JP2014074557A - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
JP2014074557A
JP2014074557A JP2012222826A JP2012222826A JP2014074557A JP 2014074557 A JP2014074557 A JP 2014074557A JP 2012222826 A JP2012222826 A JP 2012222826A JP 2012222826 A JP2012222826 A JP 2012222826A JP 2014074557 A JP2014074557 A JP 2014074557A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigeration cycle
evaporator
heat exchanger
outside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012222826A
Other languages
Japanese (ja)
Inventor
Takayuki Kondo
貴幸 近藤
Masayuki Hamada
真佐行 濱田
Yoshiki Yamaoka
由樹 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012222826A priority Critical patent/JP2014074557A/en
Publication of JP2014074557A publication Critical patent/JP2014074557A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigeration cycle device capable of efficient operation with an optimal amount of a cooling medium for an outdoor temperature even when the same changes.SOLUTION: A refrigeration cycle device comprises: a cooling medium circuit 6 with a compressor 1, a heat radiator 2, an expansive valve, and an evaporator 4 connected in this order; an internal heat exchanger 5 which exchanges heat between the heat radiator 2 and the expansive valve 3 and between the evaporator 4 and the compressor 1; a bypass circuit 15 which connects the internal heat exchanger 5 respectively with the expansive valve 3 and the evaporator 4; cooling medium adjustment means (16 and 17) which is arranged on the bypass circuit 15; and outdoor temperature detection means 7 which detects an outdoor temperature. The refrigeration cycle device controls operation of the cooling medium adjustment means (16 and 17) on the basis of the temperature detected by the outdoor temperature detection means 7.

Description

本発明は、冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus.

従来、例えば、ヒートポンプ給湯機に搭載された冷凍サイクル装置において、冷媒は冷凍サイクル装置内に封入されており、全量が一閉回路で循環し、沸上げを行うよう制御されている(例えば、特許文献1参照)。   Conventionally, for example, in a refrigeration cycle apparatus mounted on a heat pump water heater, the refrigerant is enclosed in the refrigeration cycle apparatus, and the entire amount is circulated in a closed circuit and controlled to perform boiling (for example, patents) Reference 1).

このような従来の冷媒サイクル装置について説明する。図3は、特許文献1に記載の冷凍サイクル装置に、冷凍サイクルの高圧側の冷媒と低圧側の冷媒とを熱交換する内部熱交換器を加えたものである。   Such a conventional refrigerant cycle device will be described. FIG. 3 shows an example in which an internal heat exchanger for exchanging heat between the high-pressure side refrigerant and the low-pressure side refrigerant of the refrigeration cycle is added to the refrigeration cycle apparatus described in Patent Document 1.

図3に示すように、冷媒サイクル装置は、圧縮機1と、放熱器2と、膨張弁3と、蒸発器4と、前記放熱器2、前記膨張弁3間と、前記蒸発器4、前記圧縮機1間に設置された内部熱交換器5と、前記圧縮機1、前記放熱器2、前記膨張弁3、前記蒸発器4、前記内部熱交換器5により冷媒回路6を形成している。   As shown in FIG. 3, the refrigerant cycle device includes a compressor 1, a radiator 2, an expansion valve 3, an evaporator 4, a space between the radiator 2 and the expansion valve 3, the evaporator 4, the A refrigerant circuit 6 is formed by the internal heat exchanger 5 installed between the compressors 1, the compressor 1, the radiator 2, the expansion valve 3, the evaporator 4, and the internal heat exchanger 5. .

また、前記蒸発器4に設置され、外気温度を検出する外気温度検出手段7と、前記圧縮機1の吐出温度を検出する吐出温度検出手段8と、前記放熱器2に低温水を供給する入水配管9と、前記放熱器2から高温水を供給する出湯配管10と、前記放熱器2、前記入水配管9、前記出湯配管10により構成される水回路11と、前記水回路11の上流側に設置された循環ポンプ12と、前記出湯配管10に設置された出湯温度検出手段13と、前記冷媒回路6、前記水回路11を制御する制御装置(図示せず)とを備えている。   Also, an outside air temperature detecting means 7 installed in the evaporator 4 for detecting the outside air temperature, a discharge temperature detecting means 8 for detecting the discharge temperature of the compressor 1, and an incoming water for supplying low-temperature water to the radiator 2. A pipe 9, a hot water supply pipe 10 for supplying high-temperature water from the radiator 2, a water circuit 11 constituted by the radiator 2, the incoming water pipe 9, and the outgoing hot water pipe 10, and an upstream side of the water circuit 11 A circulating pump 12 installed in the hot water, a hot water temperature detecting means 13 installed in the hot water piping 10, and a control device (not shown) for controlling the refrigerant circuit 6 and the water circuit 11.

特開2011−158193号公報JP 2011-158193 A

しかしながら、上記従来の冷凍サイクル装置は、一般的に室外機内に配設されており、運転状況(春夏秋冬)にかかわらず、冷媒の全量が一閉回路で循環する構成となっている。   However, the conventional refrigeration cycle apparatus is generally disposed in an outdoor unit, and is configured such that the entire amount of refrigerant circulates in a closed circuit regardless of the operating condition (spring, summer, autumn and winter).

そのため、外気温度に応じた最適冷媒量での高効率運転が常に行えていないという課題を有していた。   For this reason, there has been a problem that high-efficiency operation with an optimal refrigerant amount according to the outside air temperature cannot always be performed.

本発明は、前記従来の課題を解決するもので、外気温度が変動しても、それに応じた最適冷媒量で効率の良い運転ができる冷凍サイクル装置を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object of the present invention is to provide a refrigeration cycle apparatus that can perform an efficient operation with an optimum refrigerant amount even when the outside air temperature fluctuates.

前記従来の課題を解決するために、本発明の冷凍サイクル装置は、圧縮機、放熱器、膨張弁、蒸発器を順に接続形成した冷媒回路と、前記放熱器、前記膨張弁の間と前記蒸発器、前記圧縮機の間とで熱交換を行う内部熱交換器と、前記内部熱交換器、前記膨張弁の間と前記蒸発器、前記内部熱交換器の間とを接続するバイパス回路と、前記バイパス回路上に配設された冷媒量調整手段と、外気温度を検出する外気温度検出手段と、制御装置とを備え、前記外気温度検出手段の検出温度に基づいて、前記冷媒量調整手段の動作を制御す
ることを特徴とするものである。
In order to solve the above-described conventional problems, the refrigeration cycle apparatus of the present invention includes a refrigerant circuit in which a compressor, a radiator, an expansion valve, and an evaporator are connected in order, and between the radiator and the expansion valve and the evaporation. An internal heat exchanger that exchanges heat between the compressor, the compressor, a bypass circuit that connects the internal heat exchanger, the expansion valve, the evaporator, and the internal heat exchanger; The refrigerant amount adjusting means disposed on the bypass circuit, an outside air temperature detecting means for detecting the outside air temperature, and a control device, and based on the detected temperature of the outside air temperature detecting means, The operation is controlled.

これにより、外気温度が変動しても、それに応じた最適冷媒量で効率の良い運転ができる冷凍サイクル装置を提供できる。   Thereby, even if the outside air temperature fluctuates, it is possible to provide a refrigeration cycle apparatus that can perform an efficient operation with an optimum refrigerant amount corresponding to the fluctuation.

本発明によれば、外気温度が変動しても、それに応じた最適冷媒量で効率の良い運転ができる冷凍サイクル装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, even if outside temperature fluctuates, the refrigerating-cycle apparatus which can operate efficiently with the optimal refrigerant | coolant amount according to it can be provided.

本発明の実施の形態1における冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. 同冷凍サイクル装置の外気温制御を示す図Diagram showing outside air temperature control of the refrigeration cycle apparatus 従来の冷凍サイクル装置の構成図Configuration diagram of conventional refrigeration cycle equipment

第1の発明は、圧縮機、放熱器、膨張弁、蒸発器を順に接続形成した冷媒回路と、前記放熱器、前記膨張弁の間と前記蒸発器、前記圧縮機の間とで熱交換を行う内部熱交換器と、前記内部熱交換器、前記膨張弁の間と前記蒸発器、前記内部熱交換器の間とを接続するバイパス回路と、前記バイパス回路上に配設された冷媒量調整手段と、外気温度を検出する外気温度検出手段と、制御装置とを備え、前記外気温度検出手段の検出温度に基づいて、前記冷媒量調整手段の動作を制御することを特徴とする冷凍サイクル装置である。   In the first invention, heat exchange is performed between a refrigerant circuit in which a compressor, a radiator, an expansion valve, and an evaporator are sequentially connected, and between the radiator and the expansion valve, and between the evaporator and the compressor. An internal heat exchanger to perform, a bypass circuit connecting the internal heat exchanger, between the expansion valve and the evaporator, and between the internal heat exchanger, and refrigerant amount adjustment disposed on the bypass circuit Means, an outside temperature detecting means for detecting the outside air temperature, and a control device, and the operation of the refrigerant amount adjusting means is controlled based on the temperature detected by the outside air temperature detecting means. It is.

これにより、外気温度が変動しても、それに応じた最適冷媒量で効率の良い運転ができる冷凍サイクル装置を提供できる。   Thereby, even if the outside air temperature fluctuates, it is possible to provide a refrigeration cycle apparatus that can perform an efficient operation with an optimum refrigerant amount corresponding to the fluctuation.

第2の発明は、前記バイパス回路上に複数の冷媒量調整手段を配設し、前記制御装置は、前記外気温度検出手段の検出温度に基づいて、前記複数の冷媒量調整手段の動作を制御することを特徴とする冷凍サイクル装置である。   According to a second aspect of the present invention, a plurality of refrigerant amount adjusting means are disposed on the bypass circuit, and the control device controls operations of the plurality of refrigerant amount adjusting means based on the temperature detected by the outside air temperature detecting means. This is a refrigeration cycle apparatus.

これにより、冷媒過多の場合は、複数の冷媒量調整手段を全閉にすることで、複数の冷媒量調整手段第の間に冷媒を閉じ込めることができ、冷媒回路内の冷媒量を減少させることができる。   Thereby, in the case of excessive refrigerant, the plurality of refrigerant amount adjusting means are fully closed, so that the refrigerant can be confined between the plurality of refrigerant amount adjusting means, and the refrigerant amount in the refrigerant circuit is reduced. Can do.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1におけるヒートポンプ給湯機に搭載された冷凍サイクル装置の構成を示す図である。
(Embodiment 1)
FIG. 1 is a diagram showing a configuration of a refrigeration cycle apparatus mounted on a heat pump water heater in Embodiment 1 of the present invention.

図1において、冷凍サイクル装置は、圧縮機1と、水冷媒熱交換器である放熱器2と、膨張弁3と、空気冷媒熱交換器である蒸発器4とを順に接続形成した冷媒回路6と、前記放熱器2、前記膨張弁3の間の高圧側の冷媒と前記蒸発器4、前記圧縮機1の間の低圧側の冷媒とが熱交換する内部熱交換器5から形成されている。   In FIG. 1, a refrigeration cycle apparatus includes a refrigerant circuit 6 in which a compressor 1, a radiator 2 that is a water refrigerant heat exchanger, an expansion valve 3, and an evaporator 4 that is an air refrigerant heat exchanger are sequentially connected. And an internal heat exchanger 5 that exchanges heat between the high-pressure refrigerant between the radiator 2 and the expansion valve 3 and the low-pressure refrigerant between the evaporator 4 and the compressor 1. .

また、前記蒸発器4に設置され、外気温度を検出する外気温度検出手段7と、前記圧縮機1の吐出温度を検出する吐出温度検出手段8と、機器の運転制御を行う制御装置14とを備えている。   Also, an outside air temperature detecting means 7 that is installed in the evaporator 4 and detects the outside air temperature, a discharge temperature detecting means 8 that detects the discharge temperature of the compressor 1, and a control device 14 that controls the operation of the equipment. I have.

また、前記放熱器2に低温水を供給する入水配管9と、前記放熱器2から高温水を供給
する出湯配管10と、前記放熱器2、前記入水配管9、前記出湯配管10により水回路11が形成されている。
Further, the water inlet pipe 9 for supplying low-temperature water to the radiator 2, the hot water outlet pipe 10 for supplying high-temperature water from the radiator 2, and the water circuit by the radiator 2, the inlet pipe 9, and the outlet pipe 10. 11 is formed.

また、前記水回路11の上流側に循環ポンプ12、前記出湯配管10に出湯温度検出手段13を配設している。   A circulating pump 12 is disposed upstream of the water circuit 11, and a tapping temperature detecting means 13 is disposed in the tapping piping 10.

さらに、前記内部熱交換器5と前記膨張弁3との間と、前記蒸発器4と前記内部熱交換器5との間とを接続するバイパス回路15を設け、前記バイパス回路15上で上流側に第一冷媒量調整手段16を、前記バイパス回路15上で下流側に第二冷媒量調整手段17を配設している。   Further, a bypass circuit 15 for connecting the internal heat exchanger 5 and the expansion valve 3 and between the evaporator 4 and the internal heat exchanger 5 is provided, and the upstream side on the bypass circuit 15 is provided. The first refrigerant amount adjusting means 16 is disposed on the downstream side of the bypass circuit 15, and the second refrigerant amount adjusting means 17 is disposed downstream of the bypass circuit 15.

図2は、外気温度により区間分け(AからE)を設けたことを示す図である。   FIG. 2 is a diagram showing that section division (A to E) is provided according to the outside air temperature.

以上のように構成されたヒートポンプ給湯機の冷凍サイクル装置について、以下に、その動作、作用を説明する。   About the refrigerating-cycle apparatus of the heat pump water heater configured as mentioned above, the operation | movement and an effect | action are demonstrated below.

基本的な動作について、図1を用いて説明する。沸上げ開始時は、圧縮機1から吐出された高温の冷媒は、水回路11の入水配管9より供給された低温水と、放熱器2で熱交換され、その後、内部熱交換器5で放熱される。   A basic operation will be described with reference to FIG. At the start of boiling, the high-temperature refrigerant discharged from the compressor 1 is heat-exchanged with the low-temperature water supplied from the inlet pipe 9 of the water circuit 11 by the radiator 2 and then radiated by the internal heat exchanger 5. Is done.

続いて、膨張弁3により減圧された低温の冷媒は、蒸発器4、内部熱交換器5で吸熱され、圧縮機1に戻され、再び圧縮される。これによって、出湯配管10には高温の湯が供給される。   Subsequently, the low-temperature refrigerant decompressed by the expansion valve 3 is absorbed by the evaporator 4 and the internal heat exchanger 5, returned to the compressor 1, and compressed again. As a result, hot water is supplied to the hot water supply pipe 10.

ヒートポンプ給湯機の冷凍サイクル装置における冷媒は、室外機の冷凍サイクル装置内に封入されており、全量が一閉回路で循環し、沸上げを行うよう制御されている。   The refrigerant in the refrigeration cycle apparatus of the heat pump water heater is sealed in the refrigeration cycle apparatus of the outdoor unit, and the entire amount is circulated in a closed circuit and controlled to perform boiling.

そのため、例えば、平均外気温度である中間期条件で最適となるように冷媒量を封入すると、冬期条件では冷媒過多となり、蒸発器4で十分に熱交換されないまま湿り状態で圧縮機1に吸入され、効率が悪化してしまう。   For this reason, for example, if the amount of refrigerant is filled so as to be optimal under the intermediate condition that is the average outside air temperature, the refrigerant becomes excessive under the winter condition, and the refrigerant is sucked into the compressor 1 in a wet state without sufficiently exchanging heat in the evaporator 4. , Efficiency will deteriorate.

また、夏期条件では、冷媒過少となり、加熱度が取れ過ぎた状態で冷媒が圧縮機1に吸入され、吐出温度が上昇し効率が悪化してしまう。   Further, under summer conditions, the refrigerant becomes insufficient, and the refrigerant is sucked into the compressor 1 in a state where the degree of heating is too high, so that the discharge temperature rises and the efficiency deteriorates.

本発明の冷凍サイクル装置は、図1に示すように、前記内部熱交換器5と前記膨張弁3との間と、前記蒸発器4と前記内部熱交換器5との間とを接続するバイパス回路15と、前記バイパス回路15上で上流側に設置された第一冷媒量調整手段16と、前記バイパス回路15上での下流側に設置された第二冷媒量調整手段17とを備えている。   As shown in FIG. 1, the refrigeration cycle apparatus of the present invention is a bypass that connects between the internal heat exchanger 5 and the expansion valve 3 and between the evaporator 4 and the internal heat exchanger 5. A circuit 15; first refrigerant amount adjusting means 16 installed on the upstream side of the bypass circuit 15; and second refrigerant amount adjusting means 17 installed on the downstream side of the bypass circuit 15. .

沸上げ開始時は、第一冷媒量調整手段16と第二冷媒量調整手段17を全開にしておき、冬期条件のように冷媒過多の場合は、第二冷媒量調整手段17を先に全閉し、その後、第一冷媒量調整手段16を全閉にすることで、第一冷媒量調整手段16と第二冷媒量調整手段17との間に冷媒を閉じ込めることができ、冷媒回路6内の冷媒量を減少させることができる。   At the start of boiling, the first refrigerant amount adjusting unit 16 and the second refrigerant amount adjusting unit 17 are fully opened. If the refrigerant is excessive as in winter conditions, the second refrigerant amount adjusting unit 17 is fully closed first. Then, by fully closing the first refrigerant amount adjusting unit 16, the refrigerant can be confined between the first refrigerant amount adjusting unit 16 and the second refrigerant amount adjusting unit 17. The amount of refrigerant can be reduced.

その状態で更に冷媒量を減らしたい時は、第一冷媒量調整手段16を再度全開にし、その後全閉にすることで可能になる。冷媒回路6内の冷媒を増加させたい時は、第二冷媒量調整手段17を一定量開き、一定時間後に再度全閉にすることで冷媒を適量冷凍サイクル内に供給ができる。   If it is desired to further reduce the refrigerant amount in this state, the first refrigerant amount adjusting means 16 is fully opened again and then fully closed. When it is desired to increase the refrigerant in the refrigerant circuit 6, the appropriate amount of refrigerant can be supplied into the refrigeration cycle by opening the second refrigerant amount adjusting means 17 by a certain amount and fully closing again after a certain time.

ここで、最適な冷媒量を判断するために、目標吐出温度Td、目標周波数H、目標膨張弁開度Vは、その時々の外気温度Te、出湯温度Tout、入水温度Tinに応じて最適冷凍サイクルとなるようなデータを予め実験により取得しておく。   Here, in order to determine the optimum amount of refrigerant, the target discharge temperature Td, the target frequency H, and the target expansion valve opening V are determined according to the outside air temperature Te, the hot water temperature Tout, and the incoming water temperature Tin. Such data is acquired by experiments in advance.

また、図2のように、外気温度により区間分けをしておく(例としてAからEとする)。運転一日目に、外気温度が区間Aの状態にあるとする。   Further, as shown in FIG. 2, the sections are divided according to the outside air temperature (for example, A to E). It is assumed that the outside air temperature is in the section A on the first day of operation.

始めに、第一冷媒量調整手段16と第二冷媒量調整手段17を全開にして運転を開始する。その時の入水温度Tin(A)、学習制御により定められた目標出湯温度Tout(A)、それにより決まる予めデータとして取得された目標吐出温度Td(A)、目標周波数H(A)で安定運転させる。   First, the first refrigerant quantity adjusting means 16 and the second refrigerant quantity adjusting means 17 are fully opened to start the operation. Stable operation is performed at the incoming water temperature Tin (A) at that time, the target hot water temperature Tout (A) determined by learning control, the target discharge temperature Td (A) acquired as data determined in advance, and the target frequency H (A). .

その時、膨張弁開度がV1となったとする。二日目に、予めデータとして取得された目標膨張弁開度V(A)と差がある場合、V1=V(A)となるように第一冷媒量調整手段と第二冷媒量調整手段を制御することにより冷媒量を調節し、最適な冷凍サイクルにする。三日目以降に外気温度区間が変化(この場合の例として、AからB)したとする。   At that time, it is assumed that the opening degree of the expansion valve becomes V1. On the second day, when there is a difference from the target expansion valve opening V (A) acquired as data in advance, the first refrigerant amount adjusting means and the second refrigerant amount adjusting means are set so that V1 = V (A). By controlling the amount of refrigerant, the optimum refrigeration cycle is achieved. Assume that the outside air temperature section has changed after the third day (A to B as an example in this case).

その時の入水温度Tin(B)、学習制御により定められた目標出湯温度Tout(B)、それにより決まる予めデータとして取得された目標吐出温度Td(B)、目標周波数H(B)で安定運転させる。   Stable operation is performed at the incoming water temperature Tin (B) at that time, the target hot water temperature Tout (B) determined by learning control, the target discharge temperature Td (B) acquired as data determined in advance, and the target frequency H (B). .

その時、膨張弁開度がV2となったとする。四日目に、予めデータとして取得された目標膨張弁開度V(B)と差がある場合、V2=V(B)となるように第一冷媒量調整手段16と第二冷媒量調整手段17を制御することにより冷媒量を調節し、最適な冷凍サイクルにする。   At this time, it is assumed that the opening degree of the expansion valve becomes V2. On the fourth day, when there is a difference from the target expansion valve opening V (B) acquired as data in advance, the first refrigerant amount adjusting means 16 and the second refrigerant amount adjusting means so that V2 = V (B). The refrigerant quantity is adjusted by controlling 17 to obtain an optimum refrigeration cycle.

なお、冷凍サイクル装置は一般的に、安価な深夜電力を有効に利用して運転するため、深夜の運転時間が長くなるよう制御されている。   In general, since the refrigeration cycle apparatus is operated by effectively using inexpensive late-night power, the operation time of midnight is controlled to be long.

そのため、深夜時間帯の沸上げ時に冷媒量調節を行うと、冷凍サイクルを長く安定させることができ、高精度の冷媒量調節が可能となり、高効率化を図ることができる。   For this reason, when the refrigerant amount is adjusted at the time of boiling in the midnight time zone, the refrigeration cycle can be stabilized for a long time, the refrigerant amount can be adjusted with high accuracy, and high efficiency can be achieved.

しかし、一般的に貯湯槽に高温の湯を貯めるため、全量沸上げ完了時には入水温度が上昇し、冷凍サイクルが不安定となるため、沸上げ開始後1時間程度で冷媒量調節を完了させることが望ましい。   However, since hot water is generally stored in a hot water tank, the temperature of the incoming water rises at the completion of boiling, and the refrigeration cycle becomes unstable. Is desirable.

以上のように、本発明によれば、外気温度の変化に応じて冷媒量を最適化するため、外気温度が変化しても、効率の良い運転を行うことができる。   As described above, according to the present invention, since the amount of refrigerant is optimized in accordance with the change in the outside air temperature, an efficient operation can be performed even if the outside air temperature changes.

以上のように、本発明にかかる冷凍サイクル装置は、外気温度の変化に応じ冷媒量を調整し、効率の良い運転を常時行うことができるため、冷凍サイクル装置を搭載した空気調和機や給湯機等に適用できる。   As described above, since the refrigeration cycle apparatus according to the present invention can adjust the amount of refrigerant according to changes in the outside air temperature and can always perform an efficient operation, an air conditioner or a water heater equipped with the refrigeration cycle apparatus. Applicable to etc.

1 圧縮機
2 放熱器
3 膨張弁
4 蒸発器
5 内部熱交換器
6 冷媒回路
7 外気温度検出手段
14 制御装置
15 バイパス回路
16 第一冷媒量調整手段
17 第二冷媒量調整手段
DESCRIPTION OF SYMBOLS 1 Compressor 2 Radiator 3 Expansion valve 4 Evaporator 5 Internal heat exchanger 6 Refrigerant circuit 7 Outside air temperature detection means 14 Control device 15 Bypass circuit 16 First refrigerant quantity adjustment means 17 Second refrigerant quantity adjustment means

Claims (2)

圧縮機、放熱器、膨張弁、蒸発器を順に接続形成した冷媒回路と、前記放熱器、前記膨張弁の間と前記蒸発器、前記圧縮機の間とで熱交換を行う内部熱交換器と、前記内部熱交換器、前記膨張弁の間と前記蒸発器、前記内部熱交換器の間とを接続するバイパス回路と、前記バイパス回路上に配設された冷媒量調整手段と、外気温度を検出する外気温度検出手段と、制御装置とを備え、前記外気温度検出手段の検出温度に基づいて、前記冷媒量調整手段の動作を制御することを特徴とする冷凍サイクル装置。 A refrigerant circuit in which a compressor, a radiator, an expansion valve, and an evaporator are sequentially connected, and an internal heat exchanger that performs heat exchange between the radiator and the expansion valve and between the evaporator and the compressor. A bypass circuit connecting the internal heat exchanger, the expansion valve and the evaporator, and the internal heat exchanger, a refrigerant amount adjusting means disposed on the bypass circuit, and an outside air temperature. An refrigeration cycle apparatus comprising: an outside temperature detecting means for detecting; and a control device, wherein the operation of the refrigerant amount adjusting means is controlled based on a temperature detected by the outside air temperature detecting means. 前記バイパス回路上に複数の冷媒量調整手段を配設し、前記制御装置は、前記外気温度検出手段の検出温度に基づいて、前記複数の冷媒量調整手段の動作を制御することを特徴とする請求項1に記載の冷凍サイクル装置。 A plurality of refrigerant quantity adjusting means are disposed on the bypass circuit, and the control device controls operations of the plurality of refrigerant quantity adjusting means based on the detected temperature of the outside air temperature detecting means. The refrigeration cycle apparatus according to claim 1.
JP2012222826A 2012-10-05 2012-10-05 Refrigeration cycle device Pending JP2014074557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012222826A JP2014074557A (en) 2012-10-05 2012-10-05 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012222826A JP2014074557A (en) 2012-10-05 2012-10-05 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
JP2014074557A true JP2014074557A (en) 2014-04-24

Family

ID=50748814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012222826A Pending JP2014074557A (en) 2012-10-05 2012-10-05 Refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP2014074557A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018071966A (en) * 2016-11-01 2018-05-10 バイス ウンベルトテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Test chamber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018071966A (en) * 2016-11-01 2018-05-10 バイス ウンベルトテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Test chamber
US10571169B2 (en) 2016-11-01 2020-02-25 Weiss Umwelttechnik Test chamber with temperature control device

Similar Documents

Publication Publication Date Title
KR101222331B1 (en) Heat-pump hot water apparatus
JP5492346B2 (en) Air conditioning and hot water supply system
US20110203298A1 (en) Heat pump system and control method thereof
JP5984456B2 (en) Heat source system control device, heat source system control method, heat source system, power adjustment network system, and heat source machine control device
JP6545375B2 (en) Heat pump type air conditioner water heater
CN103185420B (en) Heat pump system and control method of heat pump apparatus
KR20120136889A (en) Heat pump boiler and heat pump boiler control method
JPWO2012004985A1 (en) Hot water storage hot water system and its operation method
JP6930844B2 (en) Compressed air storage power generator
JP2013119954A (en) Heat pump hot water heater
KR101454756B1 (en) Heat storaging apparatus having cascade cycle and Control process of the same
KR101169706B1 (en) Heat pump system for heating water
JP5788526B2 (en) Air conditioning and hot water supply system
JP6053201B2 (en) Refrigeration equipment
JP2012172869A (en) Heat pump device
KR20180072368A (en) Integrating type air conditioning and heat pump system
JP2011089707A (en) Hot water storage type water heater, and control method of hot water storage type water heater
JP2017020672A (en) Heat pump type water heater
JP2014074557A (en) Refrigeration cycle device
WO2017050072A1 (en) Water chiller-heater unit of air cooled heat pump and defrosting control method therefor
KR20150035012A (en) Heat Storaging Type Heat Pump Boiler System
JP6116093B2 (en) Heat source system
JP6002444B2 (en) Water-cooled air conditioning system
JP7287809B2 (en) heating system
JP2011252675A (en) Heat pump water heater