JP2014077172A - Manufacturing method of stainless steel - Google Patents

Manufacturing method of stainless steel Download PDF

Info

Publication number
JP2014077172A
JP2014077172A JP2012225346A JP2012225346A JP2014077172A JP 2014077172 A JP2014077172 A JP 2014077172A JP 2012225346 A JP2012225346 A JP 2012225346A JP 2012225346 A JP2012225346 A JP 2012225346A JP 2014077172 A JP2014077172 A JP 2014077172A
Authority
JP
Japan
Prior art keywords
stainless steel
less
temperature
weight
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012225346A
Other languages
Japanese (ja)
Other versions
JP5836911B2 (en
Inventor
Kiminori Sato
公法 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gakugei University NUC
Original Assignee
Tokyo Gakugei University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gakugei University NUC filed Critical Tokyo Gakugei University NUC
Priority to JP2012225346A priority Critical patent/JP5836911B2/en
Publication of JP2014077172A publication Critical patent/JP2014077172A/en
Application granted granted Critical
Publication of JP5836911B2 publication Critical patent/JP5836911B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a martensitic stainless steel in which degradation over time by deposition of chromium carbide is suppressed and hardness is maintained or increased without adding rare resource elements.SOLUTION: A method of manufacturing a stainless steel includes the steps of: mixing a base raw material having composition containing C:1.20 wt.% or less, Si:5.00 wt.% or less, Mn:10 wt.% or less, P:0.200 wt.% or less, S:0.060 wt.% or less or 0.10 wt.% or more, Ni:28.00 wt.% or less, Cr:11.00 to 32.00 wt.%, Mo:7.00 wt.% or less, Cu:1.00 to 5.00 wt.% or less, N:0.30 wt.% or less, and the balance Fe with inevitable impurities; melting the mixture of the base raw material to obtain a base material; conducting a solid solution treatment of the raw material; and heating the base material to a phase transition temperature or more which a face center cubic phase are stable with the speed of 135°C or more per min.

Description

本発明は、所定の組成を有する基材素材からステンレス鋼を製造するステンレス鋼の製造方法に関する。   The present invention relates to a stainless steel manufacturing method for manufacturing stainless steel from a base material having a predetermined composition.

ステンレス鋼は、FeにCrやNiなどの物質を添加してさびにくくした鉄鋼である。JIS規格で規定されるオーステナイト系ステンレス鋼(SUS201、SUS202、SUS301、SUS302、SUS303、SUS303Se、SUS303Cu、SUS304、SUS304L、SUS304N1、SUS304N2、SUS304LN、SUS304J3、SUS305、SUS309S、SUS310S、SUS316、SUS316L、SUS316N、SUS316LN、SUS316Ti、SUS316J1、SUS316J1L、SUS316F、SUS317、SUS317L、SUS317LN、SUS317J1、SUS836L,SUS890L、SUS321、SUS347、SUSXM7、SUSXM15J1)、フェライト系ステンレス鋼(SUS405、SUS410L、SUS430、SUS430F、SUS434、SUS447J1、SUSXM27)、マルテンサイト系ステンレス鋼(SUS403、SUS410、SUS410J1、SUS410F2、SUS416、SUS420J1、SUS420J2、SUS420F、SUS420F2、SUS431、SUS440A、SUS440B、SUS440C、SUS440F)の組成の範囲は、おおむね、C:1.20重量%以下、Si:5.00重量%以下、Mn:10重量%以下、P:0.200重量%以下、S:0.060重量%以下又は0.10重量%以上、Ni:28.00重量%以下、Cr:11.00〜32.00重量%、Mo:7.00重量%以下、Cu:1.00〜5.00重量%以下、N:0.30重量%以下、残部:Fe及び不可避な不純物元素である(非特許文献1)。   Stainless steel is steel that is made hard to rust by adding a substance such as Cr or Ni to Fe. Austenitic stainless steel defined by JIS standard (SUS201, SUS202, SUS301, SUS302, SUS303, SUS303Se, SUS303Cu, SUS304, SUS304L, SUS304N1, SUS304N2, SUS304LN, SUS304J3, SUS305, SUS309S, SUS3S16, SUS3S16, SUS3S16 , SUS316Ti, SUS316J1, SUS316J1L, SUS316F, SUS317, SUS317L, SUS317LN, SUS317J1, SUS836L, SUS890L, SUS321, SUS347, SUSXM7, SUSXM15J1, ferritic stainless steel S 30, SUS430F, SUS434, SUS447J1, SUSXM27), martensitic stainless steel (SUS403, SUS410, SUS410J1, SUS410F2, SUS416, SUS420J1, SUS420J2, SUS420F, SUS420F2, SUS431, SUS40B, SUS40B, SUS40B, SUS40B, SUS40B, SUS40B, SUS40B, SUS40B C: 1.20 wt% or less, Si: 5.00 wt% or less, Mn: 10 wt% or less, P: 0.200 wt% or less, S: 0.060 wt% or less, or 0.10 wt% %: Ni: 28.00 wt% or less, Cr: 11.00-32.00 wt%, Mo: 7.00 wt% or less, Cu: 1.00-5.00 wt% or less, N: 0.00. 30% by weight or less, balance: Fe and A variable avoid an impurity element (Non-Patent Document 1).

ステンレス鋼の製造においては、この組成の範囲で基材素材を混合し、その混合物を溶融して基材が得られる。そして、多くの場合、基材の組成を均質化させることを目的として、基材の溶体化処理が行われる。この溶体化処理は、基材の高温相が安定となる相転移温度以上の高温に一定時間保持し、常温まで降温する処理をいい、ステンレス素材の場合、例えば、基材を約1050℃で80分間程度加熱し、その後常温まで降温する処理がよく知られている(非特許文献2)。   In the production of stainless steel, base materials are mixed within the range of this composition, and the mixture is melted to obtain a base material. And in many cases, the solution treatment of a base material is performed for the purpose of homogenizing the composition of a base material. This solution treatment is a treatment in which the substrate is kept at a high temperature equal to or higher than the phase transition temperature at which the high-temperature phase of the substrate is stable for a certain period of time and then cooled to room temperature. A process of heating for about minutes and then lowering to room temperature is well known (Non-Patent Document 2).

溶体化処理が行われた基材の硬度をさらに上げるための加工方法の一つに、焼き入れがある。ステンレス鋼は、相転移温度よりも高温では面心立方相が安定であり、低温では体心立方相が安定である。通常使われているステンレス鋼(C:2.1重量%以下)の相転移温度は、727℃〜910℃である(非特許文献3)。常温で安定な体心立方相はすべり系の転位が多いため、すべり変形が起きやすく、硬度が低い。一方、相転移温度以上に加熱した面心立方相の高温ステンレス鋼を、水や油に浸すことで常温まで急速に降温すると、多くの欠陥を含んだ体心立方相であるマルテンサイトステンレス鋼が得られる。   One of the processing methods for further increasing the hardness of the substrate subjected to the solution treatment is quenching. In stainless steel, the face-centered cubic phase is stable at a temperature higher than the phase transition temperature, and the body-centered cubic phase is stable at a low temperature. The phase transition temperature of commonly used stainless steel (C: 2.1 wt% or less) is 727 ° C. to 910 ° C. (Non-patent Document 3). Since the body-centered cubic phase, which is stable at room temperature, has many slip-type dislocations, slip deformation tends to occur and the hardness is low. On the other hand, when the temperature of a face-centered cubic high-temperature stainless steel heated above the phase transition temperature is rapidly lowered to room temperature by immersing it in water or oil, the martensitic stainless steel, which is a body-centered cubic phase containing many defects, is obtained. can get.

ここで「マルテンサイトステンレス鋼」とは、一般的には、多くの欠陥を含んだ体心立方相(マルテンサイト相)のステンレス鋼を言い、マルテンサイト系ステンレス鋼(マルテンサイト相を準安定相とする組成のステンレス鋼)とは異なるものである。   Here, “martensitic stainless steel” generally refers to a body-centered cubic phase (martensitic phase) stainless steel containing many defects, and martensitic stainless steel (a martensitic phase is a metastable phase). Stainless steel having a composition of

マルテンサイトステンレス鋼は、結晶が各所で歪んでいるために、すべり変形が起きにくく、硬度が高い特徴を持つ。このように、欠陥を結晶に導入して材料の硬度を上げる熱処理は、焼き入れと言われる。   Martensitic stainless steel is characterized by high crystal hardness and high hardness due to the fact that crystals are distorted in various places. Thus, heat treatment that introduces defects into the crystal to increase the hardness of the material is called quenching.

マルテンサイトステンレス鋼は、高温・高圧の環境で使われることが多いが、高温環境下で使用されると、応力腐食割れ、クリープ、再熱割れなどの経時劣化が起こることが知られている。経時劣化の主な原因の一つに結晶粒界におけるクロム炭化物の生成がある(特許文献1)。クロム炭化物は、過飽和状態で含まれる炭素が、その歪を解消するために、材料中のクロムと化合物を形成し、ステンレスの結晶粒界に析出することで形成されることが知られている。クロム炭化物の生成により、隣接部分にクロム欠乏層が形成され、結晶粒界近傍の耐食性が低下して、経時劣化に進展する(特許文献1)。   Martensitic stainless steel is often used in high-temperature and high-pressure environments, but it is known that deterioration over time such as stress corrosion cracking, creep, and reheat cracking occurs when used in a high-temperature environment. One of the main causes of deterioration with time is the formation of chromium carbides at grain boundaries (Patent Document 1). It is known that chromium carbide is formed by carbon contained in a supersaturated state by forming a compound with chromium in the material and precipitating at a grain boundary of stainless steel in order to eliminate the strain. Due to the formation of chromium carbide, a chromium-deficient layer is formed in the adjacent portion, the corrosion resistance in the vicinity of the crystal grain boundary is lowered, and the deterioration with time progresses (Patent Document 1).

マルテンサイトステンレス鋼の経時劣化を抑制する技術が求められ、経時劣化を抑制するために、Crよりも原子半径の大きい元素を添加物質として含有させる方法(特許文献1、特許文献2)が知られている。   There is a demand for a technique for suppressing deterioration over time of martensitic stainless steel, and in order to suppress deterioration over time, a method of adding an element having an atomic radius larger than Cr as an additive (Patent Documents 1 and 2) is known. ing.

日本ステンレス協会ホームページ,http://www.jssa.gr.jp/contents/products/standards/jis/Japan Stainless Steel Association homepage, http://www.jssa.gr.jp/contents/products/standards/jis/ Materials Science and Engineering A 489 (2008) 86, Ohmura T., Sawada K., Kimura K., Tsuzaki K.Materials Science and Engineering A 489 (2008) 86, Ohmura T., Sawada K., Kimura K., Tsuzaki K. NIPPON STEEL MONTHLY 2005年12月号 Vol.154 p.13NIPPON STEEL MONTHLY December 2005 Vol. 154 p. 13 Phys. Status Solidi A,1973,17,,199−205,Schlosser W.F.Phys. Status Solidi A, 1973, 17, 199-205, Schlosser W., et al. F. J. Phys. Soc. Jpn.,1990,59,,2963−2970,Sumiyama K., Hirose Y., Nakamura Y.J. et al. Phys. Soc. Jpn. , 1990, 59, 2963-2970, Sumiyama K. et al. Hirose Y .; Nakamura Y .;

特開平5−5158号公報JP-A-5-5158 特許第1323615号公報Japanese Patent No. 1323615 特開2003−313612号公報JP 2003-313612 A

しかしながら、上記文献記載の従来技術は、添加物質の多くが希少資源元素であるため、材料が高価になり、また、リサイクル性を満足しない。   However, in the prior art described in the above document, since many of the additive substances are rare resource elements, the material becomes expensive and the recyclability is not satisfied.

本発明は、上記事情に鑑みてなされたものであり、希少資源元素を添加することなく、クロム炭化物析出による経時劣化が抑制され、硬度も維持又は高められたマルテンサイトステンレス鋼の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a method for producing martensitic stainless steel in which deterioration with time due to chromium carbide precipitation is suppressed and hardness is maintained or increased without adding a rare resource element. The purpose is to do.

本発明に係るステンレス鋼の製造方法は、C:1.20重量%以下、Si:5.00重量%以下、Mn:10重量%以下、P:0.200重量%以下、S:0.060重量%以下又は0.10重量%以上、Ni:28.00重量%以下、Cr:11.00〜32.00重量%、Mo:7.00重量%以下、Cu:1.00〜5.00重量%以下、N:0.30重量%以下、残部:Fe及び不可避な不純物元素からなる組成を有する基材素材を混合するステップと、前記基材素材の混合物を溶融して基材を得るステップと、前記基材の溶体化処理を行うステップと、前記基材を、毎分135℃以上の速度で、面心立方相が安定となる相転移温度以上まで昇温するステップと、を備えることを特徴とする。   The production method of stainless steel according to the present invention is as follows: C: 1.20% by weight or less, Si: 5.00% by weight or less, Mn: 10% by weight or less, P: 0.200% by weight or less, S: 0.060 % By weight or less or 0.10% by weight or more, Ni: 28.00% by weight or less, Cr: 11.00-32.00% by weight, Mo: 7.00% by weight or less, Cu: 1.00-5.00 A step of mixing a base material having a composition composed of wt% or less, N: 0.30 wt% or less, balance: Fe and inevitable impurity elements, and a step of obtaining a base material by melting the mixture of the base materials And a step of performing a solution treatment of the base material, and a step of heating the base material at a rate of 135 ° C. or more per minute to a phase transition temperature or more at which the face-centered cubic phase becomes stable. It is characterized by.

前記ステンレス鋼の製造方法において、前記溶体化処理を行うステップは、前記基材を約1050℃に80分以上保持するステップと、前記基材を毎分35℃以下の速度で、相転移温度以下まで降温するステップと、からなることを特徴とする。   In the stainless steel manufacturing method, the solution treatment step includes the step of holding the substrate at about 1050 ° C. for 80 minutes or more, and the substrate at a rate of 35 ° C./min or less and a phase transition temperature or less. And the step of lowering the temperature.

本発明によれば、希少資源元素を添加することなく、経時劣化が抑制されたステンレス鋼が得られる。また、従来技術よりも多くの欠陥を導入することが可能になり、従来よりも高い硬度のステンレス鋼が得られる。   According to the present invention, stainless steel in which deterioration with time is suppressed can be obtained without adding a rare resource element. Moreover, it becomes possible to introduce more defects than in the prior art, and stainless steel with higher hardness than in the prior art can be obtained.

本発明の実施形態に係るステンレス鋼の典型的な製造工程の説明図である。It is explanatory drawing of the typical manufacturing process of the stainless steel which concerns on embodiment of this invention. 図1の高温保持ステップS13、降温ステップS14、急速昇温による焼き入れステップS15、炉冷ステップS16におけるステンレス鋼の基材の温度変化の説明図である。It is explanatory drawing of the temperature change of the stainless steel base material in the high temperature holding | maintenance step S13 of FIG. 1, the temperature fall step S14, the quenching step S15 by rapid temperature rising, and the furnace cooling step S16. 従来の製造方法により製造したマルテンサイトステンレス鋼と、本発明の実施例に係るステンレス鋼のプッシュロッド式熱膨張計による硬さの測定結果である。It is the measurement result of the hardness by the push rod type thermal dilatometer of the martensitic stainless steel manufactured with the conventional manufacturing method, and the stainless steel which concerns on the Example of this invention. 図4Aは、従来の製造方法により製造したマルテンサイトステンレス鋼を700℃で5時間加熱したものの透過電子顕微鏡像であり、図4Bは、本発明の実施例に係るステンレス鋼を700℃で5時間加熱したものの透過電子顕微鏡像である。FIG. 4A is a transmission electron microscope image of a martensitic stainless steel manufactured by a conventional manufacturing method heated at 700 ° C. for 5 hours, and FIG. 4B is a stainless steel according to an embodiment of the present invention at 700 ° C. for 5 hours. It is a transmission electron microscope image of what was heated. 図5Aは、従来の製造方法により製造したマルテンサイトステンレス鋼を700℃で10時間加熱したものの透過電子顕微鏡像であり、図5Bは、本発明の実施例に係るステンレス鋼を700℃で10時間加熱したものの透過電子顕微鏡像である。FIG. 5A is a transmission electron microscope image of a martensitic stainless steel manufactured by a conventional manufacturing method heated at 700 ° C. for 10 hours, and FIG. 5B is a stainless steel according to an example of the present invention at 700 ° C. for 10 hours. It is a transmission electron microscope image of what was heated. 従来の製造方法により製造したマルテンサイトステンレス鋼と、本発明の実施例に係るステンレス鋼のビッカース硬さ測定結果である。It is the Vickers hardness measurement result of the martensitic stainless steel manufactured with the conventional manufacturing method, and the stainless steel which concerns on the Example of this invention. 図7Aは、従来の製造方法により製造したマルテンサイトステンレス鋼のX線回折の計測結果を示す図であり、図7Bは、本発明の実施例に係るステンレス鋼の急速昇温熱処理前のX線回折の計測結果を示す図であり、図7Cは、本発明の実施例に係るステンレス鋼の急速昇温熱処理後のX線回折の計測結果を示す図である。FIG. 7A is a diagram showing a measurement result of X-ray diffraction of martensitic stainless steel manufactured by a conventional manufacturing method, and FIG. 7B is an X-ray before rapid temperature increasing heat treatment of stainless steel according to an embodiment of the present invention. FIG. 7C is a diagram showing a measurement result of X-ray diffraction after a rapid temperature increase heat treatment of stainless steel according to an example of the present invention. 図8Aは、従来の製造方法により製造したマルテンサイトステンレス鋼の透過電子顕微鏡像であり、図8Bは、本発明の実施例に係るステンレス鋼の透過電子顕微鏡像である。FIG. 8A is a transmission electron microscope image of martensitic stainless steel manufactured by a conventional manufacturing method, and FIG. 8B is a transmission electron microscope image of stainless steel according to an example of the present invention.

以下、本発明の実施形態について、図面を用いて説明する。図1は、本発明の実施形態に係るステンレス鋼の製造工程の説明図である。図2は、図1の高温保持ステップS13、降温ステップS14、急速昇温による焼き入れステップS15、炉冷ステップS16におけるステンレス鋼の基材の温度変化の説明図である。図2において、縦軸は、ステンレス鋼の温度、横軸は、経過時間を表している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram of a manufacturing process of stainless steel according to an embodiment of the present invention. FIG. 2 is an explanatory view of the temperature change of the stainless steel substrate in the high temperature holding step S13, the temperature lowering step S14, the quenching step S15 by the rapid temperature rising, and the furnace cooling step S16 in FIG. In FIG. 2, the vertical axis represents the temperature of stainless steel, and the horizontal axis represents the elapsed time.

まず、C:1.20重量%以下、Si:5.00重量%以下、Mn:10重量%以下、P:0.200重量%以下、S:0.060重量%以下又は0.10重量%以上、Ni:28.00重量%以下、Cr:11.00〜32.00重量%、Mo:7.00重量%以下、Cu:1.00〜5.00重量%以下、N:0.30重量%以下、残部:Fe及び不可避な不純物元素、となる基材素材を用意し、これらを混合する(ステップS11)。この基材素材は、JIS規格で規定されるオーステナイト系ステンレス鋼、フェライト系ステンレス鋼及びマルテンサイト系ステンレス鋼の組成の分布範囲であり、実際に使うステンレス鋼の規格に合わせてその組成は決定される。   First, C: 1.20% by weight or less, Si: 5.00% by weight or less, Mn: 10% by weight or less, P: 0.200% by weight or less, S: 0.060% by weight or less, or 0.10% by weight Ni: 28.00 wt% or less, Cr: 11.00-32.00 wt%, Mo: 7.00 wt% or less, Cu: 1.00-5.00 wt% or less, N: 0.30 A base material to be weight% or less and the balance: Fe and unavoidable impurity elements is prepared and mixed (step S11). This base material is the distribution range of the composition of austenitic stainless steel, ferritic stainless steel and martensitic stainless steel specified by JIS standard, and its composition is determined according to the standard of stainless steel actually used. The

次に、混合した基材素材を融点以上に加熱し、溶融するとともに加工し、所定の形状に成型し、基材を得る(ステップS12)。基材の高温相が安定となる相転移温度以上の高温に一定時間保持し、その後、基材を常温まで降温する、いわゆる溶体化処理を行う。ここでいう溶体化処理は、基材の組成を均質化させ、炭素が過飽和に含まれる相を減らすことができる処理をいう。例えば、本発明の実施形態では、上記高温保持ステップで、基材を約1050℃で80分間程度加熱処理する(ステップS13)。この高温保持の熱処理により、基材の組成を均質化させることができる。高温保持の熱処理を行った基材を、炉の中でゆっくりと常温まで降温する(ステップS14)。この降温速度は、毎分35℃以下の速度が好ましい。このような降温を行うことにより、炭素が過飽和に含まれる相を減らし、クロム炭化物生成の原因を減らすことができる。   Next, the mixed base material is heated to the melting point or higher, melted and processed, and molded into a predetermined shape to obtain a base material (step S12). A so-called solution treatment is performed in which the base material is kept at a high temperature equal to or higher than the phase transition temperature at which the high-temperature phase of the base material becomes stable, and then the base material is cooled to room temperature. The solution treatment here refers to a treatment capable of homogenizing the composition of the base material and reducing the phase in which carbon is included in supersaturation. For example, in the embodiment of the present invention, the substrate is heated at about 1050 ° C. for about 80 minutes in the high temperature holding step (step S13). By this heat treatment at a high temperature, the composition of the substrate can be homogenized. The base material that has been heat-treated at a high temperature is slowly cooled to room temperature in a furnace (step S14). The temperature decreasing rate is preferably a rate of 35 ° C. or less per minute. By performing such temperature reduction, the phase in which carbon is included in supersaturation can be reduced, and the cause of chromium carbide formation can be reduced.

次に、急速昇温による焼き入れ、すなわち、常温まで降温した基材を、常温から相転移温度以上にまで急速に昇温し(ステップS15)、その後、速やかに室温まで降温する(ステップS16)。ステップS15における昇温速度は、毎分135℃以上の速度が好ましい。また、ステップS16における降温速度は、毎秒10℃以上の速度が好ましく、速いほど良い。相転移温度以上にまで急速に昇温し、速やかに室温に降温することで、体心立方相から面心立方相への相転移を部分的に起させることができるため、結果としてマルテンサイト相を得ることができる。   Next, quenching by rapid temperature rise, that is, the substrate that has been cooled to room temperature is rapidly heated from room temperature to the phase transition temperature or higher (step S15), and then quickly cooled to room temperature (step S16). . The heating rate in step S15 is preferably a rate of 135 ° C. or more per minute. Moreover, the rate of temperature decrease in step S16 is preferably 10 ° C. or more per second, and the faster the better. The phase transition from the body-centered cubic phase to the face-centered cubic phase can be partially caused by rapidly raising the temperature to above the phase transition temperature and then quickly lowering it to room temperature. Can be obtained.

以下、本発明を実施例によりさらに詳細に説明する。実施形態の説明に対応する箇所は、適宜、実施形態の説明で使用した図1を参照する。ここで示す実施例は、JIS規格SUS304の材料を使って行ったものだが、本発明は、C、Crを含むステンレス鋼に広く適用されるものであり、これに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. For parts corresponding to the description of the embodiment, refer to FIG. 1 used in the description of the embodiment as appropriate. Although the embodiment shown here is performed using a material of JIS standard SUS304, the present invention is widely applied to stainless steel containing C and Cr, and is not limited to this.

本実施例で用いられた基材のSUS304は、C:0.08重量%以下、Si:1.00重量%以下、Mn:2.00重量%以下、P:0.045重量%以下、S:0.030重量%以下、Ni:8.00〜10.50重量%以下、Cr:18.00〜20.00重量%、残部:Fe及び不可避な不純物元素、となる基材素材を用意し、これらを混合し(ステップS11)、基材素材の融点以上に加熱し、溶融するとともに加工し、所定の形状に成型し(ステップS12)、得られたものである。その後、基材を約1050℃で80分間程度加熱処理し(ステップS13)、炉の中で毎分約35℃の速度で常温まで降温した(ステップS14)。次に、毎分約135℃の速度で基材を昇温し(ステップS15)、毎秒約10℃の速度で常温まで降温した(ステップS16)。   SUS304 of the base material used in this example is C: 0.08% by weight or less, Si: 1.00% by weight or less, Mn: 2.00% by weight or less, P: 0.045% by weight or less, S : 0.030 wt% or less, Ni: 8.00 to 10.50 wt% or less, Cr: 18.00 to 20.00 wt%, balance: Fe and unavoidable impurity elements are prepared. These are mixed (step S11), heated to the melting point of the base material or higher, melted and processed, and molded into a predetermined shape (step S12). Thereafter, the substrate was heated at about 1050 ° C. for about 80 minutes (step S13), and the temperature was lowered to room temperature at a rate of about 35 ° C. per minute in the furnace (step S14). Next, the temperature of the substrate was raised at a rate of about 135 ° C. per minute (step S15), and the temperature was lowered to room temperature at a rate of about 10 ° C. per second (step S16).

以下に、図3、図4及び図5を用いて、本発明の実施例に係るステンレス鋼は、熱時効にともなう長さ変化が抑制され、経時劣化の原因と考えられるクロム炭化物の析出も抑制されることを示す。   Hereinafter, the stainless steel according to the embodiment of the present invention is suppressed in length change due to thermal aging, and also suppresses precipitation of chromium carbide considered to be a cause of deterioration with time, using FIG. 3, FIG. 4, and FIG. Indicates that

図3は、本発明の実施例に係るステンレス鋼と、従来の製造方法により製造したマルテンサイトステンレス鋼を700℃で加熱した際の、プッシュロッド式熱膨張計による長さの加熱時間依存性の測定結果である。縦軸は、マルテンサイトステンレス鋼サンプルの長さの変化、横軸は、加熱時間を表している。   FIG. 3 shows the heating time dependency of the length by the push rod type thermal dilatometer when the stainless steel according to the embodiment of the present invention and the martensitic stainless steel manufactured by the conventional manufacturing method are heated at 700 ° C. It is a measurement result. The vertical axis represents the change in the length of the martensitic stainless steel sample, and the horizontal axis represents the heating time.

本発明の実施例に係るステンレス鋼の測定結果(A)は、熱時効にともなう長さ変化がほとんど無いのに対し、従来の製造方法により製造したマルテンサイトステンレス鋼の測定結果(B)は、熱時効にともなう長さ変化が大きい。   The measurement result (A) of the stainless steel according to the example of the present invention has almost no change in length due to thermal aging, whereas the measurement result (B) of the martensitic stainless steel manufactured by the conventional manufacturing method is The length change with thermal aging is large.

プッシュロッド式熱膨張計により測定される長さ変化が大きいということは、材料の経時劣化が大きいことを示し、長さ変化が小さいということは、材料の経時劣化が小さいことを示すため、この結果から、本発明の実施例に係るステンレス鋼は、従来の製造方法により製造したマルテンサイトステンレス鋼よりも、材料の経時劣化が小さいことがわかる。   A large length change measured by a push rod thermal dilatometer indicates that the material has a large deterioration with time, and a small length change indicates that the material has a small deterioration with time. From the results, it can be seen that the stainless steel according to the example of the present invention is less deteriorated over time than the martensitic stainless steel manufactured by the conventional manufacturing method.

図4Aは、従来の製造方法により製造したマルテンサイトステンレス鋼を700℃で5時間加熱したものの透過電子顕微鏡像であり、図4Bは、本発明の実施例に係るステンレス鋼を700℃で5時間加熱したものの透過電子顕微鏡像である。視野はいずれも3μm四方である。   FIG. 4A is a transmission electron microscope image of a martensitic stainless steel manufactured by a conventional manufacturing method heated at 700 ° C. for 5 hours, and FIG. 4B is a stainless steel according to an embodiment of the present invention at 700 ° C. for 5 hours. It is a transmission electron microscope image of what was heated. All fields of view are 3 μm square.

図4Aで直線状に走る陰影は、結晶の粒界であり、その他の陰影は、試料の厚さの違いなどでできるコントラストである。結晶の粒界に沿って観察される黒色の斑点は、クロム炭化物である。この黒色の斑点がクロム炭化物であることは、エネルギー分散X線分光法で確認された。図4Bで直線状に走る陰影は、結晶の粒界であるが、これに沿って黒色の斑点は観察されない。   In FIG. 4A, the shade that runs linearly is a crystal grain boundary, and the other shades are contrasts that are formed by differences in the thickness of the sample. The black spots observed along the crystal grain boundaries are chromium carbides. It was confirmed by energy dispersive X-ray spectroscopy that the black spots were chromium carbide. The shade running straight in FIG. 4B is a grain boundary of the crystal, but no black spots are observed along this.

この結果から、本発明の実施例に係るステンレス鋼は、700℃で5時間加熱しても経時劣化の原因となるクロム炭化物が析出されないのに対して、従来の製造方法により製造したマルテンサイトステンレス鋼は、700℃で5時間加熱すると、経時劣化の原因となるクロム炭化物が析出されることがわかる。   From this result, the stainless steel according to the example of the present invention does not precipitate chromium carbide that causes deterioration with time even when heated at 700 ° C. for 5 hours, whereas the martensitic stainless steel manufactured by the conventional manufacturing method. It can be seen that when the steel is heated at 700 ° C. for 5 hours, chromium carbides that cause deterioration over time are precipitated.

図5Aは、従来の製造方法により製造したマルテンサイトステンレス鋼を700℃で10時間加熱したものの透過電子顕微鏡像であり、図5Bは、本発明の実施例に係るステンレス鋼を700℃で10時間加熱したものの透過電子顕微鏡像である。視野はいずれも3μm四方である。   FIG. 5A is a transmission electron microscope image of a martensitic stainless steel manufactured by a conventional manufacturing method heated at 700 ° C. for 10 hours, and FIG. 5B is a stainless steel according to an example of the present invention at 700 ° C. for 10 hours. It is a transmission electron microscope image of what was heated. All fields of view are 3 μm square.

図5Aで直線状に走る陰影は、結晶の粒界であり、その他の陰影は、試料の厚さの違いなどでできるコントラストである。結晶の粒界に沿って観察される黒色の斑点(クロム炭化物)が、図4Aに比べて明らかに増加していることがわかる。図5Bで直線状に走る陰影は結晶の粒界であるが、これに沿って黒色の斑点は観察されない。   The shade running straight in FIG. 5A is the grain boundary of the crystal, and the other shade is the contrast that can be generated by the difference in the thickness of the sample. It can be seen that the black spots (chromium carbide) observed along the crystal grain boundaries are clearly increased as compared to FIG. 4A. The shade running straight in FIG. 5B is the crystal grain boundary, but no black spots are observed along this.

この結果から、本発明の実施例に係るステンレス鋼は、700℃で10時間加熱しても経時劣化の原因となるクロム炭化物が析出されないのに対して、従来の製造方法により製造したマルテンサイトステンレス鋼は、700℃で10時間加熱すると、経時劣化の原因となるクロム炭化物が、5時間の加熱よりも多く析出されることがわかる。   From this result, the stainless steel according to the example of the present invention does not precipitate chromium carbide which causes deterioration with time even when heated at 700 ° C. for 10 hours. It can be seen that when steel is heated at 700 ° C. for 10 hours, chromium carbides that cause deterioration over time are precipitated more than heating for 5 hours.

以上の特徴は、同じ試料の別の部位を観察しても同様であった。従来の製造方法により製造したマルテンサイトステンレス鋼は、700℃で加熱を続けると、結晶粒界にクロム炭化物が析出し、それが時間とともに増大していくのに対して、本発明の実施例に係るステンレス鋼は、クロム炭化物の析出が観察されなかった。   The above characteristics were the same even when another part of the same sample was observed. In the martensitic stainless steel manufactured by the conventional manufacturing method, when heating is continued at 700 ° C., chromium carbide precipitates at the grain boundary and increases with time. In such stainless steel, no precipitation of chromium carbide was observed.

以上より、本発明の実施例に係るステンレス鋼は、クロム炭化物析出による経時劣化が抑制され、実際に熱時効にともなう長さ変化が抑制されることがわかった。   From the above, it was found that the stainless steels according to the examples of the present invention were able to suppress deterioration over time due to chromium carbide precipitation and to actually suppress the length change accompanying thermal aging.

従来の製造方法は、格子定数が0.355nmであるfcc(高温相)からの急速降温により、格子定数が0.286nmであるbcc(低温相)を一部に生成してマルテンサイト相を得るため、炭素が結晶格子の中に過飽和に含みやすくなり、その過飽和に含まれた炭素がクロム炭化物の析出として熱時効による経時劣化につながるのに対して、本発明の実施例は、格子定数が0.286nmであるbcc(低温相)から急速昇温により、格子定数が0.355nmであるfcc(高温相)を一部に生成してマルテンサイト相を得るため、従来の製造方法と比較して炭素を過飽和に含みにくい。このため、クロム炭化物の析出が抑制され、経時劣化が抑制されていると考えられる。また、後述するように、相転移温度以上に加熱した面心立方相の高温ステンレス鋼を、水や油に浸すことで常温まで急速に降温する従来の製造方法は、欠陥の密度が低く、Crが粒界まで拡散しやすかったのに対して、常温から相転移温度以上にまで急速に昇温し(ステップS15)、速やかに室温まで降温する(ステップS16)。本発明の実施例は、欠陥の密度が高く、欠陥によってCrの拡散が阻害されるために、Crが粒界に析出しにくいと考えられる。   In the conventional manufacturing method, a martensite phase is obtained by generating a part of bcc (low temperature phase) having a lattice constant of 0.286 nm by rapid cooling from fcc (high temperature phase) having a lattice constant of 0.355 nm. Therefore, carbon tends to be included in the supersaturation in the crystal lattice, and the carbon contained in the supersaturation leads to deterioration with time due to thermal aging as precipitation of chromium carbide, whereas the embodiment of the present invention has a lattice constant of Compared with the conventional manufacturing method, a martensite phase is obtained by generating a part of fcc (high temperature phase) having a lattice constant of 0.355 nm by rapid heating from bcc (low temperature phase) of 0.286 nm. It is difficult to include carbon in supersaturation. For this reason, it is thought that precipitation of chromium carbide is suppressed and deterioration with time is suppressed. In addition, as described later, the conventional manufacturing method in which a high temperature stainless steel having a face-centered cubic phase heated to a phase transition temperature or higher is rapidly cooled to room temperature by immersing it in water or oil has a low defect density, and Cr However, the temperature rapidly rises from room temperature to the phase transition temperature or higher (step S15), and quickly drops to room temperature (step S16). In the examples of the present invention, since the density of defects is high and the diffusion of Cr is inhibited by the defects, it is considered that Cr hardly precipitates at the grain boundaries.

以下に、図6を用いて、上記熱時効による経時劣化の抑制と同時に、硬度が維持されていることを示す。   Hereinafter, it is shown using FIG. 6 that the hardness is maintained simultaneously with the suppression of the deterioration with time due to the thermal aging.

図6は、従来の製造方法で製造したマルテンサイトステンレス鋼と本発明の実施例に係るステンレス鋼のビッカース硬さの測定結果である。従来の製造方法で製造したマルテンサイトステンレス鋼は、平均191であるのに対して、本発明の実施例に係るステンレス鋼は、平均216であり、明らかに硬度が高い。つまり、本実施例に係るステンレス鋼は、加熱による経時劣化が抑制されるだけでなく、硬度も従来のステンレス鋼よりも高くなった。   FIG. 6 is a measurement result of Vickers hardness of martensitic stainless steel manufactured by a conventional manufacturing method and stainless steel according to an embodiment of the present invention. The martensitic stainless steel manufactured by the conventional manufacturing method has an average of 191, while the stainless steel according to the embodiment of the present invention has an average of 216, which is clearly high in hardness. That is, the stainless steel according to the present example not only suppressed the deterioration over time due to heating, but also had a higher hardness than the conventional stainless steel.

以下に、図7を用いて、この硬度向上の起源について解析を行った結果を説明する。   Below, the result of having analyzed about the origin of this hardness improvement is demonstrated using FIG.

図7Aは、従来の製造方法により製造したマルテンサイトステンレス鋼のX線回折の計測結果(XRDスペクトル)を示す図であり、図7Bは、本発明の実施例に係るステンレス鋼の急速昇温熱処理前のX線回折の計測結果を示す図であり、図7Cは、本発明の実施例に係るステンレス鋼の急速昇温熱処理後のX線回折の計測結果を示す図である。図7A〜図7Cにおいて、横軸は、X線の入射軸とサンプルから検出器を結ぶ軸の補角を示しており、縦軸は、検出器にて検出される散乱X線の強度を任意単位で示したものである。また、P1は、fcc(111)の回折ピーク、P2は、fcc(200)の回折ピーク、P3は、fcc(220)の回折ピーク、P4は、bcc(110)の回折ピーク、P5は、bcc(200)の回折ピークを示す。   FIG. 7A is a diagram showing a measurement result (XRD spectrum) of X-ray diffraction of martensitic stainless steel manufactured by a conventional manufacturing method, and FIG. 7B is a rapid temperature increasing heat treatment of stainless steel according to an embodiment of the present invention. It is a figure which shows the measurement result of previous X-ray diffraction, and FIG. 7C is a figure which shows the measurement result of the X-ray diffraction after the rapid temperature rising heat processing of the stainless steel which concerns on the Example of this invention. 7A to 7C, the horizontal axis indicates the complementary angle between the X-ray incident axis and the axis connecting the sample to the detector, and the vertical axis indicates the intensity of the scattered X-ray detected by the detector. It is shown in units. P1 is the diffraction peak of fcc (111), P2 is the diffraction peak of fcc (200), P3 is the diffraction peak of fcc (220), P4 is the diffraction peak of bcc (110), and P5 is bcc. The diffraction peak of (200) is shown.

図7Aに示す計測結果では、43.44°、44.24°、50.42°、64.46°、74.50°にそれぞれピークが計測された。先行研究によって、ステンレス鋼からのXRDスペクトルのピークは、面心立方相(fcc)の場合は、43°付近に(111)面のピークP1、50°付近に(200)面のピークP2、74°付近に(220)面のピークP3が現れることがわかっている(非特許文献4)。また、体心立方相(bcc)の場合は、45°付近に(110)面のピークP4、65°付近に(200)面のピークP5が現れることがわかっている(非特許文献5)。図7Aの計測結果から、P1、P2、P3,P4、及びP5のピークが観察されたことから、従来の製造方法で製造したマルテンサイトステンレス鋼には、面心立方相(fcc)と体心立方相(bcc)が混在していることがわかる。   In the measurement result shown in FIG. 7A, peaks were measured at 43.44 °, 44.24 °, 50.42 °, 64.46 °, and 74.50 °, respectively. According to previous studies, in the case of the face-centered cubic phase (fcc), the peak of the XRD spectrum from stainless steel is (111) plane peak P1 near 43 °, (200) plane peak P2, 74 near 50 °. It is known that a peak P3 on the (220) plane appears in the vicinity of ° (Non-Patent Document 4). In the case of the body-centered cubic phase (bcc), it is known that the (110) plane peak P4 appears at around 45 ° and the (200) plane peak P5 appears at around 65 ° (Non-patent Document 5). From the measurement results of FIG. 7A, the peaks of P1, P2, P3, P4, and P5 were observed, so the martensitic stainless steel manufactured by the conventional manufacturing method has face centered cubic phase (fcc) and body center. It can be seen that the cubic phase (bcc) is mixed.

図7Bに示す計測結果では、44.3°、64.36°にそれぞれピークが計測された。図7Bの計測結果から、体心立方相(bcc)のピークP4及びP5は計測されたが、面心立方相(fcc)のピークは計測されなかったことから、本発明の実施例に係るステンレス鋼の急速昇温熱処理前(ステップS15の前)のステンレス鋼は、体心立方相となっていることがわかる。   In the measurement result shown in FIG. 7B, peaks were measured at 44.3 ° and 64.36 °, respectively. From the measurement result of FIG. 7B, the peaks P4 and P5 of the body-centered cubic phase (bcc) were measured, but the peak of the face-centered cubic phase (fcc) was not measured. Therefore, the stainless steel according to the example of the present invention. It can be seen that the stainless steel before the rapid heat-up heat treatment of the steel (before step S15) has a body-centered cubic phase.

図7Cに示す計測結果では、43.44°、44.24°、50.44°、64.46°、74.50°にそれぞれピークが計測された。図7Cの計測結果から、P1、P2、P3、P4、及びP5のピークが観察されたことから、本発明の実施例に係るステンレス鋼は、従来の製造方法で製造したマルテンサイトステンレス鋼と同様に、面心立方相(fcc)と体心立方相(bcc)が混在したマルテンサイト相になっていることがわかる。   In the measurement result shown in FIG. 7C, peaks were measured at 43.44 °, 44.24 °, 50.44 °, 64.46 °, and 74.50 °, respectively. From the measurement results of FIG. 7C, the peaks of P1, P2, P3, P4, and P5 were observed, so that the stainless steel according to the example of the present invention is the same as the martensitic stainless steel manufactured by the conventional manufacturing method. Further, it can be seen that the martensite phase is a mixture of the face-centered cubic phase (fcc) and the body-centered cubic phase (bcc).

以上より、本実施例に係るステンレス鋼は、高温保持後の降温によって体心立方相となっているステンレス鋼が、急速昇温熱処理によってマルテンサイトに変態し、従来の製造方法で製造されたステンレス鋼と同様の結晶構造となっていることがわかった。   As described above, the stainless steel according to the present example is a stainless steel produced by a conventional production method in which the stainless steel that is in the body-centered cubic phase by the temperature drop after holding at a high temperature is transformed into martensite by the rapid temperature rise heat treatment. It was found that the crystal structure was similar to that of steel.

以下に、図8を用いて、従来の製造方法で製造したマルテンサイトステンレス鋼よりも本発明の実施例により得たステンレス鋼の硬度が高いことの理由が、本発明の実施例に係るステンレス鋼に形成された高密度の欠陥による材料のすべり変形等の抑制効果であると考えられることを説明する。   The reason why the hardness of the stainless steel obtained by the embodiment of the present invention is higher than that of the martensitic stainless steel manufactured by the conventional manufacturing method is shown in FIG. It will be explained that it is considered to be an effect of suppressing the slip deformation of the material due to the high density defects formed in (1).

図8Aは、従来の製造方法により製造したマルテンサイトステンレス鋼の透過電子顕微鏡像であり、図8Bは、本発明の実施例に係るステンレス鋼の透過電子顕微鏡像である。視野はいずれも3μm四方である。   FIG. 8A is a transmission electron microscope image of martensitic stainless steel manufactured by a conventional manufacturing method, and FIG. 8B is a transmission electron microscope image of stainless steel according to an example of the present invention. All fields of view are 3 μm square.

直線状に走る陰影は、結晶の粒界であり、その他の陰影は、試料の厚さの違いなどでできるコントラストである。図8Aでは、短く終端されたコントラストが観察されないことから、導入されている欠陥の密度は、観察範囲に現れないほど小さいことがわかる。この特徴は、試料の別の部位を観察しても同様であった。一方、図8Bでは、結晶面内で短く終端されたコントラストが多く観察される。この観察結果から、本発明の実施例に係るステンレス鋼は、従来の製造方法により製造されたマルテンサイトステンレス鋼よりも多くの欠陥が形成されていることがわかった。これは、図6で示した従来の製造方法で製造したマルテンサイトステンレス鋼よりも本発明の実施例により得たステンレス鋼の硬度が高いことの理由が、図8Bの電子顕微鏡像で観察される高密度の欠陥による材料のすべり変形等の抑制効果であることを強く示唆している。   The shading that runs in a straight line is the grain boundary of the crystal, and the other shading is the contrast that can be produced by the difference in the thickness of the sample. In FIG. 8A, since the short-terminated contrast is not observed, it can be seen that the density of the introduced defects is so small that it does not appear in the observation range. This feature was the same even when another part of the sample was observed. On the other hand, in FIG. 8B, a lot of contrast terminated shortly in the crystal plane is observed. From this observation result, it was found that the stainless steel according to the example of the present invention has more defects formed than the martensitic stainless steel manufactured by the conventional manufacturing method. The reason why the hardness of the stainless steel obtained by the example of the present invention is higher than that of the martensitic stainless steel manufactured by the conventional manufacturing method shown in FIG. 6 is observed in the electron microscope image of FIG. 8B. It strongly suggests that it is an effect of suppressing slip deformation of the material due to high density defects.

本発明の実施形態に係るステンレス鋼の製造方法によれば、希少資源元素を添加することなく、従来の製造方法で製造したマルテンサイトステンレス鋼よりも、経時劣化が抑制されたマルテンサイトステンレス鋼を得ることできる。また、結晶構造そのものは維持しつつ、従来技術よりも多くの欠陥を導入することが可能であり、従来よりも高い硬度のステンレス鋼が得られる。   According to the method for producing stainless steel according to the embodiment of the present invention, martensitic stainless steel in which deterioration with time is suppressed rather than martensitic stainless steel produced by a conventional production method without adding a rare resource element. Can get. In addition, it is possible to introduce more defects than in the prior art while maintaining the crystal structure itself, and a stainless steel with higher hardness than in the prior art can be obtained.

なお、本発明は、上述の実施形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。   It should be noted that the present invention is not limited to the above-described embodiment, and various configurations can be adopted without departing from the gist of the present invention.

Claims (2)

C:1.20重量%以下、Si:5.00重量%以下、Mn:10重量%以下、P:0.200重量%以下、S:0.060重量%以下又は0.10重量%以上、Ni:28.00重量%以下、Cr:11.00〜32.00重量%、Mo:7.00重量%以下、Cu:1.00〜5.00重量%以下、N:0.30重量%以下、残部:Fe及び不可避な不純物元素からなる組成を有する基材素材を混合するステップと、
前記基材素材の混合物を溶融して基材を得るステップと、
前記基材の溶体化処理を行うステップと、
前記基材を、毎分135℃以上の速度で、面心立方相が安定となる相転移温度以上まで昇温するステップと、
を備えることを特徴とするステンレス鋼の製造方法。
C: 1.20% by weight or less, Si: 5.00% by weight or less, Mn: 10% by weight or less, P: 0.200% by weight or less, S: 0.060% by weight or less, or 0.10% by weight or more, Ni: 28.00 wt% or less, Cr: 11.00 to 32.00 wt%, Mo: 7.00 wt% or less, Cu: 1.00 to 5.00 wt% or less, N: 0.30 wt% Hereinafter, a step of mixing a base material having a composition composed of the balance: Fe and inevitable impurity elements,
Melting the mixture of substrate materials to obtain a substrate;
Performing a solution treatment of the substrate;
Heating the substrate at a rate of 135 ° C. or more per minute to a phase transition temperature or higher at which the face-centered cubic phase is stable;
A method for producing stainless steel, comprising:
請求項1に記載のステンレス鋼の製造方法であって、
前記溶体化処理を行うステップは、
前記基材を約1050℃に80分以上保持するステップと、
前記基材を毎分35℃以下の速度で、相転移温度以下まで降温するステップと、
からなることを特徴とするステンレス鋼の製造方法。
It is a manufacturing method of the stainless steel of Claim 1,
The step of performing the solution treatment includes
Holding the substrate at about 1050 ° C. for 80 minutes or more;
Lowering the substrate to a temperature below the phase transition temperature at a rate of 35 ° C. or less per minute;
A method for producing stainless steel, comprising:
JP2012225346A 2012-10-10 2012-10-10 Stainless steel manufacturing method Expired - Fee Related JP5836911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012225346A JP5836911B2 (en) 2012-10-10 2012-10-10 Stainless steel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012225346A JP5836911B2 (en) 2012-10-10 2012-10-10 Stainless steel manufacturing method

Publications (2)

Publication Number Publication Date
JP2014077172A true JP2014077172A (en) 2014-05-01
JP5836911B2 JP5836911B2 (en) 2015-12-24

Family

ID=50782718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012225346A Expired - Fee Related JP5836911B2 (en) 2012-10-10 2012-10-10 Stainless steel manufacturing method

Country Status (1)

Country Link
JP (1) JP5836911B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310051A (en) * 1989-06-08 1991-01-17 Nippon Steel Corp High-carbon and high-nitrogen stainless steel having high strength and high toughness and its production
JPH04318123A (en) * 1991-04-16 1992-11-09 Nkk Corp Method for continuously annealing austenitic stainless steel cold-rolled steel strip
JP2002038243A (en) * 2000-07-27 2002-02-06 Sumitomo Metal Ind Ltd Stainless steel having plural phase structure and its production method
JP2004244691A (en) * 2003-02-14 2004-09-02 Sumitomo Metal Ind Ltd Chromium based stainless steel, and production method therefor
JP2006089766A (en) * 2004-09-21 2006-04-06 Nisshin Steel Co Ltd Disk brake rotor excellent in corrosion resistance
JP2006233292A (en) * 2005-02-25 2006-09-07 Toshiba Corp Corrosion resistant steel and producing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310051A (en) * 1989-06-08 1991-01-17 Nippon Steel Corp High-carbon and high-nitrogen stainless steel having high strength and high toughness and its production
JPH04318123A (en) * 1991-04-16 1992-11-09 Nkk Corp Method for continuously annealing austenitic stainless steel cold-rolled steel strip
JP2002038243A (en) * 2000-07-27 2002-02-06 Sumitomo Metal Ind Ltd Stainless steel having plural phase structure and its production method
JP2004244691A (en) * 2003-02-14 2004-09-02 Sumitomo Metal Ind Ltd Chromium based stainless steel, and production method therefor
JP2006089766A (en) * 2004-09-21 2006-04-06 Nisshin Steel Co Ltd Disk brake rotor excellent in corrosion resistance
JP2006233292A (en) * 2005-02-25 2006-09-07 Toshiba Corp Corrosion resistant steel and producing method therefor

Also Published As

Publication number Publication date
JP5836911B2 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
KR102236938B1 (en) Twinning/transformation induced plasticity high entropy steels and method for manufacturing the same
Tucho et al. Characterization of SLM-fabricated Inconel 718 after solid solution and precipitation hardening heat treatments
US20210222274A1 (en) High entropy alloy doped with boron and method for manufacturing the same
EP3612656B1 (en) Precipitation hardenable cobalt-nickel base superalloy and article made thereform
US20120067464A1 (en) Co-ni-based alloy, method of controlling crystal of co-ni-based alloy, method of producing co-ni-based alloy, and co-ni-based alloy having controlled crystallinity
US9631249B2 (en) Stainless steel and method for manufacturing same
CN108118193A (en) The manufacturing method of Ni base superalloy materials
KR102178331B1 (en) Medium-entropy alloys and Manufacturing method of the same
CN108118192A (en) The manufacturing method of Ni base superalloy materials
JP4423608B2 (en) Hardened tool steel material
CN104451086A (en) Method of manufacturing rotor to be used for steam turbine
JP5660417B1 (en) Manufacturing method of steel for blades
KR102009702B1 (en) Cut Steel Strips
JP5359582B2 (en) Hardened tool steel material
WO2014208562A1 (en) Carburized component
JP2023501564A (en) Austenitic stainless steel containing a large amount of uniformly distributed nano-sized precipitates and method for producing the same
JP5272330B2 (en) Steel for gas carburization, gas carburized parts, and method for manufacturing gas carburized parts
CA2876847C (en) Austenitic alloy tube
JPWO2014162996A1 (en) Cutlery steel and manufacturing method thereof
JP5317048B2 (en) Resistance alloy manufacturing method
JP5836911B2 (en) Stainless steel manufacturing method
JP2015028206A (en) Case hardening steel
JP6237277B2 (en) Case-hardened steel and carburized parts using the same
JP6369284B2 (en) Duplex stainless steel and method for producing the same
JP6485692B2 (en) Heat resistant alloy with excellent high temperature strength, method for producing the same and heat resistant alloy spring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151104

R150 Certificate of patent or registration of utility model

Ref document number: 5836911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees