JP2014076355A - カテーテル識別誘導システム - Google Patents
カテーテル識別誘導システム Download PDFInfo
- Publication number
- JP2014076355A JP2014076355A JP2013206047A JP2013206047A JP2014076355A JP 2014076355 A JP2014076355 A JP 2014076355A JP 2013206047 A JP2013206047 A JP 2013206047A JP 2013206047 A JP2013206047 A JP 2013206047A JP 2014076355 A JP2014076355 A JP 2014076355A
- Authority
- JP
- Japan
- Prior art keywords
- catheter
- identification
- needle
- vein
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 210000003462 vein Anatomy 0.000 claims abstract description 88
- 238000000034 method Methods 0.000 claims abstract description 62
- 238000003780 insertion Methods 0.000 claims abstract description 16
- 230000037431 insertion Effects 0.000 claims abstract description 16
- 230000000007 visual effect Effects 0.000 claims description 24
- 238000003384 imaging method Methods 0.000 claims description 20
- 238000004458 analytical method Methods 0.000 claims description 13
- 238000002627 tracheal intubation Methods 0.000 claims description 13
- 238000012545 processing Methods 0.000 claims description 11
- 239000003550 marker Substances 0.000 claims description 9
- 230000003287 optical effect Effects 0.000 claims description 9
- 238000010219 correlation analysis Methods 0.000 claims description 5
- 238000000605 extraction Methods 0.000 claims description 3
- 230000008034 disappearance Effects 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 claims 1
- 230000001419 dependent effect Effects 0.000 claims 1
- 210000001519 tissue Anatomy 0.000 description 28
- 230000008569 process Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 11
- 230000008859 change Effects 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 9
- 238000001990 intravenous administration Methods 0.000 description 7
- 238000013459 approach Methods 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 210000005166 vasculature Anatomy 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 210000004872 soft tissue Anatomy 0.000 description 3
- 230000005236 sound signal Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 206010015866 Extravasation Diseases 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000036251 extravasation Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000036555 skin type Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 238000007794 visualization technique Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0077—Devices for viewing the surface of the body, e.g. camera, magnifying lens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3403—Needle locating or guiding means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4887—Locating particular structures in or on the body
- A61B5/489—Blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2065—Tracking using image or pattern recognition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/373—Surgical systems with images on a monitor during operation using light, e.g. by using optical scanners
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3937—Visible markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0082—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
- A61B5/0084—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
- A61B5/0086—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters using infrared radiation
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Vascular Medicine (AREA)
- Pulmonology (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
Abstract
【課題】静脈アクセス処置を行う上で臨床医を支援するための赤外線検出器、及び画像表示システム用のカテーテル識別誘導システムを提供する。
【解決手段】静脈及び針の画像を取り込み、この画像を表面に投影するIR撮像/投影部200−5と、画像から針を識別し、針のパラメータを計算し、そして、これらのパラメータに基づいて、静脈220との針210−2位置合わせと組織215を介した静脈への挿入との可視化を支援するために、IR撮像/投影部に針、及び静脈の画像と付加情報とを投影させる識別誘導システム200と、を備える赤外線検出器、及び画像投影部システムの構成とする。
【選択図】図2
【解決手段】静脈及び針の画像を取り込み、この画像を表面に投影するIR撮像/投影部200−5と、画像から針を識別し、針のパラメータを計算し、そして、これらのパラメータに基づいて、静脈220との針210−2位置合わせと組織215を介した静脈への挿入との可視化を支援するために、IR撮像/投影部に針、及び静脈の画像と付加情報とを投影させる識別誘導システム200と、を備える赤外線検出器、及び画像投影部システムの構成とする。
【選択図】図2
Description
本願は、2012年10月10日付けで出願された米国特許出願第13/648,517号、及び2013年4月18日付けで出願された米国特許出願第13/865,650号の出願の優先権を主張する。
本発明は、医用イメージングを対象とし、そして、より詳しくは、静脈アクセス等の静脈アクセス処置を行う上で臨床医を支援するための赤外線検出器、及び画像表示システム用のカテーテル識別誘導システムを対象とする。
静脈内(IV)カテーテルは、採血や輸液のために静脈にアクセスするのに用いられる。静脈への確かな挿管を確認する上で、臨床医を支援する技法は非常に少ない。末梢IVアクセスのための標準的な技術は、止血帯を使用して静脈を鬱血させる、その後、適切な静脈を見つけるために触診する、最後にカテーテル針を挿入するなどである。臨床医は、静脈に針を挿入する際に「感触」に頼ったり、カテーテルの静脈挿管に成功したことを確かめるために血液フラッシュバックの確認に頼ったりしなければならない。この試行錯誤の手順は、統計によると、臨床医が静脈挿管を完了するには平均2.4回の試行と最大20分とが必要である。患者が経験する痛みや不安の増加とは別に、IVケアに関連する実際のコストがある。患者処理能力、看護時間、消耗品、及び感染率増加は全て、病院および政府の医療コストの増加の一因となる。
静脈アクセスを支援し、且つ従来の試行錯誤的な技法の短所を克服するシステムが開発されている。そのようなシステムの一例は、Christie Digital Systems,Inc.の一部門であるChristie Medical Holdings,Inc.が製造および販売するVeinViewer(登録商標)赤外線検知器兼画像投影機であり、このシステムは、米国特許第7,239,909号、ならびに米国特許出願公開第2010/051808号、第2007/0158569号、及び第2006/0122515号に記載されており、これらの内容は、参照により本明細書に組み込まれる。
上記VeinViewer(登録商標)システムによると、拡散赤外線を用いて皮膚表面より下にある脈管構造を画像化し、その後画像を皮膚上に投影して脈管構造の位置を明らかにする。脈管構造画像は、脈管構造自体と厳密に同じ解剖学的位置において、且つその三次元的な状況(患者の皮膚)において投影されるため、非常に容易に静脈が見える。また、臨床医はトランスデューサを手に持たないので、静脈アクセスに取り組む上で両手が自由になる。
VeinViewer(登録商標)システムは、病院で広く採用されているが、挿管が成功したことが検知不可能であるため、同システムの用途はいくぶん限定されている。超音波が、挿管が成功したどうかを示すことが出来る現在唯一の視覚化技術である。超音波は、PICCラインやCVC線など、深部静脈アクセスへの使用が一般的であるが、末梢静脈には通常使用されない。
本発明に関連性がある従来技術としては、以下の文献に開示されているような異なる材料の光学特性の理論及び数学的モデリングに関する文献等がある。
1.The optics of human skin.Anderson,R. R.and Parrish,J.A.1,1981,The Journal o f Investigative Dermatology,Vol.77,pp. 13−19
2.Use of the Kubelka−Munk theory to st udy the influence of iron oxides on so il colour.Barron,V.and Torrent,J.4,198 6,Journal of Soil Science,Vol.37,pp.49 9−510
3.Optical properties of human skin,sub cutaneous and mucous tissues in the wa velength range from 400 to 2000nm.Bash katov,A.N.,et al.15,2005,Journal of Ph ysics D:Applied Physics,Vol.38,pp.2543 −2555
4.Geometry related inter−instrument di fferences in spectrophotometric measur ements.Edstorom,P.,et al.2,2010,Nordic Pulp and Paper Research Journal,Vol.2 5,pp.221−232
5.Light scattering at the boundary bet ween two media.Ivanov,A.P.and Barun,V. V.1,2011,Journal of Engineering Physic s and Thermophysics,Vol.84,pp.23−32
6.New contributions to the optics of i ntensely light−scattering materials.Pa rt I.Kubelka,P.5,1948,Journal of the O ptical Society of America,Vol.38,pp.44 8−457
7.An article on optics of paint layers .Kubelka,P.and Munk,F.1930,1931,Zeitsc hrif fur technische Physik,Vol.31,pp.1 −16
8.Anisotropic reflectance from tubid m edia.II.Measurements.Neuman,M.and Edst rom,P.5,2010,Journal of the Optical So ciety of America,Vol.27,pp.1040−1045
9.Anisotropic reflectance from turbid media.I.Theory.Neuman,M.and Edstrom,P. 5,2010,Journal of the Optical Society of America,Vol.27,pp.1032−1039
10.Point spreading in turbid media wit h anisotropic single scattering.Neuman ,M.,Coppel,L.G.and Edstrom,P.3,2011,Op tics Express,Vol.19,pp.1915−1920
11.Analytic light transport approximat ions for volumetric materials.Premoze, S.2002.Proceedings of the 10th Pacific Conference on Computer Graphics and A pplications.pp.48−58
12.Optical properties of circulating h uman blood in the wavelength range 400 −2500nm.Roggan,A.,et al.1,1999,Journal of Biomedical Optics,Vol.4,pp.35−46
13.The finite element method for the p ropagation of light in scattering medi a;boundary and source conditions.Schwe iger,M.,et al.11,1995,Americal Associa tion of Physicist in Medicine,Vol.22,p p.1779−1792
1.The optics of human skin.Anderson,R. R.and Parrish,J.A.1,1981,The Journal o f Investigative Dermatology,Vol.77,pp. 13−19
2.Use of the Kubelka−Munk theory to st udy the influence of iron oxides on so il colour.Barron,V.and Torrent,J.4,198 6,Journal of Soil Science,Vol.37,pp.49 9−510
3.Optical properties of human skin,sub cutaneous and mucous tissues in the wa velength range from 400 to 2000nm.Bash katov,A.N.,et al.15,2005,Journal of Ph ysics D:Applied Physics,Vol.38,pp.2543 −2555
4.Geometry related inter−instrument di fferences in spectrophotometric measur ements.Edstorom,P.,et al.2,2010,Nordic Pulp and Paper Research Journal,Vol.2 5,pp.221−232
5.Light scattering at the boundary bet ween two media.Ivanov,A.P.and Barun,V. V.1,2011,Journal of Engineering Physic s and Thermophysics,Vol.84,pp.23−32
6.New contributions to the optics of i ntensely light−scattering materials.Pa rt I.Kubelka,P.5,1948,Journal of the O ptical Society of America,Vol.38,pp.44 8−457
7.An article on optics of paint layers .Kubelka,P.and Munk,F.1930,1931,Zeitsc hrif fur technische Physik,Vol.31,pp.1 −16
8.Anisotropic reflectance from tubid m edia.II.Measurements.Neuman,M.and Edst rom,P.5,2010,Journal of the Optical So ciety of America,Vol.27,pp.1040−1045
9.Anisotropic reflectance from turbid media.I.Theory.Neuman,M.and Edstrom,P. 5,2010,Journal of the Optical Society of America,Vol.27,pp.1032−1039
10.Point spreading in turbid media wit h anisotropic single scattering.Neuman ,M.,Coppel,L.G.and Edstrom,P.3,2011,Op tics Express,Vol.19,pp.1915−1920
11.Analytic light transport approximat ions for volumetric materials.Premoze, S.2002.Proceedings of the 10th Pacific Conference on Computer Graphics and A pplications.pp.48−58
12.Optical properties of circulating h uman blood in the wavelength range 400 −2500nm.Roggan,A.,et al.1,1999,Journal of Biomedical Optics,Vol.4,pp.35−46
13.The finite element method for the p ropagation of light in scattering medi a;boundary and source conditions.Schwe iger,M.,et al.11,1995,Americal Associa tion of Physicist in Medicine,Vol.22,p p.1779−1792
以下に開示されているような針誘導システムも、本発明に関連性がある従来技術である。
14.Biopsy needle detection in transrec tal ultrasound.Ayvaci,A.,et al.7,2011, Computerized Medical Imaging and Graph ics,Vol.35,pp.653−659
15.A novel method for enhanced needle localization using ultrasound−guidance .Dong,B.,Savitsky,E.and Osher,S.2009.P roceedings of the 5th International Sy mposium on Advances in Visual Computin g:Part I.pp.1−9
16.A motion adaptable needle placement instrument based on tumor specific ul trasonic image segmentation.Hong,J.,et al.2002.pp.122−129
17.Localization of palm dorsal vein pa ttern using image processing for autom ated intra−venous drug needle insertio n.Kavitha,R.and Flower,L.6,2011,Intern ational Journal of Engieering Science and Technology,Vol.3,pp.4833−4838
18.Single camera closed−form real−time needle trajectory tracking for ultras ound.Najafi,M.and Rohling,R.2011.SPIE Proceedings of Visualization,Image−Gui ded Procedures,and Modeling.Vols.7964, 79641F
19.Methods for segmenting cuved needle s in ultrasound images.Okazawa,S.H.,et al.3,2006,Medical Image Analysis,Vol. 10,pp.330−342
20.Near−infrared imaging and structure d light ranging for automatic catheter insertion.Paquit,V.,et al.2006.SPIE P roceedings of Visualization,Image−Guid ed Procedures,and Display.Vols.6141,61 411T
21.Unified detection and tracking in r etinal microsurgery.Sznitman,R.,et al. 2011.Proceedings of Medical Image Comp uting and Computer−Assisted Interventi on.pp.1−8
14.Biopsy needle detection in transrec tal ultrasound.Ayvaci,A.,et al.7,2011, Computerized Medical Imaging and Graph ics,Vol.35,pp.653−659
15.A novel method for enhanced needle localization using ultrasound−guidance .Dong,B.,Savitsky,E.and Osher,S.2009.P roceedings of the 5th International Sy mposium on Advances in Visual Computin g:Part I.pp.1−9
16.A motion adaptable needle placement instrument based on tumor specific ul trasonic image segmentation.Hong,J.,et al.2002.pp.122−129
17.Localization of palm dorsal vein pa ttern using image processing for autom ated intra−venous drug needle insertio n.Kavitha,R.and Flower,L.6,2011,Intern ational Journal of Engieering Science and Technology,Vol.3,pp.4833−4838
18.Single camera closed−form real−time needle trajectory tracking for ultras ound.Najafi,M.and Rohling,R.2011.SPIE Proceedings of Visualization,Image−Gui ded Procedures,and Modeling.Vols.7964, 79641F
19.Methods for segmenting cuved needle s in ultrasound images.Okazawa,S.H.,et al.3,2006,Medical Image Analysis,Vol. 10,pp.330−342
20.Near−infrared imaging and structure d light ranging for automatic catheter insertion.Paquit,V.,et al.2006.SPIE P roceedings of Visualization,Image−Guid ed Procedures,and Display.Vols.6141,61 411T
21.Unified detection and tracking in r etinal microsurgery.Sznitman,R.,et al. 2011.Proceedings of Medical Image Comp uting and Computer−Assisted Interventi on.pp.1−8
本明細書の一様態の目的は、臨床医を誘導して浸潤や溢出効果を最小限に抑えつつ最適な静脈内(IV)配置を可能にすることにより、静脈内アクセス等の静脈アクセス処置を改善するシステムを明らかにすることである。
本発明によれば、取得した赤外線画像からカテーテル及びその関連パラメータを検出し、且つこれらパラメータを用いて静脈アクセス処置前及び処置中に臨床医に指示するためのカテーテル識別誘導システムが提供される。
上記様態及び利点は、後で明らかになる他の様態及び利点と共に、本明細書の一部を形成する添付図面を参照しながら、以下でさらに十分に記載され且つクレームされるような構成及び動作の細部に存在し、全体を通じて類似した符号は類似した部品を指す。
本発明の原理を説明する前に、光学血管イメージングの背景にある理論を簡単に見直すことが役立つ。軟組織内の光子散乱は、光子波長と組織組成とに依存する。拡散光の入射ビームを組織に投影すると、組織の表面で検出できる後方散乱光にもなり、組織内を伝わる前方散乱光にもなる。前方散乱光は、組織内の散乱部位と相互作用し、弾性散乱現象及び非弾性散乱現象により、この前方散乱光の強度が失われる。非弾性現象は吸収としても公知である。後方散乱光の強度は、観測点での組織のタイプに依存する。
図1を参照すると、拡散光強度Iの入射光ビーム100−1が組織媒質100−2に投影され、表面で検出される強度Jの後方散乱光となる。
公知である反射率についてのクベルカ・ムンク理論によれば、入射後方散乱光と組織厚との間にはある関係、具体的には1対の微分方程式が存在する。この方程式の解は、異なる境界条件に対して存在する。
静脈100−3の皮膚下の深さxvを推定するために、3つの境界条件、すなわち(1)組織無限厚さ、(2)組織−静脈境界、及び(3)針−静脈境界を考慮する必要がある。
第1の境界条件を考慮して、組織が非常に厚い(すなわち、無限組織厚である)場合、入射ビーム100−1は、散乱により強度の全てを失う。この条件を利用して、組織の散乱係数を除く関係する未知パラメータの全てを解明可能である。
組織−静脈境界では、静脈内の血液からの弾性/非弾性散乱により、入射ビーム強度の殆ど全てが吸収され、反射率が無視できるほどになる。有限組織厚については、外側端部媒質(たとえば、空気)で反射がない。この条件を用いて、同様に組織散乱パラメータと無関係である静脈の深さに対する方程式に到達可能であるが、この方程式は、全光が吸収される組織の既知の厚さに依拠する。
殆どの光は、数センチメートル以内の組織厚で吸収されるが、種々のヒト組織変異のため、この厚さ値は未知であり、臨床的日常業務の実行中に厚さ値を評価するのは実際的でない。この厚さ依存性は、処置中に皮膚上の針固有の所定光反射率と皮膚下の針先端の測定可能な物理的深さとを用いて解決可能である。標準的なカテーテル針サイズに対する針深さは、以下詳述する手順を通じて測定可能である。
この厚さ依存性は、以下の方法を用いても解決可能である。入射光強度は、有限の固有皮膚厚さの範囲内でほぼ全ての光子が失われるレベルまで低減可能である。この皮膚厚さは、通常の入射光応用の下では無限厚さのように振る舞う。この固有皮膚厚さを見つけるために、静脈コントラストの考え方を用いる。静脈は、静脈内での大幅な光吸収に起因するコントラストのために、皮膚組織内で識別される。コントラストは、光強度の不足と皮膚組織内だけの散乱/吸収効果とに起因して、光子が静脈表面に到達できない場合に失われる。このようにして、光強度は、静脈コントラストが失われるレベルまで低減され、これに応じて、光子はちょうど静脈表面(静脈深さ)で崩壊し、実際の応用では皮膚厚さが無限であると考えられる。関連する光強度と反射を測定すれば、未画定の組織関連パラメータの解決に役立つ。
針−静脈交差(すなわち、針先端が静脈表面に触れたとき、カテーテル挿入手順中に、皮膚下の針反射率の値を連続して記録される。なお、血液の高い吸収性から、(皮膚上で観測された)針先端では静脈内にある間に同じ針反射率値が検出されることが予想される。その結果、針−静脈交差は、観測された針先端反射率が静脈反射率に等しくなるときに起こる。
図2に示すカテーテル識別誘導システム200は、発明の一実施形態では、Christie Medical Holdings,Inc.により製造販売されるVeinViewer(登録商標)システムのような赤外線検出・画像投影システムに組み込まれる。当該カテーテル識別誘導システム200は、3つの主要ユニット、すなわち、システムの全体動作を制御するマイクロコントローラ200−1と、数学的計算及び推定を行うデジタル信号処理ユニット200−2と、関連結像光学系を備えたIR撮像/投影部200−5とを含む。次に、デジタル信号処理ユニット200−2は、画像強調演算を行う画像処理サブユニット200−3を備え、後述するように、スピーカ200−6を介して音声信号を生成する音声信号発生器も備えていてもよい。カテーテル識別誘導ユニット200−4は、画像処理サブユニット200−3のサブユニットであり、後述するように、システム200が得た入力画像からカテーテルシステム210を識別及び特定し、静脈内処置中の臨床医を誘導するため使用される。
図2に描かれた例示的カテーテルシステム210は、従来型の設計であり、カテーテル210−2において終端するカテーテル筐体210−1と、静脈220を有している軟組織215にカテーテルを挿入するために使用される針210−3とを有している。
IR撮像/投影部200−5からのIR光225は、850±40nmの範囲内の光で患者の軟組織215を照らし、この光は主に静脈220内の血液(ヘモグロビン)により吸収される。吸収されない光230は、反射され、IR撮像/投影部200−5により検出される。反射された像は、画像処理サブユニット200−3により処理され、その後、リアルタイムで患者の皮膚に再投影されることにより、患者の皮膚下にある静脈220の位置を示す。IR撮像/投影部200−5は、反射された撮像光と環境内の背景IR光とを区別するためのカットオフフィルタと偏光子とを含むのが好ましい。
図2及び3を参照すると、静脈内処置中に、臨床医は、カテーテル210−2をIR撮像/投影部200−5の視野内に入れる。工程300で、カテーテル識別誘導システム200−4は、カテーテル及び下にある針210−2を、これらの固有光学特性210−2を利用して、背景画像から識別する。
カテーテル外形が検出され、機器で観測されたカテーテル長が工程310で求められる。カテーテル長は、同様に識別されるカテーテル先端とカテーテル筐体との間の観測距離である。検出された長さ値を用いて、針の挿入角度を計算し、皮膚に挿入されて静脈に貫入される針の先端の位置を特定する。システム200は、その場を2次元図として取り込むため、カテーテル210−2の実際の長さは、装置の観測値と異なるが、後述するように、皮膚表面となす角度により関連性があり、垂直投影を用いて求めることができる。最大観測長さは、カテーテルの実際の長さであり、後述する校正処理により推定可能である。最後に、カテーテル始点及び終点の位置は、後述するように求められる(すなわち、カテーテルをカテーテル筐体に接続する点が始点であり、カテーテルの開放端部が終点である)。
カテーテルは、期待される用途に応じて測定され、またサイズが様々であるので、校正処理により、ユーザによる外部からの所定入力を全く必要とすることなく、様々なカテーテルサイズに対する長さの計算が可能になる。カテーテル210の実際の長さは、静脈アクセス箇所で皮膚表面となす角度によって、IR撮像/投影部200−5が観測する長さ値に密接に関連している。したがって、使用時に臨床医は、最初に校正処理に従って、システム200のIR撮像/投影部200−5の下にカテーテルを位置決めして、皮膚表面と相対的に零度を通る小さい正及び負の角度の間で回転させることによって、図4に概略的に示された実際のカテーテル長を記録して測定する。ここで、カテーテルの実際の長さ(最大観測値)は、カテーテルが皮膚表面及びIR撮像/投影部200−5に対して零度の角度に向けられているときに観測される。
システム200−4は、カテーテルをその環境から識別しなければならない。カテーテル識別処理は、カテーテルが半透明であるか、あるいは不透明であるかによって僅かに異なる。何れの場合も、多重解像度解析を行ってカテーテル及び針の識別処理を早め、そのために、取り込まれた画像は、最初により低い解像度に低減され、初期解析が実行される。後で残りの解析(たとえば、周波数フィルタリング、長さ測定、及び角度測定)が原サイズ画像を用いて行われる。
透光性カテーテルを構成する素材は、赤外光透過性を有しており、したがって、IR撮像/投影部200−5に映らない。しかし、IR撮像/投影部200−5と共に物理的な偏光子を使用することにより、カテーテルは、取り込んだ画像内で測定可能な厚さをもつ黒色実線として現れる(図5a)。次に、カテーテル識別誘導システム200−4は、周波数フィルタを画像に適用し、画像を解析することにより最小強度値を有する画素の位置を特定する(図5b)。この画素は、後述するように、類似した強度のカテーテル輪郭画素を見つけて、その後、針の長さを推定するために「シード点」として使用される。
不透明カテーテルは、透光性カテーテルとは異なる特性を有しており、赤外線波長領域で可視である。不透明カテーテルは、金属針を覆っており、赤外光を完全に吸収する。不透明カテーテルの検出処理は、前述の透光性カテーテルの処理に類似しているが、シード点が(最小強度値ではなく)最大強度値を有する点として選択される。カテーテルの先端では僅かな長さの(約1〜2mm)針が覆われておらず、その長さを透光性カテーテルについて前述した手順を用いて測定する。
その後、画像をシード点の強度に関して閾値処理することによって、ある範囲の強度を許容する。しかし、カテーテルの位置、角度、吸収その他の散乱に関わる因子の結果として、簡単な閾値処理では、カテーテルを表す実線を取得するのは不可能である。その結果、図6aに示すように、得られるカテーテル点から線当てはめが推定され、その後カテーテルに重ねられる。カテーテル始点の特定は、その線当てはめに沿った筐体内の有意な幅変化を検出することにより行い、これがカテーテルが開始する位置である。図6bは、図6aにおいて重ねられた直線に沿った強度変化を示す。図6bから、カテーテル観測長さに沿った強度変化がほぼ一定であり且つカテーテル終点での指数的変化により画定されることが分かる。カテーテル観測長さは、カテーテル始点(すなわち、図6aに示された筐体幅変化)とカテーテル終点(すなわち、図6bに示された強度の指数的変化)とから計算可能である。図6bに示すように、カテーテル終点を超えたところの急峻な強度降下は、針の先端を示している。針−静脈交差は、針が静脈に入るときに起こり、急激な強度降下の消滅により示される。
カテーテル筐体210−1におけるカテーテル始点の位置の検出に基づくカテーテル識別の代案として、オプト・ジェニックカテーテルを用いてもよい。この代案は、長さがシステム200の視野内に収まらない基準外のカテーテルでは特に有用である。具体的には、オプト・ジェニックカテーテルは、画像処理アルゴリズムを用いて検出可能であり且つカテーテルの可視長さ(すなわち、マークからカテーテル先端まで)の推定に使用可能な光学マーキングを備えていてもよい。オプト・ジェニックマークは、カテーテル上にエッチング処理を行って、カテーテルの光学特性(たとえば、鏡面反射)を変更して作成したものでもよい。このようなマークは、カテーテルの衛生的機能性や通常の臨床的機能性を阻害しない。
オプト・ジェニックカテーテルが利用できない場合、発明のさらなる態様により、クリップ式マーカー210−4を設けて、好ましいカテーテル識別誘導システム200(すなわち、前述のVeinViewer(登録商標)システム)と互換性がない異なるカテーテルタイプを識別することを支援してもよい。マーカー210−4は、簡単なクリップ式構成によりカテーテル筐体210−1に着脱する。マーカーの長さ及び終点特徴は、本明細書において既出の画像処理アルゴリズムと、その後の、本明細書において既出の角度測定及び校正処理とを用いて特定される。
マーカー210−4は、カテーテル210の通常の機能性を阻害しないように設計される。マークは、セキュリティ対応された製造業者固有の特徴であってもよく、本明細書に記載した画像処理ルーチンを用いて特定してもよい。
図8を参照すると、異なる納入業者が製造したカテーテルを正しく識別する上で、カテーテル筐体の幾何学的特徴の幾何学的相関分析に依拠してもよい。作動中に、システム200を用いて取り込んだ筐体画像に特徴抽出処理を行って(800−1)、納入業者固有の筐体の幾何学的特徴(たとえば、図7に図示した代表的な六角形筐体特徴)を識別する。次に、抽出特徴と、異なる納入業者が提供した事前サンプル特徴(800−5)との間で相関分析を実行する(800−3)。この分析は、高い相関率を有しているサンプル特徴を特定し、サンプル特徴を分類し(800−7)、抽出特徴を納入業者分類と関連付ける(800−9)。
本明細書に記載したマーカーは、追加のクリップ式設計であるとして記載したが、当該マーカーがカテーテル筐体の一部としてモデル化可能であることが、当業者には理解されうるであろう。
図3を参照すると、工程320で、システム200−4は、カテーテル210が皮膚表面となす角度を求めて更新し、その後、工程330で、システムが後方散乱光240を検出することによりカテーテルの先端の位置を特定して更新する。
この段階で、所要のカテーテル関連値(カテーテルの長さ、角度、先端等)を求められ、その後、IR撮像/投影部200−5が画像及び情報を皮膚に投影する。その目的は、後述するように、カテーテルが部分的に皮膚の中にあって見えない間に、カテーテル挿入手順を可視化する上で臨床医を支援し(工程340)、カテーテル及び針が静脈に入るときをユーザに通知する(工程350)ことである。
最後に、工程360において、IR撮像/投影部200−5は、皮膚のタイプ及び色とは無関係に、静脈アクセス点に極めて接近している静脈のマップ(位置及び深さ)を生成し投影する。組織特性パラメータを事前に知っておく必要はない。
図9及び10は、図3における過程を、臨床応用において実施したものを示す概略図である。特に、図9aは、カテーテル−組織−静脈界面及び関連する物理パラメータの概略図であり、図9bは、カテーテル−組織−静脈界面を、針長さlnと、静脈深さxvと、針と皮膚表面との間の角度θとに関する幾何学的計算と共に示したものである。
静脈深さ臨界値は、前述の通り求められ、カテーテル位置決め角度は、垂直画像取得及び投影に基づいてカテーテル観測長さから以下の通り計算することができる。
(1.1)
ここで、lc’は、IR撮像/投影部200−5で観測された値である。臨床的処置の開始時に、カテーテル先端は、組織の皮膚表面の点a(カテーテル−皮膚アクセス点)にある。先端が静脈表面に達するまで皮膚を貫通すると、当該先端は、皮膚表面上の点aから点b(カテーテル−静脈アクセス点)まで移動する。ここで、点bは、針反射率及び針の先端位置を用いて既に説明した手順を用いて計算可能である。
(1.1)
ここで、lc’は、IR撮像/投影部200−5で観測された値である。臨床的処置の開始時に、カテーテル先端は、組織の皮膚表面の点a(カテーテル−皮膚アクセス点)にある。先端が静脈表面に達するまで皮膚を貫通すると、当該先端は、皮膚表面上の点aから点b(カテーテル−静脈アクセス点)まで移動する。ここで、点bは、針反射率及び針の先端位置を用いて既に説明した手順を用いて計算可能である。
図10は、皮膚(図10a)上から静脈表面(図10b)への針挿入を示す。針がIR撮像/投影部200−5の視野に入ると、前述したように、針の終点を自動的に検出する。検出カテーテル長から、カテーテルが皮膚表面となす角度θを、カテーテル観測長さから計算し、その後、点a及びbの位置を特定して投影する。特に、点a(針と皮膚との交差箇所)から、点bを推定静脈深さxvから求める。
200−5は、前述したように、静脈深さxvに対する推定値を求めるために、静脈コントラストが失われるまで、光強度を低減するように構成してもよい。組織特性は静脈深さに影響を与えることがあるので、これは、工程340より前の短い校正過程として行ってもよい。
このように、工程360によれば、システム200−4は、IR撮像/投影部200−5に(たとえば、高強度着色ドットを用いて)点a及びbを皮膚表面に投影させる。これにより、臨床医は、図8b右上の差込部分に示すように、カテーテルの方向を、直線内の挿入点aから点bまでの静脈を追跡する直線に調整するよう誘導される。臨床医が過程を可視化することを助けるために、これらの2つの点で接近方向に垂直な2本の線が描かれる。高強度ドットと線を投影するのに加えて、静脈穿刺を示す補助映像または音声情報(たとえば、スピーカ200−6を介する音声信号、あるいは色変化警告)を付加することが考えられる。
カテーテル先端が皮膚表面に貫入する前に、カテーテルのラテラルターゲッティングを行ってもよい。カテーテル識別誘導システム200は、挿入前に、適した静脈の位置及びカテーテル挿入に適した方向に関して臨床医を誘導するように構成してもよい。
図11aは皮膚表面1100の上のカテーテル210を示しており、この皮膚表面には、投影平面内でカテーテル210の方向を表すカテーテル方向線1102が投影されている。カテーテル方向線1102は、図6a及び6bに関して前述したように求められる。本実施形態では、線1102は、カテーテル針の方向を視覚的に示すために、カテーテル210の先端1103を所定の距離だけ通り過ぎて延びる。識別誘導ユニット200−4は、カテーテル210を追跡し、矢印Mが示すようにカテーテル210が動かされるのにつれて線1102を投影する。
さらに、静脈1104に対する静脈路インジケータも投影されている。本実施形態では、静脈路インジケータは一連のドット1106を含む。ドット1106は、図12aに示すように、静脈のミッドライン1200に沿って位置している。これは、僅かなずれでも、静脈の不要な第2の穿刺1202(図12b)を起こして静脈内侵入や管外遊出につながったり、あるいは、1204で静脈を完全に外したりすることがあるためである。ドット1106は、例示した円形状ドットに限定されることなく、矩形状や他の形状でもよい。
識別誘導ユニット200−4は、カテーテル210に最も近い(複数の)静脈を求めて、その各静脈のミッドラインを一連のドット1106として投影するように構成されている。点の正確な位置に関する信号調整を行って、一定且つ不揮発性の表示をする。すなわち、計算した点位置にフィルタを適用することによって、点の可視性ジッタや位置の些細な変動を回避してもよい。
静脈のミッドラインが概して静脈の最も厚い部分であるため、より多くの光が静脈のミッドラインで吸収されるので、静脈を取り込んだ画像は、静脈のミッドラインで最も暗くなる傾向がある。一連のドット1106を生成するために、識別誘導ユニット200−4は、図13aに示されるように、取り込んだ画像内でカテーテル方向線1102と一致し且つカテーテル先端1103から前方へ所定の長さまで延びる追跡線1300に沿った点に対して過程を行うように構成されている。追跡線1300に沿ったあらゆる画素に対して、この過程を行ってもよい。
この過程は、追跡線1300に垂直な一連の離間した側線1302の画素を解析することを含む。側線1302は、追跡線1300の両側に対称的に所定の距離に亘って延びる。側線1302は、所定の間隔で均等に隔てられてもよい。各側線1302に対し、識別誘導ユニット200−4は、検索を実行して、1以上の十分に暗い画素1304を見つけ、これらの画素を静脈中間点として取り扱う。この過程は、画素の強度が所定の強度を超えないとき、画素が十分に暗いと決定してもよい。その後、獲得した静脈中間点は、一連のドット1106として特有の色を用いて皮膚の上に投影される。
本書に記載した画素強度解析は、明度、輝度、色相、彩度などのような何らかの適当な画素特性を解析することを含む可能性がある。画素強度解析のための適当な特性を選択することは、光源光の特性、捕捉された光の特性などに依存することがある。
この過程は、取り込んだ画像フレーム毎に繰り返されるので、カテーテル210が動かされる間、更新がリアルタイムで行われ、新しい静脈が検出され、静脈の中間点が一連のドット1106として投影される。臨床医は、一連のドット1106を参考に、適した静脈を選択し、続いて選択した静脈にカテーテル210を位置合わせする。
識別誘導ユニット200−4はさらに、選択した静脈を示す一連のドット1106にカテーテル210を位置合わせするよう支援するフィードバックを出力するように構成してもよい。このフィードバックは、視覚的、聴覚的、または、これらの組み合わせでもよい。たとえば、ドット1106の色を変えてもよく、付加的な視対象を投影してもよく、あるいは、ユニット200−4がスピーカ200−6を介して音を発してもよい。フィードバックは、カテーテル210の一連のドット1106との位置合わせが最適な位置合わせに近づくと変化するように構成してもよい。たとえば、カテーテル210の位置合わせが最適な位置合わせに近づくと、可聴音の周波数が変化してもよい。この代わりに又はこれに追加して、カテーテル210の位置合わせが最適な位置合わせの閾値内に入るとき、視覚インジケータが画像に追加される。
カテーテル210と一連のドット1106との位置合わせは、線形回帰計算を用いて計算してもよい。図13aを参照すると、追跡線1300からの各点1304の距離を用いて、(たとえば、距離の平方和を用いて)誤差を計算してもよい。最適な位置合わせは、最良の当てはめ線である可能性がある。カテーテル先端1103により近い点1304のほうが、位置合わせに重要であるため、計算誤差につながりやすく、距離に重み付け係数を適用することも可能である。
周波数が変化する音のような連続的なフィードバックについては、計算誤差に比例する可能性がある。画像に追加した視覚インジケータのような閾値処理したフィードバックについては、計算誤差が閾値誤差より低いときに提供してもよい。
識別誘導ユニット200−4は、点1304の間でベクトルを比較することにより静脈を識別するように構成してもよい。ここで、異なる経路を辿る位置的に離れている一群又は複数群の点は、異なる静脈として取り扱われる。よって、前述した手法は、カテーテル先端1103に最も近いと決定された一群の点1304に限定してもよい。たとえば、誤差計算は、カテーテル先端1103に最も近い群に属していない点を除外するよう構成してもよく、この場合、位置合わせフィードバックは、選択しようとしていない静脈により過度に影響されることがない。
その他の実施形態では、図11bに示すように、識別誘導ユニット200−4が皮膚表面1100に投影した画像の中に、コンパス線1108が含まれている。コンパス線1108は、カテーテル先端1103から静脈1104のミッドライン1110に向かって延びる視覚インジケータである。投影された画像にはカテーテル方向線1102が含まれており、一連のドット1106(図11a)が含まれていても省かれていてもよい。
臨床医がカテーテル210を矢印Mが示すように動かすとき、カテーテル方向線1102とコンパス線1108との間の角度Aは変化する。角度Aが零に近づくと、すなわち、カテーテル方向線1102とコンパス線1108とがより接近するとき、前述したようなフィードバックを提供してもよい。臨床医は、このようにして、角度Aを小さくしてカテーテル方向線1102とコンパス線1108とを位置合わせすることにより、カテーテル方向線1102と静脈1104のミッドライン1110とを位置合わせするように誘導される。
識別誘導ユニット200−4は、カテーテル先端1103の近くで検出された静脈に応じてコンパス線1108を与える構成されている。カテーテル先端1103の近くに適切な2本以上の静脈があると決定された場合、識別誘導ユニット200−4は、暗い画素の数が最大である静脈を選択する。
コンパス線1108は、概念上の重心に応じて挙動するように構成してもよい。すなわち、カテーテル210の静脈1104までの距離が大きいとき、コンパス線1104は、重力が存在するかのように、最も近い最良の(最も暗い)静脈の方を指し示す。一定且つ不揮発性の表示をするために、コンパス線1108上で信号調整を行ってもよい。すなわち、コンパス線1108の計算角度にフィルタを適用して、些細な角度変動を回避するようにしてもよい。
図13bを参照すると、識別誘導ユニット200−4は、カテーテル先端1103から延びる追跡線1300を中心とした所定の掃引角度B内で掃引領域を解析するように構成されている。1組の掃引線1308がこの領域内で解析される。掃引線1308の本数は、掃引角度Bの範囲内でほぼ全ての角度を対称とするように、あるいは、掃引範囲内でほぼ全ての画素をサンプリングするように選択してもよい。
各掃引線1308内の画素は、強度が解析される。識別誘導ユニット200−4は、コンパス線1108の方向として、全体的に最小強度を有し最大数の画素をもつ掃引線1308を選択する。このような画素は、閾値強度より小さい強度の画素のカウントや、掃引線上の全画素に対する強度の正規化された和である全強度など、様々な方法によって求めてもよい。
本発明は、上記実施形態及び変形例について記載した。その他の実施形態や変形例が可能である。たとえば、好ましい実施形態は、Christie Medical Holdings,Inc.により製造販売されるVeinViewer(登録商標)システムのような赤外線検出・画像投影システム200に関連して記述したが、カテーテル識別誘導の原理は、HUD(ヘッド・アップ・ディスプレイ)やその他のタイプの血管イメージングシステムで実施してもよい。
発明の多くの特徴及び利点は詳細な明細書から明白であり、よって、添付の請求項が本発明の真の趣旨および範囲に該当する特徴及び利点全てを対象とすることが意図されている。さらに、当業者は多数の修正及び変更を容易に想到することになるので、図示し記載したとおりの構成や動作に限定されることは望ましくなく、したがって、請求項の範囲に含まれる全ての適切な設計変更及び均等の手段が講じられてもよい。
Claims (46)
- 患者皮膚組織、カテーテル、及び針の画像を取り込むIR撮像部と、
表示部と、
前記カテーテルの挿入を静脈の方へ誘導するために、前記表示部を用いて前記患者皮膚組織の画像に1以上の視覚インジケータを重ねるよう構成されている識別誘導ユニットと、
を備えるカテーテル識別誘導システム。 - 前記1以上の視覚インジケータは、前記静脈を表す一連のドットを含む、請求項1に記載のカテーテル識別誘導システム。
- 前記識別誘導ユニットは、前記画像の画素強度解析に基づいて前記ドットを位置決めするよう構成されている、請求項2に記載のカテーテル識別誘導システム。
- 前記1以上の視覚インジケータは、前記カテーテルの先端から前記針の方向に延びるカテーテル方向線を含む、請求項3に記載のカテーテル識別誘導システム。
- 前記識別誘導ユニットは、前記カテーテル方向線の計算位置合わせに基づいて、前記一連のドットの少なくとも一部にフィードバックするように構成されている、請求項4に記載のカテーテル識別誘導システム。
- 前記識別誘導ユニットは、前記画像の画素強度解析を行うように構成されており、前記1以上の視覚インジケータは、前記カテーテルの先端から前記静脈を示す強度の画素に向かって延びるコンパス線を含む、請求項1に記載のカテーテル識別誘導システム。
- 前記1以上の視覚インジケータは、前記カテーテルの先端から前記針の方向に延びるカテーテル方向線を含む、請求項6に記載のカテーテル識別誘導システム。
- 前記識別誘導ユニットは、前記カテーテル方向線の前記コンパス線への計算位置合わせに基づいて、フィードバックするよう構成されている、請求項7に記載のカテーテル識別誘導システム。
- 前記識別誘導ユニットは、(i)前記画像を用いて前記カテーテルの長さを推定するために校正動作を行うように、(ii)前記カテーテルが前記組織に入る姿勢角度を決定するように、及び(iii)前記長さ及び姿勢角度を用いてカテーテル終点位置及び針終点位置の位置を求めるように、構成され、前記1以上の視覚インジケータは、前記長さと、姿勢角度と、終点とを用いて生成される、請求項1に記載のカテーテル識別誘導システム。
- 前記1以上の視覚インジケータを重ねることは、
前記静脈に対する前記カテーテル終点位置を表示することと、
前記静脈に対するカテーテル位置を示す着色点と、線と、テキスト情報とを表示することと、
前記カテーテルによる静脈挿管の視覚インジケータを表示することと、
のうちの少なくとも1つを含む、請求項9に記載のカテーテル識別誘導システム。 - 少なくとも前記カテーテルによる静脈挿管の音声インジケータを生成する音声スピーカをさらに含む、請求項10に記載のカテーテル識別誘導システム。
- 前記ディスプレイは、前記画像と前記視覚インジケータとを患者の皮膚に投影する投影部を備える、請求項11に記載のカテーテル識別誘導システム。
- 前記投影部は、静脈挿管の位置に隣接する複数の静脈のマップを投影する、請求項12に記載のカテーテル識別誘導システム。
- 前記カテーテルがオプト・ジェニックカテーテルであり、カテーテル終点が前記カテーテル上の光学マーキングを含む、請求項9に記載のカテーテル識別誘導システム。
- 前記投影部は、針の挿入を挿管の位置の方へ誘導するために、位置a及びbで着色ドットを投影する、請求項15に記載のカテーテル識別誘導システム。
- 前記投影部は、位置a及びbでカテーテル移動方向に垂直な線をさらに投影する、請求項16に記載のカテーテル識別誘導システム。
- 患者皮膚組織、カテーテル、及び針の画像を取り込み、当該画像から前記カテーテルと前記針とを識別することと、
前記カテーテルの挿入を静脈の方へ誘導するために、前記患者皮膚組織の画像に1以上の視覚インジケータを重ねることと、
を備えるカテーテル識別誘導方法。 - 前記1以上の視覚インジケータは、前記静脈を表す一連のドットを含む、請求項18に記載の方法。
- 前記画像の画素強度解析を行い、当該画像の画素強度解析に基づいて前記ドットを位置決めすることをさらに含む、請求項19に記載の方法。
- 前記1以上の視覚インジケータが、カテーテルの先端から針の方向に延びるカテーテル方向線を含む、請求項20に記載の方法。
- 前記カテーテル方向線の前記一連のドットの少なくとも一部への位置合わせを決定し、決定された位置合わせに基づいてフィードバックを出力することをさらに含む、請求項21に記載の方法。
- 前記画像に画素強度解析を行うことをさらに含み、前記1以上の視覚インジケータは、前記カテーテルの先端から前記静脈を示す強度の画素に向かって延びるコンパス線を含む、請求項18に記載の方法。
- 前記1以上の視覚インジケータは、前記カテーテルの先端から前記針の方向に延びるカテーテル方向線を含む、請求項23に記載の方法。
- 前記カテーテル方向線の前記コンパス線への計算位置合わせに基づいて、フィードバックを出力することをさらに備える、請求項24に記載の方法。
- 前記画像を用いて前記カテーテルの長さを推定するために校正動作を行うことと、
前記カテーテルが前記組織に入る姿勢角度を決定することと、
前記長さ及び姿勢角度を用いてカテーテル終点位置及び針終点位置の位置を決定することと、
をさらに備え、前記1以上の視覚インジケータは、前記長さと、前記姿勢角度と、前記終点とを用いて生成される、請求項18に記載の方法。 - 前記1以上の視覚インジケータを重ねることは、
前記静脈に対する前記カテーテル終点位置を表示することと、
前記静脈に対するカテーテル位置を示す着色点と、線と、テキスト情報とを表示することと、
のうちの少なくとも1つを含む、請求項26に記載の方法。 - 前記カテーテルによる静脈挿管の音声インジケータ及び視覚インジケータのうちの一方または両方を生成することをさらに含む、請求項27に記載の方法。
- 静脈挿管の位置に隣接する複数の静脈のマップを表示することをさらに含む、請求項28に記載の方法。
- 前記カテーテルがオプト・ジェニックカテーテルであり、カテーテル終点が前記カテーテル上の光学マーキングを含む、請求項26に記載の方法。
- 前記カテーテルの長さは、垂直投影を用いて、前記姿勢角度に関連するカテーテル観測長から推定される、請求項26に記載の方法。
- 前記校正動作は、組織挿入前に、前記針を前記患者皮膚組織の表面に対して正及び負の角度に回転させながら、前記カテーテルの画像を取得することと、前記カテーテルの実際の長さを、前記患者皮膚組織の表面に対して零度での最大観測長とすることと、を含む、請求項26に記載の方法。
- 周波数フィルタ処理により前記画像から前記カテーテル及び針を識別し、その後フィルタ処理された画像を解析することにより、前記針が赤外光透過性を有する透光性カテーテルの一部をなす場合には最小強度値、あるいは、前記カテーテルが不透明カテーテルの一部をなす場合には最大強度値を有する画素の位置を特定することと、当該値をシード点として用いることにより、類似した強度のカテーテル輪郭画素を検出することをさらに含む、請求項32に記載の方法。
- 前記カテーテルの画像を前記シード点の強度に関して閾値処理し、当該閾値処理画像に線当てはめを適用して前記カテーテルの移動方向を特定し、カテーテルの終点を確定する工程と、組織内部にある前記針の始点を強度の急落により特定し、前記静脈に挿管されている前記カテーテル先端を当該強度急落の消失により特定することと、をさらに含む、請求項32に記載の方法。
- 組織厚と関連する反射率情報とを用いて静脈の深さを求めることをさらに含む、請求項26に記載の方法。
- IVアクセス中に組織依存性パラメータを求めることをさらに含む、請求項26に記載の方法。
- 前記針の挿入を挿管位置の方へ誘導するために、位置a及びbで着色ドットを投影することをさらに備える、請求項38に記載の方法。
- 位置a及びbでカテーテル移動方向に垂直な線を投影することをさらに備える、請求項39に記載の方法。
- 前記カテーテル筐体上のマーカーをさらに含み、当該マーカーは、前記カテーテル終点を特定する光学マーキングを含む、請求項9に記載のカテーテル識別誘導システム。
- 前記マーカーは、前記カテーテル筐体に着脱可能に接続されている、請求項41に記載のカテーテル識別誘導システム。
- 異なるタイプや製造元のカテーテルを特定するために、カテーテル筐体の幾何学的特徴の幾何学的相関分析を行うことをさらに含む、請求項18に記載の方法。
- 前記幾何学的相関分析は、前記カテーテル筐体の画像に特徴抽出処理を行うことと、この特徴抽出処理により抽出された特徴と複数の事前サンプル特徴との間で相関分析を行うことと、分類処理を行って前記抽出特徴との高い相関比を有しているサンプル特徴を特定することと、前記抽出特徴をカテーテル固有のタイプ及び製造元に関連付けることと、を備える、請求項43に記載の方法。
- 前記静脈深さは、静脈コントラストが失われるまで光強度を低減することにより求められる、請求項15に記載のカテーテル識別誘導システム。
- 前記静脈の深さを求めることは、静脈コントラストが失われるまで光強度を低減することを含む、請求項36に記載の方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/648,517 | 2012-10-10 | ||
US13/648,517 US20140100524A1 (en) | 2012-10-10 | 2012-10-10 | Catheter discrimination and guidance system |
US13/865,650 | 2013-04-18 | ||
US13/865,650 US20140100550A1 (en) | 2012-10-10 | 2013-04-18 | Catheter discrimination and guidance system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014076355A true JP2014076355A (ja) | 2014-05-01 |
Family
ID=49378088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013206047A Pending JP2014076355A (ja) | 2012-10-10 | 2013-10-01 | カテーテル識別誘導システム |
Country Status (4)
Country | Link |
---|---|
US (1) | US20140100550A1 (ja) |
EP (1) | EP2719328A1 (ja) |
JP (1) | JP2014076355A (ja) |
CN (1) | CN103720457A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022523010A (ja) * | 2019-01-18 | 2022-04-21 | ベクトン・ディキンソン・アンド・カンパニー | 血管検出のための静脈内治療システム |
WO2024181549A1 (ja) * | 2023-03-02 | 2024-09-06 | テルモ株式会社 | コンピュータプログラム、情報処理方法、情報処理装置及び穿刺システム |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9702762B2 (en) * | 2013-03-15 | 2017-07-11 | Lightlab Imaging, Inc. | Calibration and image processing devices, methods, and systems |
JP6157919B2 (ja) * | 2013-05-09 | 2017-07-05 | 東芝メディカルシステムズ株式会社 | X線診断装置 |
EP3009095A1 (en) * | 2014-10-17 | 2016-04-20 | Imactis | Method for planning the introduction of a needle in a patient's body |
JP6456760B2 (ja) * | 2015-04-20 | 2019-01-23 | キヤノンメディカルシステムズ株式会社 | 画像処理装置及びx線診断装置 |
CN105662351A (zh) * | 2016-03-24 | 2016-06-15 | 深圳大学 | 皮下静脉显影仪 |
WO2018153941A1 (en) * | 2017-02-27 | 2018-08-30 | Koninklijke Philips N.V. | Venipuncture and arterial line guidance via signal variation amplification |
US11583249B2 (en) * | 2017-09-08 | 2023-02-21 | Biosense Webster (Israel) Ltd. | Method and apparatus for performing non-fluoroscopic transseptal procedure |
CN111281346B (zh) * | 2020-03-04 | 2024-05-03 | 河北工业大学 | 基于计算机视觉的智能静脉采血定位装置 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2776294B2 (ja) * | 1995-04-12 | 1998-07-16 | 日本電気株式会社 | 皮膚紋様画像の画像特徴抽出装置および画像処理装置 |
US6097994A (en) * | 1996-09-30 | 2000-08-01 | Siemens Corporate Research, Inc. | Apparatus and method for determining the correct insertion depth for a biopsy needle |
US20010048077A1 (en) * | 1997-10-27 | 2001-12-06 | Afanassieva Natalia I. | Apparatus and method for spectroscopic analysis of human or animal tissue or body fluids |
US7239909B2 (en) | 2000-01-19 | 2007-07-03 | Luminetx Technologies Corp. | Imaging system using diffuse infrared light |
US8078263B2 (en) | 2000-01-19 | 2011-12-13 | Christie Medical Holdings, Inc. | Projection of subsurface structure onto an object's surface |
US8494616B2 (en) | 2000-01-19 | 2013-07-23 | Christie Medical Holdings, Inc. | Method and apparatus for projection of subsurface structure onto an object's surface |
AU2001259435A1 (en) * | 2000-05-03 | 2001-11-12 | Stephen T Flock | Optical imaging of subsurface anatomical structures and biomolecules |
AU2002350164A1 (en) * | 2001-11-08 | 2003-05-19 | William D. Hare | Rapid exchange catheter with stent deployment, therapeutic infusion, and lesion sampling features |
US7260249B2 (en) * | 2002-09-27 | 2007-08-21 | Confirma Incorporated | Rules-based approach for processing medical images |
US20060173351A1 (en) * | 2005-01-03 | 2006-08-03 | Ronald Marcotte | System and method for inserting a needle into a blood vessel |
WO2006101993A2 (en) * | 2005-03-16 | 2006-09-28 | Cornell Research Foundation, Inc. | Method for expanding the domain of imaging software in a diagnostic work-up |
US20080221519A1 (en) * | 2005-06-10 | 2008-09-11 | Koninklijke Philips Electronics, N.V. | System for Guiding a Probe Over the Surface of the Skin of a Patient or an Animal |
DE102005039685B4 (de) * | 2005-08-22 | 2007-10-11 | Siemens Ag | Verfahren zur Identifizierung eines kontrastierten Blutgefäßes in digitalen Bilddaten |
US8463364B2 (en) * | 2009-07-22 | 2013-06-11 | Accuvein Inc. | Vein scanner |
CN101059459A (zh) * | 2007-06-05 | 2007-10-24 | 北京理工大学 | 显微热成像方法及其装置 |
KR20100123815A (ko) | 2007-10-19 | 2010-11-25 | 크리스티 메디컬 홀딩스, 인코포레이티드 | 적외선을 이용한 촬영장치 |
JP2009172003A (ja) * | 2008-01-21 | 2009-08-06 | Panasonic Corp | 針先端位置推定装置および針先端位置推定方法 |
CN101959450B (zh) * | 2008-03-03 | 2013-05-29 | 皇家飞利浦电子股份有限公司 | 通过基于图像的x射线引导系统 |
JP4517004B2 (ja) * | 2008-06-16 | 2010-08-04 | ノリー株式会社 | 注射針誘導装置 |
WO2010029521A2 (en) * | 2008-09-15 | 2010-03-18 | Moshe Ben Chorin | Vein locator and associated devices |
WO2010065786A1 (en) * | 2008-12-03 | 2010-06-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for determining the positioin of the tip of a medical catheter within the body of a patient |
US9895135B2 (en) * | 2009-05-20 | 2018-02-20 | Analogic Canada Corporation | Freehand ultrasound imaging systems and methods providing position quality feedback |
US20130016185A1 (en) * | 2009-11-19 | 2013-01-17 | The John Hopkins University | Low-cost image-guided navigation and intervention systems using cooperative sets of local sensors |
-
2013
- 2013-04-18 US US13/865,650 patent/US20140100550A1/en not_active Abandoned
- 2013-10-01 JP JP2013206047A patent/JP2014076355A/ja active Pending
- 2013-10-09 EP EP13187961.1A patent/EP2719328A1/en not_active Withdrawn
- 2013-10-10 CN CN201310470542.0A patent/CN103720457A/zh active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022523010A (ja) * | 2019-01-18 | 2022-04-21 | ベクトン・ディキンソン・アンド・カンパニー | 血管検出のための静脈内治療システム |
WO2024181549A1 (ja) * | 2023-03-02 | 2024-09-06 | テルモ株式会社 | コンピュータプログラム、情報処理方法、情報処理装置及び穿刺システム |
Also Published As
Publication number | Publication date |
---|---|
CN103720457A (zh) | 2014-04-16 |
EP2719328A1 (en) | 2014-04-16 |
US20140100550A1 (en) | 2014-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2014076355A (ja) | カテーテル識別誘導システム | |
RU2436507C2 (ru) | Способы терапии области раны и системы для осуществления этих способов | |
US20080147147A1 (en) | Vein locating device for vascular access procedures | |
JP4517004B2 (ja) | 注射針誘導装置 | |
AU2020289834A1 (en) | Deep tissue flowmetry using diffuse speckle contrast analysis | |
US20110245659A1 (en) | Systems and methods to assist with internal positioning of instruments | |
US20190046272A1 (en) | ENT Image Registration | |
KR101492803B1 (ko) | 촉각 영상 및 근적외선 영상의 정합을 이용한 유방촬영용 영상진단기기 및 유방조직 영상획득방법 | |
US10299684B2 (en) | User interface for photonic tools and electromagnetic tracking guided bronchoscope | |
WO2008081438A1 (en) | Vascular access system and method | |
KR20150069830A (ko) | 의료 영상을 이용한 혈관 분석 정보 제공 방법 및 장치 | |
Chen et al. | Portable robot for autonomous venipuncture using 3D near infrared image guidance | |
US20150073269A1 (en) | System and method for light based lung visualization | |
JP2009536848A (ja) | 創傷部を取り扱うためのシステム及び方法 | |
Beigi et al. | Needle trajectory and tip localization in real-time 3-D ultrasound using a moving stylus | |
CN106061349B (zh) | 用于测量组织区域的装置和方法 | |
US20140100524A1 (en) | Catheter discrimination and guidance system | |
EP3292835A1 (en) | Ent image registration | |
WO2014128301A1 (de) | Optisch erfasste ultraschallnavigierte punktion | |
Ikhsan et al. | Assistive technology for ultrasound-guided central venous catheter placement | |
WO2022008497A1 (en) | Endoscope image processing device | |
CN113011333A (zh) | 基于近红外图像获取最佳静脉穿刺点和方向的系统及方法 | |
TWI730242B (zh) | 手術器具定位系統及其定位方法 | |
NL2034443B1 (en) | Ultrasonic display system and method based on augmented reality | |
KR20160042297A (ko) | 의료용 항법 장치 |