating member 20 for preventing transmission of vibrations in the axial direction of the flow path unit 6. Are attached to each of a pair of separated fixed plates 51 and 52 that are spaced apart from each other, even if the pair of ultrasonic transmission / reception units 1A and 1B are brought close to each other, The acoustic noise generated from the transmission / reception units 1A and 1B is not transmitted to the housing 4 via the fixed plates 51 and 52, and the ultrasonic transmission / reception units 1A and 1B reliably detect the ultrasonic waves that have propagated through the fluid 2 to be measured. Therefore, it is possible to reduce the size of the apparatus in the fluid flow direction to reduce the size, and to measure the wind direction and the wind speed with high accuracy.

次に、風向風速計測装置100の動作について説明する。
まず、パルス発生器7から出力される送信パルス電圧を切替SW8を介して一方の超音波送受信部1Aに印加すると、流路部6の内部に向けて超音波が出射される。その直後に、切替SW8が超音波送受信部1B側に切り換えられ、反射板13で反射した超音波は、超音波送受信部1Bで受信されて電気信号に変換される。
Next, the operation of the wind direction and wind speed measuring apparatus 100 will be described.
First, when a transmission pulse voltage output from the pulse generator 7 is applied to one ultrasonic transmission / reception unit 1A via the switch SW8, ultrasonic waves are emitted toward the inside of the flow path unit 6. Immediately thereafter, the switch SW8 is switched to the ultrasonic transmission / reception unit 1B side, and the ultrasonic wave reflected by the reflecting plate 13 is received by the ultrasonic transmission / reception unit 1B and converted into an electrical signal.

この超音波受信信号は増幅回路9で増幅された後に時間計測回路10に入力され、時間計測回路10により超音波送受信部1Aから出射された超音波が超音波送受信部1Bに到達するまでの伝播時間が計測される。続けて、切替SW8の切替動作により、超音波送受信部1Bを送信側、超音波送受信部1Aを受信側に切り替えて、同様に超音波伝播時間の計測が行われる。   The ultrasonic reception signal is amplified by the amplification circuit 9 and then input to the time measurement circuit 10. The ultrasonic wave emitted from the ultrasonic transmission / reception unit 1A by the time measurement circuit 10 is propagated until reaching the ultrasonic transmission / reception unit 1B. Time is measured. Subsequently, by the switching operation of the switch SW8, the ultrasonic transmission / reception unit 1B is switched to the transmission side, and the ultrasonic transmission / reception unit 1A is switched to the reception side, and the ultrasonic propagation time is similarly measured.

そして、時間計測回路10は、被測定流体2の流れと同方向(順方向)の超音波伝播時間と逆方向の超音波伝播時間との差に基づき、次式(5)を用いて風向風速の演算を行う。   Then, the time measuring circuit 10 uses the following equation (5) based on the difference between the ultrasonic propagation time in the same direction (forward direction) and the ultrasonic propagation time in the reverse direction as the flow of the fluid 2 to be measured. Perform the operation.

V=C(t−t)/2Dtanθ・・・(5)
但し、D:流路部の内径、C:流路中を流れる被測定流体固有の音速、
:順方向の超音波伝播時間、t:逆方向の超音波伝播時間、である。
V = C 2 (t 2 -t 1) / 2Dtanθ ··· (5)
Where D: inner diameter of the flow path portion, C: sound velocity specific to the fluid to be measured flowing in the flow path,
t 1 : Ultrasonic propagation time in the forward direction, t 2 : Ultrasonic propagation time in the reverse direction.

なお、上記演算式については、従来公知のV法を適用した風向風速計測装置と同じであるため説明を省略する。   The above arithmetic expression is the same as that of a wind direction and wind speed measuring apparatus to which a conventionally known V method is applied, and therefore the description thereof is omitted.

1A,1B:超音波送受信部、11:フランジ
2:被測定流体
4:筐体
51,52:固定プレート
6:流路部
7:パルス発生器
8:切替SW
9:増幅回路
10:時間計測回路
13:反射板
20:防振部材
21:整流部材
DESCRIPTION OF SYMBOLS 1A, 1B: Ultrasonic wave transmission / reception part, 11: Flange 2: Fluid to be measured 4: Case 51, 52: Fixed plate 6: Flow path part 7: Pulse generator 8: Switch SW
9: Amplifier circuit 10: Time measuring circuit 13: Reflector 20: Anti-vibration member 21: Rectifying member

Claims (4)

被測定流体が流れる流路部が形成された筐体と、前記流路部に対して所定の傾き角をもって設置される一対の超音波送受信部とを備え、前記一対の超音波送受信部の間で送受される超音波の伝播時間に基づいて被測定流体の風向と風速を計測する風向風速計測装置において、
前記流路部の軸方向に沿って間隔を保って設けられ、前記一対の超音波送受信部を前記筐体に固定する2枚一対の分離された固定プレートを備え、
前記一対の超音波送受信部の夫々を、振動の伝達を防止するための防振部材を介して前記2枚一対の分離された固定プレートの夫々に取り付けることにより、音響ノイズの影響を低減するようにしたことを風向風速計測装置。
A housing in which a flow path section through which a fluid to be measured flows is formed, and a pair of ultrasonic transmission / reception sections installed at a predetermined inclination angle with respect to the flow path section, between the pair of ultrasonic transmission / reception sections In the wind direction and wind speed measuring device that measures the wind direction and wind speed of the fluid to be measured based on the propagation time of the ultrasonic waves transmitted and received at
Provided with a pair of separated fixing plates that are provided at intervals along the axial direction of the flow path section and fix the pair of ultrasonic transmission / reception sections to the housing;
The influence of acoustic noise is reduced by attaching each of the pair of ultrasonic transmission / reception units to each of the pair of separated fixed plates via a vibration isolating member for preventing transmission of vibration. The wind direction and wind speed measuring device.
請求項1に記載の風向風速計測装置において、
前記超音波送受信部はセンサ本体から外方に張り出したフランジを有し、
前記固定プレートには前記超音波送受信部のセンサ本体と嵌合する取り付け穴が設けられており、
前記超音波送受信部のフランジ部の下面と前記固定プレートの上面との間にゴム材料からなる前記防振部材を介挿し、前記一対の超音波送受信部を保持するようにしたことを特徴とする風向風速計測装置。
In the wind direction wind speed measuring device according to claim 1,
The ultrasonic transmission / reception unit has a flange projecting outward from the sensor body,
The fixing plate is provided with a mounting hole for fitting with the sensor body of the ultrasonic transmission / reception unit,
The vibration isolating member made of a rubber material is interposed between the lower surface of the flange portion of the ultrasonic transmission / reception unit and the upper surface of the fixing plate, and the pair of ultrasonic transmission / reception units is held. Wind direction and wind speed measuring device.
請求項1又は請求項2に記載の風向風速計測装置において、前記一対の超音波送受信部が配置されている側と反対側の前記流路部の内壁面に超音波を反射する反射部材を設けたことを特徴とする風向風速計測装置。   3. The wind direction and wind speed measuring device according to claim 1, wherein a reflection member that reflects ultrasonic waves is provided on an inner wall surface of the flow path portion opposite to a side where the pair of ultrasonic transmission / reception units are disposed. A wind direction and wind speed measuring device characterized by that. 請求項1乃至請求項3の何れかに記載の風向風速計測装置において、前記固定プレートと前記流路部との間にメッシュからなる整流部材を設けるようにしたことを特徴とする風向風速計測装置。
4. The wind direction and wind speed measuring device according to claim 1, wherein a rectifying member made of a mesh is provided between the fixed plate and the flow path portion. 5. .
JP2012223845A 2012-10-09 2012-10-09 Wind direction and wind speed measuring device Active JP6089550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012223845A JP6089550B2 (en) 2012-10-09 2012-10-09 Wind direction and wind speed measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012223845A JP6089550B2 (en) 2012-10-09 2012-10-09 Wind direction and wind speed measuring device

Publications (2)

Publication Number Publication Date
JP2014077643A true JP2014077643A (en) 2014-05-01
JP6089550B2 JP6089550B2 (en) 2017-03-08

Family

ID=50783066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012223845A Active JP6089550B2 (en) 2012-10-09 2012-10-09 Wind direction and wind speed measuring device

Country Status (1)

Country Link
JP (1) JP6089550B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101893501B1 (en) * 2017-01-16 2018-10-05 (주) 정상라이다 Integrated weather detector
CN110146721A (en) * 2019-05-30 2019-08-20 宁夏新能源研究院(有限公司) A kind of shockproof ultrasonic aerovane being easily installed
US10704941B2 (en) 2016-07-13 2020-07-07 Gwf Messsysteme Ag Flow meter with measuring channel
CN113063962A (en) * 2021-04-13 2021-07-02 华能陇东能源有限责任公司 Ultrasonic wind measuring device
CN114518469A (en) * 2022-02-21 2022-05-20 中煤科工集团重庆研究院有限公司 Device and method for monitoring parameters of air duct of mining working face

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271117A (en) * 1998-03-19 1999-10-05 Oval Corp Ultrasonic flowmeter
JP2003202254A (en) * 2001-10-31 2003-07-18 Matsushita Electric Ind Co Ltd Ultrasonic flow measuring instrument
JP2004157101A (en) * 2002-09-11 2004-06-03 Fuji Electric Retail Systems Co Ltd Ultrasonic flowmeter
JP2012103040A (en) * 2010-11-08 2012-05-31 Fuji Electric Co Ltd Anemometer device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271117A (en) * 1998-03-19 1999-10-05 Oval Corp Ultrasonic flowmeter
JP2003202254A (en) * 2001-10-31 2003-07-18 Matsushita Electric Ind Co Ltd Ultrasonic flow measuring instrument
JP2004157101A (en) * 2002-09-11 2004-06-03 Fuji Electric Retail Systems Co Ltd Ultrasonic flowmeter
JP2012103040A (en) * 2010-11-08 2012-05-31 Fuji Electric Co Ltd Anemometer device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10704941B2 (en) 2016-07-13 2020-07-07 Gwf Messsysteme Ag Flow meter with measuring channel
US10746580B2 (en) 2016-07-13 2020-08-18 Gwf Messsysteme Ag Flow meter with measuring channel
KR101893501B1 (en) * 2017-01-16 2018-10-05 (주) 정상라이다 Integrated weather detector
CN110146721A (en) * 2019-05-30 2019-08-20 宁夏新能源研究院(有限公司) A kind of shockproof ultrasonic aerovane being easily installed
CN110146721B (en) * 2019-05-30 2021-08-13 宁夏新能源研究院(有限公司) Ultrasonic wave anemorumbometer convenient to installation takes precautions against earthquakes
CN113063962A (en) * 2021-04-13 2021-07-02 华能陇东能源有限责任公司 Ultrasonic wind measuring device
CN113063962B (en) * 2021-04-13 2023-03-21 华能陇东能源有限责任公司 Ultrasonic wind measuring device
CN114518469A (en) * 2022-02-21 2022-05-20 中煤科工集团重庆研究院有限公司 Device and method for monitoring parameters of air duct of mining working face

Also Published As

Publication number Publication date
JP6089550B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
JP6089550B2 (en) Wind direction and wind speed measuring device
EP2673598B1 (en) Determining delay times for ultrasonic flow meters
US9366556B2 (en) Method for ultrasonic metering using an orifice meter fitting
US11035708B2 (en) Clamp-on ultrasonic sensor having coupling element adapted for respective measuring tube
RU2760517C1 (en) Ultrasonic flow meter with lens combination
US20050097968A1 (en) Ultrasonic flow meter and ultrasonic sensor
JPWO2013183292A1 (en) Ultrasonic transducer and ultrasonic flow meter having the same
WO2012164859A1 (en) Ultrasonic flow rate measurement unit and gas flowmeter using same
JP2007292667A (en) Device for measuring acoustic characteristics
JPWO2011040038A1 (en) Ultrasonic flow meter
WO2012011272A1 (en) Construction for mounting ultrasonic transducer and ultrasonic flow meter using same
WO2018179699A1 (en) Ultrasonic gas sensor device
US20160161525A1 (en) Apparatus and a method for providing a time measurement
JP2018100913A (en) Ultrasonic measurement device
JP2012103040A (en) Anemometer device
JP6313048B2 (en) Measuring unit and flow rate measuring apparatus including the same
JP5533332B2 (en) Ultrasonic flow meter
KR100732116B1 (en) Vortex flowmeter
JP2020109361A (en) Clamp-on type ultrasonic gas flow meter
JP2012251826A (en) Inspection device and inspection method of underwater transmitter
JP2004251827A (en) Ultrasonic level meter
JP2006112960A (en) Ultrasonic vortex flowmeter
KR20030031518A (en) Ultrasonic measurement method of flow speed in a small pipe by using cylindrical piezoelectric transducers
JP2006292378A (en) Ultrasonic flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150914

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170123

R150 Certificate of patent or registration of utility model

Ref document number: 6089550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250