JP2014069038A5 - - Google Patents

Download PDF

Info

Publication number
JP2014069038A5
JP2014069038A5 JP2012220205A JP2012220205A JP2014069038A5 JP 2014069038 A5 JP2014069038 A5 JP 2014069038A5 JP 2012220205 A JP2012220205 A JP 2012220205A JP 2012220205 A JP2012220205 A JP 2012220205A JP 2014069038 A5 JP2014069038 A5 JP 2014069038A5
Authority
JP
Japan
Prior art keywords
channel
image data
phase
complex image
magnetic resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012220205A
Other languages
Japanese (ja)
Other versions
JP6084420B2 (en
JP2014069038A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2012220205A priority Critical patent/JP6084420B2/en
Priority claimed from JP2012220205A external-priority patent/JP6084420B2/en
Publication of JP2014069038A publication Critical patent/JP2014069038A/en
Publication of JP2014069038A5 publication Critical patent/JP2014069038A5/ja
Application granted granted Critical
Publication of JP6084420B2 publication Critical patent/JP6084420B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

磁気共鳴イメージング(Magnetic Resonance Imaging;以下MRIと略記する)装置は、被検体、特に人体の組織を構成する原子核スピンが発生するNMR信号を計測し、その頭部、腹部、四肢等の形態や機能を2次元的に或いは3次元的に画像化する装置である。撮影において、NMR信号には、傾斜磁場によって異なる位相エンコード、周波数エンコードが付与される。計測されたNMR信号は、2次元又は3次元フーリエ変換されることにより画像に再構成される。
Magnetic Resonance Imaging (hereinafter abbreviated as MRI) equipment measures the NMR signals generated by the nuclear spins that make up the tissue of a subject, especially the human body, and forms and functions of the head, abdomen, limbs, etc. Is a device for imaging in two dimensions or three dimensions. Shooting smell Te, the NMR signal, different phase encoding by the gradient magnetic field, frequency encoding is applied. The measured NMR signal is reconstructed into an image by two-dimensional or three-dimensional Fourier transform.

(実施例1の機能)
最初に、本実施例1の0次位相補正を介した多チャンネル画像合成方法を実現するための演算処理部114の各機能を、図2に示す機能ブロック図に基づいて説明する。本実施例1に係る演算処理部114は、エコーデータ取得部201と、フーリエ変換部202と、ピーク位置検出部203と、0次位相算出部204と、0次位相減算部205と、画像合成部206と、強度補正部207と、を有して成る。なお、ピーク位置検出部203と、0次位相算出部204と、0次位相減算部205とを纏めて位相補正部211ともいう。
(Function of Example 1)
First, each function of the arithmetic processing unit 114 for realizing the multi-channel image composition method through the 0th-order phase correction of the first embodiment will be described based on the functional block diagram shown in FIG. The arithmetic processing unit 114 according to the first embodiment includes an echo data acquisition unit 201, a Fourier transform unit 202, a peak position detection unit 203, a 0th order phase calculation unit 204, a 0th order phase subtraction unit 205, and an image synthesis A unit 206 and an intensity correction unit 207 are provided. The peak position detection unit 203, the 0th-order phase calculation unit 204, and the 0th-order phase subtraction unit 205 are collectively referred to as a phase correction unit 211.

ステップ307で、画像合成部205は、ステップ305で作成された各チャンネルの0次位相減算後画像データを全て複素加算する。複素加算の詳細は前述したとおりである。
ステップ308で、強度補正部207は、ステップ307で作成された複素加算画像データに対して、必要に応じて前述の強度補正処理を行う。強度補正処理の詳細は前述したとおりである。
以上までが本実施例1の多チャンネル画像合成方法の処理フローの概要である。
In step 307, the image composition unit 205 performs complex addition on all the 0th-order phase-subtracted image data of each channel created in step 305 . Details of the complex addition are as described above.
In step 308, the intensity correction unit 207 performs the above-described intensity correction process on the complex addition image data created in step 307 as necessary. The details of the intensity correction processing are as described above.
The above is the outline of the processing flow of the multi-channel image composition method of the first embodiment.

ステップ801で、レベル補正部711は、各チャンネルの0次位相と、ピークレベル係数と、ノイズレベル係数と、を算出、算出したこれらの値803をメモリー113に保存する。本ステップの処理の詳細は後述する。
In step 801, the level correction unit 711 calculates the zero-order phase, peak level coefficient, and noise level coefficient of each channel, and stores the calculated values 803 in the memory 113. Details of the processing in this step will be described later.

Claims (6)

多チャンネルRF受信コイルを構成する各チャンネルのRF受信コイルで計測されたk空間データから、チャンネル毎の複素画像データを取得するフーリエ変換部と、
前記チャンネル毎の複素画像データをそれぞれ位相補正する位相補正部と、
位相補正されたチャンネル毎の複素画像データを合成する画像合成部と、
を備えた磁気共鳴イメージング装置であって、
前記位相補正部は、前記チャンネル毎の複素画像データから該チャンネル毎の複素画像データの0次位相を減算し、
前記画像合成部は、前記0次位相が減算されたチャンネル毎の複素画像データを合成することを特徴とする磁気共鳴イメージング装置。
A Fourier transform unit for acquiring complex image data for each channel from k-space data measured by the RF receiver coil of each channel constituting the multi-channel RF receiver coil;
A phase correction unit for correcting the phase of the complex image data for each channel;
An image synthesizing unit that synthesizes complex image data for each phase-corrected channel;
A magnetic resonance imaging apparatus comprising:
The phase correction unit subtracts the zero-order phase of the complex image data for each channel from the complex image data for each channel,
The magnetic resonance imaging apparatus, wherein the image synthesis unit synthesizes complex image data for each channel from which the zeroth-order phase is subtracted.
請求項1記載の磁気共鳴イメージング装置であって、前記位相補正部は、
前記チャンネル毎のk空間データの信号強度が最大となるピーク位置を検出するピーク位置検出部と、
前記ピーク位置の位相を前記0次位相として算出する0次位相算出部と、
前記チャンネル毎の複素画像データから前記チャンネル毎の0次位相を減算する0次位相減算部と、
を有することを特徴とする磁気共鳴イメージング装置。
The magnetic resonance imaging apparatus according to claim 1, wherein the phase correction unit includes:
A peak position detector for detecting a peak position where the signal intensity of the k-space data for each channel is maximum;
A zero-order phase calculation unit that calculates the phase of the peak position as the zero-order phase;
A zero-order phase subtracting unit for subtracting the zero-order phase for each channel from the complex image data for each channel;
A magnetic resonance imaging apparatus comprising:
請求項1又は2記載の磁気共鳴イメージング装置において、
前記チャンネル毎の複素画像データの信号強度レベルとノイズレベルを補正するレベル補正部を備えたことを特徴とする磁気共鳴イメージング装置。
The magnetic resonance imaging apparatus according to claim 1 or 2,
A magnetic resonance imaging apparatus comprising: a level correction unit that corrects a signal intensity level and a noise level of complex image data for each channel.
請求項3記載の磁気共鳴イメージング装置において、前記レベル補正部は、
各チャンネルのk空間データの信号強度が最大となるピーク位置の信号強度を算出するピーク位置強度算出部と、
各チャンネルのk空間データのノイズ位置の信号強度を算出するノイズ位置強度算出部と、
前記各チャンネルのノイズ位置の信号強度を用いて、チャンネル毎のノイズレベル係数を算出するノイズレベル係数算出部と、
前記ピーク位置の信号強度と、前記ノイズ位置の信号強度とを用いて、ピークレベル係数を算出するピークレベル係数算出部と、
前記ノイズレベル係数と前記ピークレベル係数とを、前記0次位相が減算されたチャンネル毎の複素画像データに乗算するレベル係数乗算部と、
を備えることを特徴とする磁気共鳴イメージング装置。
The magnetic resonance imaging apparatus according to claim 3, wherein the level correction unit includes:
A peak position intensity calculation unit for calculating the signal intensity at the peak position where the signal intensity of the k-space data of each channel is maximum;
A noise position intensity calculation unit for calculating the signal intensity of the noise position of the k-space data of each channel;
A noise level coefficient calculation unit that calculates a noise level coefficient for each channel using the signal intensity at the noise position of each channel;
A peak level coefficient calculating unit that calculates a peak level coefficient using the signal intensity of the peak position and the signal intensity of the noise position;
A level coefficient multiplier for multiplying the noise level coefficient and the peak level coefficient by complex image data for each channel from which the zeroth-order phase has been subtracted;
A magnetic resonance imaging apparatus comprising:
請求項1乃至4のいずれか一項に記載の磁気共鳴イメージング装置において、マルチスライス・マルチエコー計測の際に、
前記位相補正部は、マルチスライスについては全スライス、マルチエコーについては1エコー目のみでそれぞれ0次位相を算出し、スライス毎に算出した前記0次位相を該スライスの全エコーの複素画像データからそれぞれ減算することを特徴とする磁気共鳴イメージング装置。
In the magnetic resonance imaging apparatus according to any one of claims 1 to 4, in multi-slice multi-echo measurement,
The phase correction unit calculates a 0th-order phase for all slices for multi-slices and only for the first echo for multi-echoes, and calculates the 0th-order phase calculated for each slice from complex image data of all echoes of the slices. A magnetic resonance imaging apparatus characterized by subtracting each.
多チャンネルRF受信コイルを構成する各チャンネルのRF受信コイルで計測されたk空間データから、チャンネル毎の複素画像データを取得するフーリエ変換ステップと、
前記チャンネル毎の複素画像データをそれぞれ位相補正する位相補正ステップと、
位相補正されたチャンネル毎の複素画像データを合成する画像合成ステップと、
を備えた磁気共鳴イメージング装置における多チャンネル画像合成方法であって、
前記位相補正ステップは、前記チャンネル毎の複素画像データから該チャンネル毎の複素画像データの0次位相を減算し、
前記画像合成ステップは、前記0次位相が減算されたチャンネル毎の複素画像データを合成することを特徴とする多チャンネル画像合成方法。
A Fourier transform step of acquiring complex image data for each channel from k-space data measured by the RF receiver coil of each channel constituting the multi-channel RF receiver coil;
A phase correction step for correcting the phase of each complex image data for each channel;
An image synthesizing step for synthesizing complex image data for each phase-corrected channel;
A multi-channel image synthesis method in a magnetic resonance imaging apparatus comprising:
The phase correction step subtracts the zero-order phase of the complex image data for each channel from the complex image data for each channel,
The multi-channel image synthesizing method, wherein the image synthesizing step synthesizes complex image data for each channel from which the zero-order phase is subtracted.
JP2012220205A 2012-10-02 2012-10-02 Multi-channel image synthesis method and magnetic resonance imaging apparatus Active JP6084420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012220205A JP6084420B2 (en) 2012-10-02 2012-10-02 Multi-channel image synthesis method and magnetic resonance imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012220205A JP6084420B2 (en) 2012-10-02 2012-10-02 Multi-channel image synthesis method and magnetic resonance imaging apparatus

Publications (3)

Publication Number Publication Date
JP2014069038A JP2014069038A (en) 2014-04-21
JP2014069038A5 true JP2014069038A5 (en) 2015-11-19
JP6084420B2 JP6084420B2 (en) 2017-02-22

Family

ID=50744796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012220205A Active JP6084420B2 (en) 2012-10-02 2012-10-02 Multi-channel image synthesis method and magnetic resonance imaging apparatus

Country Status (1)

Country Link
JP (1) JP6084420B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110390073B (en) * 2019-08-19 2023-03-24 西北工业大学 Multi-channel space synthesis azimuth filtering method for vector sensing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759152A (en) * 1996-10-02 1998-06-02 Mayo Foundation For Medical Education And Research Phase-aligned NMR surface coil image reconstruction
JP3896007B2 (en) * 2002-03-07 2007-03-22 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Magnetic resonance imaging device
JP4980662B2 (en) * 2006-06-30 2012-07-18 株式会社日立メディコ Magnetic resonance imaging system
JP4845972B2 (en) * 2007-01-17 2011-12-28 株式会社日立メディコ Magnetic resonance spectrum image calculation method
JP5086796B2 (en) * 2007-03-19 2012-11-28 株式会社東芝 Magnetic resonance imaging apparatus, magnetic resonance imaging maintenance apparatus, magnetic resonance imaging maintenance system, and magnetic resonance imaging apparatus inspection method
CN102870000B (en) * 2010-02-25 2015-11-25 Mcw研究基金会股份有限公司 Use the method for magnetic resonance imaging of cutting into slices simultaneously of single and multiple duct receiver coil more

Similar Documents

Publication Publication Date Title
Guo et al. POCS‐enhanced inherent correction of motion‐induced phase errors (POCS‐ICE) for high‐resolution multishot diffusion MRI
Sumpf et al. Fast T2 mapping with improved accuracy using undersampled spin-echo MRI and model-based reconstructions with a generating function
US9830687B2 (en) Image processing device, magnetic resonance imaging apparatus and image processing method
RU2552408C2 (en) Magnetic-resonance visualisation of chemical compounds by means of spectral model
Svedin et al. Multiecho pseudo‐golden angle stack of stars thermometry with high spatial and temporal resolution using k‐space weighted image contrast
GB2521789A (en) Metal resistant MR imaging reference scan
JP2015530175A5 (en)
Diefenbach et al. Improving chemical shift encoding‐based water–fat separation based on a detailed consideration of magnetic field contributions
WO2014159078A1 (en) System and method for combined chemical species separation and high resolution r2* mapping with magentic resonance imaging
CA2964945A1 (en) System and method for producing distortion free magnetic resonance images using dual-echo echo-planar imaging
IN2014CN05013A (en)
JPWO2010035569A1 (en) Magnetic resonance imaging system
US10591567B2 (en) Image processing apparatus and magnetic resonance imaging apparatus
EP3060116A1 (en) Mr imaging with temperature mapping
JP6708525B2 (en) Magnetic resonance measuring apparatus and image processing method
US11085987B2 (en) Magnetic resonance imaging device, Nyquist ghost correction method, and Nyquist ghost correction program
JP4781120B2 (en) Magnetic resonance imaging apparatus and magnetic resonance spectrum measuring method
JP2019535435A5 (en)
CA3069611A1 (en) Mri method for calculating a proton density fat fraction
JP2014069038A5 (en)
Navest et al. The noise navigator: a surrogate for respiratory-correlated 4D-MRI for motion characterization in radiotherapy
Weng et al. Water–fat separation with parallel imaging based on BLADE
Shin et al. Fast spin Echo imaging-based electric property tomography with K-space weighting via ${T} _ {2} $ relaxation (rEPT)
Bollmann et al. When to perform channel combination in 7 Tesla quantitative susceptibility mapping
JP6084420B2 (en) Multi-channel image synthesis method and magnetic resonance imaging apparatus