JP2014075489A - Evaluation method for wafer, and polishing method for wafer - Google Patents

Evaluation method for wafer, and polishing method for wafer Download PDF

Info

Publication number
JP2014075489A
JP2014075489A JP2012222326A JP2012222326A JP2014075489A JP 2014075489 A JP2014075489 A JP 2014075489A JP 2012222326 A JP2012222326 A JP 2012222326A JP 2012222326 A JP2012222326 A JP 2012222326A JP 2014075489 A JP2014075489 A JP 2014075489A
Authority
JP
Japan
Prior art keywords
wafer
polishing
quality
surface shape
polishing pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012222326A
Other languages
Japanese (ja)
Other versions
JP5867359B2 (en
Inventor
Kazuya Sato
一弥 佐藤
Yuki Tanaka
佑宜 田中
Shuichi Kobayashi
修一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2012222326A priority Critical patent/JP5867359B2/en
Publication of JP2014075489A publication Critical patent/JP2014075489A/en
Application granted granted Critical
Publication of JP5867359B2 publication Critical patent/JP5867359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an evaluation method for a wafer capable of evaluating a quality of a polishing surface of the wafer with high accuracy without limiting analysis information at a specific spatial frequency, and thereby, of obtaining an optimum polishing condition uniquely.SOLUTION: An evaluation method for a wafer of evaluating a quality of a polishing surface of the wafer in polishing processing of polishing the wafer by slidably contacting the wafer with a polishing pad of a polishing device, includes the following steps of: measuring a polishing surface shape of the wafer and a surface shape of the polishing pad after polishing; measuring respective power spectrum densities from the measured polishing surface shape of the wafer and the measured surface shape of the polishing pad; acquiring a linear primary approximation formula from a correlation between the power spectrum density of the wafer and the power spectrum density of the polishing pad; and evaluating the quality the polishing surface of the wafer from a gradient of the acquired linear primary approximation formula.

Description

本発明は、研磨装置の研磨パッドにウェーハを摺接させて研磨する研磨加工において、ウェーハの研磨面の品質を評価するウェーハの評価方法及びウェーハの研磨方法に関する。   The present invention relates to a wafer evaluation method and a wafer polishing method for evaluating the quality of a polished surface of a wafer in a polishing process in which a wafer is slid in contact with a polishing pad of a polishing apparatus.

近年のデバイスの高集積化によりシリコンウェーハなどの半導体ウェーハへの要求品質はますます高度化しており、特にウェーハ表面の平坦度や表面粗さを改善することは、デバイスの電気特性を向上させるために必要である。   Due to the recent high integration of devices, the required quality of semiconductor wafers such as silicon wafers is becoming increasingly sophisticated. In particular, improving the flatness and surface roughness of the wafer surface is intended to improve the electrical characteristics of the device. Is necessary.

例えば、ウェーハ表面におけるマイクロラフネスはデバイスの電気特性に影響を与えていることが知られており、例えば、マイクロラフネスが大きければ酸化膜耐圧は低下し、更にゲート酸化膜下チャンネルではマイクロラフネスが大きくなると電子の散乱が起こり電子の移動度は小さくなること等が知られている。特に、ウェーハ表面における空間波長が0.01〜5μm程度の凹凸であるヘイズについては、デバイスの電気特性の信頼性試験、特に酸化膜の経時絶縁破壊特性(TDDB)に影響を与えることが分かっている。   For example, it is known that the microroughness on the wafer surface affects the electrical characteristics of the device. For example, if the microroughness is large, the oxide breakdown voltage decreases, and the microroughness is large in the channel under the gate oxide. Then, it is known that electron scattering occurs and the electron mobility becomes small. In particular, it has been found that haze, which has irregularities with a spatial wavelength of about 0.01 to 5 μm on the wafer surface, affects the reliability test of the electrical characteristics of the device, particularly the temporal dielectric breakdown characteristics (TDDB) of oxide films Yes.

一方、ウェーハ表面における空間波長が数mm〜20mm程度の凹凸であるうねりについても、デバイス作製工程におけるフォトリソグラフィーや素子分離等において問題となる。これに対して、ウェーハ裏面の表面形状を測定し、そこからパワースペクトル密度を求め、その空間波長10mmのパワースペクトル密度を10μm以下とすることが開示されている(特許文献1)。 On the other hand, undulations having a spatial wavelength of about several mm to 20 mm on the wafer surface are also problematic in photolithography, element isolation, and the like in the device manufacturing process. On the other hand, it is disclosed that the surface shape of the back surface of the wafer is measured, the power spectral density is obtained therefrom, and the power spectral density at a spatial wavelength of 10 mm is set to 10 μm 3 or less (Patent Document 1).

また、ウェーハの研磨工程や洗浄工程において、測定したウェーハの表面形状をパワースペクトルに変換してマイクロラフネスを評価し、その結果に応じて研磨条件や洗浄条件を調整する方法が開示されている(特許文献2参照)。   In addition, a method is disclosed in which, in a wafer polishing process or a cleaning process, the surface shape of a measured wafer is converted into a power spectrum to evaluate microroughness, and polishing conditions and cleaning conditions are adjusted according to the results ( Patent Document 2).

特開2000−31224号公報JP 2000-31224 A 特開2006−278513号公報JP 2006-278513 A

しかし、この評価方法では、研磨条件によって影響を受けやすいある1点の空間周波数を捉え、その空間周波数に対するウェーハ面の品質との関係を評価している。実際には研磨条件によって変動する空間周波数は1点ではなく、ある範囲を持っているため、この評価方法では採用する空間周波数次第で評価結果が変わることになる。   However, in this evaluation method, a spatial frequency at a certain point that is easily influenced by polishing conditions is captured, and the relationship between the spatial frequency and the quality of the wafer surface is evaluated. Actually, the spatial frequency that varies depending on the polishing conditions is not a single point, but has a certain range. Therefore, in this evaluation method, the evaluation result varies depending on the spatial frequency employed.

ウェーハ面粗さのパワースペクトル密度は、ウェーハのCMP加工におけるウェーハ面に摺接する研磨工具に大きく依存する。研磨工具の例には研磨パッド、研磨スラリーが挙げられ、それらの研磨作用によってパワースペクトル密度、つまり空間周波数毎の粗さ密度が決まる。しかし、実際に研磨条件のどの因子がどの程度寄与してパワースペクトル密度が決定されるかを求めることは難しい。   The power spectral density of the wafer surface roughness greatly depends on the polishing tool that is in sliding contact with the wafer surface in CMP processing of the wafer. Examples of polishing tools include polishing pads and polishing slurries, and their polishing action determines the power spectral density, that is, the roughness density for each spatial frequency. However, it is difficult to determine which factor of polishing conditions actually contributes to determine the power spectral density.

上記のように、研磨条件によって影響を受ける空間周波数はある幅を有するにも関わらず、これまでのパワースペクトル密度を用いた評価手法では、空間周波数のある1点を取り上げ、そこに限定して品質との関係を評価する解析技術に留まっていた。そのため、例えばパワースペクトル密度の変動範囲が広い研磨条件の中から最適条件を選択しようとした時にどの点を採用するべきかが一意に定まらないという問題がある。
本発明は前述のような問題に鑑みてなされたもので、特定の空間周波数で解析情報を制限することなく、ウェーハの研磨面の品質を高精度に評価でき、これにより最適な研磨条件を一意的に得ることが可能なウェーハの評価方法を提供することを目的とする。
As described above, although the spatial frequency affected by the polishing conditions has a certain width, the conventional evaluation methods using the power spectral density pick up one point with the spatial frequency and limit it to that. It remained in analysis technology to evaluate the relationship with quality. Therefore, for example, there is a problem that it is not uniquely determined which point should be adopted when an optimum condition is selected from polishing conditions having a wide fluctuation range of power spectral density.
The present invention has been made in view of the above-described problems. The quality of a polished surface of a wafer can be evaluated with high accuracy without restricting analysis information at a specific spatial frequency, thereby uniquely identifying optimum polishing conditions. It is an object of the present invention to provide a wafer evaluation method that can be obtained in an automated manner.

上記目的を達成するために、本発明によれば、研磨装置の研磨パッドにウェーハを摺接させて研磨する研磨加工において、前記ウェーハの研磨面の品質を評価するウェーハの評価方法であって、研磨後の前記ウェーハの研磨面形状と前記研磨パッドの表面形状を測定する工程と、該測定したウェーハの研磨面形状と研磨パッドの表面形状からそれぞれのパワースペクトル密度を測定する工程と、前記ウェーハのパワースペクトル密度と前記研磨パッドのパワースペクトル密度の相関関係から線形一次近似式を取得する工程と、前記取得した線形一次近似式の勾配から前記ウェーハの研磨面の品質を評価する工程とを有することを特徴とするウェーハの評価方法が提供される。   In order to achieve the above object, according to the present invention, in a polishing process in which a wafer is slid in contact with a polishing pad of a polishing apparatus for polishing, a wafer evaluation method for evaluating the quality of a polished surface of the wafer, A step of measuring the polished surface shape of the wafer and the surface shape of the polishing pad after polishing, a step of measuring respective power spectral densities from the measured polished surface shape of the wafer and the surface shape of the polishing pad, and the wafer Obtaining a linear linear approximation from the correlation between the power spectral density of the polishing pad and the power spectral density of the polishing pad, and evaluating the quality of the polishing surface of the wafer from the gradient of the obtained linear linear approximation A method for evaluating a wafer is provided.

このようなウェーハの評価方法であれば、空間周波数毎に異なるパワースペクトル密度を線形一次近似式の勾配として一元化でき、その勾配からCMP加工の原理であるケミカルとメカニカルのバランスを定量的に評価して、ウェーハの研磨面の品質を高精度に評価できる。この評価結果により、最適な研磨条件を一意的に得ることができる。   With such a wafer evaluation method, power spectral densities that differ for each spatial frequency can be unified as a linear linear approximation gradient, and the chemical and mechanical balance that is the principle of CMP processing is quantitatively evaluated from the gradient. Thus, the quality of the polished surface of the wafer can be evaluated with high accuracy. From this evaluation result, the optimum polishing condition can be uniquely obtained.

このとき、前記ウェーハの研磨面の品質を評価する工程において、砥粒が無い研磨スラリーを用いて研磨した場合の勾配を基準として前記ウェーハの研磨面の品質を評価することが好ましい。
このようにすれば、ウェーハの研磨面の品質をより容易に精度良く評価できる。
At this time, in the step of evaluating the quality of the polished surface of the wafer, it is preferable to evaluate the quality of the polished surface of the wafer on the basis of the gradient when polishing is performed using a polishing slurry without abrasive grains.
In this way, the quality of the polished surface of the wafer can be more easily and accurately evaluated.

また、本発明では、研磨装置の研磨パッドにウェーハを摺接させて研磨するウェーハの研磨方法であって、本発明のウェーハの評価方法により前記ウェーハの研磨面の品質を評価し、該評価結果に応じて、次回の研磨の研磨条件を調整することを特徴とするウェーハの研磨方法が提供される。
このようなウェーハの研磨方法であれば、本発明のウェーハの評価方法により得た最適な研磨条件で実施することができ、マイクロラフネスやESFQRなどの研磨面の品質が改善されたウェーハに研磨できる。
Further, in the present invention, there is provided a wafer polishing method for polishing by bringing a wafer into sliding contact with a polishing pad of a polishing apparatus, wherein the quality of the polished surface of the wafer is evaluated by the wafer evaluation method of the present invention, and the evaluation result Accordingly, there is provided a method for polishing a wafer, characterized by adjusting polishing conditions for the next polishing.
Such a wafer polishing method can be carried out under the optimum polishing conditions obtained by the wafer evaluation method of the present invention, and can be polished to a wafer having improved polishing surface quality such as microroughness and ESFQR. .

本発明では、測定したウェーハの研磨面形状と研磨パッドの表面形状からそれぞれのパワースペクトル密度を測定し、これらの相関関係から線形一次近似式を取得し、取得した線形一次近似式の勾配からウェーハの研磨面の品質を評価するので、空間周波数毎に異なるパワースペクトル密度を線形一次近似式の勾配として一元化でき、その勾配からCMP加工の原理であるケミカルとメカニカルのバランスを定量的に評価して、ウェーハの研磨面の品質を高精度に評価できる。この評価結果により、最適な研磨条件を一意的に得ることができる。   In the present invention, each power spectrum density is measured from the measured polishing surface shape of the wafer and the surface shape of the polishing pad, a linear first-order approximation is obtained from these correlations, and the wafer is obtained from the gradient of the obtained first-order linear approximation. Since the quality of the polished surface is evaluated, different power spectral densities for each spatial frequency can be unified as the gradient of the linear linear approximation formula, and the chemical and mechanical balance, which is the principle of CMP processing, can be quantitatively evaluated from the gradient. The quality of the polished surface of the wafer can be evaluated with high accuracy. From this evaluation result, the optimum polishing condition can be uniquely obtained.

本発明のウェーハの評価方法の一例を示すフロー図である。It is a flowchart which shows an example of the evaluation method of the wafer of this invention. ウェーハ研磨時の研磨面における研磨スラリーの介在割合の様子を説明する説明図である。It is explanatory drawing explaining the mode of the interposition ratio of the polishing slurry in the grinding | polishing surface at the time of wafer grinding | polishing. 本発明のウェーハの研磨方法で用いることができる両面研磨装置の一例を示す概略図である。It is the schematic which shows an example of the double-side polish apparatus which can be used with the grinding | polishing method of the wafer of this invention. 実施例1、比較例におけるウェーハの研磨面形状のパワースペクトル密度を示す図である。It is a figure which shows the power spectrum density of the grinding | polishing surface shape of the wafer in Example 1 and a comparative example. 実施例1における研磨パッドの表面形状のパワースペクトル密度を示す図である。It is a figure which shows the power spectrum density of the surface shape of the polishing pad in Example 1. FIG. 実施例1において求めた散布図である。5 is a scatter diagram obtained in Example 1. FIG. 実施例1における各研磨条件における勾配値を示す図である。FIG. 3 is a diagram showing a gradient value under each polishing condition in Example 1. 実施例1における勾配値とRMSの関係を示す図である。It is a figure which shows the relationship between the gradient value in Example 1, and RMS. 実施例2における勾配値と研磨後のウェーハのESFQRの関係を示す図である。It is a figure which shows the relationship between the gradient value in Example 2, and ESFQR of the wafer after grinding | polishing. 比較例におけるパワースペクトル密度を研磨条件毎にまとめた結果を示す図である。It is a figure which shows the result which put together the power spectrum density in a comparative example for every grinding | polishing conditions. 比較例におけるパワースペクトル密度とRMSとの関係を示す図である。It is a figure which shows the relationship between the power spectrum density and RMS in a comparative example.

以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
本発明のウェーハの評価方法について図1を参照して説明する。
まず、研磨後のウェーハと、研磨パッドの一部をサンプリングする(図1(a))。ここで、ウェーハは、例えばCZ法やFZ法で育成された、シリコンや他の化合物半導体等のインゴットをスライスし、面取り、ラッピング、エッチング、研磨等の工程を適宜行って得られたものである。
次に、ウェーハの研磨面形状と研磨パッドの表面形状を測定する(図1(b))。この表面形状の測定方法は特に限定されないが、例えばウェーハの研磨面形状の測定には様々な表面粗さ測定装置を用いることができる。また、研磨パッドの表面形状の測定には例えばレーザー顕微鏡を用いることができる。
Hereinafter, although an embodiment is described about the present invention, the present invention is not limited to this.
The wafer evaluation method of the present invention will be described with reference to FIG.
First, the polished wafer and a part of the polishing pad are sampled (FIG. 1A). Here, the wafer is obtained by slicing ingots such as silicon and other compound semiconductors grown by, for example, the CZ method or the FZ method, and appropriately performing processes such as chamfering, lapping, etching, and polishing. .
Next, the polishing surface shape of the wafer and the surface shape of the polishing pad are measured (FIG. 1B). The method for measuring the surface shape is not particularly limited. For example, various surface roughness measuring devices can be used for measuring the polished surface shape of the wafer. Further, for example, a laser microscope can be used to measure the surface shape of the polishing pad.

次に、測定したウェーハの研磨面形状と研磨パッドの表面形状からそれぞれのパワースペクトル密度(PSD:Power Spectrum Density)を測定する(図1(c))。これにより、空間周波数に対するウェーハの研磨面形状のパワースペクトル密度と、空間周波数に対する研磨パッドの表面形状のパワースペクトル密度が得られる。
次に、これら得られたパワースペクトル密度から、それぞれの空間周波数を同期させることでウェーハのパワースペクトル密度と研磨パッドのパワースペクトル密度の相関関係を得る(図1(d))。この相関関係は例えば散布図として得ることができる。この相関関係、すなわち散布図から線形一次近似式を取得する。
Next, the respective power spectral densities (PSD) are measured from the measured polished surface shape of the wafer and the surface shape of the polishing pad (FIG. 1C). Thereby, the power spectral density of the polishing surface shape of the wafer with respect to the spatial frequency and the power spectral density of the surface shape of the polishing pad with respect to the spatial frequency are obtained.
Next, a correlation between the power spectral density of the wafer and the power spectral density of the polishing pad is obtained from these obtained power spectral densities by synchronizing the respective spatial frequencies (FIG. 1 (d)). This correlation can be obtained as a scatter diagram, for example. A linear first-order approximation formula is acquired from this correlation, that is, a scatter diagram.

次に、得られた線形一次近似式の勾配を算出して評価する(図1(e))。この勾配の値から、以下に記載するように、ウェーハ研磨面の品質を評価でき、より定量的な研磨条件の選定が可能となる。
このように、本発明のウェーハの評価方法では、ウェーハのパワースペクトル密度に加えて研磨パッドのパワースペクトル密度を同時にモニターする。これらの情報を組み合わせることで、具体的には空間周波数毎のウェーハ面粗さ密度情報と研磨パッド面粗さ密度情報の散布図を取得することによって、空間周波数毎に異なる粗さ密度情報を線形一次近似式の勾配値として一元化できる。これは広範囲にわたる空間周波数毎の粗さ密度情報を考慮している点で、1点の空間周波数の情報のみを考慮していた従来技術と異なる。
Next, the gradient of the obtained linear first-order approximation is calculated and evaluated (FIG. 1 (e)). From the value of this gradient, as described below, the quality of the wafer polishing surface can be evaluated, and more quantitative polishing conditions can be selected.
Thus, in the wafer evaluation method of the present invention, the power spectral density of the polishing pad is simultaneously monitored in addition to the power spectral density of the wafer. By combining these pieces of information, specifically, by obtaining a scatter diagram of wafer surface roughness density information and polishing pad surface roughness density information for each spatial frequency, different roughness density information for each spatial frequency is linearized. It can be unified as the gradient value of the linear approximation. This is different from the prior art in which only one point of spatial frequency information is taken into consideration in that it takes into account roughness density information over a wide range of spatial frequencies.

ここで、上記した勾配の値の意味について詳細を述べる。上記したように、散布図は双方のパワースペクトル密度の空間周波数を一致させた時の研磨パッドのパワースペクトル密度に対するウェーハのパワースペクトル密度で表される。この散布図の線形一次近似式の勾配値が研磨パッド面粗さ成分がウェーハにどの程度転写されたかを示す尺度となる。
研磨加工において、スラリーの砥粒がウェーハ面内に十分に行き渡っていることが研磨面品質を維持する上での理想状態と考えられる。この時、ウェーハと研磨パッド間に仮にスラリーの砥粒が存在しない場合、研磨パッド面粗さ成分がスラリー液だけを媒介し、ウェーハ研磨面にほぼダイレクトに転写されることとなる。
Here, the meaning of the above-described gradient value will be described in detail. As described above, the scatter diagram is represented by the power spectral density of the wafer with respect to the power spectral density of the polishing pad when the spatial frequencies of both power spectral densities are matched. The gradient value of the linear first-order approximation formula in this scatter diagram is a scale indicating how much the polishing pad surface roughness component has been transferred to the wafer.
In the polishing process, it is considered to be an ideal state for maintaining the quality of the polished surface that the abrasive grains of the slurry are sufficiently distributed in the wafer surface. At this time, if there are no abrasive grains of slurry between the wafer and the polishing pad, the polishing pad surface roughness component is transferred directly to the wafer polishing surface through only the slurry liquid.

ウェーハと研磨パッド間にスラリーの砥粒が存在する場合、研磨パッド面粗さ成分のウェーハ面への転写は砥粒によって抑制される。この場合、上記勾配値は砥粒が存在しない場合に比べて小さくなる。つまり、砥粒の無い状態での勾配値を基準として考え、この基準に対してある研磨条件での勾配値はどう変化したかという比率を定量的に表すことができる。   When abrasive grains of slurry exist between the wafer and the polishing pad, transfer of the polishing pad surface roughness component to the wafer surface is suppressed by the abrasive grains. In this case, the gradient value is smaller than when no abrasive grains are present. That is, the gradient value in the absence of abrasive grains is considered as a reference, and the ratio of how the gradient value under a certain polishing condition is changed relative to this reference can be quantitatively expressed.

すなわち、勾配値は無砥粒条件を基準にした研磨パッド面粗さ成分の転写率として表現できる。この勾配値の大小により、研磨面における研磨スラリーの介在割合、つまりケミカルとメカニカルのバランスを比較できる。具体的には、勾配値が大きいほど、図2(A)に示すように、ウェーハ研磨面と研磨パッド間のスラリーの砥粒濃度がより小さい又は砥粒径が小さいため研磨パッド面粗さ成分の転写率がより大きく、これにより、相対的にケミカルの方が優勢と判断できる。
逆に、勾配値が小さいほど、図2(B)に示すように、ウェーハ研磨面と研磨パッド間のスラリーの砥粒濃度がより大きい又は砥粒径が大きいため研磨パッド面粗さ成分の転写率がより小さく、これにより、メカニカルの方が優勢と判断できる。
従って、研磨条件で変動するケミカルとメカニカルのバランスを定量的に評価でき、より正確な研磨条件の設定が可能となる。
That is, the gradient value can be expressed as a transfer rate of the polishing pad surface roughness component based on the abrasive-free condition. Depending on the magnitude of the gradient value, it is possible to compare the proportion of polishing slurry on the polishing surface, that is, the balance between chemical and mechanical. Specifically, as the gradient value is larger, as shown in FIG. 2A, the polishing pad surface roughness component is smaller because the abrasive particle concentration of the slurry between the wafer polishing surface and the polishing pad is smaller or the abrasive particle size is smaller. Thus, it can be determined that the chemical is relatively dominant.
Conversely, as the gradient value is smaller, as shown in FIG. 2B, the abrasive grain concentration of the slurry between the wafer polishing surface and the polishing pad is larger or the abrasive grain size is larger, so that the polishing pad surface roughness component is transferred. The rate is smaller, so that it can be determined that mechanical is dominant.
Therefore, it is possible to quantitatively evaluate the balance between chemical and mechanical fluctuations depending on the polishing conditions, and it is possible to set more accurate polishing conditions.

例えば、基準となる無砥粒スラリーの条件で予め研磨加工を行い、算出した勾配値を基準(=1)とする。その後、様々な研磨条件で研磨した際に算出した勾配値を基準値の相対値として求め、例えばマイクロラフネスやESFQRなどのような改善しようとする品質との関係を求める。このようにして求めた勾配値と品質との関係から、品質を改善するための最適な研磨条件を選定する(図1(f))。   For example, polishing is performed in advance under the condition of a reference abrasive-free slurry, and the calculated gradient value is set as a reference (= 1). Thereafter, the gradient value calculated when polishing under various polishing conditions is obtained as a relative value of the reference value, and the relationship with the quality to be improved such as microroughness or ESFQR is obtained. The optimum polishing conditions for improving the quality are selected from the relationship between the gradient value thus obtained and the quality (FIG. 1 (f)).

このように、本発明のウェーハの評価方法では、勾配からCMP加工の原理であるケミカルとメカニカルのバランスを定量的に評価して、ウェーハの研磨面の品質を高精度に評価できる。この評価結果により、最適な研磨条件を一意的に得ることができる。   Thus, the wafer evaluation method of the present invention can quantitatively evaluate the chemical and mechanical balance, which is the principle of CMP processing, from the gradient, and can evaluate the quality of the polished surface of the wafer with high accuracy. From this evaluation result, the optimum polishing condition can be uniquely obtained.

次に、本発明のウェーハの研磨方法について説明する。本発明は、ウェーハの両面を同時に研磨する両面研磨、及び片面を研磨する片面研磨のどちらにも適応されることができるが、ここでは両面研磨する場合について説明する。
図3に本発明のウェーハの研磨方法で用いることができる両面研磨装置の一例を示す。両面研磨装置10は、上下に相対向して設けられた上定盤2と下定盤3を備えており、各定盤2、3にはそれぞれ研磨パッド4が貼付されている。ウェーハWはキャリア1に設けられた保持孔に保持され、上定盤2と下定盤3の間に挟まれる。
Next, the wafer polishing method of the present invention will be described. The present invention can be applied to both the double-side polishing in which both surfaces of the wafer are simultaneously polished and the single-side polishing in which one side is polished. Here, the case of performing double-side polishing will be described.
FIG. 3 shows an example of a double-side polishing apparatus that can be used in the wafer polishing method of the present invention. The double-side polishing apparatus 10 includes an upper surface plate 2 and a lower surface plate 3 that are provided to face each other vertically, and a polishing pad 4 is affixed to each surface plate 2, 3. The wafer W is held in a holding hole provided in the carrier 1 and is sandwiched between the upper surface plate 2 and the lower surface plate 3.

このような両面研磨装置10を用い、まず、研磨するウェーハWをキャリア1の保持孔に挿入し、キャリア1を上定盤2と下定盤3の間に配置する。そして、上下定盤2、3に貼付された研磨パッド4でウェーハWの上下表面を挟み込み、上定盤2及び下定盤3を回転させる。ウェーハの研磨面に砥粒を含む研磨スラリーを供給しながら研磨パッド4にウェーハWを摺接させて両面を研磨する。   Using such a double-side polishing apparatus 10, first, the wafer W to be polished is inserted into the holding hole of the carrier 1, and the carrier 1 is placed between the upper surface plate 2 and the lower surface plate 3. Then, the upper and lower surfaces of the wafer W are sandwiched between the polishing pads 4 attached to the upper and lower surface plates 2 and 3, and the upper surface plate 2 and the lower surface plate 3 are rotated. While supplying polishing slurry containing abrasive grains to the polishing surface of the wafer, the wafer W is brought into sliding contact with the polishing pad 4 to polish both surfaces.

その後、上記した本発明のウェーハの評価方法により研磨後のウェーハの研磨面の品質を評価し、該評価結果に応じて、次回の研磨の研磨条件を調整する。
このようなウェーハの研磨方法であれば、上記したように本発明のウェーハの評価方法により最適な研磨条件を得ることができるので、マイクロラフネスやESFQRなどの研磨面の品質が改善されたウェーハに研磨できる。
Thereafter, the quality of the polished surface of the wafer after polishing is evaluated by the wafer evaluation method of the present invention described above, and the polishing conditions for the next polishing are adjusted according to the evaluation result.
With such a wafer polishing method, optimum polishing conditions can be obtained by the wafer evaluation method of the present invention as described above, so that the quality of the polished surface such as microroughness and ESFQR can be improved. Can be polished.

以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples of the present invention, but the present invention is not limited to these.

(実施例1)
本発明のウェーハの評価方法に従ってウェーハの研磨面の品質を評価した。ここで、研磨面の品質として、マイクロラフネス(RMS)を評価した。
研磨後のウェーハの研磨面形状の測定にはTaylor Hobson社製LSM−3000を用いた。研磨パッドの表面形状の測定にはレーザーテック社製CLSM(1LM21)を用いた。PSD解析ソフトはTaylor Hobson社製TaryMap Goldを用いた。マイクロラフネスとしてのRMS値はシュミット社製TMS−3000Wにより測定した。
Example 1
The quality of the polished surface of the wafer was evaluated according to the wafer evaluation method of the present invention. Here, microroughness (RMS) was evaluated as the quality of the polished surface.
LSM-3000 manufactured by Taylor Hobson was used for measurement of the polished surface shape of the polished wafer. Laser surface CLSM (1LM21) was used for measuring the surface shape of the polishing pad. As the PSD analysis software, Taylor Map Gold manufactured by Taylor Hobson was used. The RMS value as microroughness was measured by TMS-3000W manufactured by Schmitt.

まず、評価する複数のウェーハを準備するため、以下に記載する複数の研磨条件にて両面研磨した。まず、ウェーハは直径300mmのシリコンウェーハとした。スラリーの一次砥粒径を12、35、74、89nmと変化させた。砥粒濃度は0.5、1.25、2.5、5.0wt%と変化させた。また、砥粒が無い研磨スラリーを用いて研磨した場合のウェーハも準備した。また、使用した両面研磨装置は不二越機械工業社製DSP−20B、研磨パッドはニッタ・ハース社製MH−S15A、研磨スラリーはフジミインコーポレーテッド社製のKOHベースのコロイダルシリカスラリーをそれぞれ用いた。両面研磨装置のキャリアとしては、母材をTiとし、保持孔内にアラミドFRPをインサートしたものを用いた。   First, in order to prepare a plurality of wafers to be evaluated, double-side polishing was performed under a plurality of polishing conditions described below. First, the wafer was a silicon wafer having a diameter of 300 mm. The primary abrasive particle size of the slurry was changed to 12, 35, 74, and 89 nm. The abrasive concentration was changed to 0.5, 1.25, 2.5, and 5.0 wt%. Moreover, the wafer at the time of grinding | polishing using the polishing slurry without an abrasive grain was also prepared. The double-side polishing apparatus used was DSP-20B manufactured by Fujikoshi Machinery Co., Ltd., the polishing pad was MH-S15A manufactured by Nitta Haas, and the polishing slurry was KOH-based colloidal silica slurry manufactured by Fujimi Incorporated. As a carrier of the double-side polishing apparatus, a base material made of Ti and an aramid FRP inserted in a holding hole was used.

準備した研磨後のウェーハの研磨面形状と研磨パッドの表面形状を測定し、これらからそれぞれのパワースペクトル密度を測定した。
図4(A)(B)に測定したウェーハのパワースペクトル密度を示す。図4(A)は、砥粒径を35nmの一定とし、砥粒濃度を0〜5.0wt%の範囲で変化させた場合のものであり、図4(B)は、砥粒濃度を5.0wt%の一定とし、無砥粒と砥粒径を12〜89nmの範囲で変化させた場合のものである。
図5に測定した研磨パッドのパワースペクトル密度を示す。
The polished surface shape of the prepared polished wafer and the surface shape of the polishing pad were measured, and the power spectral density of each was measured.
4A and 4B show the power spectral density of the wafer measured. FIG. 4A shows the case where the abrasive grain size is constant at 35 nm and the abrasive grain concentration is changed in the range of 0 to 5.0 wt%. FIG. 4B shows the abrasive grain concentration of 5 0.0 wt% is constant, and the non-abrasive grains and the abrasive grain diameter are changed in the range of 12 to 89 nm.
FIG. 5 shows the measured power spectral density of the polishing pad.

次に、これらのパワースペクトル密度から空間周波数を同期させて、ウェーハのパワースペクトル密度と研磨パッドのパワースペクトル密度の散布図を得た。この散布図から線形一次近似式を取得した。
ここで、得られた散布図を図6(A)(B)に示す。図6(A)は、上記した砥粒径を一定にした条件の場合、図6(B)は砥粒濃度を一定にした条件の場合のものである。
Next, the spatial frequency was synchronized from these power spectral densities to obtain a scatter diagram of the power spectral density of the wafer and the power spectral density of the polishing pad. A linear first-order approximation was obtained from this scatter diagram.
Here, the obtained scatter diagrams are shown in FIGS. FIG. 6A shows the case where the above-mentioned abrasive grain size is made constant, and FIG. 6B shows the case where the abrasive grain concentration is made constant.

各研磨条件における線形一次近似式の勾配を図7に示す。ここで、勾配値は無砥粒のスラリーを用いた場合の勾配値を1としたときの相対値である。
図7に示すこれら勾配値は、上記したように、各研磨条件毎の研磨パッド面粗さ成分のウェーハ面への相対的な転写率を示しており、図7から砥粒径が大きいほど、また砥粒濃度が高いほど転写率が下がっていき、ウェーハ面とパッド表面との間に介在するスラリーの砥粒が増していく傾向が確認できた。
FIG. 7 shows the gradient of the linear first-order approximation expression under each polishing condition. Here, the gradient value is a relative value when the gradient value is 1 when an abrasive-free slurry is used.
These gradient values shown in FIG. 7 indicate the relative transfer rate of the polishing pad surface roughness component for each polishing condition to the wafer surface as described above, and the larger the abrasive particle size from FIG. Further, it was confirmed that the higher the abrasive concentration, the lower the transfer rate, and the tendency for the abrasive grains of the slurry interposed between the wafer surface and the pad surface to increase.

勾配値とRMSの関係の結果を図8に示す。図8に示すように、勾配値が小さくなるほど、RMSが改善されていることが分かった。
図8の結果を参照すれば、求めた勾配値に対するRMSを評価でき、すなわち、ウェーハの研磨面の品質を評価できる。また、図7と図8を参照してRMSを低減するための最適な研磨条件(研磨スラリーの砥粒径と砥粒濃度)を選定できる。例えば、図8の勾配値が0.65以下となる研磨条件で研磨を行えば、ウェーハの品質目標を達成できる。このための研磨条件は、図7に示すように、砥粒径35nm、砥粒濃度0.5wt%の条件を除いた砥粒径35nm以上、砥粒濃度0.5〜5wt%の研磨条件である。
The result of the relationship between the slope value and RMS is shown in FIG. As shown in FIG. 8, it was found that the smaller the slope value, the better the RMS.
With reference to the result of FIG. 8, the RMS with respect to the obtained gradient value can be evaluated, that is, the quality of the polished surface of the wafer can be evaluated. In addition, referring to FIG. 7 and FIG. 8, it is possible to select optimum polishing conditions (abrasive grain size and abrasive grain concentration of the polishing slurry) for reducing RMS. For example, if the polishing is performed under the polishing conditions in which the gradient value in FIG. 8 is 0.65 or less, the quality target of the wafer can be achieved. As shown in FIG. 7, the polishing conditions for this are polishing conditions with an abrasive grain size of 35 nm or more and an abrasive grain concentration of 0.5 to 5 wt% excluding the conditions of an abrasive grain size of 35 nm and an abrasive grain concentration of 0.5 wt%. is there.

(実施例2)
本発明の研磨方法に従ってシリコンウェーハを両面研磨した。研磨条件は実施例1と同様とした。だたし、研磨したウェーハとして、最外周部の回転角275度の位置にレーザーマークを有するものを用いた。最外周部にレーザーマークを有するシリコンウェーハは両面研磨後にレーザーマーク近傍に周囲との研磨レート差のため起伏を生じてしまい、平坦度の最大値が悪化するという問題がある。このレーザーマーク近傍の起伏の大きさの変動要因は研磨時におけるケミカルとメカニカルのバランスであることが推察されたおり、これを改善するためにはメカニカルの方を優位にする必要がある。
(Example 2)
The silicon wafer was double-side polished according to the polishing method of the present invention. The polishing conditions were the same as in Example 1. However, as the polished wafer, a wafer having a laser mark at a rotational angle of 275 degrees on the outermost peripheral portion was used. The silicon wafer having the laser mark on the outermost peripheral portion has a problem that the undulation is generated in the vicinity of the laser mark after polishing on both sides due to the difference in polishing rate with the surroundings, and the maximum flatness is deteriorated. It has been inferred that the fluctuation factor of the undulation size in the vicinity of the laser mark is the balance between chemical and mechanical during polishing, and in order to improve this, it is necessary to make the mechanical more dominant.

そこで、研磨後のESFQRを改善するために、本発明のウェーハの評価方法に従って各研磨条件における勾配値を求め、この勾配値を下げるための最適な研磨条件を選定した。
図9に勾配値と研磨後のウェーハのESFQRの関係を示す。図9に示すように、勾配値が小さいほどESFQRを改善できることが確認できた。そして、勾配値が約0.2となる条件(具体的には、砥粒径89nm、砥粒濃度5.0wt%)を最適な研磨条件として選定できた。
Therefore, in order to improve the ESFQR after polishing, the gradient value under each polishing condition was determined according to the wafer evaluation method of the present invention, and the optimum polishing condition for reducing this gradient value was selected.
FIG. 9 shows the relationship between the slope value and the ESFQR of the polished wafer. As shown in FIG. 9, it was confirmed that ESFQR can be improved as the gradient value is smaller. A condition (specifically, an abrasive grain size of 89 nm and an abrasive grain concentration of 5.0 wt%) having a gradient value of about 0.2 could be selected as the optimum polishing condition.

(比較例)
実施例1で準備したウェーハと同様のものを用い、ウェーハの研磨面形状のパワースペクトル密度のみを測定し、1点の空間周波数を選択する従来の評価方法に従ってウェーハ研磨面のRMSを評価した。
まず、実施例1と同様に、図4(A)(B)に示すようなウェーハの研磨面形状のパワースペクトル密度を測定した。
図4(A)(B)から研磨条件によってパワースペクトル密度が変動する範囲は3.0E−3〜5.0E−01[1/μm]と広範囲であることが確認できた。この中から変動が大きい空間周波数として、例えばf=2.0E−02、5.0E−02、1.0E−01[1/μm]の3つの空間周波数を選択した。選択した各空間周波数に関するパワースペクトル密度を研磨条件毎にまとめた結果を図10に示す。
(Comparative example)
Using the same wafer as that prepared in Example 1, only the power spectrum density of the polished surface shape of the wafer was measured, and the RMS of the wafer polished surface was evaluated according to a conventional evaluation method in which one spatial frequency was selected.
First, similarly to Example 1, the power spectrum density of the polished surface shape of the wafer as shown in FIGS. 4A and 4B was measured.
4A and 4B, it was confirmed that the range in which the power spectral density fluctuates depending on the polishing conditions is as wide as 3.0E-3 to 5.0E-01 [1 / μm]. Among these, three spatial frequencies, for example, f = 2.0E-02, 5.0E-02, and 1.0E-01 [1 / μm] were selected as the spatial frequencies having large fluctuations. The result of putting together the power spectrum density regarding each selected spatial frequency for every polishing condition is shown in FIG.

また、パワースペクトル密度とRMSとの関係を図11に示す。図11に示すように、選択した空間周波数によって異なる相関関係が存在し、適切な研磨条件を一意的に得ることができなかった。   Further, FIG. 11 shows the relationship between the power spectral density and the RMS. As shown in FIG. 11, different correlations exist depending on the selected spatial frequency, and appropriate polishing conditions could not be obtained uniquely.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

1…キャリア、 2…上定盤、 3…下定盤、 4…研磨パッド、
10…両面研磨装置。
1 ... carrier, 2 ... upper surface plate, 3 ... lower surface plate, 4 ... polishing pad,
10: Double-side polishing apparatus.

Claims (3)

研磨装置の研磨パッドにウェーハを摺接させて研磨する研磨加工において、前記ウェーハの研磨面の品質を評価するウェーハの評価方法であって、
研磨後の前記ウェーハの研磨面形状と前記研磨パッドの表面形状を測定する工程と、
該測定したウェーハの研磨面形状と研磨パッドの表面形状からそれぞれのパワースペクトル密度を測定する工程と、
前記ウェーハのパワースペクトル密度と前記研磨パッドのパワースペクトル密度の相関関係から線形一次近似式を取得する工程と、
前記取得した線形一次近似式の勾配から前記ウェーハの研磨面の品質を評価する工程とを有することを特徴とするウェーハの評価方法。
In a polishing process in which a wafer is brought into sliding contact with a polishing pad of a polishing apparatus for polishing, a wafer evaluation method for evaluating the quality of a polished surface of the wafer,
Measuring the polished surface shape of the wafer after polishing and the surface shape of the polishing pad;
Measuring each power spectral density from the measured polished surface shape of the wafer and the surface shape of the polishing pad;
Obtaining a linear first-order approximation from the correlation between the power spectral density of the wafer and the power spectral density of the polishing pad;
And a step of evaluating the quality of the polished surface of the wafer from the gradient of the acquired linear first-order approximation formula.
前記ウェーハの研磨面の品質を評価する工程において、砥粒が無い研磨スラリーを用いて研磨した場合の勾配を基準として前記ウェーハの研磨面の品質を評価することを特徴とする請求項1に記載のウェーハの評価方法。   2. The quality of the polished surface of the wafer is evaluated based on a gradient when polishing is performed using a polishing slurry without abrasive grains in the step of evaluating the quality of the polished surface of the wafer. Wafer evaluation method. 研磨装置の研磨パッドにウェーハを摺接させて研磨するウェーハの研磨方法であって、
請求項1又は請求項2に記載のウェーハの評価方法により前記ウェーハの研磨面の品質を評価し、該評価結果に応じて、次回の研磨の研磨条件を調整することを特徴とするウェーハの研磨方法。
A method for polishing a wafer in which the wafer is slid in contact with a polishing pad of a polishing apparatus,
The wafer polishing method according to claim 1, wherein the quality of the polished surface of the wafer is evaluated by the wafer evaluation method according to claim 1, and the polishing conditions for the next polishing are adjusted according to the evaluation result. Method.
JP2012222326A 2012-10-04 2012-10-04 Wafer evaluation method and wafer polishing method Active JP5867359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012222326A JP5867359B2 (en) 2012-10-04 2012-10-04 Wafer evaluation method and wafer polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012222326A JP5867359B2 (en) 2012-10-04 2012-10-04 Wafer evaluation method and wafer polishing method

Publications (2)

Publication Number Publication Date
JP2014075489A true JP2014075489A (en) 2014-04-24
JP5867359B2 JP5867359B2 (en) 2016-02-24

Family

ID=50749439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012222326A Active JP5867359B2 (en) 2012-10-04 2012-10-04 Wafer evaluation method and wafer polishing method

Country Status (1)

Country Link
JP (1) JP5867359B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017010191A (en) * 2015-06-19 2017-01-12 矢崎エナジーシステム株式会社 Traffic information analyzer and computer program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275584A (en) * 1993-03-22 1994-09-30 Hitachi Ltd Evaluation method and silicon wafer
JP2001239459A (en) * 2000-02-25 2001-09-04 Mitsubishi Materials Silicon Corp Method for judging polishing condition for semiconductor substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275584A (en) * 1993-03-22 1994-09-30 Hitachi Ltd Evaluation method and silicon wafer
JP2001239459A (en) * 2000-02-25 2001-09-04 Mitsubishi Materials Silicon Corp Method for judging polishing condition for semiconductor substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017010191A (en) * 2015-06-19 2017-01-12 矢崎エナジーシステム株式会社 Traffic information analyzer and computer program

Also Published As

Publication number Publication date
JP5867359B2 (en) 2016-02-24

Similar Documents

Publication Publication Date Title
CN106133209B (en) Single-crystal silicon carbide substrate, silicon carbide epitaxy substrate and their manufacturing method
KR101738885B1 (en) Closed-loop control for improved polishing pad profiles
JP5557506B2 (en) Polishing both sides of a semiconductor wafer
KR20130094676A (en) Cmp groove depth and conditioning disk monitoring
US10347481B2 (en) Silicon carbide wafer and method for production thereof
US8058173B2 (en) Methods for producing smooth wafers
KR20180042736A (en) Method of chemical mechanical polishing, method of manufacturing semiconductor device and apparatus of manufacturing semiconductor
CN104112652A (en) Method for manufacturing silicon carbide substrate
JP2007129115A (en) Manufacturing method for semiconductor device
Pei et al. A grinding-based manufacturing method for silicon wafers: an experimental investigation
JP6091773B2 (en) Manufacturing method of semiconductor device
JP5867359B2 (en) Wafer evaluation method and wafer polishing method
Oh et al. A comparative study between total thickness variance and site flatness of polished silicon wafer
KR20190040328A (en) Silicon wafer polishing method, silicon wafer manufacturing method, and silicon wafer
CN108290266B (en) Polishing method
TWI740606B (en) Double side polishing method for workpiece
JP2015012192A (en) Semiconductor device manufacturing method
Yu et al. Highest Quality and Repeatability for Single Wafer 150mm SiC CMP Designed for High Volume Manufacturing
JP2013125969A (en) Semiconductor substrate polishing method and semiconductor device polishing apparatus
US9193025B2 (en) Single side polishing using shape matching
CN114667594A (en) Method for polishing wafer and silicon wafer
JP2020172434A (en) Silicon carbide single crystal substrate and method of manufacturing silicon carbide epitaxial substrate
JP2021106226A (en) Method for determining starting period of use of semiconductor wafer polishing cloth and semiconductor wafer polishing method using the same, and semiconductor wafer polishing system
Bhonsle et al. Inspection, characterization and classification of defects for improved CMP of III-V materials
Headley et al. Correlating coefficient of friction and shear force to platen motor current in tungsten and interlayer dielectric chemical mechanical planarization at steady-state conditions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R150 Certificate of patent or registration of utility model

Ref document number: 5867359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250