JP2014069160A - 気液混合方法、気液混合装置および微細気泡を含む気液混合流体を用いた洗浄方法 - Google Patents

気液混合方法、気液混合装置および微細気泡を含む気液混合流体を用いた洗浄方法 Download PDF

Info

Publication number
JP2014069160A
JP2014069160A JP2012219126A JP2012219126A JP2014069160A JP 2014069160 A JP2014069160 A JP 2014069160A JP 2012219126 A JP2012219126 A JP 2012219126A JP 2012219126 A JP2012219126 A JP 2012219126A JP 2014069160 A JP2014069160 A JP 2014069160A
Authority
JP
Japan
Prior art keywords
gas
mixed fluid
liquid
liquid mixed
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012219126A
Other languages
English (en)
Inventor
Nozomi Yasunaga
望 安永
Seiji Furukawa
誠司 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012219126A priority Critical patent/JP2014069160A/ja
Publication of JP2014069160A publication Critical patent/JP2014069160A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

【課題】液体に気体が注入された気液混合流体中に発生させた気泡の融合、合一を抑制し、気液混合流体の全体量に対して、マイクロバブルおよびナノバブルといった微細気泡の気泡数をできるだけ多く、効率的に発生させることのできる気液混合方法、気液混合装置および微細気泡を含む気液混合流体を用いた洗浄方法を得る。
【解決手段】液体に気体が注入された、大気圧以上に加圧された気液混合流体を大気圧未満に減圧した後、大気圧に昇圧することにより、微細気泡を生成する。
【選択図】図1

Description

本発明は、液体と気体との混合物中にマイクロバブルおよびナノバブルといった微細化した気泡を発生させる気液混合方法、気液混合装置および微細気泡を含む気液混合流体を用いた洗浄方法に関するものである。
従来、マイクロバブルおよびナノバブルといった微細化した気泡(以降では、微細気泡と称す)を利用した水処理技術および洗浄技術などが知られている。
しかしながら、一般的には、液体に注入された気体を微細気泡にする場合において、気泡を微細化すればするほど、それぞれの気泡が融合、合一しやすいので、気泡径が大きくなりやすい。したがって、できるだけ気泡径が大きくなることなく、多くの微細気泡を効率的に発生させることが求められていた。
このような要求を満たすために、液体と気体との混合物(以降では、気液混合流体と称す)を加圧した後に減圧することによって、気液混合流体中に微細気泡を発生させる技術が提案されている(例えば、特許文献1〜4参照)。
特開2010−269218号公報 特開2006−167612号公報 特開2010−075838号公報 特開2006−314972号公報
しかしながら、従来技術には以下のような課題がある。
特許文献1に記載の従来技術では、加圧した気液混合流体を徐々に大気圧に減圧しているので、減圧中において、気泡が融合、合一してしまい、気泡径が大きくなるという問題があった。
また、特許文献2、3に記載の従来技術では、微細気泡を発生させるためのノズルの流路が狭いので、気泡が融合、合一してしまい、気泡径が大きくなるという問題があった。
また、特許文献4に記載の従来技術では、発生させた微細気泡を層流状態で維持するので、気泡が融合、合一してしまい、気泡径が大きくなるという問題があった。
このように、いずれの従来技術においても、加圧された気液混合流体を減圧することで、気泡径が数十nmから数十μmの微細気泡を発生させることはできる。しかしながら、微細気泡が融合、合一してしまうことで、気泡径が大きくなってしまう。したがって、気液混合流体の全体量に対して、得られる微細気泡の気泡数が少なくなってしまい、微細気泡を効率的に発生させることが困難であった。
本発明は、前記のような課題を解決するためになされたものであり、発生させた微細気泡の融合、合一を抑制し、気液混合流体の全体量に対して、微細気泡の気泡数をできるだけ多く、効率的に発生させることのできる気液混合方法、気液混合装置および微細気泡を含む気液混合流体を用いた洗浄方法を得ることを目的とする。
本発明における気液混合方法は、液体に気体が注入された気液混合流体にかかる圧力を大気圧以上に調整し、大気圧以上に調整した気液混合流体を大気圧未満に減圧し、大気圧未満に減圧した気液混合流体を大気圧に昇圧することにより、微細気泡を生成する微細気泡生成ステップを有することを特徴とするものである。
本発明における気液混合装置は、液体に気体が注入された気液混合流体にかかる圧力を大気圧以上に調整する気体注入部と、気体注入部が大気圧以上に調整した気液混合流体を大気圧未満に減圧する強制減圧部と、強制減圧部が大気圧未満に減圧した気液混合流体を大気圧に昇圧する反応部とを備えることを特徴とするものである。
本発明における微細気泡を含む気液混合流体を用いた洗浄方法は、気液混合方法によって生成された微細気泡を含む気液混合流体を用いた洗浄方法であって、気液混合流体に第2処理物を浸すことにより、微細気泡生成ステップにて生成された微細気泡に含まれる気体と、第2処理物とを反応させ、第2処理物を洗浄するステップを有することを特徴とするものである。
本発明における気液混合方法、気液混合装置および微細気泡を含む気液混合流体を用いた洗浄方法によれば、大気圧以上に加圧された気液混合流体を大気圧未満に減圧した後、大気圧に昇圧する。これにより、発生させた微細気泡の融合、合一を抑制し、気液混合流体の全体量に対して、微細気泡の気泡数をできるだけ多く、効率的に発生させることのできる気液混合方法、気液混合装置および微細気泡を含む気液混合流体を用いた洗浄方法を得ることができる。
本発明の実施の形態1における気液混合装置のブロック図である。 本発明の実施の形態1における気体注入部の構成例(1)を示した説明図である。 本発明の実施の形態1における気体注入部の構成例(2)を示した説明図である。 本発明の実施の形態1における気体注入部の構成例(3)を示した説明図である。 本発明の実施の形態1における反応部の構成例を示した説明図である。 本発明の実施の形態1における気体注入部、強制減圧部および反応部内を流入する気液混合流体の圧力変化を示した説明図である。 本発明の実施の形態1において、強制減圧部に流入する気液混合流体中における気泡の変化を示した説明図である。 本発明の実施の形態1において、反応部に流入する気液混合流体中における気泡の変化を示した説明図である。 本発明の実施の形態1において、気体注入部を最下部として、強制減圧部、反応部の順に、縦方向(垂直方向)に接続した場合の説明図である。 本発明の実施の形態2において、強制減圧部内に障害物を設置した場合の説明図である。 本発明の実施の形態2において、強制減圧部内にハニカム状の障害物を設置した場合の説明図である。 本発明の実施の形態3における気体注入部、強制減圧部および反応部内を流入するオゾン‐水混合流体の圧力変化および溶存オゾン濃度変化を示した説明図である。 本発明の実施の形態3において、強制減圧部に流入するオゾン‐水混合流体中における気泡の変化を示した説明図である。 本発明の実施の形態3において、反応部に流入するオゾン‐水混合流体中における気泡の変化を示した説明図である。 本発明の実施の形態3において、気泡中のオゾンの溶解過程、および気泡中のオゾンと、気泡に吸着した処理物との反応過程を示した説明図である。 本発明の実施の形態3において、実施例1および比較例1におけるオゾン注入率に対するフェノール濃度比の変化を示した説明図である。 本発明の実施の形態3において、実施例2および比較例2におけるオゾン注入率に対するMLSS濃度比の変化を示した説明図である。 本発明の実施の形態4において、微細オゾン気泡中のオゾンと、シリコン基板に付着した処理物との反応過程を示した説明図である。 本発明の実施の形態4において、微細孔を形成したシリコン基板を洗浄した場合の説明図である。 本発明の実施の形態4において、テクスチャ(微細凹凸)を形成した太陽電池シリコン基板を洗浄する場合の説明図である。 本発明の実施の形態4において、洗浄前、比較例3および実施例3に関して、シリコン基板表面に付着する銅原子量を示した説明図である。
以下、本発明の気液混合方法、気液混合装置および微細気泡を含む気液混合流体を用いた洗浄方法の好適な実施の形態につき、図面を用いて説明する。なお、図面の説明においては、同一要素には同一符号を付し、重複する説明を省略する。
実施の形態1.
図1は、本発明の実施の形態1における気液混合装置のブロック図である。この図1における気液混合装置は、気体注入部1、強制減圧部2、反応部3、気体供給路4、気体排出路5および流路6(流路6a、6b、6c、6d)を備える。なお、流路6の具体例としては、例えば、配管などが挙げられる。
また、各部の接続関係について、図示するように、流路6を介して、気体注入部1、強制減圧部2、反応部3が上流から順に接続される。さらに、気体注入部1には、気体を供給するための気体供給部(図示せず)が気体供給路4を介して接続されており、反応部3には、気体を排出するための気体排出路5が接続される。
気体注入部1は、流路6aを流れる液体と、気体供給部から供給される気体とを混合し、混合した気液(気液混合流体)にかかる圧力を調整し、流路6bを介して、強制減圧部2に供給する。
なお、流路6aを流れる液体は、例えば、ポンプ等といった液体にエネルギーを与えることのできる装置(図示せず)によって、加圧された状態で気体注入部1に流入する。また、気体供給部から供給される気体に関しては、例えば、空気の場合には、エアポンプ(図示せず)によって気体注入部1に供給され、オゾンガスの場合には、オゾンガス発生装置(図示せず)によって気体注入部1に供給される。また、気体注入部1自体が、気液混合流体を加圧することにより、気液混合流体にかかる圧力を調整するようにしてもよい。
強制減圧部2は、加圧された気液混合流体を大気圧未満に減圧し、流路6cを介して、反応部3に供給する。反応部3は、強制減圧部2が大気圧未満に減圧した気液混合流体を大気圧に昇圧し(戻し)、さらに、気体を、気体排出路5から排出する。また、反応部3では、大気圧に戻った気液混合流体によって、水・汚泥処理または洗浄等が行われ、これらの処理を行った後の気液混合流体は、流路6dを介して、反応部3の外部に排出される。
なお、気体注入部1、強制減圧部2および反応部3を直接、接続することにより、流路6b、6cの両方を省略してもよいし、いずれか一方を省略してもよい。
次に、気体注入部1の構成および動作の詳細について、本発明の実施の形態1における気体注入部1の構成例(1)を示した説明図である図2を参照して説明する。
気体注入部1は、流出弁11、ドレーン弁12、ドレーン配管13および圧力計14を有する。また、各部の接続関係について、図示するように、気体注入部1には、ドレーン配管13および圧力計14が接続されている。さらに、気体注入部1の出口側の流路6bには、流出弁11が取り付けられ、ドレーン配管13には、ドレーン弁12が取り付けられている。
前述したように、気体注入部1は、流路6aから流入した液体(液体がポンプ等により加圧された状態)と、気体供給部から供給された気体とを混合する。さらに、気体注入部1は、流路6bを介して、下流の強制減圧部2に、加圧された気液混合流体を供給する。この場合には、制御部(図示せず)が、流出弁11の開閉状態(開度)を調整することにより、気液混合流体にかかる圧力量を設定できる。また、圧力計14によって、設定した圧力をモニタリングすることができる。
このように、制御部が、流出弁11の開閉状態を調整することにより、所望の圧力を設定することができるので、結果として、液体中に溶解させる気体の量を調整することができる。具体的には、液体中における気体の溶解量を大きくしたい場合には、圧力を高く設定し、気体の溶解量を小さくしたい場合には、圧力を低く設定すればよい。また、気液混合流体を加圧する圧力を大きくすることにより、気泡径をより小さくすることができる。
ここで、設定できる圧力範囲としては、ゲージ圧において、0.01〜10MPaの間で、任意に設定できるようにすることが好ましい。なお、以下全ての圧力は、ゲージ圧にて表記する。この圧力範囲であれば、気体と液体との流量比(G/L)を0.5以上に大きくすることも可能であるため、気体の注入量等の制御が容易となる。
次に、先の図2における構成とは異なる構成を有する気体注入部1について、本発明の実施の形態1における気体注入部1の構成例(2)を示した説明図である図3を参照して説明する。
この図3における気体注入部1には、図示するように、先の図2における気体注入部1に対して、さらに、気体排出配管15が接続されている。また、気体排出配管15には、気体を排出する量を調整するための気体排出弁16が取り付けられている。
このように、気体注入部1に対して、気体排出弁16を介して気体排出配管15を接続することにより、気体注入部1において、液体に溶解しなかった気体を、予め取り除くことができる。
これにより、気液混合流体に加圧する圧力の調整が、さらに容易になるとともに、気泡径が大きい気泡を取り除くことができる。そのため、気体注入部1における工程以降の後段の工程において、より微細な気泡を効率よく生成することが可能となる。
次に、先の図2および図3における構成とは異なる構成を有する気体注入部1について、本発明の実施の形態1における気体注入部1の構成例(3)を示した説明図である図4を参照して説明する。
この図4における気体注入部1は、いわゆるエジェクタ型の気体注入部であり、配管が最も細くなる箇所がエジェクタの絞り径に相当する。また、図4に示すように、気体注入部1には、気体供給部(図示せず)が気体供給路4を介して接続されている。気体注入部1は、流路6aから流入した液体(液体がポンプ等により加圧された状態)と、気体供給部から供給された気体とを混合し、流路6bを介して、気液混合流体を下流の強制減圧部2に供給する。
また、気体注入部1においては、エジェクタの絞り径および気体供給部から供給される気体供給量を変更することにより、加圧する圧力および気体の溶解量を制御することができる。このように、気体注入部1として、いわゆるエジェクタ型の気体注入部を用いてもよい。
次に、反応部3の構成および動作の詳細について、本発明の実施の形態1における反応部3の構成例を示した説明図である図5を参照して説明する。
反応部3は、処理水配管31、ドレーン弁32、ドレーン配管33および気体排出配管34を有する。また、各部の接続関係について、図示するように、反応部3には、強制減圧部2、処理水配管31(先の図1における流路6dに対応)、ドレーン配管33および気体排出配管34(先の図1における気体排出路5に対応)が接続されている。さらに、ドレーン配管33には、ドレーン弁32が取り付けられている。
前述したように、反応部3は、強制減圧部2が大気圧未満に減圧した気液混合流体を大気圧に昇圧し、さらに、気体を気体排出配管34から排出する。また、反応部3では、大気圧に戻った気液混合流体によって、水・汚泥処理または洗浄等が行われ、これらの処理を行った後の気液混合流体は、処理水配管31から排出される。
次に、気体注入部1、強制減圧部2および反応部3内を順次、流入する気液混合流体の圧力変化について、本発明の実施の形態1における気体注入部1、強制減圧部2および反応部3内を流入する気液混合流体の圧力変化を示した説明図である図6を参照して説明する。
図6(a)は、気体注入部1、強制減圧部2および反応部3を接続させた構造を有する気液混合装置の断面図を示す。なお、図6(a)において、気体注入部1と、強制減圧部2とは、流路6bを介して、接続されている(気体注入部1の記載を省略する)。また、強制減圧部2と、反応部3とは、先の図5に示すように、直接接続されている(反応部3の一部の記載を省略する)。
図6(b)は、各部に流入する気液混合流体にかかる圧力の変化図(横軸を流路方向、縦軸を圧力とする)を示す。
この図6(a)において、気体注入部1が、気液混合流体にかかる圧力をPに調整した後に、強制減圧部2に向かって流路6bを流れる気液混合流体にかかる圧力は、同様にPである。この場合には、図6(b)に示すように、流路方向に対して、流路6bと、強制減圧部2との接続部(I‐I’)である上流端に達するまでは、圧力がPとなり、一定である。なお、この圧力Pがとりうる値の範囲は、前述したように、ゲージ圧において、0.01〜10MPaの間で、任意に設定できるようにすることが好ましい。
強制減圧部2の断面構造は、図6(a)に示すように、接続部(I‐I’)の断面積を基準として、流路方向に進むに従って、流路方向に対する垂直の断面積が徐々に小さくなるようになっている。また、拡大部Aに示すように、流路方向に対して、一定の角度aを維持した状態で、径が小さくなっていく。なお、流路方向に対する垂直の断面積の変化は、連続的に変化することが好ましい。
この場合には、図6(b)に示すように、強制減圧部2に流入する気液混合流体にかかる圧力が、接続部(I‐I’)におけるPから、流路方向に向かうに従って、減少していく。最終的には、気液混合流体にかかる圧力が、強制減圧部2と、反応部3との接続部(II‐II’)である下流端においては、大気圧P未満であるP−1となる。
このように、強制減圧部2は、気液混合流体が流れる流路方向に対する垂直の断面積が、流路方向に進むに従って小さくなるように構成されている。したがって、強制減圧部2は、上流端において大気圧以上の圧力を有していた気液混合流体を、下流端に到達させることで、気液混合流体にかかる圧力を大気圧未満に急激に減圧することができる。
なお、気液混合流体にかかる圧力を大気圧未満に急激に下げることが可能となる理由としては、下式(1)で示されるベルヌーイの法則を用いて、説明することができる。
/2+P/ρ=一定 (1)
v:流体の流速、P:圧力、ρ:流体密度
すなわち、強制減圧部2の断面構造について、流路方向に進むに従って、断面積が小さくなっていくことにより、流体の流速vを速くすることができる。流体の流速vを速くすると、上式(1)から明らかなように、圧力Pを下げることができる。
したがって、図6(b)に示すように、大気圧P未満である所望の圧力P−1を得るには、接続部(II‐II’)の断面積を所望の値に設定すればよい。なお、この圧力P−1がとりうる値の範囲は、−9.9×10Pa〜−1.0×10Paであることが好ましい。
一方、反応部3の断面構造は、図6(a)に示すように、接続部(II‐II’)である上流端(反応部3にとっては、上流端となる)の断面積を基準として、流路方向に進むに従って、流路方向に対する垂直の断面積が徐々に大きくなるようになっている。
また、反応部3は、接続部(II‐II’)を基準に、流路方向に対して、一定の角度bを維持した状態で拡がるように構成されている。すなわち、拡大部Bに示すように、流路方向に対して、一定の角度bを維持した状態で径が大きくなっていく。なお、発生した微細気泡が融合、合一しないようにするためには、角度bは、できるだけ大きく設定されることが好ましく、特に、45°以上に設定されることがより好ましい。
この場合には、図6(b)に示すように、反応部3に流入する気液混合流体にかかる圧力が、接続部(II‐II’)におけるP−1から、流路方向に向かうに従って、増加していく。最終的には、反応部3に流入する気液混合流体が先の図1における流路6dが位置する下流端に達するまでの間に、気液混合流体にかかる圧力が、大気圧であるPとなる。
ここで、接続部(II‐II’)には、従来のエジェクタ構造とは異なり、外部からの気体の供給路が設けられていない。さらに、従来のエジェクタ構造における内径を絞った後の角度bに相当する拡がり角度は、5°〜10°程度であったのに対し、本実施の形態1において、角度bは、好ましくは45°以上として設定される。
このように、従来のエジェクタ構造では、発生した気泡を剪断するため、拡がり角度を狭くし、急激な圧力の上昇を抑制していた。しかしながら、5°〜10°程度の小さい拡がり角度では、気泡の接触機会が大幅に増加してしまい、結果として、気泡の融合、合一が促進されてしまっていた。
これに対して、本願発明では、微細気泡の核を大量に生成し、微細気泡を大量に発生させるという微細気泡発生メカニズムが構築されているので、従来に必要としていたエジェクタおよび旋回流により気泡を微細化するための気泡の剪断、渦崩壊等の工程を必要としない。
したがって、反応部3において、急激な圧力上昇を抑制する必要がないので、気液混合流体にかかる圧力をP−1から急激に上げることにより、気液混合流体にかかる圧力を大気圧に昇圧することが可能となる。また、反応部3において、角度bを45°以上に設定することができる。これにより、微細気泡の核が、反応部3内を拡がるので、気泡の融合、合一を抑制することができる。なお、反応部3では、先の図1における気体排出路5から気体が排出される。
このように、反応部3は、気液混合流体が流れる流路方向に対する垂直の断面積が、流路方向に進むに従って大きくなるように構成されている。したがって、反応部3は、上流端において大気圧未満まで減圧した気液混合流体を、下流端に到達させるまでの間に、気液混合流体にかかる圧力を大気圧に急激に昇圧することができる。
なお、接続部(II‐II’)の断面積は、接続部(I‐I’)の断面積と比較して、小さく、具体的には、接続部(I‐I’)の断面積の1/2以下となるように設定するのが好ましく、特に、1/5以下となるように設定するのがより好ましい。
また、強制減圧部2の流路方向における全長は、接続部(I‐I’)の断面の径の長さの3倍以下に設定するのが好ましく、特に、2倍以下に設定するのがより好ましい。また、気体注入部1、強制減圧部2および反応部3の断面の形状は、円形が好ましいが、これに限定されない。すなわち、断面の形状は、特に、限定されず、楕円形、長方形、正方形および多角形などといった種々の形状にすることができる。
また、強制減圧部2および反応部3は、流路方向に対する断面の形状が相似形であることが好ましい。また、気体注入部1、強制減圧部2および反応部3について、これらの各部に対応する配管形状を一体型としてもよい。例えば、気体注入部1を、図4で示すようなエジェクタ型とすることで、配管形状を一体型にすることができる。また、強制減圧部2と、反応部3とを直接接続できず、これらの間に先の図1に示すような流路6cを設ける場合には、微細気泡の融合、合一を抑制するためにこの流路6cの長さを極力短くするほうが好ましい。
次に、前述した微細気泡発生メカニズムの詳細ついて、図7および図8を参照して説明する。図7は、本発明の実施の形態1において、強制減圧部2に流入する気液混合流体中における気泡の変化を示した説明図である。図8は、本発明の実施の形態1において、反応部3に流入する気液混合流体中における気泡の変化を示した説明図である。
この図7(a)は、流路6bと、強制減圧部2との接続部における気液混合流体中の微細気泡の核の集合21(気液混合流体にかかる圧力がP)を示し、図7(b)は、強制減圧部2と、反応部3との接続部における微細気泡の核の集合22を示す。
ここで、前述したように、強制減圧部2の断面構造について、流路方向に進むに従って、断面積が小さくなるので、微細気泡の核を含む気液混合流体が流路方向に対して流れると、流体の流速が増加し、圧力が減少していく。したがって、図7(b)に示すように、気液混合流体中には、圧力が大気圧未満であるP−1にまで減少することにより、溶解しきれなくなった微細気泡の核の発生量が増加していき、大量の微細気泡の核が発生する。
一方、図8(a)は、強制減圧部2と、反応部3との接続部における気液混合流体中の微細気泡の核の集合22(気液混合流体にかかる圧力がP−1の場合)を示し、図8(b)は、反応部3内の微細気泡の核の集合23を示す。
ここで、前述したように、反応部3の断面構造について、流路方向に進むに従って、断面積が大きくなるので、微細気泡の核を含む気液混合流体が流路方向に対して流れると、流体の流速が減少し、圧力が増加していく。したがって、図8(b)に示すように、気液混合流体中にかかる圧力が大気圧であるP(水深圧も考慮すると、P+水深圧)にまで増加することにより、大量の微細気泡の核が、昇圧化により収縮する。
さらに、これらの収縮した微細気泡の核が、反応部3内を拡がることにより、気泡の融合、合一が抑制され、反応部3内は、大量の微細気泡で満たされることになる。なお、微細気泡の気泡径は、数μm〜数百μm程度であり、微細気泡で満たされた反応部3内における気液混合流体は、白色を呈する。
このように、本実施の形態1における微細気泡の発生方法は、大気圧以上に加圧→大気圧未満に減圧→大気圧に昇圧という一連のプロセスを経ることを技術的特徴としており、従来のエジェクタによる気泡の剪断または旋回流による気泡の渦崩壊による微細気泡の発生方法とは、明らかに異なることが分かる。
以上のように、本発明の実施の形態1によれば、大気圧以上に加圧された気液混合流体を大気圧未満にまで減圧した後に、大気圧にまで昇圧する。これにより、発生させた微細気泡の融合、合一を抑制して、大量の微細気泡が得ることができる。また、大量の微細気泡が得られるので、種々の気体を効率的に液体に溶解させることができるとともに、さらには、気体の液体への溶解量を制御することもできる。
なお、本実施の形態1において、使用を可能とする気体としては、例えば、空気、酸素、窒素、オゾン、二酸化炭素またはこれらの混合物等が挙げられる。また、使用を可能とする液体としては、例えば、常温常圧で液体である水、エタノールまたは各種有機溶媒等が挙げられる。
また、本実施の形態1における気液混合装置では、気体注入部1、強制減圧部2および反応部3のそれぞれを横方向に接続したが、各部の配置については、これに限定されない。図9は、本発明の実施の形態1において、気体注入部1を最下部として、強制減圧部2、反応部3の順に、縦方向(垂直方向)に接続した場合の説明図である。すなわち、図9に示すように、気体注入部1を最下部として、強制減圧部2、反応部3の順に、縦方向(垂直方向)に接続してもよい。このような配置にすることにより、反応部3における微細気泡に発生した浮力を利用して、微細気泡の融合、合一をより抑制することが可能となり、結果として、大量の微細気泡を得ることができる。
実施の形態2.
先の実施の形態1では、気体注入部1、強制減圧部2および反応部3を備える気液混合装置について説明した。これに対して、本発明の実施の形態2では、先の実施の形態1における気液混合装置の強制減圧部2内に、さらに、障害物30、40を設置した場合について説明する。
ここで、強制減圧部2内に障害物30、40が設置されることにより、設置されない場合と比較して、以下のような効果が新たに得られる。
(1)気液混合流体にかかる圧力が、より急激に大気圧未満に減圧されるので、より大量の微細気泡の核を発生させることができる。
(2)微細気泡の核が、より拡散されやすくなるので、気泡の融合、合一がさらに抑制され、より大量の微細気泡を得ることができる。
そこで、強制減圧部2内に、障害物30を設置した場合、障害物40を設置した場合のそれぞれについて、図10および図11を参照して説明する。はじめに、図10は、本発明の実施の形態2において、強制減圧部2内に障害物30を設置した場合の説明図である。
なお、ここでは、具体的に例示して説明するために、障害物30の形状は、円錐状である場合を想定して説明する。この図10において、障害物30は、強制減圧部2と反応部3との接続部に、一端である底部が位置し、流路6b側に他端である上部が位置し、少なくとも2箇所以上の支え(図示せず)によって、強制減圧部2内に設置されている。
また、障害物30を設置しているので、気液混合流体が、障害物30の上部から底部に向かって強制減圧部2内を流れる場合において、気液混合流体の流路は、段々狭くなっていく。さらに、図10に示した接続部(II‐II’)の流体方向断面図から分かるように、接続部(II‐II’)では、障害物30の底部によって、流路の中心部が塞がれ、流路が最も狭くなっている。したがって、気液混合流体は、接続部(II‐II’)では、障害物30の底部によって塞がれていない周辺を通過して、反応部3に向かって流入する。
このように、障害物30を設置し、流路を極短時間、制限することにより、流路方向に対して、接続部(II‐II’)における流路の断面積を小さくすることができる。なお、ここでいう接続部(II‐II’)における流路の断面積とは、接続部(II‐II’)において、気液混合流体が通過する部分の断面積(すなわち、塞がれていない部分の断面積)を意味する。
したがって、障害物30を設置しない場合と比較して、接続部(II‐II’)における流路の断面積を小さくすることができるので、より急激に、気液混合流体にかかる圧力を大気圧未満に減圧することができる。この結果、より大量の微細気泡の核を発生させることができる。
また、接続部(II‐II’)における流路の断面積が小さくなることにより、反応部3内の接続部(II‐II’)近傍の断面積の変化が、より急激に大きくなるので、反応部3内において、微細気泡の核がより拡散されやすくなる。したがって、気泡の融合、合一が抑制されるので、より大量の微細気泡を得ることができる。
なお、強制減圧部2内に位置する障害物30の断面の形状は、強制減圧部2と、反応部3との接続部(II‐II’)の断面の形状と相似形であることが好ましい。また、強制減圧部2と障害物30の断面の中心線は、一致することが好ましい。
また、障害物30の最も断面積が大きい箇所(障害物30が前述した円錐形状の場合には、底部の断面積)は、接続部(II‐II’)の断面積の10%以上90%以下であることが好ましい。
また、障害物30の形状が前述した円錐状であれば、気液混合流体の抵抗を最小限に抑制することができるという効果を有するが、障害物30の形状は、特に限定されず、どのような形状であってもよい。
次に、図11は、本発明の実施の形態2において、強制減圧部2内にハニカム状の障害物40を設置した場合の説明図である。この図11において、障害物40は、強制減圧部2と、反応部3との接続部に位置するように設置されている。
また、図11に示した接続部(II‐II’)の流体方向断面図から分かるように、接続部(II‐II’)では、障害物40によって、流路部分がハニカム形状となっている。したがって、気液混合流体は、接続部(II‐II’)では、障害物40の隙間を通過して、反応部3に向かって流入する。
このように、障害物40を設置し、流路を極短時間、制限することにより、障害物30を設置した場合と同様に、流路方向に対して、接続部(II‐II’)における流路の断面積を小さくすることができる。
したがって、障害物40を設置しない場合と比較して、接続部(II‐II’)における流路の断面積を小さくすることができるので、より急激に、気液混合流体にかかる圧力を大気圧未満に減圧することができる。この結果、より大量の微細気泡の核を発生させることができる。
また、接続部(II‐II’)における流路の断面積が小さくなることにより、反応部3内の接続部(II‐II’)近傍の断面積の変化が、より急激に大きくなるので、反応部3内において、微細気泡の核がより拡散されやすくなる。したがって、気泡の融合、合一が抑制されるので、より大量の微細気泡を得ることができる。
なお、障害物40の断面における径の長さは、できるだけ短いほうがよく、最長でも5mm以下とすることが好ましい。
以上のように、本発明の実施の形態2によれば、強制減圧部内に種々の障害物を設置することにより、加圧状態から大気圧未満に減圧する工程において、流路の断面積をより急激に小さくすることができるので、気液混合流体にかかる圧力を大気圧未満により急激に減圧することができる。さらには、大気圧未満に減圧された状態から大気圧に昇圧する工程において、流路の断面積をより急激に大きくすることができるので、微細気泡の核が、より拡散されやすくなる。これにより、反応部内において、大量の微細気泡の核を発生させることができ、さらには、気泡の融合、合一がさらに抑制され、より大量の微細気泡を得ることができる。
実施の形態3.
先の実施の形態1、2では、気液混合流体中に大量の微細気泡を得るための気液混合方法および気液混合装置について説明した。これに対して、本発明の実施の形態3では、気体がオゾンを含有するガスであり、液体が水である気液混合流体(以降では、オゾン‐水混合流体と称す)を、水・汚泥処理工程で利用する具体的な応用例について説明する。
ここでは、先の実施の形態1における気液混合装置(先の図6に対応)を用いて、水・汚泥処理工程を行う場合を想定して説明する。
まず、オゾン‐水混合流体の圧力変化および水中に溶解するオゾン(以降では、溶存オゾンと称す)濃度変化について、本発明の実施の形態3における気体注入部1、強制減圧部2および反応部3内を流入するオゾン‐水混合流体の圧力変化および溶存オゾン濃度変化を示した説明図である図12を参照して説明する。
ここで、図12(a)は、先の図6(a)と同様に、気体注入部1(図示せず)と、強制減圧部2とを流路6bを介して接続し、さらに、強制減圧部2と、反応部3とを直接接続させた構造を有する気液混合装置の断面図を示し、図12(b)は、各部に流入するオゾン‐水混合流体にかかる圧力の変化図(横軸を流路方向、縦軸を圧力とする)を示す。さらに、図12(c)は、各部に流入するオゾン‐水混合流体中の溶存オゾン濃度の変化図(横軸を流路方向、縦軸を溶存オゾン濃度とする)を示す。
この図12(c)において、気体注入部1(流路6b)に流入する気液混合流体にかかる圧力がPの場合の溶存オゾン濃度をCとする。この場合には、溶存オゾン濃度は、強制減圧部2内のオゾン‐水混合流体にかかる圧力の減少に伴い、Cから減少していく。
ここで、圧力最小時(すなわち、図12において、圧力がP−1である時)の溶存オゾン濃度は、気体注入部1にて、水1L当たりに注入したオゾン量(以降、オゾン注入率[mg/L]と称す)の1/1000〜1/10倍となる。したがって、例えば、オゾン注入率が100mg/Lであれば、圧力最小時の溶存オゾン濃度は0.1〜10mg/Lとなる。
また、溶存オゾン濃度は、反応部3内においては、流路方向に進むに従って、徐々に増加していく。この溶存オゾン濃度の増加変化量(図12の傾き[1]、[2]、[3]に対応)は、水中に溶解している物質との反応によって異なる。
すなわち、純水のように不純物の非常に少ない場合には、溶存オゾン濃度の増加変化量が大きい(傾き[1]に対応)。一方、下水または工場廃水のように大量の有機物またはオゾンと反応する物質等が含まれている場合には、溶存オゾン濃度の増加変化量が小さい(傾き[3]に対応)。また、オゾンを消費する物質量が、純水よりも大きく、下水または工場排水よりも小さい水の場合には、溶存オゾンの濃度変化量は、純水と、下水または工場排水との間となる(傾き[2]に対応)。
次に、強制減圧部2および反応部3内のオゾンの挙動について、図13、図14および図15を参照して説明する。図13は、本発明の実施の形態3において、強制減圧部2に流入するオゾン‐水混合流体中における気泡の変化を示した説明図である。図14は、本発明の実施の形態3において、反応部3に流入するオゾン‐水混合流体中における気泡の変化を示した説明図である。図15は、本発明の実施の形態3において、気泡中のオゾンの溶解過程、および気泡中のオゾンと、気泡に吸着した処理物との反応過程を示した説明図である。
この図13(a)は、流路6bと、強制減圧部2との接続部における微細オゾン気泡の核の集合51を示し、図13(b)は、強制減圧部2と、反応部3との接続部における微細オゾン気泡の核の集合52を示す。また、図14(a)は、強制減圧部2と、反応部3との接続部における微細オゾン気泡の核の集合52を示し、図14(b)は、反応部3内の微細オゾン気泡の核の集合53を示す。なお、微細オゾン気泡とは、微細気泡中にオゾンが存在することを意味する。
ここで、図13(a)、(b)から明らかなように、先の実施の形態1と同様、オゾン‐水混合流体にかかる圧力の減少とともに、微細オゾン気泡の核の発生量が急激に増加する。したがって、先の図12(c)に示すように、溶存オゾン濃度が急激に減少し、微細気泡中にオゾンが存在することとなる。
また、図14(a)、(b)から明らかなように、先の実施の形態1と同様、オゾン‐水混合流体にかかる圧力の急激な昇圧により、微細オゾン気泡の核が収縮、拡散し、大量の微細オゾン気泡が発生する。
さらに、反応部3内において、微細オゾン気泡内のオゾンの水に対する溶解が徐々に、進行する。すなわち、図15に示すように、微細オゾン気泡61中のオゾン62が気泡を介して、徐々に、水中へ溶解することになる。このように、微細オゾン気泡61を介して、オゾン62が水中へ溶解することにより、オゾン62の自己分解反応をできるだけ抑制することができる。
したがって、水中に注入したオゾンを無駄にすることなく、オゾン62と、水中の有機物等、本来、オゾンと反応させるべき物質との反応を促進させることができる。すなわち、気泡中に存在するオゾンよりも、水中に存在するオゾンの方が、自己分解反応が大きいので、最初から水中にオゾンを溶解させてから物質と反応させるよりも、効率的にオゾンを使用できることとなる。
さらに、反応部3内においては、気泡の融合、合一が抑制されているので、従来のマイクロバブル発生装置等にてマイクロバブルを発生させた場合と比べて、微細オゾン気泡の個数が多く、気液の接触面積も大きい。したがって、従来技術と比べて、より効率的にオゾンを使用することができる
また、図15に示すように、微細オゾン気泡61の表面に処理物63(例えば、疎水性の物質または汚泥のような粘性の高い物質等)が吸着した場合には、処理物63と、オゾンとが直接反応する。このように、処理物63と、オゾンとが直接反応することにより、オゾンは、水中の異物とは異なる物質との反応が抑制され、より効率的に、処理物63との反応が促進される。すなわち、汚泥の可溶化などといった処理物の処理に対して、より効率的にオゾンを使用できることとなる。
次に、本実施の形態3における微細気泡を利用した水・汚泥処理工程について、従来の水・汚泥処理工程と比較しながら説明する。
まず、工場排水の処理工程について、本実施の形態3における微細気泡を利用した場合(実施例1)および従来の場合(比較例1)について、表1を参照して説明する。表1は、従来例1および比較例1における共通のオゾン処理条件を示す。
Figure 2014069160
この表1に示すように、処理工程で用いる対象水は、工場排水であり、気液混合装置内を流れる対象水の流量は、1.5L/分である。また、処理物(処理対象物質)は、フェノールであり、処理対象物質濃度は、35〜50mg/Lである(対象水1Lあたり、35〜50mg含まれる)。さらに、使用するオゾンガスについて、オゾンガス濃度は、120g/mであり、オゾンガス流量は、1.5L/分である。
従来のオゾン処理を行う場合の比較例1では、オゾン注入方法として曝気法を採用しており、注入されるオゾンガスの気泡径は、1〜5mmであった。また、流体の圧力制御を行わず、大気圧の状態でオゾンガスを工場排水に注入した。
これに対して、実施例1では、先の実施の形態1における気液混合装置を使用し、気液混合流体に加圧する圧力は、0.25MPa(圧力計14の値)であった。また、気液混合流体に未溶解のオゾンガスは、脱気された。さらに、気体注入部1、強制減圧部2および反応部3の順に、工場廃水を通水した。
次に、このような条件下で得られた比較結果について、本発明の実施の形態3において、実施例1および比較例1におけるオゾン注入率に対するフェノール濃度比の変化を示した説明図である図16を参照して説明する。
実施例1および比較例1の比較結果として、この図16では、オゾン注入率を変化させた場合の各オゾン注入率におけるフェノール濃度比をプロットしている。なお、オゾン注入率に対するフェノール濃度比とは、オゾン注入率が0の場合における反応部3内の工場排水中のフェノール濃度(C)と、各オゾン注入率における反応部3内の工場排水中のフェノール濃度(C)との相対比率(C/C)のことである。
ここで、オゾンと、フェノールとの反応が効率的に行われるほど、フェノールの分解率が大きくなるので、工場排水中のフェノール濃度が小さくなる。また、各オゾン注入率が増えるほど、フェノールの分解率が大きくなるので、フェノール濃度比が小さくなる。
また、図16に示した実施例1および比較例1の結果を比較すると、各オゾン注入率において、実施例1の方が、フェノール濃度比が小さいことが分かる。したがって、実施例1の方が、溶解したオゾンと、フェノールとの反応が効率的に行われていることがいえる。さらに、オゾン注入率50mg/Lの場合には、比較例1では、分解率が、約50%であったのに対して、実施例1では、90%近い分解率が得られた。したがって、実施例1の方が、より効率的にフェノールを分解できる。
次に、活性汚泥の処理工程について、本実施の形態3における微細気泡を利用した場合(実施例2)および従来の場合(比較例2)について、表2を参照して説明する。表2は、従来例2および比較例2における共通のオゾン処理条件を示す。
Figure 2014069160
この表2に示すように、処理工程で用いる対象水は、活性汚泥水であり、気液混合装置内を流れる対象水の流量は、1.5L/分である。また、処理物(処理対象物質)は、MLSS(Mixed Liquor Suspended Solids;活性汚泥浮遊物質)であり、処理対象物質濃度は、2500〜4000mg/Lである(対象水1Lあたり、2500〜4000mg含まれる)。さらに、使用するオゾンガスについて、オゾンガス濃度は、250g/mであり、オゾンガス流量は、1.5L/分である。
従来のオゾン処理を行う場合の比較例2では、オゾン注入方法として曝気法を採用しており、注入されるオゾンガスの気泡径は1〜5mmであった。また、流体の圧力制御を行わず、大気圧の状態でオゾンガスを活性汚泥水に注入した。
これに対して、実施例2では、先の実施の形態1における気液混合装置を使用し、気液混合流体に加圧する圧力は、0.25MPa(圧力計14の値)であった。また、気液混合流体に未溶解のオゾンガスは、脱気された。さらに、気体注入部1、強制減圧部2および反応部3の順に、活性汚泥水を通水した。
また、実施例2および比較例2のいずれにおいても、活性汚泥水にオゾンガスを供給することによって、発泡が確認された。しかしながら、発泡の高さが、装置内高さで収まったので、消泡は、実施されなかった。
次に、このような条件下で得られた比較結果について、本発明の実施の形態3において、実施例2および比較例2におけるオゾン注入率に対するMLSS濃度比の変化を示した説明図である図17を参照して説明する。
実施例2および比較例2の比較結果として、この図17では、オゾン注入率を変化させた場合の各オゾン注入率におけるMLSS濃度比をプロットしている。なお、オゾン注入率に対するMLSS濃度比とは、オゾン注入率が0の場合における反応部3内の活性汚泥水中のMLSS濃度(C)と、各オゾン注入率における反応部3内の活性汚泥水中のMLSS濃度(C)との相対比率(C/C)のことである。
ここで、オゾンと、MLSSとの反応が効率的に行われるほど、MLSSの溶解率が大きくなるので、活性汚泥水中のMLSS濃度が小さくなる。また、各オゾン注入率が増えるほど、MLSSの溶解率が大きくなるので、MLSS濃度比が小さくなる。
また、図17に示した実施例2および比較例2の結果を比較すると、各オゾン注入率において、実施例2の方が、MLSS濃度比が小さいことが分かる。したがって、実施例2の方が、溶解したオゾンと、MLSSとの反応が効率的に行われていることがいえる。さらに、オゾン注入率150mg/gMLSSの場合には、比較例2では、溶解率が、約30%であったのに対して、実施例2では、70%近い溶解率が得られた。したがって、実施例2の方が、より効率的にMLSSを可溶化できる。
以上のように、本発明の実施の形態3によれば、気体がオゾンガスであり、液体が水である気液混合流体を、水・汚泥処理工程で利用した場合には、反応部内で発生させた微細オゾン気泡内のオゾンが、気泡を介して、溶解し、さらに、気泡内のオゾンと、処理物とを直接反応させることができる。これにより、オゾンの水中における自己分解反応等を抑制できるので、水中に注入したオゾンを無駄にすることなく、より効率的にオゾンを使用し、処理物を処理することができる。
実施の形態4.
先の実施の形態3では、オゾン‐水混合流体を、水・汚泥処理工程で利用する場合について説明した。これに対して、本発明の実施の形態4では、オゾン‐水混合流体を半導体基板の洗浄工程で利用した場合について説明する。
ここでは、先の実施の形態3と同様に、先の実施の形態1における気液混合装置(先の図6に対応)を用いて、半導体基板の一例であるシリコン基板の洗浄工程を行う場合を想定して説明する。なお、シリコン基板に限定されず、どのような半導体基板を用いてもよい。
まず、微細オゾン気泡によって、シリコン基板を洗浄する場合のオゾンの挙動について、本発明の実施の形態4において、微細オゾン気泡71中のオゾンと、シリコン基板72に付着した処理物73との反応過程を示した説明図である図18を参照して説明する。
この図18に示すように、微細オゾン気泡71が、反応部3内でシリコン基板72と接触することにより、シリコン基板72の表面に対する微細オゾン気泡71の衝撃力によって、処理物73が除去される。また、先の実施の形態3と同様に、処理物73と、オゾンとが、直接反応する。これにより、シリコン基板72上から処理物73が剥離し、さらに、酸化する。したがって、処理物73の再付着を抑制すれば、効率的にシリコン基板72を洗浄することができる。
また、反応部3内においては、気泡の融合、合一が抑制されているので、従来のマイクロバブル発生装置等にてマイクロバブルを発生させた場合と比べて、微細オゾン気泡の個数が多く、気液の接触面積も大きい。したがって、従来技術と比べて、より効率的にオゾンを使用することができる
なお、図18に示すような表面が平坦なシリコン基板ではなく、表面を加工したシリコン基板を効果的に洗浄することもできる。図19は、本発明の実施の形態4において、微細孔82を形成したシリコン基板を洗浄した場合の説明図である。すなわち、例えば、図19に示すように、微細孔82を形成したシリコン基板を洗浄した場合には、微細オゾン気泡81は、微細孔82の内部に入りこみ、さらに、微細オゾン気泡81の衝撃力による異物の除去効果が高い。したがって、微細オゾン気泡81により、微細孔82の内部を効果的に洗浄することができる。
また、図20は、本発明の実施の形態4において、テクスチャ92(微細凹凸)を形成した太陽電池シリコン基板を洗浄する場合の説明図である。例えば、図20に示すように、テクスチャ92(微細凹凸)を形成した太陽電池シリコン基板を洗浄する場合についても、微細オゾン気泡91は、テクスチャ92の内部に入り込むので、テクスチャ92の内部を効果的に洗浄することができる。なお、シリコン基板といった半導体基板だけでなく、複雑形状部品または精密部品等を洗浄しても、同様の効果を得ることができる。
次に、本実施の形態4における微細気泡を利用したシリコン基板の洗浄工程について、従来の洗浄工程と比較しながら説明する。なお、ここでは、テクスチャを形成した太陽電池用シリコン基板(n型半導体であり、波長750nmにおける面内反射率が10.2%の特性を有する)を用いた。
従来の洗浄工程を行う場合の比較例3では、市販の加圧溶解式オゾン水製造装置で生成したオゾン水A(濃度21mg/L)を使用した。また、このオゾン水Aおよびフッ化水素酸溶液中に、交互にシリコン基板を浸漬する工程を2回繰り返した。
これに対して、本実施の形態4における微細気泡を利用した洗浄工程を行う場合の実施例3では、微細気泡を大量に含有したオゾン水B(濃度20mg/L)を使用した。このオゾン水Bは、先の実施の形態1における気液混合装置を使用し、気体注入部1、強制減圧部2および反応部3の順に、純水を通水することにより生成された。なお、気液混合流体に加圧する圧力は、0.25MPa(圧力計14の値)であった。また、気液混合流体に未溶解のオゾンガスは、脱気された。
また、比較例3と同様に、このオゾン水Bおよびフッ化水素酸溶液中に、交互にシリコン基板を浸漬する工程を2回繰り返した。なお、比較例3および実施例3では、純水と、ELグレード品のフッ化水素酸とを25:1の比率で希釈したフッ化水素酸溶液を使用した。
次に、このような条件下で得られた比較結果について、本発明の実施の形態4において、洗浄前、比較例3および実施例3に関して、シリコン基板表面に付着する銅原子量を示した説明図である図21を参照して説明する。この図21では、比較例3および実施例3における洗浄工程の比較結果として、洗浄前後のシリコン基板表面に付着する銅原子量[atom/cm]を図示している。
ここで、図21に示した比較例3および実施例3の結果を比較すると、シリコン基板表面に付着する銅原子量が、比較例3では、3.2×1011atoms/cmであったのに対して、実施例3では、8.7×10atoms/cmであった。なお、洗浄前にシリコン基板表面に付着する銅原子量は、6.8×1013atoms/cmである。したがって、実施例3の方が、シリコン基板表面に付着したCu原子量を大幅に低減でき、より高い清浄度を実現できることがわかる。
以上のように、本発明の実施の形態4によれば、気体がオゾンガスであり、液体が水である気液混合流体を、洗浄工程で利用した場合には、反応部内で発生させた微細オゾン気泡内のオゾンが、気泡を介して、溶解し、さらに、気泡内のオゾンと、処理物とを直接反応させることができる。
これにより、水中に注入したオゾンを無駄にすることなく、より効率的にオゾンを使用し、高い清浄度を実現できる洗浄を行うことができる。また、微細気泡の衝撃力による異物の除去効果が高いので、複雑形状部品や精密部品に対する洗浄も可能となり、効率的に洗浄を実施することができる。さらに、シリコン基板、特に、光吸収量を高くするための複数の凹凸部が表面に形成されている太陽電池等に対しても、平坦部だけでなく凹凸部に対しても効率的に洗浄を実施することができる。
1 気体注入部、2 強制減圧部、3 反応部、4 気体供給路、5 気体排出路、6、6a、6b、6c、6d 流路、11 流出弁、12、32 ドレーン弁、13、33 ドレーン配管、14 圧力計、15、34 気体排出配管、16 気体排出弁、21、22、23 微細気泡の核の集合、31 処理水配管、30、40 障害物、51、52、53 微細オゾン気泡の核の集合、61、71、81、91 微細オゾン気泡、62 オゾン、63、73 処理物、72 シリコン基板、82 微細孔、92 テクスチャ。

Claims (12)

  1. 液体に気体が注入された気液混合流体にかかる圧力を大気圧以上に調整し、前記大気圧以上に調整した前記気液混合流体を大気圧未満に減圧し、前記大気圧未満に減圧した前記気液混合流体を大気圧に昇圧することにより、微細気泡を生成する微細気泡生成ステップ
    を有することを特徴とする気液混合方法。
  2. 請求項1に記載の気液混合方法において、
    前記微細気泡生成ステップにて生成した前記微細気泡に含まれる前記気体と、前記気液混合流体中に含まれる所望の第1処理物とを反応させる反応ステップ
    をさらに有することを特徴とする気液混合方法。
  3. 請求項1または2に記載の気液混合方法において、
    前記気体には、オゾンが含有される
    ことを特徴とする気液混合方法。
  4. 請求項1に記載の気液混合方法によって生成された微細気泡を含む気液混合流体を用いた洗浄方法であって、
    前記気液混合流体に第2処理物を浸すことにより、前記微細気泡生成ステップにて生成された前記微細気泡に含まれる前記気体と、前記第2処理物とを反応させ、前記第2処理物を洗浄するステップを有する
    ことを特徴とする微細気泡を含む気液混合流体を用いた洗浄方法。
  5. 請求項4に記載の微細気泡を含む気液混合流体を用いた洗浄方法において、
    前記第2処理物は、シリコン基板である
    ことを特徴とする微細気泡を含む気液混合流体を用いた洗浄方法。
  6. 請求項4または5に記載の微細気泡を含む気液混合流体を用いた洗浄方法において、
    前記気体には、オゾンが含有される
    ことを特徴とする微細気泡を含む気液混合流体を用いた洗浄方法。
  7. 液体に気体が注入された気液混合流体にかかる圧力を大気圧以上に調整する気体注入部と、
    前記気体注入部が前記大気圧以上に調整した前記気液混合流体を大気圧未満に減圧する強制減圧部と、
    前記強制減圧部が前記大気圧未満に減圧した前記気液混合流体を大気圧に昇圧する反応部と
    を備えることを特徴とする気液混合装置。
  8. 請求項7に記載の気液混合装置において、
    前記強制減圧部は、前記気液混合流体が流れる流路方向に対する垂直の断面積が、前記流路方向に進むに従って小さくなるように構成され、前記強制減圧部の上流端において大気圧以上の圧力を有していた前記気液混合流体を、前記強制減圧部の下流端に到達させることで大気圧未満まで減圧し、
    前記反応部は、前記流路方向に対する垂直の断面積が、前記流路方向に進むに従って大きくなるように構成され、前記反応部の上流端において大気圧未満まで減圧した前記気液混合流体を、前記反応部の下流端に到達させるまでの間に大気圧に昇圧する
    ことを特徴とする気液混合装置。
  9. 請求項8に記載の気液混合装置において、
    前記強制減圧部は、前記強制減圧部の下流端における流路の断面積を小さくするための障害物を有する
    ことを特徴とする気液混合装置。
  10. 請求項8または9に記載の気液混合装置において、
    前記強制減圧部は、前記強制減圧部の上流端から、前記流路方向に対する一定の第1角度を維持した状態で、前記断面積が前記流路方向に進むに従って小さくなるように構成される
    ことを特徴とする気液混合装置。
  11. 請求項8ないし10のいずれか1項に記載の気液混合装置において、
    前記反応部は、前記反応部の上流端から、前記流路方向に対する一定の第2角度を維持した状態で、前記断面積が前記流路方向に進むに従って大きくなるように構成される
    ことを特徴とする気液混合装置。
  12. 請求項11に記載の気液混合装置において、
    前記一定の第2角度は、45°以上である
    ことを特徴とする気液混合装置。
JP2012219126A 2012-10-01 2012-10-01 気液混合方法、気液混合装置および微細気泡を含む気液混合流体を用いた洗浄方法 Pending JP2014069160A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012219126A JP2014069160A (ja) 2012-10-01 2012-10-01 気液混合方法、気液混合装置および微細気泡を含む気液混合流体を用いた洗浄方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012219126A JP2014069160A (ja) 2012-10-01 2012-10-01 気液混合方法、気液混合装置および微細気泡を含む気液混合流体を用いた洗浄方法

Publications (1)

Publication Number Publication Date
JP2014069160A true JP2014069160A (ja) 2014-04-21

Family

ID=50744884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012219126A Pending JP2014069160A (ja) 2012-10-01 2012-10-01 気液混合方法、気液混合装置および微細気泡を含む気液混合流体を用いた洗浄方法

Country Status (1)

Country Link
JP (1) JP2014069160A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110473773A (zh) * 2019-08-22 2019-11-19 北京北方华创微电子装备有限公司 晶圆清洗方法及晶圆清洗设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110473773A (zh) * 2019-08-22 2019-11-19 北京北方华创微电子装备有限公司 晶圆清洗方法及晶圆清洗设备

Similar Documents

Publication Publication Date Title
US20090273103A1 (en) Nanofluid Production Apparatus and Method
WO2009116711A2 (en) Apparatus of generating microbubbles
CA2733834C (en) Apparatus and method for dissolution of ozone in water and catalytic oxidation
TWI503289B (zh) 用於改良氣-液質傳的氣體分散設備
JP2010162518A (ja) 水処理装置および水処理方法
TWI391333B (zh) 含表面活性劑的水的處理方法及處理裝置
JP2010162519A (ja) 排ガス処理装置および排ガス処理方法
JP2005144320A (ja) 流体混合装置
JP5740549B2 (ja) 飽和ガス含有ナノバブル水の製造方法及飽和ガス含有ナノバブル水の製造装置
JP2014069160A (ja) 気液混合方法、気液混合装置および微細気泡を含む気液混合流体を用いた洗浄方法
JP2006147617A (ja) 基板処理装置およびパーティクル除去方法
JP7260429B2 (ja) ガス溶解液製造装置
JP2005218955A (ja) 気液接触装置
KR100904722B1 (ko) 미세기포 발생장치
JP2013208554A (ja) 有機物含有排水の処理装置
JP2008284552A (ja) 溶存酸素低減方法及び装置
JP2009112947A (ja) 処理液の製造装置及び製造方法
JP2013223824A (ja) 微細気泡利用装置
KR101342147B1 (ko) 세정액 공급장치
US20160361692A1 (en) Process and device for dispersing gas in a liquid
JP7499837B1 (ja) 高濃度過飽和水生成装置とその装置を用いた洗浄装置
JP2004141840A (ja) 溶存酸素低減方法及び装置
JP2011120994A (ja) 飽和ガス含有ナノバブル水の製造方法及び飽和ガス含有ナノバブル水の製造装置
JP4126381B2 (ja) オゾン散気装置
JP6584372B2 (ja) 消泡槽、オゾン処理装置及び汚泥処理方法