JP2014067700A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2014067700A
JP2014067700A JP2013181365A JP2013181365A JP2014067700A JP 2014067700 A JP2014067700 A JP 2014067700A JP 2013181365 A JP2013181365 A JP 2013181365A JP 2013181365 A JP2013181365 A JP 2013181365A JP 2014067700 A JP2014067700 A JP 2014067700A
Authority
JP
Japan
Prior art keywords
secondary battery
nonaqueous electrolyte
electrolyte secondary
positive electrode
basic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013181365A
Other languages
Japanese (ja)
Inventor
Yujin Nakazawa
祐仁 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2013181365A priority Critical patent/JP2014067700A/en
Publication of JP2014067700A publication Critical patent/JP2014067700A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery excellent in all of cycle characteristics, storage characteristics, and continuous charging characteristics, even when used in conditions of severe temperatures and charge/discharge current equivalent or more than that of a conventional ones, such as in automobile applications.SOLUTION: The nonaqueous electrolyte secondary battery includes at least a positive electrode, a negative electrode, a nonaqueous electrolyte, and an outer packaging body, and at least one of the positive electrode, the negative electrode, the nonaqueous electrolyte, and the outer packaging body includes a basic compound.

Description

本発明は、非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

近年の電子技術の発展や環境技術への関心の高まりに伴い、様々な電気化学デバイスが用いられている。特に、省エネルギー化への要請が多くあり、それに貢献できるものへの期待はますます高くなっている。蓄電デバイスの代表例であり、非水電解質二次電池の代表例でもあるリチウムイオン二次電池は、従来、主として携帯機器用充電地として使用されていたが、近年ではハイブリッド自動車及び電気自動車用電池としての使用も期待されている。   With the recent development of electronic technology and increasing interest in environmental technology, various electrochemical devices are used. In particular, there are many requests for energy saving, and expectations for what can contribute to it are increasing. Lithium ion secondary batteries, which are representative examples of power storage devices and are also representative examples of nonaqueous electrolyte secondary batteries, have been used mainly as charging places for portable devices, but in recent years, batteries for hybrid vehicles and electric vehicles have been used. The use as is expected.

しかしながら、リチウムイオン二次電池が自動車用途で用いられる場合、従来の携帯機器用として用いられる場合よりも、温度や充放電電流の条件が過酷になる。そこで、そのような過酷な条件においても二次電池として良好に機能するよう、リチウムイオン二次電池には、サイクル特性、保存特性及び連続充電特性の更なる向上が求められている。   However, when a lithium ion secondary battery is used in an automotive application, the temperature and charge / discharge current conditions are more severe than those used for conventional portable devices. Therefore, in order to function well as a secondary battery even under such severe conditions, the lithium ion secondary battery is required to further improve cycle characteristics, storage characteristics, and continuous charge characteristics.

従来、これらの特性の改良を目指して、特許文献1及び2に記載されている技術が提案されてきた。   Conventionally, techniques described in Patent Documents 1 and 2 have been proposed with the aim of improving these characteristics.

特開2007−220335号公報JP 2007-220335 A 特開2008−243810号公報JP 2008-243810 A

しかしながら、特許文献1及び2に記載されている技術を始めとする従来の技術の中では、いまだサイクル特性、保存特性及び連続充電特性の全てを向上させるものが見出されていない。   However, none of the conventional techniques including those described in Patent Documents 1 and 2 have been found yet to improve all of the cycle characteristics, storage characteristics, and continuous charge characteristics.

そこで、本発明は、上記事情に鑑みてなされたものであり、自動車用途など、従来と同等以上の過酷な温度や充放電電流の条件で用いられた場合においても、サイクル特性、保存特性及び連続充電特性の全てに優れた非水電解質二次電池を提供することを目的とする。   Therefore, the present invention has been made in view of the above circumstances, and cycle characteristics, storage characteristics, and continuous characteristics even when used under severe temperature and charge / discharge current conditions equal to or higher than those of conventional automobiles and the like. It aims at providing the nonaqueous electrolyte secondary battery excellent in all the charging characteristics.

本発明者らは、上記課題を解決するため鋭意研究を行った結果、正極と、負極と、非水電解質と、外装体と、場合によってはセパレーターとを備え、それらのうち少なくとも1つが塩基性化合物を含む非水電解質二次電池が、上記課題を解決することを見出した。   As a result of intensive studies to solve the above problems, the present inventors have a positive electrode, a negative electrode, a non-aqueous electrolyte, an exterior body, and, in some cases, a separator, at least one of which is basic. It has been found that a non-aqueous electrolyte secondary battery containing a compound solves the above problems.

すなわち、本発明は下記のとおりである。
〔1〕
正極と、負極と、非水電解質と、外装体と、を少なくとも備え、
前記正極、前記負極、前記非水電解質及び前記外装体のうち少なくとも1つが塩基性化合物を含む、非水電解質二次電池。
〔2〕
前記塩基性化合物に含まれるアニオンの塩基解離定数(pKb)は、10.83以下である、前項〔1〕に記載の非水電解質二次電池。
〔3〕
前記塩基性化合物に含まれるアニオンは、PO4 3-、HPO4 2-、CO3 2-、HCO3 -、及びSiO3 2-からなる群より選ばれる1種以上である、前項〔1〕又は〔2〕に記載の非水電解質二次電池。
〔4〕
前記塩基性化合物に含まれるアニオンは、PO4 3-及びHPO4 2-からなる群より選ばれる1種以上である、前項〔1〕〜〔3〕のいずれか1項に記載の非水電解質二次電池。
〔5〕
前記塩基性化合物に含まれるカチオンが、Na+、K+、Be2+、Mg2+、Ca2+、及びAl3+からなる群より選ばれる1種以上である、前項〔1〕〜〔4〕のいずれか1項に記載の非水電解質二次電池。
〔6〕
前記塩基性化合物が、Na3PO4、K3PO4、Ca3(PO42、及びAlPO4からなる群より選ばれる1種以上である、前項〔1〕〜〔5〕のいずれか1項に記載の非水電解質二次電池。
〔7〕
前記塩基性化合物の平均粒径が、0.1〜100μmである、前項〔1〕〜〔6〕のいずれか1項に記載の非水電解質二次電池。
〔8〕
前記塩基性化合物の平均粒径が、10〜50μmである、前項〔1〕〜〔7〕のいずれか1項に記載の非水電解質二次電池。
〔9〕
前記正極は、正極活物質を含み、該正極活物質の比表面積が0.6m2/g以上である、前項〔1〕〜〔8〕のいずれか1項に記載の非水電解質二次電池。
〔10〕
前記正極活物質は、マンガンを含むリチウム遷移金属酸化物を含む、前項〔1〕〜〔9〕のいずれか1項に記載の非水電解質二次電池。
〔11〕
前記塩基性化合物を、前記正極活物質量に対して0.1〜10質量%含む、前項〔9〕又は〔10〕に記載の非水電解質二次電池。
〔12〕
前記正極活物質の電位が、リチウム基準で4.5V以上である、前項〔9〕〜〔11〕のいずれか1項に記載の非水電解質二次電池。
〔13〕
前記正極活物質は、下記一般式(1):
LixMn2-yyz (1)
(式中、Mは、遷移金属元素からなる群より選ばれる少なくとも1種の元素を示し、0<x≦1.3、0.2<y<0.8、3.5<z<4.5である。)
で表される酸化物を含む、前項〔9〕〜〔12〕のいずれか1項に記載の非水電解質二次電池。
〔14〕
前記非水電解質は、六フッ化リン酸リチウムを含む、前項〔1〕〜〔13〕のいずれか1項に記載の非水電解質二次電池。
〔15〕
前記塩基性化合物を、前記非水電解質に含まれる六フッ化リン酸リチウムに対して0.001〜10mol%含む、前項〔14〕に記載の非水電解質二次電池。
〔16〕
前記外装体が、角型及び/又はラミネート型である、前項〔1〕〜〔15〕のいずれか1項に記載の非水電解質二次電池。
〔17〕
前記非水電解質に含まれる非水溶媒は、F元素を含まない、前項〔1〕〜〔16〕のいずれか1項に記載の非水電解質二次電池。
That is, the present invention is as follows.
[1]
A positive electrode, a negative electrode, a non-aqueous electrolyte, and an outer package,
A nonaqueous electrolyte secondary battery in which at least one of the positive electrode, the negative electrode, the nonaqueous electrolyte, and the outer package contains a basic compound.
[2]
The nonaqueous electrolyte secondary battery according to [1], wherein the base dissociation constant (pKb) of the anion contained in the basic compound is 10.83 or less.
[3]
The anion contained in the basic compound is at least one selected from the group consisting of PO 4 3− , HPO 4 2− , CO 3 2− , HCO 3 , and SiO 3 2−. Or the nonaqueous electrolyte secondary battery as described in [2].
[4]
The nonaqueous electrolyte according to any one of [1] to [3], wherein the anion contained in the basic compound is at least one selected from the group consisting of PO 4 3− and HPO 4 2−. Secondary battery.
[5]
The cation contained in the basic compound is at least one selected from the group consisting of Na + , K + , Be 2+ , Mg 2+ , Ca 2+ , and Al 3+. 4]. The nonaqueous electrolyte secondary battery according to any one of 4).
[6]
Any one of [1] to [5] above, wherein the basic compound is at least one selected from the group consisting of Na 3 PO 4 , K 3 PO 4 , Ca 3 (PO 4 ) 2 , and AlPO 4 . 2. The nonaqueous electrolyte secondary battery according to item 1.
[7]
The nonaqueous electrolyte secondary battery according to any one of [1] to [6], wherein an average particle size of the basic compound is 0.1 to 100 μm.
[8]
The nonaqueous electrolyte secondary battery according to any one of [1] to [7], wherein an average particle size of the basic compound is 10 to 50 μm.
[9]
The non-aqueous electrolyte secondary battery according to any one of [1] to [8], wherein the positive electrode includes a positive electrode active material, and the specific surface area of the positive electrode active material is 0.6 m 2 / g or more. .
[10]
The non-aqueous electrolyte secondary battery according to any one of [1] to [9], wherein the positive electrode active material includes a lithium transition metal oxide containing manganese.
[11]
The non-aqueous electrolyte secondary battery according to [9] or [10], wherein the basic compound is contained in an amount of 0.1 to 10% by mass with respect to the amount of the positive electrode active material.
[12]
The nonaqueous electrolyte secondary battery according to any one of [9] to [11], wherein the positive electrode active material has a potential of 4.5 V or more based on lithium.
[13]
The positive electrode active material has the following general formula (1):
Li x Mn 2- y My O z (1)
(In the formula, M represents at least one element selected from the group consisting of transition metal elements, and 0 <x ≦ 1.3, 0.2 <y <0.8, 3.5 <z <4. 5)
The nonaqueous electrolyte secondary battery according to any one of [9] to [12] above, comprising an oxide represented by:
[14]
The nonaqueous electrolyte secondary battery according to any one of [1] to [13], wherein the nonaqueous electrolyte includes lithium hexafluorophosphate.
[15]
The nonaqueous electrolyte secondary battery according to [14], wherein the basic compound is contained in an amount of 0.001 to 10 mol% with respect to lithium hexafluorophosphate contained in the nonaqueous electrolyte.
[16]
The nonaqueous electrolyte secondary battery according to any one of [1] to [15], wherein the outer package is a square type and / or a laminate type.
[17]
The nonaqueous electrolyte secondary battery according to any one of [1] to [16], wherein the nonaqueous solvent contained in the nonaqueous electrolyte does not contain an F element.

本発明によると、自動車用途など、従来と同等以上の過酷な温度や充放電電流の条件で用いられた場合においても、サイクル特性、保存特性及び連続充電特性の全てに優れた非水電解質二次電池を提供することができる。   According to the present invention, a non-aqueous electrolyte secondary excellent in all of cycle characteristics, storage characteristics and continuous charge characteristics even when used under severe temperature and charge / discharge current conditions equal to or higher than those of conventional applications, such as automobile applications. A battery can be provided.

以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。   Hereinafter, a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail. The following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents. The present invention can be implemented with appropriate modifications within the scope of the gist thereof.

〔非水電解質二次電池〕
本実施形態の非水電解質二次電池は、正極と、負極と、非水電解質と、外装体と、を少なくとも備え、前記正極、前記負極、前記非水電解質及び前記外装体のうち少なくとも1つが塩基性化合物を含む。なお、非水電解質二次電池は、セパレーターを更に備えるものであってもよい。塩基性化合物は、X線回折分析(X−ray Diffraction;XRD)、各種核磁気共鳴分析(Nuclear Magnetic Resonance;NMR)及び、例えば高速原子衝突質量分析(Fast Atom Bombardment−Mass Spectrometry;FAB−MS)等の質量分析によって確認することができる。含有量は誘導結合プラズマ発光分析(Inductively Coupled Plasma−Atomic Emission Spectrometry;ICP−AES)により定量することができる。
[Nonaqueous electrolyte secondary battery]
The nonaqueous electrolyte secondary battery of the present embodiment includes at least a positive electrode, a negative electrode, a nonaqueous electrolyte, and an exterior body, and at least one of the positive electrode, the negative electrode, the nonaqueous electrolyte, and the exterior body is included. Contains basic compounds. The nonaqueous electrolyte secondary battery may further include a separator. Basic compounds include X-ray diffraction analysis (XRD), various nuclear magnetic resonance analyzes (Nuclear Magnetic Resonance; NMR), and, for example, fast atom bombardment-mass spectrometry (FAB-MS). Etc. can be confirmed by mass spectrometry. The content can be quantified by inductively coupled plasma-atomic emission spectrometry (ICP-AES).

〔塩基性化合物〕
本実施形態に用いられる塩基性化合物は、従来公知の塩基性を示す化合物であれば、用いることができる。塩基性化合物に含まれるアニオンの塩基解離定数(pKb)は、好ましくは10.83以下であり、より好ましくは、7.65以下、更に好ましくは2.00以下である。また、アニオンの塩基解離定数(pKb)の下限値は0.01以上が好ましい。アニオンの塩基解離定数(pKb)が上記範囲内であることにより、過酷な温度や充放電電流の条件で用いられた場合においても、サイクル特性、保存特性及び連続充電特性がより優れる傾向にある。本発明の実施例ではpKbを測定ではなく以下の式に従って算出した。
pKb=14−pKa
[Basic compounds]
The basic compound used in the present embodiment can be used as long as it is a conventionally known compound showing basicity. The base dissociation constant (pKb) of the anion contained in the basic compound is preferably 10.83 or less, more preferably 7.65 or less, and still more preferably 2.00 or less. The lower limit of the base dissociation constant (pKb) of the anion is preferably 0.01 or more. When the base dissociation constant (pKb) of the anion is within the above range, the cycle characteristics, the storage characteristics and the continuous charge characteristics tend to be more excellent even when used under severe temperature and charge / discharge current conditions. In the examples of the present invention, pKb was calculated according to the following equation instead of measurement.
pKb = 14−pKa

pKaは酸解離定数のことであり、pKaにはアニオンに対する共役酸の値を代入することでpKbの算出を行った。本発明の実施例に使用した塩基性化合物のpKbを求めるためのpKaの値は文献「丸善 化学便覧」から引用した。また、公知の文献に記載の無い塩基性化合物のpKb値を求める場合には、例えば酸塩基の中和反応を利用する方法で求めることができる。塩基性化合物を適当な酸標準溶液、例えば塩酸やシュウ酸水溶液を用いて滴定し、その滴定曲線を解析して得ることができる。滴定にはpH指示薬を用いて、あるいは市販のpH測定装置を用いて測定することが挙げられる。測定条件は通常、水溶液にて、常圧(1気圧)、25℃で行われる。   pKa is an acid dissociation constant, and pKb was calculated by substituting the value of the conjugate acid with respect to the anion for pKa. The value of pKa for determining the pKb of the basic compound used in the examples of the present invention was cited from the document “Maruzen Chemical Handbook”. Moreover, when calculating | requiring the pKb value of the basic compound which is not described in well-known literature, it can calculate | require by the method of utilizing the neutralization reaction of an acid base, for example. It can be obtained by titrating a basic compound with an appropriate acid standard solution such as hydrochloric acid or an aqueous oxalic acid solution and analyzing the titration curve. The titration may be performed using a pH indicator or a commercially available pH measuring device. Measurement conditions are usually carried out in an aqueous solution at normal pressure (1 atm) and 25 ° C.

塩基性化合物のアニオンとしては、特に限定されないが、例えば、PO4 3-、HPO4 2-、H2BO3 -、CO3 2-、HCO3 -、SiO3 2-、AsO2 -、AsO3 3-、HAsO3 2-、H2AsO3 -、AsO4 3-、HAsO4 2-、BrO-、CN-、CNO-、IO-、BrO-、ClO-、MoO4 2-、HMoO4 -、N3 -、N22 2-、HN22 -、SCN-、NO2 -、HPO3 2-、H227 2-、H327 -、H3310 2-、H4PO310 -、S2-、HS-、SO3 2-、Se2-、SeO3 2-、SiO2(OH)2 2-、HSiO2(OH)2 -、TeO3 2-、TeO4 2-、HTeO4 -、VO4 3-、HVO4 2-、H2VO4 -、WO4 2-、HWO4 -、AgO-、H2AlO3 -、CrO4 -、GeO3 2-、HGeO3 -、SbO2 -、Te-、H2AuO3 -、及びH2GaO3 -からなる群より選ばれる1種以上であると好ましく、PO4 3-、HPO4 2-、CO3 2-、HCO3 -及びSiO3 2-からなる群より選ばれる1種以上であるとより好ましく、PO4 3-及びHPO4 2-からなる群より選ばれる1種以上であるとさらに好ましい。このようなアニオンを含む塩基性化合物を用いることにより、過酷な温度や充放電電流の条件で用いられた場合においても、サイクル特性、保存特性及び連続充電特性がより優れる傾向にある。これらのアニオンは、非水電解質に含まれる場合、イオンクロマトグラフィー分析(Ion Chromatography;IC)にて確認及び定量することができる。非水電解質以外に含まれる場合は、走査型電子顕微鏡−エネルギー分散型X線分析(Scanning Electron Microscope−Energy Dispersive X−ray spectrometry;SEM−EDX)、例えばラマン分光分析や赤外分光分析(Infrared spectroscopy;IR)等の分光分析及びFAB−MS等の質量分析により存在を確認することができる。含有量はICP−AESにより定量することができる。 The anion of the basic compound is not particularly limited. For example, PO 4 3− , HPO 4 2− , H 2 BO 3 , CO 3 2− , HCO 3 , SiO 3 2− , AsO 2 , AsO 3 3− , HAsO 3 2− , H 2 AsO 3 , AsO 4 3− , HAsO 4 2− , BrO , CN , CNO , IO , BrO , ClO , MoO 4 2− , HMoO 4 , N 3 , N 2 O 2 2− , HN 2 O 2 , SCN , NO 2 , HPO 3 2− , H 2 P 2 O 7 2− , H 3 P 2 O 7 , H 3 P 3 O 10 2− , H 4 PO 3 O 10 , S 2− , HS , SO 3 2− , Se 2− , SeO 3 2− , SiO 2 (OH) 2 2− , HSiO 2 (OH) 2 , TeO 3 2− , TeO 4 2− , HTeO 4 , VO 4 3− , HVO 4 2− , H 2 VO 4 , WO 4 2− , HWO 4 , AgO , H 2 AlO 3 , CrO 4 -, GeO 3 2- , HGeO 3 -, bO 2 -, Te -, H 2 AuO 3 -, and H 2 GaO 3 - preferable to be one or more selected from the group consisting of, PO 4 3-, HPO 4 2- , CO 3 2-, HCO 3 - and more preferable to be one or more selected from the group consisting of SiO 3 2-, further preferably a PO 4 3- and HPO 4 one or more members selected from the group consisting of 2. By using such a basic compound containing an anion, even when used under severe temperature and charge / discharge current conditions, cycle characteristics, storage characteristics and continuous charge characteristics tend to be more excellent. When these anions are contained in the nonaqueous electrolyte, they can be confirmed and quantified by ion chromatography analysis (Ion Chromatography; IC). When it is contained other than the non-aqueous electrolyte, a scanning electron microscope-energy dispersive X-ray analysis (Scanning Electron Microscope-Energy Dispersive X-ray spectroscopy; SEM-EDX), for example, Raman spectroscopy or infrared spectroscopy (Infrared spectroscopy) The presence can be confirmed by spectroscopic analysis such as IR) and mass spectrometry such as FAB-MS. The content can be quantified by ICP-AES.

なお、塩基性化合物に含まれるアニオンは、上述のような無機アニオンに限定されず、塩基解離定数(pKb)が10.83以下のアニオンであればよく、有機アニオンであってもよい。   The anion contained in the basic compound is not limited to the inorganic anion as described above, and may be an anion having a base dissociation constant (pKb) of 10.83 or less, and may be an organic anion.

塩基性化合物のカチオンとしては、特に限定されないが、例えば、Li+、Na+、及びK+等のアルカリ金属、並びに、Be2+、Mg2+及びCa2+等のアルカリ土類金属、またAl3+等からなる群より選ばれる1種以上が挙げられる。このなかでも、Na+、及びK+等のアルカリ金属、並びに、Be2+、Mg2+及びCa2+等のアルカリ土類金属、またAl3+からなる群より選ばれる1種以上が好ましい。更にはNa+、及びK+等のアルカリ金属、並びに、Be2+、Mg2+及びCa2+等のアルカリ土類金属からなる群より選ばれる1種以上がより好ましい。Na+、及びK+等のアルカリ金属、並びに、Be2+、Mg2+及びCa2+等のアルカリ土類金属からなるカチオンを有する塩基性化合物を用いることにより、過酷な温度や充放電電流の条件で用いられた場合においても、サイクル特性、保存特性及び連続充電特性がより優れる傾向にある。これらのカチオンは、非水電解質に含まれる場合、ICにて確認及び定量することができる。非水電解質以外に含まれる場合はSEM−EDX、例えばラマン分光分析やIR等の分光分析及びFAB−MS等の質量分析により存在を確認することができる。含有量はICP−AESにより定量することができる。 The cation of the basic compound is not particularly limited, and examples thereof include alkali metals such as Li + , Na + , and K + , and alkaline earth metals such as Be 2+ , Mg 2+, and Ca 2+ , 1 or more types chosen from the group which consists of Al3 + etc. are mentioned. Among these, at least one selected from the group consisting of alkali metals such as Na + and K + , alkaline earth metals such as Be 2+ , Mg 2+ and Ca 2+, and Al 3+ is preferable. . Further, one or more selected from the group consisting of alkali metals such as Na + and K + and alkaline earth metals such as Be 2+ , Mg 2+ and Ca 2+ are more preferable. By using a basic compound having a cation composed of an alkali metal such as Na + and K + and an alkaline earth metal such as Be 2+ , Mg 2+ and Ca 2+ , severe temperature and charge / discharge current Even when used under the above conditions, the cycle characteristics, storage characteristics and continuous charge characteristics tend to be more excellent. When these cations are contained in the nonaqueous electrolyte, they can be confirmed and quantified by IC. When it is contained other than the non-aqueous electrolyte, its presence can be confirmed by SEM-EDX, for example, Raman spectroscopic analysis, spectroscopic analysis such as IR, and mass spectrometric analysis such as FAB-MS. The content can be quantified by ICP-AES.

このような塩基性化合物としては、特に限定されないが、例えば、Li3PO4、Li2CO3、Na3PO4、Na2CO3、K3PO4、K2CO3、Ca3(PO42、CaCO3、AlPO4及びAl2(CO33が好ましい。このような塩基性化合物を用いることにより、過酷な温度や充放電電流の条件で用いられた場合においても、サイクル特性、保存特性及び連続充電特性がより優れる傾向にある。なかでも、Na3PO4、K3PO4、Ca3(PO42及びAlPO4からなる群より選ばれる1種以上が好ましい。更にはNa3PO4、K3PO4及びCa3(PO42からなる群より選ばれる1種以上がより好ましい。このような塩基性化合物を用いることにより、サイクル特性、保存特性及び連続充電特性のみならず、高速充放電特性の観点からより好ましく、また水への溶解性が向上する為、コーティング等といった使用方法の幅を広げることもできる。更に、コストを低下させることができるといった利点もある。これらの塩基性化合物は、非水電解質に含まれる場合、ICにて確認及び定量することができる。非水電解質以外に含まれる場合はXRD、NMR、SEM−EDX、例えばラマン分光分析やIR等の分光分析及びFAB−MS等の質量分析により存在を確認することができる。含有量はICP−AESにより定量することができる。 Such a basic compound is not particularly limited. For example, Li 3 PO 4 , Li 2 CO 3 , Na 3 PO 4 , Na 2 CO 3 , K 3 PO 4 , K 2 CO 3 , Ca 3 (PO 4 ) 2 , CaCO 3 , AlPO 4 and Al 2 (CO 3 ) 3 are preferred. By using such a basic compound, cycle characteristics, storage characteristics, and continuous charge characteristics tend to be more excellent even when used under severe temperature and charge / discharge current conditions. Among these, at least one selected from the group consisting of Na 3 PO 4 , K 3 PO 4 , Ca 3 (PO 4 ) 2 and AlPO 4 is preferable. Furthermore, at least one selected from the group consisting of Na 3 PO 4 , K 3 PO 4 and Ca 3 (PO 4 ) 2 is more preferable. By using such a basic compound, it is more preferable from the viewpoint of not only cycle characteristics, storage characteristics and continuous charge characteristics, but also high-speed charge / discharge characteristics. The width of can also be expanded. Furthermore, there is an advantage that the cost can be reduced. When these basic compounds are contained in the nonaqueous electrolyte, they can be confirmed and quantified by IC. When it is contained other than the non-aqueous electrolyte, its presence can be confirmed by XRD, NMR, SEM-EDX, for example, Raman spectroscopic analysis, spectroscopic analysis such as IR, and mass spectrometry such as FAB-MS. The content can be quantified by ICP-AES.

塩基性化合物の含有量は特に限定されないが、非水電解質二次電池に備えられる正極が正極活物質を含む場合に、その正極活物質量に対して、0.1〜200質量%であることが好ましく、0.1〜10質量%であることがより好ましく、0.1〜1質量%であることがさらに好ましい。塩基性化合物の含有量が上記範囲内であることにより、過酷な温度や充放電電流の条件で用いられた場合においても、サイクル特性、保存特性及び連続充電特性がより優れる傾向にある。また、コストにも優れる傾向にある。   Although content of a basic compound is not specifically limited, When the positive electrode with which a nonaqueous electrolyte secondary battery is equipped contains a positive electrode active material, it is 0.1-200 mass% with respect to the positive electrode active material amount. Is more preferable, 0.1 to 10% by mass is more preferable, and 0.1 to 1% by mass is further preferable. When the content of the basic compound is within the above range, the cycle characteristics, storage characteristics, and continuous charge characteristics tend to be more excellent even when used under severe temperature and charge / discharge current conditions. In addition, the cost tends to be excellent.

また、塩基性化合物の含有量は、非水電解質に含まれる六フッ化リン酸リチウムの合計に対して0.001〜10mol%が好ましく、0.01〜10mol%がより好ましく、0.1〜5mol%がさらに好ましい。塩基性化合物の含有量が上記範囲内であることにより、過酷な温度や充放電電流の条件で用いられた場合においても、サイクル特性、保存特性及び連続充電特性のみならず、高速充放電特性の観点でより優れる傾向にある。   Moreover, 0.001-10 mol% is preferable with respect to the sum total of the lithium hexafluorophosphate contained in a non-aqueous electrolyte, and, as for content of a basic compound, 0.01-10 mol% is more preferable, 5 mol% is more preferable. When the basic compound content is within the above range, not only the cycle characteristics, storage characteristics and continuous charge characteristics, but also high-speed charge / discharge characteristics can be used even under severe temperature and charge / discharge current conditions. It tends to be better from the viewpoint.

塩基性化合物は、固体状のものであると好ましい。塩基性化合物が固体状の粒子である場合、その大きさは特に限定されないが、平均粒径として、0.1〜100μmであると好ましく、10〜50μmであるとより好ましい。平均粒径が0.1μm以上であることにより、塩基性化合物による効果を長時間持続でき、優れたサイクル特性、保存特性及び連続充放電特性を長期にわたって優れたものにすることが可能となる。また、平均粒径が100μm以下であることにより、放電特性などの電池特性を良好に維持することができる。平均粒径は、公知のどの方法によっても測定可能であるが、例えばレーザ回折式粒子径分布測定装置によって測定され、大粒子と小粒子とが等量となるメジアン径(d50)を平均粒径として用いる。   The basic compound is preferably solid. When the basic compound is solid particles, the size thereof is not particularly limited, but the average particle size is preferably 0.1 to 100 μm, and more preferably 10 to 50 μm. When the average particle size is 0.1 μm or more, the effect of the basic compound can be maintained for a long time, and excellent cycle characteristics, storage characteristics, and continuous charge / discharge characteristics can be improved over a long period of time. Further, when the average particle size is 100 μm or less, battery characteristics such as discharge characteristics can be favorably maintained. The average particle diameter can be measured by any known method. For example, the average particle diameter is measured by a laser diffraction particle size distribution measuring apparatus, and the median diameter (d50) in which the large particles and the small particles are equal is determined as the average particle diameter. Used as

〔正極〕
本実施形態に用いられる正極は、正極活物質と、導電材と、結着材と、集電体とを含むことが好ましい。
[Positive electrode]
The positive electrode used in the present embodiment preferably includes a positive electrode active material, a conductive material, a binder, and a current collector.

〔正極活物質〕
正極は、コストの観点から、正極活物質としてマンガンを含むリチウム遷移金属酸化物を含むことが好ましい。そのような酸化物としては、例えば、下記一般式(1)、(3)及び(7)で表される化合物が挙げられる。正極活物質としてマンガンを含むリチウム遷移金属酸化物、好ましくは下記一般式(1)、(3)及び(7)で表される化合物を用いることにより、過酷な温度や充放電電流の条件で用いられた場合においても、サイクル特性、保存特性及び連続充電特性がより優れる傾向にある。
[Positive electrode active material]
The positive electrode preferably includes a lithium transition metal oxide containing manganese as a positive electrode active material from the viewpoint of cost. Examples of such oxides include compounds represented by the following general formulas (1), (3), and (7). By using a lithium transition metal oxide containing manganese as a positive electrode active material, preferably a compound represented by the following general formulas (1), (3) and (7), it is used under severe temperature and charge / discharge current conditions. Even in such a case, cycle characteristics, storage characteristics, and continuous charge characteristics tend to be more excellent.

正極に含まれ得る正極活物質としては、電気化学的にリチウムイオンを吸蔵及び放出可能な公知のものを用いることができる。その中でも、正極活物質としては、リチウムを含む材料が好ましい。正極活物質としては、例えば、下記一般式(1):
LixMn2-yyz (1)
(式中、Mは、遷移金属元素からなる群より選ばれる少なくとも1種の元素を示し、0<x≦1.3、0.2<y<0.8、3.5<z<4.5である。)
で表される酸化物、下記一般式(2):
Lixyz (2)
(式中、Mは遷移金属元素からなる群より選ばれる少なくとも1種の元素を示し、0<x≦1.3、0.8<y<1.2、1.8<z<2.2である。)
で表される層状酸化物、下記一般式(3):
LiMn2-xMax4 (3)
(式中、Maは遷移金属元素からなる群より選ばれる少なくとも1種の元素を示し、0.2≦x≦0.7である。)
で表されるスピネル型酸化物、下記一般式(4):
Li2McO3 (4)
(式中、Mcは、遷移金属元素からなる群より選ばれる少なくとも1種の元素を示す。)
で表される酸化物と、下記一般式(5):
LiMdO2 (5)
(式中、Mdは、遷移金属元素からなる群より選ばれる少なくとも1種の元素を示す。)
で表される酸化物との複合酸化物であって、下記一般式(6):
zLi2McO3−(1−z)LiMdO2 (6)
(式中、Mc及びMdは、それぞれ上記式(4)及び(5)におけるものと同義であり、0.1≦z≦0.9である。)
で表されるLi過剰層状酸化物正極活物質、下記一般式(7):
LiMb1-yFeyPO4 (7)
(式中、Mbは、Mn及びCoからなる群より選ばれる少なくとも1種の元素を示し、0≦y≦1.0である。)
で表されるオリビン型正極活物質、及び、下記一般式(8):
Li2MePO4F (8)
(式中、Meは、遷移金属元素からなる群より選ばれる少なくとも1種の元素を示す。)で表される化合物が挙げられる。これらの正極活物質は、1種を単独で又は2種以上を組み合わせて用いられる。
As the positive electrode active material that can be included in the positive electrode, a known material that can electrochemically occlude and release lithium ions can be used. Among these, as the positive electrode active material, a material containing lithium is preferable. Examples of the positive electrode active material include the following general formula (1):
Li x Mn 2- y My O z (1)
(In the formula, M represents at least one element selected from the group consisting of transition metal elements, and 0 <x ≦ 1.3, 0.2 <y <0.8, 3.5 <z <4. 5)
An oxide represented by the following general formula (2):
Li x M y O z (2 )
(In the formula, M represents at least one element selected from the group consisting of transition metal elements, and 0 <x ≦ 1.3, 0.8 <y <1.2, and 1.8 <z <2.2. .)
A layered oxide represented by the following general formula (3):
LiMn 2-x Ma x O 4 (3)
(In the formula, Ma represents at least one element selected from the group consisting of transition metal elements, and 0.2 ≦ x ≦ 0.7.)
A spinel oxide represented by the following general formula (4):
Li 2 McO 3 (4)
(In the formula, Mc represents at least one element selected from the group consisting of transition metal elements.)
An oxide represented by the following general formula (5):
LiMdO 2 (5)
(In the formula, Md represents at least one element selected from the group consisting of transition metal elements.)
A composite oxide with an oxide represented by the following general formula (6):
zLi 2 McO 3 - (1- z) LiMdO 2 (6)
(In the formula, Mc and Md are synonymous with those in the above formulas (4) and (5), respectively, and 0.1 ≦ z ≦ 0.9.)
Li-excess layered oxide positive electrode active material represented by the following general formula (7):
LiMb 1-y Fe y PO 4 (7)
(In the formula, Mb represents at least one element selected from the group consisting of Mn and Co, and 0 ≦ y ≦ 1.0.)
And an olivine-type positive electrode active material represented by the following general formula (8):
Li 2 MePO 4 F (8)
(Wherein, Me represents at least one element selected from the group consisting of transition metal elements). These positive electrode active materials are used alone or in combination of two or more.

正極活物質の比表面積は0.1m2/g以上が好ましく、0.6m2/g以上が更に好ましい。また、正極活物質の比表面積は10.0m2/g以下が好ましい。正極活物質の比表面積が0.1m2/g以上であることにより、正極活物質の表面で起こる電解質分解の副反応が進行しやすく、付随して発生するフッ酸を塩基性化合物により効率的に除去できる傾向にある。また、正極活物質の比表面積が0.1m2/g以上であることにより、放電特性などの電池特性がより優れる傾向にある。一方で、正極活物質の比表面積が10.0m2/g以下であることにより、サイクル特性及び保存特性がより優れる傾向にある。 The specific surface area of the positive electrode active material is preferably 0.1 m 2 / g or more, and more preferably 0.6 m 2 / g or more. Further, the specific surface area of the positive electrode active material is preferably 10.0 m 2 / g or less. When the specific surface area of the positive electrode active material is 0.1 m 2 / g or more, the side reaction of electrolyte decomposition that occurs on the surface of the positive electrode active material tends to proceed, and the accompanying hydrofluoric acid is more efficiently generated by the basic compound. It tends to be removed. Moreover, when the specific surface area of the positive electrode active material is 0.1 m 2 / g or more, battery characteristics such as discharge characteristics tend to be more excellent. On the other hand, when the specific surface area of the positive electrode active material is 10.0 m 2 / g or less, cycle characteristics and storage characteristics tend to be more excellent.

さらに、本実施形態においては、正極活物質の電位が、リチウム基準で4.5V以上が好ましい。正極活物質の電位が、リチウム基準で4.5V以上であることにより、電解質が分解しやすくなるが、付随して発生するフッ酸を塩基性化合物により除去できるので、より効果的である。なお、正極活物質の電位は実施例に記載の方法により測定することができる。   Furthermore, in the present embodiment, the potential of the positive electrode active material is preferably 4.5 V or more on the basis of lithium. When the potential of the positive electrode active material is 4.5 V or more on the basis of lithium, the electrolyte is easily decomposed, but the accompanying hydrofluoric acid can be removed by the basic compound, which is more effective. Note that the potential of the positive electrode active material can be measured by the method described in Examples.

正極に含まれ得る導電材としては、電子を伝導できる公知のものを用いることができる。その中でも、導電材としては、活性炭、各種コークス、カーボンブラック及びアセチレンブラックなどの非黒鉛炭素質材料及び黒鉛が好ましい。これらは1種を単独で又は2種以上を組み合わせて用いられる。   As the conductive material that can be included in the positive electrode, a known material that can conduct electrons can be used. Among these, as the conductive material, non-graphitic carbonaceous materials such as activated carbon, various cokes, carbon black and acetylene black, and graphite are preferable. These are used singly or in combination of two or more.

正極に含まれ得る結着材としては、正極活物質、正極に含まれ得る導電材、及び正極に含まれ得る集電体のうち少なくとも2つを結着できる公知のものを用いることができる。その中でも、結着材としては、ポリフッ化ビニリデン及びフッ素ゴムが好ましい。結着材は1種を単独で又は2種以上を組み合わせて用いられる。   As the binder that can be included in the positive electrode, a known material that can bind at least two of the positive electrode active material, the conductive material that can be included in the positive electrode, and the current collector that can be included in the positive electrode can be used. Among these, as the binder, polyvinylidene fluoride and fluororubber are preferable. A binder is used individually by 1 type or in combination of 2 or more types.

正極に含まれ得る集電体としては、特に限定されず、従来公知のものを全て使用できるが例えば、アルミニウム、チタン、ステンレス等の金属箔、エキスパンドメタル、パンチメタル、発泡メタル、カーボンクロス、及びカーボンペーパーが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。   The current collector that can be included in the positive electrode is not particularly limited, and all conventionally known ones can be used, for example, metal foils such as aluminum, titanium, and stainless steel, expanded metal, punch metal, foam metal, carbon cloth, and Carbon paper is mentioned. These are used singly or in combination of two or more.

本実施形態に用いられる塩基性化合物が、正極に含まれる場合、正極活物質、導電材、及び結着材のうち少なくとも1種に混合して用いることができる。また、塩基性化合物を、正極活物質、導電材、及び集電体のうち少なくとも1種の表面に、被覆させたり、部分的に付着させたりしてもよい。さらに、正極活物質、導電材、結着材及び集電体を含む電極の表面に、塩基性化合物を被覆させてもよい。より具体的には、例えば、塩基性化合物とポリマーとを含む担持層を電極の表面に形成させて2層構造にしてもよい。塩基性化合物は、溶融させて結着材として用いることもできる。   When the basic compound used in the present embodiment is contained in the positive electrode, it can be used by mixing with at least one of the positive electrode active material, the conductive material, and the binder. Further, the basic compound may be coated on or partially adhered to at least one surface of the positive electrode active material, the conductive material, and the current collector. Furthermore, a basic compound may be coated on the surface of the electrode including the positive electrode active material, the conductive material, the binder, and the current collector. More specifically, for example, a support layer containing a basic compound and a polymer may be formed on the surface of the electrode to form a two-layer structure. The basic compound can be melted and used as a binder.

〔負極〕
本実施形態に用いられる負極は、負極活物質と、結着材と、集電体とを含むことが好ましい。
[Negative electrode]
The negative electrode used in the present embodiment preferably includes a negative electrode active material, a binder, and a current collector.

負極に含まれ得る負極活物質としては、電気化学的にリチウムイオンを吸蔵及び放出可能な公知のものを用いることができる。その中でも、負極活物質としては、例えば、黒鉛粉末、メソフェーズ炭素繊維、及びメソフェーズ小球体などの炭素材料、並びに、金属、合金、酸化物及び窒化物が好ましい。これらは1種を単独で又は2種以上を組み合わせて用いられる。   As the negative electrode active material that can be contained in the negative electrode, a known material that can electrochemically occlude and release lithium ions can be used. Among these, as the negative electrode active material, for example, carbon materials such as graphite powder, mesophase carbon fiber, and mesophase microspheres, and metals, alloys, oxides, and nitrides are preferable. These are used singly or in combination of two or more.

負極に含まれ得る結着材としては、負極活物質、負極に含まれ得る導電材、及び負極に含まれ得る集電体のうち少なくとも2つを結着できる公知のものを用いることができる。その中でも、結着材として、カルボキシメチルセルロース、スチレン−ブタジエンの架橋ゴムラテックス、アクリル系ラテックス及びポリフッ化ビニリデンが好ましい。これらは1種を単独で又は2種以上を組み合わせて用いられる。   As the binder that can be included in the negative electrode, a known material that can bind at least two of the negative electrode active material, the conductive material that can be included in the negative electrode, and the current collector that can be included in the negative electrode can be used. Among these, carboxymethyl cellulose, styrene-butadiene crosslinked rubber latex, acrylic latex, and polyvinylidene fluoride are preferable as the binder. These are used singly or in combination of two or more.

負極に含まれ得る集電体としては、特に限定されず、従来公知のものを全て使用できるが例えば、銅、ニッケル及びステンレスなどの金属箔、エキスパンドメタル、パンチメタル、発泡メタル、カーボンクロス、並びに、カーボンペーパーが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。   The current collector that can be included in the negative electrode is not particularly limited, and all conventionally known ones can be used, for example, metal foils such as copper, nickel, and stainless steel, expanded metal, punch metal, foam metal, carbon cloth, and And carbon paper. These are used singly or in combination of two or more.

本実施形態に用いられる塩基性化合物が、負極に含まれる場合、負極活物質、及び結着材のうち少なくとも1種に混合して用いることができる。また、塩基性化合物を、負極活物質及び集電体のうち少なくとも1種の表面に、被覆させたり、部分的に付着させたりしてもよい。さらに、負極活物質、結着材、及び集電体を含む電極の表面に、塩基性化合物を被覆させてもよい。より具体的には、例えば、塩基性化合物とポリマーとを含む担持層を電極の表面に形成させて2層構造にしてもよい。塩基性化合物は、溶融させて結着材として用いることもできる。   When the basic compound used in this embodiment is contained in the negative electrode, it can be used by mixing with at least one of the negative electrode active material and the binder. Further, the basic compound may be coated on or partially attached to at least one surface of the negative electrode active material and the current collector. Furthermore, a basic compound may be coated on the surface of the electrode including the negative electrode active material, the binder, and the current collector. More specifically, for example, a support layer containing a basic compound and a polymer may be formed on the surface of the electrode to form a two-layer structure. The basic compound can be melted and used as a binder.

〔非水電解質〕
本実施形態における非水電解質に用いられる電解質(塩)としては、特に限定されず従来公知のものを用いることができる。電解質としては、特に限定されないが、例えば、LiPF6(六フッ化リン酸リチウム)、LiClO4、LiAsF6、Li2SiF6、LiOSO2k2k+1〔kは1〜8の整数〕、LiN(SO2k2k+12〔kは1〜8の整数〕、LiPFn(Ck2k+16-n〔nは1〜5の整数、kは1〜8の整数〕、LiPF4(C24)、及びLiPF2(C242、LiBF4、LiAlO4、LiAlCl4、Li212b12-b〔bは0〜3の整数〕、LiBFq(Cs2s+14-q〔qは1〜3の整数、sは1〜8の整数〕、LiB(C242、LiBF2(C24)、LiB(C3422、LiPF4(C22)等が挙げられる。これらの電解質は、1種を単独で又は2種以上を組み合わせて用いられる。これらの中では、LiPF6が好ましい。このような電解質を用いることにより、過酷な温度や充放電電流の条件で用いられた場合においても、サイクル特性、保存特性及び連続充電特性がより優れる傾向にある。
[Non-aqueous electrolyte]
The electrolyte (salt) used for the non-aqueous electrolyte in the present embodiment is not particularly limited, and a conventionally known one can be used. The electrolyte is not particularly limited, for example, LiPF 6 (lithium hexafluorophosphate), LiClO 4, LiAsF 6, Li 2 SiF 6, LiOSO 2 C k F 2k + 1 [k is an integer of 1 to 8] LiN (SO 2 C k F 2k + 1 ) 2 [k is an integer of 1 to 8], LiPF n (C k F 2k + 1 ) 6-n [n is an integer of 1 to 5, k is 1 to 8 Integer], LiPF 4 (C 2 O 4 ), and LiPF 2 (C 2 O 4 ) 2 , LiBF 4 , LiAlO 4 , LiAlCl 4 , Li 2 B 12 F b H 12-b [b is 0 to 3 Integer], LiBF q (C s F 2s + 1 ) 4-q [q is an integer of 1-3, s is an integer of 1-8], LiB (C 2 O 4 ) 2 , LiBF 2 (C 2 O 4 ), LiB (C 3 O 4 H 2 ) 2 , LiPF 4 (C 2 O 2 ) and the like. These electrolytes are used singly or in combination of two or more. Of these, LiPF 6 is preferred. By using such an electrolyte, cycle characteristics, storage characteristics, and continuous charge characteristics tend to be more excellent even when used under severe temperature and charge / discharge current conditions.

本実施形態における非水電解質に用いられる非水溶媒としては、特に限定されず従来公知のものを用いることができる。非水溶媒としては、例えば、非プロトン性極性溶媒が好ましい。その具体例としては、エチレンカーボネート、プロピレンカーボネート、1,2−ブチレンカーボネート、2,3−ブチレンカーボネート、1,2−ペンチレンカーボネート、2,3−ペンチレンカーボネート、トリフルオロメチルエチレンカーボネート、フルオロエチレンカーボネート及び4,5−ジフルオロエチレンカーボネートなどの環状カーボネート;γーブチロラクトン及びγーバレロラクトンなどのラクトン;スルホランなどの環状スルホン;テトラヒドロフラン及びジオキサンなどの環状エーテル;エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、ジブチルカーボネート、エチルプロピルカーボネート及びメチルトリフルオロエチルカーボネートなどの鎖状カーボネート;アセトニトリルなどのニトリル;ジメチルエーテルなどの鎖状エーテル;プロピオン酸メチルなどの鎖状カルボン酸エステル;ジメトキシエタンなどの鎖状エーテルカーボネート化合物が挙げられる。   The non-aqueous solvent used in the non-aqueous electrolyte in the present embodiment is not particularly limited, and a conventionally known one can be used. As the non-aqueous solvent, for example, an aprotic polar solvent is preferable. Specific examples thereof include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, trifluoromethylethylene carbonate, fluoroethylene. Carbonates and cyclic carbonates such as 4,5-difluoroethylene carbonate; lactones such as γ-butyrolactone and γ-valerolactone; cyclic sulfones such as sulfolane; cyclic ethers such as tetrahydrofuran and dioxane; ethyl methyl carbonate, dimethyl carbonate, diethyl carbonate, methylpropyl Carbonate, methyl isopropyl carbonate, dipropyl carbonate, methyl butyl carbonate, dibutyl carbonate, ethyl Examples include chain carbonates such as rupropyl carbonate and methyl trifluoroethyl carbonate; nitriles such as acetonitrile; chain ethers such as dimethyl ether; chain carboxylic acid esters such as methyl propionate; chain ether carbonate compounds such as dimethoxyethane. .

このなかでも、非水溶媒はF元素を含まない化合物を用いることが好ましい。非水溶媒がF元素を含まないことにより、過度なフッ酸発生を抑制できる傾向にある。   Among these, the non-aqueous solvent is preferably a compound containing no F element. When the non-aqueous solvent does not contain the F element, there is a tendency that excessive hydrofluoric acid generation can be suppressed.

これらは1種を単独で又は2種以上を組み合わせて用いられる。   These are used singly or in combination of two or more.

なお、本実施形態の非水電解質は、液体であってもよく固体電解質であってもよい。   Note that the nonaqueous electrolyte of the present embodiment may be a liquid or a solid electrolyte.

本実施形態に用いられる塩基性化合物が、非水電解質に含まれる場合、塩基性化合物を非水溶媒に混合して用いることができる。また、塩基性化合物を固体電解質に混合しても用いることができる。   When the basic compound used in the present embodiment is contained in the non-aqueous electrolyte, the basic compound can be mixed with a non-aqueous solvent and used. Moreover, it can be used even if it mixes a basic compound with a solid electrolyte.

〔セパレーター〕
本実施形態に用いられ得るセパレーターとしては、非水電解質二次電池に用いられる従来公知のものを用いることができる。セパレーターとしては、例えば、従来の非水電解質二次電池に用いられる、ポリエチレン及びポリプロピレンなどのポリオレフィン樹脂の微多孔膜が挙げられる。その他、セパレーターとして、例えば、セルロース、芳香族ポリアミド、フッ素樹脂及びポリオレフィンなどの樹脂、並びに、アルミナ及びシリカなどの無機物の1種を単独で又は2種以上の混合物を含む、又は被覆させた不織布、抄紙、多孔膜などの構造体、固体電解質のフィルムが挙げられる。セパレーターは、イオンの透過性が高く、かつ正極と負極とを電気的に隔離する機能を有するものであればよい。
〔separator〕
As a separator that can be used in the present embodiment, a conventionally known separator used for a nonaqueous electrolyte secondary battery can be used. As a separator, the microporous film of polyolefin resins, such as polyethylene and a polypropylene, used for the conventional nonaqueous electrolyte secondary battery is mentioned, for example. In addition, as a separator, for example, a non-woven fabric containing or coated with a resin such as cellulose, aromatic polyamide, fluororesin and polyolefin, and one kind of inorganic substance such as alumina and silica, or a mixture of two or more kinds, Structures such as papermaking and porous films, and solid electrolyte films can be mentioned. Any separator may be used as long as it has a high ion permeability and has a function of electrically isolating the positive electrode and the negative electrode.

本実施形態に用いられる塩基性化合物が、セパレーターに含まれる場合、セパレーターの表面に塩基性化合物を被覆させて用いることができる。また、セパレーターに塩基性化合物を混合して用いることもできる。さらに、複数のセパレーター間に塩基性化合物を挟んで用いることもできる。また、塩基性化合物を薄膜に加工して、それ自体をセパレーターとして用いることもできる。   When the basic compound used in this embodiment is contained in the separator, the surface of the separator can be used by coating the basic compound. Moreover, a basic compound can also be mixed and used for a separator. Further, a basic compound may be sandwiched between a plurality of separators. Alternatively, the basic compound can be processed into a thin film and used as a separator.

〔外装体〕
本実施形態に用いられる外装体は、従来公知のものを用いることができる。外装体の材料としては、例えば、ステンレス、鉄及びアルミニウムなどの金属、並びに、その金属の表面を樹脂で被覆したラミネートフィルムが挙げられる。
[Exterior body]
A conventionally well-known thing can be used for the exterior body used for this embodiment. Examples of the material for the exterior body include metals such as stainless steel, iron, and aluminum, and a laminate film in which the surface of the metal is coated with a resin.

電解質の分解により発生したフッ酸は最終的に水素等のガスに変換される。そのため、フッ酸の発生に起因する外装体の膨張による電池性能劣化や安全性の低下が問題として挙げられる。本実施形態によると、塩基性化合物を含むため、電解質の分解により発生したフッ酸がガスに変換される前に塩基性化合物と反応しうる。これにより、フッ酸の発生に起因するガスの発生を抑制できる。そのため、外装体として膨張の影響を受けやすいラミネートフィルムや金属の角型を用いた場合に、ガス発生抑制による電池外装体の膨張抑制効果が特に効果的に奏されるため好ましい。   The hydrofluoric acid generated by the decomposition of the electrolyte is finally converted into a gas such as hydrogen. Therefore, battery performance deterioration and safety reduction due to expansion of the outer package due to generation of hydrofluoric acid are cited as problems. According to the present embodiment, since the basic compound is included, the hydrofluoric acid generated by the decomposition of the electrolyte can react with the basic compound before being converted into gas. Thereby, generation | occurrence | production of the gas resulting from generation | occurrence | production of a hydrofluoric acid can be suppressed. Therefore, when a laminate film or a metal square shape that is easily affected by expansion is used as the exterior body, the effect of suppressing expansion of the battery exterior body due to suppression of gas generation is particularly effective, which is preferable.

本実施形態に用いられる塩基性化合物が外装体に含まれる場合、外装体に塩基性化合物を被覆させたり、外装体に用いられる上記材料と塩基性化合物とを混合したりして、塩基性化合物を用いることができる。   When the basic compound used in the present embodiment is included in the outer package, the basic compound is coated on the outer package, or the material used for the outer package is mixed with the basic compound. Can be used.

本実施形態の非水電解質二次電池は、上述の構成を有する他は、従来公知のものと同様の構成を有していてもよい。本実施形態の非水電解質二次電池としては、例えば、リチウムイオン二次電池、及びリチウムイオンキャパシタが挙げられる。また、本実施形態の非水電解質二次電池の製造方法は、塩基性化合物を上述のようにして含ませる他は、従来の非水電解質二次電池の製造方法と同様であればよい。   The non-aqueous electrolyte secondary battery of the present embodiment may have the same configuration as a conventionally known one except that it has the above-described configuration. Examples of the nonaqueous electrolyte secondary battery of the present embodiment include a lithium ion secondary battery and a lithium ion capacitor. Moreover, the manufacturing method of the nonaqueous electrolyte secondary battery of this embodiment may be the same as the manufacturing method of the conventional nonaqueous electrolyte secondary battery except that the basic compound is contained as described above.

本実施形態の非水電解質二次電池は、自動車用途など、従来と同等以上の過酷な温度や充放電電流の条件で用いられた場合においても、サイクル特性、保存特性及び連続充電特性の全てに優れたものとなる。   The non-aqueous electrolyte secondary battery of this embodiment has all of cycle characteristics, storage characteristics, and continuous charge characteristics even when used under severe temperature and charge / discharge current conditions equal to or higher than those of conventional applications such as automobile applications. It will be excellent.

以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

<実施例1>
<正極活物質の合成>
・窒素吸着比表面積0.6m2/gのLiNi0.5Mn1.54の合成
遷移金属元素のモル比として1:3の割合の硫酸ニッケルと硫酸マンガンとを、水に溶解し、金属イオン濃度の総和が2mol/Lになるようにニッケル−マンガン混合水溶液を調製した。次いで、このニッケル−マンガン混合水溶液を、70℃に加温した濃度2mol/Lの炭酸ナトリウム水溶液3000mL中に、12.5mL/minの添加速度で120分間滴下した。なお、滴下時には、攪拌の下、200mL/minの流量の空気を水溶液中にバブリングしながら吹き込んだ。これにより析出物質が発生し、得られた析出物質を蒸留水で十分洗浄し、乾燥して、ニッケルマンガン化合物を得た。得られたニッケルマンガン化合物と粒径2μmの炭酸リチウムとを、リチウム:ニッケル:マンガンのモル比が1:0.5:1.5になるように秤量し、1時間乾式混合した後、得られた混合物を酸素雰囲気下において1000℃で5時間焼成し、LiNi0.5Mn1.54で表される正極活物質を得た。比表面積はカンタクロム社製オートソーブ−1を用いて窒素により測定、BET法により算出した。得られたLiNi0.5Mn1.54活物質の窒素吸着比表面積は0.6m2/gであった。また、正極活物質の電位を規定するために、負極に金属Liを用いたこと以外は下記に示す方法にて非水電解質二次電池を作製し、25℃に設定した恒温槽(二葉科学社製、恒温槽PLM−73S)に収容し、充放電装置(アスカ電子(株)製、充放電装置ACD−01)に接続した。次いで、満充電状態においてLiNi0.5Mn1.54とLiの電位差を測定したところ4.9Vであった。
<Example 1>
<Synthesis of positive electrode active material>
・ Synthesis of LiNi 0.5 Mn 1.5 O 4 with a nitrogen adsorption specific surface area of 0.6 m 2 / g. A molar ratio of transition metal elements of nickel sulfate and manganese sulfate in a ratio of 1: 3 was dissolved in water, and the metal ion concentration A nickel-manganese mixed aqueous solution was prepared so that the total was 2 mol / L. Subsequently, this nickel-manganese mixed aqueous solution was dropped into 3000 mL of a 2 mol / L sodium carbonate aqueous solution heated to 70 ° C. at an addition rate of 12.5 mL / min for 120 minutes. At the time of dropping, air with a flow rate of 200 mL / min was blown into the aqueous solution while stirring. As a result, a precipitated substance was generated, and the obtained precipitated substance was sufficiently washed with distilled water and dried to obtain a nickel manganese compound. The obtained nickel-manganese compound and lithium carbonate having a particle size of 2 μm were weighed so that the molar ratio of lithium: nickel: manganese was 1: 0.5: 1.5, and obtained after dry-mixing for 1 hour. The obtained mixture was fired at 1000 ° C. for 5 hours in an oxygen atmosphere to obtain a positive electrode active material represented by LiNi 0.5 Mn 1.5 O 4 . The specific surface area was measured with nitrogen using an autosorb-1 manufactured by Cantachrome Co., Ltd. and calculated by the BET method. The nitrogen adsorption specific surface area of the obtained LiNi 0.5 Mn 1.5 O 4 active material was 0.6 m 2 / g. Moreover, in order to regulate the potential of the positive electrode active material, a nonaqueous electrolyte secondary battery was prepared by the method shown below except that metal Li was used for the negative electrode, and a constant temperature bath (Futaba Kagakusha) set at 25 ° C. Made in a thermostatic chamber PLM-73S) and connected to a charge / discharge device (manufactured by Asuka Electronics Co., Ltd., charge / discharge device ACD-01). Next, when the potential difference between LiNi 0.5 Mn 1.5 O 4 and Li was measured in a fully charged state, it was 4.9 V.

<正極の作製>
上述のようにして得られた正極活物質と、導電助剤としてグラファイトの粉末(TIMCAL社製、KS−6)とアセチレンブラックの粉末(電気化学工業社製、HS−100)と、バインダーとしてポリフッ化ビニリデン溶液(クレハ社製、L#7208)とを固形分比で80:5:5:10の質量比で混合した。得られた混合物に、更に、平均粒径30μmの固体状の粒子であるLi3PO4を正極活物質量に対して1.0質量%となるように混合した。得られた混合物に、分散溶媒としてN−メチル−2−ピロリドンを固形分35質量%となるように投入して更に混合して、スラリー状の溶液を調製した。このスラリー状の溶液を厚さ20μmのアルミニウム箔の片面に塗布し、溶剤を乾燥除去した後、ロールプレスで圧延した。圧延後のものを直径16mmの円盤状に打ち抜いて正極を得た。
<Preparation of positive electrode>
The positive electrode active material obtained as described above, graphite powder (manufactured by TIMCAL, KS-6) and acetylene black powder (manufactured by Denki Kagaku Kogyo, HS-100) as a conductive assistant, and polyfluoride as a binder. A vinylidene chloride solution (manufactured by Kureha, L # 7208) was mixed at a mass ratio of 80: 5: 5: 10 in terms of solid content. The resulting mixture was further mixed with Li 3 PO 4 , which is solid particles having an average particle size of 30 μm, so as to be 1.0 mass% with respect to the amount of the positive electrode active material. To the obtained mixture, N-methyl-2-pyrrolidone as a dispersion solvent was added so as to have a solid content of 35% by mass and further mixed to prepare a slurry solution. This slurry-like solution was applied to one side of an aluminum foil having a thickness of 20 μm, and the solvent was dried and removed, followed by rolling with a roll press. The rolled product was punched into a disk shape having a diameter of 16 mm to obtain a positive electrode.

<負極の作製>
負極活物質としてグラファイト粉末(大阪ガスケミカル社製、OMAC1.2H/SS)及びグラファイト粉末(TIMCAL社製、SFG6)と、バインダーとしてスチレンブタジエンゴム(SBR)及びカルボキシメチルセルロース水溶液とを、90:10:1.5:1.8の固形分重量比で混合した。得られた混合物を、固形分濃度が45質量%となるように、分散溶媒としての水に添加して、スラリー状の溶液を調製した。このスラリー状の溶液を厚さ18μmの銅箔の片面に塗布し、溶剤を乾燥除去した後、ロールプレスで圧延した。圧延後のものを直径16mmの円盤状に打ち抜いて負極を得た。
<Production of negative electrode>
Graphite powder (OMAC1.2H / SS, manufactured by Osaka Gas Chemical Co., Ltd.) and graphite powder (TIMCAL, SFG6) as a negative electrode active material, and styrene-butadiene rubber (SBR) and an aqueous carboxymethylcellulose solution as a binder, 90:10: Mixed at a solids weight ratio of 1.5: 1.8. The obtained mixture was added to water as a dispersion solvent so that the solid content concentration was 45% by mass to prepare a slurry-like solution. This slurry-like solution was applied to one side of a copper foil having a thickness of 18 μm, and the solvent was removed by drying, followed by rolling with a roll press. The rolled product was punched into a disk shape having a diameter of 16 mm to obtain a negative electrode.

<非水電解質の調製>
エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを体積比1:2で混合した混合溶媒に、LiPF6を1mol/Lとなるように溶解して、非水電解質である電解液を得た。
<Preparation of non-aqueous electrolyte>
LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 1: 2 so as to be 1 mol / L to obtain an electrolyte solution which is a nonaqueous electrolyte. .

<電池の作製>
上述のようにして作製した正極と負極とをポリプロピレン製の微多孔膜からなるセパレーター(膜厚25μm、空孔率50%、孔径0.1μm〜1μm)の両側に重ね合わせた積層体を、ステンレス製の円盤型電池ケース(外装体)に挿入した。次いで、そこに、上記電解液を0.5mL注入し、積層体を電解液に浸漬した後、電池ケースを密閉して非水電解質二次電池を作製した。
<Production of battery>
A laminate in which the positive electrode and the negative electrode produced as described above are superimposed on both sides of a separator (thickness 25 μm, porosity 50%, pore diameter 0.1 μm to 1 μm) made of a polypropylene microporous film is made of stainless steel. It was inserted into a disc-shaped battery case (exterior body) made by the manufacturer. Next, 0.5 mL of the above electrolytic solution was injected therein, and the laminate was immersed in the electrolytic solution, and then the battery case was sealed to produce a nonaqueous electrolyte secondary battery.

なお、セパレーター及び微多孔膜(以下、「セパレーター等」という。)の空孔率は、下記のようにして求めた。まず、100mm四方のセパレーター等のサンプルの質量から目付けW(g/cm2)及びセパレーター等を構成する各成分の平均密度ρ(g/cm3)を算出した。それらと、セパレーター等の厚さd(cm)とから、下記式:
空孔率=(W/(d×ρ))×100(%)
により空孔率を導出した。
The porosity of the separator and the microporous membrane (hereinafter referred to as “separator etc.”) was determined as follows. First, the weight per unit area W (g / cm 2 ) and the average density ρ (g / cm 3 ) of each component constituting the separator were calculated from the mass of a sample such as a 100 mm square separator. From these and the thickness d (cm) of the separator or the like, the following formula:
Porosity = (W / (d × ρ)) × 100 (%)
From this, the porosity was derived.

また、セパレーター等の孔径は下記のようにして求めた。キャピラリー内部の流体は、流体の平均自由工程がキャピラリーの孔径よりも大きいときはクヌーセンの流れに、小さいときはポアズイユの流れに従うことが知られている。そこで、セパレーター等の透気度測定における空気の流れがクヌーセンの流れに、また、セパレーター等の透水度測定における水の流れがポアズイユの流れに従うと仮定した。平均孔径D(μm)及び曲路率T(無次元)を、空気の透過速度定数Rgas(m3/(m2・sec・Pa))、水の透過速度定数Rliq(m3/(m2・sec・Pa))、空気の分子速度ν(m/sec)、水の粘度η(Pa・sec)、標準圧力Ps(=101325Pa)、セパレーター等の空孔率ε(%)及び膜厚L(μm)から、下記式を用いて求めた。
D=2ν×(Rliq/Rgas)×(16η/3Ps)×106
T=(D×(ε/100)×ν/(3L×Ps×Rgas))1/2
ここで、Rgasは空気の透気度(sec)から下記式を用いて求めた。
gas=0.0001/(透気度×(6.424×10-4)×(0.01276×101325))
また、Rliqは透水度(cm3/(cm2・sec・Pa))から下記式を用いて求めた。
liq=透水度/100
なお、透水度は次のようにして求めた。直径41mmのステンレス製の透液セルに、予めアルコールに浸しておいたセパレーター等をセットし、該セパレーター等のアルコールを水で洗浄した後、約50000Paの差圧で水を透過させ、120sec間経過した際の透水量(cm3)より単位時間・単位圧力・単位面積当たりの透水量を計算し、これを透水度とした。また、νは気体定数R(=8.314)、絶対温度T(K)、円周率π、及び空気の平均分子量M(=2.896×10-2kg/mol)から、下記式を用いて求めた。
ν=((8R×T)/(π×M))1/2
Moreover, the hole diameter of a separator etc. was calculated | required as follows. It is known that the fluid inside the capillary follows a Knudsen flow when the mean free path of the fluid is larger than the capillary pore diameter, and a Poiseuille flow when it is small. Therefore, it was assumed that the air flow in the air permeability measurement of the separator or the like follows the Knudsen flow, and the water flow in the water permeability measurement of the separator or the like follows the Poiseuille flow. The average pore diameter D (μm) and the curvature T (dimensionless) are determined based on the air permeation rate constant R gas (m 3 / (m 2 · sec · Pa)) and the water permeation rate constant R liq (m 3 / ( m 2 · sec · Pa)), air molecular velocity ν (m / sec), water viscosity η (Pa · sec), standard pressure Ps (= 101325 Pa), separator ε porosity (%) and membrane It calculated | required from the thickness L (micrometer) using the following formula.
D = 2ν × (R liq / R gas ) × (16η / 3Ps) × 10 6
T = (D × (ε / 100) × ν / (3L × Ps × R gas )) 1/2
Here, R gas was calculated | required from the air permeability (sec) of air using the following formula.
R gas = 0.0001 / (air permeability × (6.424 × 10 −4 ) × (0.01276 × 101325))
R liq was determined from the water permeability (cm 3 / (cm 2 · sec · Pa)) using the following formula.
R liq = water permeability / 100
The water permeability was determined as follows. A separator or the like previously immersed in alcohol is set in a stainless steel liquid permeable cell with a diameter of 41 mm, and the alcohol such as the separator is washed with water, and then the water is allowed to permeate at a differential pressure of about 50000 Pa. The water permeation amount per unit time, unit pressure, and unit area was calculated from the water permeation amount (cm 3 ) at the time, and this was taken as the water permeability. Ν is a gas constant R (= 8.314), an absolute temperature T (K), a circumference π, and an average molecular weight M of air (= 2.896 × 10 −2 kg / mol). Used to determine.
ν = ((8R × T) / (π × M)) 1/2

<電池評価>
・初期充放電
得られた非水電解質二次電池(以下、単に「電池」ともいう。)を、25℃に設定した恒温槽(二葉科学社製、恒温槽PLM−73S)に収容し、充放電装置(アスカ電子(株)製、充放電装置ACD−01)に接続した。次いで、その電池を0.05Cの定電流で充電し、4.8Vに到達した後、4.8Vの定電圧で2時間充電し、0.3Cの定電流で3.0Vまで放電した。なお、1Cとは電池が1時間で放電される電流値である。
<Battery evaluation>
-Initial charging / discharging The obtained non-aqueous electrolyte secondary battery (hereinafter, also simply referred to as "battery") is accommodated in a thermostatic bath (manufactured by Futaba Kagaku, PLM-73S, manufactured by Futaba Kagaku) and charged. It connected to the discharge device (ASKA Electronics Co., Ltd. charge / discharge device ACD-01). Next, the battery was charged at a constant current of 0.05 C, reached 4.8 V, charged at a constant voltage of 4.8 V for 2 hours, and discharged to 3.0 V at a constant current of 0.3 C. 1C is a current value at which the battery is discharged in one hour.

・連続充電特性試験
上記初期充放電後の電池を、55℃に設定した恒温槽(二葉科学社製、恒温槽PLM−73S)に収容し、充放電装置(アスカ電子(株)製、充放電装置ACD−01)に接続した。次いで、その電池を0.5Cの定電流で充電し、4.8Vに到達した後、4.8Vの定電圧で6時間充電し、6時間時の電流値をリーク電流値として確認した。その後、その電池を0.5Cの定電流で3.0Vまで放電した。同様にして、電圧を上げた4.9Vの定電圧で6時間充電した場合の、6時間時のリーク電流値の確認も行った。なお、リーク電流値は電解質分解等のガス発生を伴う副反応の大小を示しており、大きいほど電解質分解が多く、ガス発生量も多くなる。
・ Continuous charge characteristic test The battery after the above initial charge / discharge is housed in a thermostatic chamber (manufactured by Futaba Kagaku Co., Ltd., thermostatic chamber PLM-73S) set at 55 ° C., and a charge / discharge device (manufactured by Asuka Electronics Co., Ltd., charge / discharge). Connected to device ACD-01). Next, the battery was charged with a constant current of 0.5 C, reached 4.8 V, charged for 6 hours at a constant voltage of 4.8 V, and the current value at 6 hours was confirmed as a leakage current value. Thereafter, the battery was discharged to 3.0 V with a constant current of 0.5C. Similarly, the leakage current value at 6 hours was confirmed when charging was performed at a constant voltage of 4.9 V for 6 hours. The leak current value indicates the magnitude of a side reaction accompanied by gas generation such as electrolyte decomposition. The larger the leak current value, the more the electrolyte decomposition occurs and the more the gas generation amount.

・サイクル試験
上記連続充電特性試験後の電池を、55℃に設定した恒温槽(二葉科学社製、恒温槽PLM−73S)に収容し、充放電装置(アスカ電子(株)製、充放電装置ACD−01)に接続した。次いで、その電池を0.5Cの定電流で4.8Vまで充電し、0.5Cの定電流で3.0Vまで放電した。この一連の充放電を1サイクルとし、更に28サイクル充放電した。続いて、その電池を0.1Cの定電流で充電し、4.8Vに到達した後、4.8Vの定電圧で1時間充電し、0.1Cの定電流で3.0Vまで放電した(30サイクル目)。1サイクル目及び30サイクル目の放電容量を確認した。
-Cycle test The battery after the continuous charge characteristic test is housed in a thermostat set at 55 ° C (manufactured by Futaba Kagaku Co., Ltd., thermostat PLM-73S), and a charge / discharge device (manufactured by Asuka Electronics Co., Ltd., charge / discharge device) ACD-01). The battery was then charged to 4.8V with a constant current of 0.5C and discharged to 3.0V with a constant current of 0.5C. This series of charging and discharging was defined as one cycle, and charging and discharging were further performed for 28 cycles. Subsequently, the battery was charged with a constant current of 0.1 C, reached 4.8 V, charged with a constant voltage of 4.8 V for 1 hour, and discharged to 3.0 V with a constant current of 0.1 C ( 30th cycle). The discharge capacities of the first cycle and the 30th cycle were confirmed.

・保存試験
上記初期充放電後の電池を、55℃に設定した恒温槽(二葉科学社製、恒温槽PLM−73S)に収容し、充放電装置(アスカ電子(株)製、充放電装置ACD−01)に接続した。次いで、その電池を0.5Cの定電流で充電し、4.8Vに到達した後、0.5Cの定電流で3.0Vまで放電して、そのときの放電容量を保存前放電容量として確認した。そのまま、電池を恒温槽中で5日間保存し、5日後に取り出した。
Storage test The battery after the above initial charge / discharge is housed in a thermostatic chamber (manufactured by Futaba Kagaku Co., Ltd., thermostatic chamber PLM-73S) set at 55 ° C., and a charge / discharge device (manufactured by Asuka Electronics Co., Ltd., charge / discharge device ACD) −01). Next, the battery was charged with a constant current of 0.5 C, reached 4.8 V, and then discharged to 3.0 V with a constant current of 0.5 C, and the discharge capacity at that time was confirmed as the discharge capacity before storage did. The battery was stored as it was in a thermostatic bath for 5 days, and taken out after 5 days.

その後、その電池を25℃に設定した恒温槽(二葉科学社製、恒温槽PLM−73S)に収容し、充放電装置(アスカ電子(株)製、充放電装置ACD−01)に接続した。次いで、その電池を0.5Cの定電流で充電し、4.8Vに到達した後、4.8Vの定電圧で1時間充電し、0.5Cの定電流で3.0Vまで放電して、そのときの放電容量を保存後放電容量として確認した。   Then, the battery was accommodated in a thermostat (manufactured by Futaba Kagaku Co., Ltd., thermostat PLM-73S) set at 25 ° C., and connected to a charge / discharge device (ASKA Electronics Co., Ltd., charge / discharge device ACD-01). Then, the battery was charged with a constant current of 0.5C, reached 4.8V, charged with a constant voltage of 4.8V for 1 hour, discharged to 3.0V with a constant current of 0.5C, The discharge capacity at that time was confirmed as the discharge capacity after storage.

・高速充放電試験
上記初期充放電後の電池を、25℃に設定した恒温槽(二葉科学社製、恒温槽PLM−73S)に収容し、充放電装置(アスカ電子(株)製、充放電装置ACD−01)に接続した。次いで、その電池を1/3Cの定電流で充電し、4.8Vに到達した後、4.8Vの定電圧で1時間充電し、1/3Cの定電流で3.0Vまで放電した。次いで、その電池を1/3Cの定電流で充電し、4.8Vに到達した後、4.8Vの定電圧で1時間充電し、5Cの定電流で3.0Vまで放電した。次いで、その電池を1/3Cの定電流で充電し、4.8Vに到達した後、4.8Vの定電圧で1時間充電し、10Cの定電流で3.0Vまで放電した。1/3Cの定電流で3.0Vまで放電したときの放電容量を基準として、5Cの定電流で3.0Vまで放電した時及び10Cの定電流で3.0Vまで放電した時の放電容量維持率(%)を確認した。
-High-speed charge / discharge test The battery after the initial charge / discharge is housed in a thermostat set at 25 ° C (manufactured by Futaba Kagaku Corporation, thermostat PLM-73S), and a charge / discharge device (ASKA Electronics Co., Ltd., charge / discharge). Connected to device ACD-01). Next, the battery was charged with a constant current of 1/3 C, reached 4.8 V, charged for 1 hour with a constant voltage of 4.8 V, and discharged to 3.0 V with a constant current of 1/3 C. Next, the battery was charged with a constant current of 1/3 C, reached 4.8 V, charged for 1 hour with a constant voltage of 4.8 V, and discharged to 3.0 V with a constant current of 5 C. Next, the battery was charged with a constant current of 1/3 C, reached 4.8 V, charged for 1 hour with a constant voltage of 4.8 V, and discharged to 3.0 V with a constant current of 10 C. Maintaining discharge capacity when discharging to 3.0V with a constant current of 5C and discharging to 3.0V with a constant current of 10C, based on the discharge capacity when discharging to 3.0V with a constant current of 1 / 3C The rate (%) was confirmed.

<実施例2>
正極活物質量に対して1.0質量%のLi3PO4に代えて、正極活物質量に対して0.9質量%の平均粒径10μmのLi2CO3を用いたこと以外は実施例1と同様にして、非水電解質二次電池を作製して、電池評価を行った。その結果を表1に示す。
<Example 2>
Implemented except for using Li 2 CO 3 with an average particle diameter of 10 μm of 0.9% by mass with respect to the amount of the positive electrode active material instead of 1.0% by mass of Li 3 PO 4 with respect to the amount of the positive electrode active material In the same manner as in Example 1, a nonaqueous electrolyte secondary battery was produced and evaluated for the battery. The results are shown in Table 1.

<実施例3>
正極活物質量に対して1.0質量%のLi3PO4に代えて、正極活物質量に対して0.8質量%の平均粒径30μmのLi2SiO3を用いたこと以外は実施例1と同様にして、非水電解質二次電池を作製して、電池評価を行った。その結果を表1に示す。
<Example 3>
Implemented except that Li 2 SiO 3 with an average particle size of 30 μm and 0.8 mass% based on the amount of the positive electrode active material was used instead of 1.0 mass% Li 3 PO 4 with respect to the amount of the positive electrode active material In the same manner as in Example 1, a nonaqueous electrolyte secondary battery was produced and evaluated for the battery. The results are shown in Table 1.

<実施例4>
正極活物質量に対して1.0質量%のLi3PO4に代えて、正極活物質量に対して1.4質量%の平均粒径10μmのNa3PO4を用いたこと以外は実施例1と同様にして、非水電解質二次電池を作製して、電池評価を行った。その結果を表1に示す。
<Example 4>
Implemented except that instead of 1.0% by mass of Li 3 PO 4 with respect to the positive electrode active material amount, 1.4% by mass of Na 3 PO 4 with an average particle diameter of 10 μm with respect to the positive electrode active material amount was used. In the same manner as in Example 1, a nonaqueous electrolyte secondary battery was produced and evaluated for the battery. The results are shown in Table 1.

<実施例5>
平均粒径10μmのNa3PO4に代えて、平均粒径105μmのNa3PO4を用いたこと以外は実施例4と同様にして非水電解質二次電池を作製して、電池評価を行った。その結果を表1に示す。
<Example 5>
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that Na 3 PO 4 having an average particle diameter of 105 μm was used instead of Na 3 PO 4 having an average particle diameter of 10 μm, and the battery was evaluated. It was. The results are shown in Table 1.

<実施例6>
平均粒径10μmのNa3PO4に代えて、平均粒径60μmのNa3PO4を用いたこと以外は実施例4と同様にして非水電解質二次電池を作製して、電池評価を行った。その結果を表1に示す。
<Example 6>
A nonaqueous electrolyte secondary battery was fabricated in the same manner as in Example 4 except that Na 3 PO 4 having an average particle diameter of 60 μm was used instead of Na 3 PO 4 having an average particle diameter of 10 μm, and the battery was evaluated. It was. The results are shown in Table 1.

<実施例7>
平均粒径10μmのNa3PO4に代えて、平均粒径5μmのNa3PO4を用いたこと以外は実施例4と同様にして非水電解質二次電池を作製して、電池評価を行った。その結果を表1に示す。なお、粒径は以下の方法にて調整した。
<Example 7>
A nonaqueous electrolyte secondary battery was fabricated in the same manner as in Example 4 except that Na 3 PO 4 having an average particle diameter of 5 μm was used instead of Na 3 PO 4 having an average particle diameter of 10 μm, and the battery was evaluated. It was. The results are shown in Table 1. The particle size was adjusted by the following method.

<平均粒径の調整>
100mlビーカー中で50mlの精製水にNa3PO420gを溶解し、40℃のホットプレート上で3日間放置することで水を除去し、更に100℃で真空乾燥機をすることで平均粒径180μmのNa3PO4を得た。得られたNa3PO4を乳鉢と乳棒を用いて粉砕し、その後目開き130μm、80μm、15μm及び5μmのふるいを通すことで、それぞれ平均粒径105μm、60μm、10μm及び5μmのNa3PO4粒子を得た。
<Adjustment of average particle size>
Dissolve 20 g of Na 3 PO 4 in 50 ml of purified water in a 100 ml beaker, leave it on a hot plate at 40 ° C. for 3 days to remove water, and further vacuum dry at 100 ° C. to obtain an average particle size 180 μm Na 3 PO 4 was obtained. The obtained Na 3 PO 4 was pulverized using a mortar and pestle, and then passed through sieves having openings of 130 μm, 80 μm, 15 μm and 5 μm, so that Na 3 PO 4 having an average particle size of 105 μm, 60 μm, 10 μm and 5 μm was obtained. Particles were obtained.

<実施例8>
正極活物質量に対して1.4質量%のNa3PO4に代えて、正極活物質量に対して14質量%のNa3PO4を用いたこと以外は実施例4と同様にして、非水電解質二次電池を作製して、電池評価を行った。その結果を表1に示す。
<Example 8>
In the same manner as in Example 4 except that 14% by mass of Na 3 PO 4 with respect to the amount of the positive electrode active material was used instead of 1.4% by mass of Na 3 PO 4 with respect to the amount of the positive electrode active material, A nonaqueous electrolyte secondary battery was produced and evaluated. The results are shown in Table 1.

<実施例9>
正極活物質量に対して1.4質量%のNa3PO4に代えて、正極活物質量に対して0.02質量%のNa3PO4を用いたこと以外は実施例4と同様にして、非水電解質二次電池を作製して、電池評価を行った。その結果を表1に示す。
<Example 9>
The same procedure as in Example 4 was performed except that 0.02% by mass of Na 3 PO 4 with respect to the amount of the positive electrode active material was used instead of 1.4% by mass of Na 3 PO 4 with respect to the amount of the positive electrode active material. Then, a non-aqueous electrolyte secondary battery was produced and evaluated. The results are shown in Table 1.

<実施例10>
比表面積が0.48m2/gのLiNi0.5Mn1.54を用いたこと以外は実施例4と同様にして非水電解質二次電池を作製して、電池評価を行った。その結果を表1に示す。なお、窒素吸着比表面積0.48m2/gのLiNi0.5Mn1.54の製造方法を以下に示す。
<Example 10>
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that LiNi 0.5 Mn 1.5 O 4 having a specific surface area of 0.48 m 2 / g was used, and the battery was evaluated. The results are shown in Table 1. Incidentally, showing the manufacturing method of the nitrogen adsorption specific surface area 0.48m 2 / g LiNi 0.5 Mn 1.5 O 4 of the following.

<正極活物質の合成>
・窒素吸着比表面積0.48m2/gのLiNi0.5Mn1.54の合成
遷移金属元素のモル比として1:3の割合の硫酸ニッケルと硫酸マンガンとを、水に溶解し、金属イオン濃度の総和が2mol/Lになるようにニッケル−マンガン混合水溶液を調製した。次いで、このニッケル−マンガン混合水溶液を、70℃に加温した濃度2mol/Lの炭酸ナトリウム水溶液3000mL中に、12.5mL/minの添加速度で120分間滴下した。なお、滴下時には、攪拌の下、200mL/minの流量の空気を水溶液中にバブリングしながら吹き込んだ。これにより析出物質が発生し、得られた析出物質を蒸留水で十分洗浄し、乾燥して、ニッケルマンガン化合物を得た。得られたニッケルマンガン化合物と粒径2μmの炭酸リチウムとを、リチウム:ニッケル:マンガンのモル比が1:0.5:1.5になるように秤量し、1時間乾式混合した後、得られた混合物を酸素雰囲気下において1000℃で8時間焼成し、LiNi0.5Mn1.54で表される正極活物質を得た。比表面積はカンタクロム社製オートソーブ−1を用いて窒素により測定、BET法により算出した。得られたLiNi0.5Mn1.54活物質の窒素吸着比表面積は0.48m2/gであった。
<Synthesis of positive electrode active material>
・ Synthesis of LiNi 0.5 Mn 1.5 O 4 with a nitrogen adsorption specific surface area of 0.48 m 2 / g As a molar ratio of transition metal elements, nickel sulfate and manganese sulfate in a ratio of 1: 3 were dissolved in water, and the metal ion concentration A nickel-manganese mixed aqueous solution was prepared so that the total was 2 mol / L. Subsequently, this nickel-manganese mixed aqueous solution was dropped into 3000 mL of a 2 mol / L sodium carbonate aqueous solution heated to 70 ° C. at an addition rate of 12.5 mL / min for 120 minutes. At the time of dropping, air with a flow rate of 200 mL / min was blown into the aqueous solution while stirring. As a result, a precipitated substance was generated, and the obtained precipitated substance was sufficiently washed with distilled water and dried to obtain a nickel manganese compound. The obtained nickel-manganese compound and lithium carbonate having a particle size of 2 μm were weighed so that the molar ratio of lithium: nickel: manganese was 1: 0.5: 1.5, and obtained after dry-mixing for 1 hour. The obtained mixture was baked at 1000 ° C. for 8 hours in an oxygen atmosphere to obtain a positive electrode active material represented by LiNi 0.5 Mn 1.5 O 4 . The specific surface area was measured with nitrogen using an autosorb-1 manufactured by Cantachrome Co., Ltd. and calculated by the BET method. The nitrogen adsorption specific surface area of the obtained LiNi 0.5 Mn 1.5 O 4 active material was 0.48 m 2 / g.

<実施例11>
正極活物質量に対して1.4質量%のNa3PO4を正極に混合したことに代えて、正極にはNa3PO4を含まず、負極活物質量に対して2.0質量%(非水電解質二次電池を作製時の正極活物質に対して0.8質量%に相当)のNa3PO4を負極に混合し用いたこと以外は実施例4と同様にして、非水電解質二次電池を作製して、電池評価を行った。その結果を表1に示す。なお、負極の製造方法を以下に示す。
<Example 11>
Instead of mixing 1.4% by mass of Na 3 PO 4 with respect to the amount of the positive electrode active material into the positive electrode, the positive electrode does not contain Na 3 PO 4 and is 2.0% by mass with respect to the amount of the negative electrode active material. Except that Na 3 PO 4 ( corresponding to 0.8% by mass with respect to the positive electrode active material at the time of producing the nonaqueous electrolyte secondary battery) was mixed with the negative electrode and used in the same manner as in Example 4, nonaqueous An electrolyte secondary battery was produced and evaluated. The results are shown in Table 1. In addition, the manufacturing method of a negative electrode is shown below.

<負極の作製>
負極活物質としてグラファイト粉末(大阪ガスケミカル社製、OMAC1.2H/SS)及びグラファイト粉末(TIMCAL社製、SFG6)と、バインダーとしてスチレンブタジエンゴム(SBR)及びカルボキシメチルセルロース水溶液とを、90:10:1.5:1.8の固形分重量比で混合した。得られた混合物に、更に、平均粒径10μmの固体状の粒子であるNa3PO4を負極活物質量に対して2.0質量%(非水電解質二次電池を作製時の正極活物質に対して0.8質量%に相当)となるように混合した後、固形分濃度が45質量%となるように、分散溶媒としての水に添加して、スラリー状の溶液を調製した。このスラリー状の溶液を厚さ18μmの銅箔の片面に塗布し、溶剤を乾燥除去した後、ロールプレスで圧延した。圧延後のものを直径16mmの円盤状に打ち抜いて負極を得た。
<Production of negative electrode>
Graphite powder (OMAC1.2H / SS, manufactured by Osaka Gas Chemical Co., Ltd.) and graphite powder (TIMCAL, SFG6) as a negative electrode active material, and styrene-butadiene rubber (SBR) and an aqueous carboxymethylcellulose solution as a binder, 90:10: Mixed at a solids weight ratio of 1.5: 1.8. Further, Na 3 PO 4 , which is solid particles having an average particle diameter of 10 μm, is added to the obtained mixture by 2.0 mass% with respect to the amount of the negative electrode active material (the positive electrode active material at the time of producing the nonaqueous electrolyte secondary battery) Was added to water as a dispersion solvent to prepare a slurry-like solution so that the solid content concentration was 45% by mass. This slurry-like solution was applied to one side of a copper foil having a thickness of 18 μm, and the solvent was removed by drying, followed by rolling with a roll press. The rolled product was punched into a disk shape having a diameter of 16 mm to obtain a negative electrode.

<実施例12>
正極活物質量に対して1.4質量%のNa3PO4を正極に混合したことに代えて、正極にはNa3PO4を含まず、LiPF6のmol量に対して1mol%のNa3PO4を含ませた電解液を用いたこと以外は実施例4と同様にして、非水電解質二次電池を作製して、電池評価を行った。その結果を表2に示す。なお、非水電解質の調製方法を以下に示す。
<Example 12>
Instead of mixing 1.4% by mass of Na 3 PO 4 with respect to the amount of the positive electrode active material into the positive electrode, the positive electrode does not contain Na 3 PO 4 and 1 mol% of NaPF with respect to the mol amount of LiPF 6. A non-aqueous electrolyte secondary battery was produced and evaluated in the same manner as in Example 4 except that the electrolyte containing 3 PO 4 was used. The results are shown in Table 2. In addition, the preparation method of a nonaqueous electrolyte is shown below.

<実施例13>
電解液中にLiPF6のmol量に対して12mol%のNa3PO4を含ませたこと以外は実施例12と同様にして、非水電解質二次電池を作製して、電池評価を行った。その結果を表2に示す。なお、非水電解質の調製方法を以下に示す。
<Example 13>
A nonaqueous electrolyte secondary battery was fabricated and evaluated in the same manner as in Example 12 except that 12 mol% of Na 3 PO 4 was included in the electrolytic solution with respect to the molar amount of LiPF 6 . . The results are shown in Table 2. In addition, the preparation method of a nonaqueous electrolyte is shown below.

<非水電解質の調製>
エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを体積比1:2で混合した混合溶媒に、LiPF6を1mol/Lとなるように溶解して非水電解質である電解液を得た。更に、この電解液の中に上記量となるようにNa3PO4を加えて振とう機(タイテック社製、SR−1)にセットし、150r/minのスピードで15min振とうすることでNa3PO4が懸濁した電解液を得た。
<Preparation of non-aqueous electrolyte>
LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 1: 2 so as to be 1 mol / L to obtain an electrolytic solution which is a nonaqueous electrolyte. Further, Na 3 PO 4 is added to the electrolyte so as to have the above amount, and the mixture is set on a shaker (SR-1 manufactured by Taitec Co., Ltd.), and shaken for 15 min at a speed of 150 r / min. 3 An electrolytic solution in which PO 4 was suspended was obtained.

<実施例14>
外装体を円盤型からアルミニウムラミネートフィルムに変えたこと以外は、実施例4とほぼ同様にして、非水電解質二次電池を作製して、電池評価を行った。その結果を表2に示す。なお非水電解質二次電池の作製において異なる部分を下記に示す。
<Example 14>
A non-aqueous electrolyte secondary battery was fabricated and evaluated in the same manner as in Example 4 except that the outer package was changed from a disk shape to an aluminum laminate film. The results are shown in Table 2. Different parts in the production of the nonaqueous electrolyte secondary battery are shown below.

<アルミニウムラミネートフィルム外装角型電池の作製>
正極と負極をそれぞれ幅約40mm、長さ60mmに切断し、正極リードと負極リードをそれぞれ取り付けた。正極と負極とをポリプロピレン製の微多孔膜からなるセパレーター(膜厚25μm、空孔率50%、孔径0.1μm〜1μm)の両側に重ね合わせた積層体を、アルミニウムラミネートフィルムからなる袋状の外装部材内に入れた。次いで、そこに、LiPF6を1mol/l溶解したエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)の体積比1:2の電解液を2.0mL注入し、袋を熱融着して封止し、アルミラミネートフィルム外装角型電池を得た。
<Production of aluminum laminated film exterior square battery>
The positive electrode and the negative electrode were cut into a width of about 40 mm and a length of 60 mm, respectively, and a positive electrode lead and a negative electrode lead were attached. A laminated body in which a positive electrode and a negative electrode are laminated on both sides of a separator (thickness 25 μm, porosity 50%, pore diameter 0.1 μm to 1 μm) made of a polypropylene microporous film is formed into a bag-like shape made of an aluminum laminate film. It put in the exterior member. Next, 2.0 mL of an electrolyte solution having a volume ratio of 1: 2 of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in which 1 mol / l of LiPF 6 was dissolved was injected therein, and the bag was heat-sealed and sealed. Thus, an aluminum laminate film-covered prismatic battery was obtained.

<実施例15>
正極にNa3PO4を含む代わりに、下記のようにして得たアルミニウムラミネートフィルムの内側にNa3PO4を担持させた外装体を用いたこと以外は、実施例14と同様にして、非水電解質二次電池を作製して、電池評価を行った。その結果を表2に示す。
<Example 15>
Instead of containing Na 3 PO 4 in the positive electrode, the same procedure as in Example 14 was used except that an exterior body in which Na 3 PO 4 was supported inside the aluminum laminate film obtained as follows was used. A water electrolyte secondary battery was produced and evaluated. The results are shown in Table 2.

<アルミニウムラミネートフィルムへのNa3PO4の担持>
PVDF8質量%を含むNMP溶液10g中に、Na3PO410gを入れて撹拌することで50質量%のNa3PO4を含むPVDF/NMP分散液を得た。これをNa3PO4が正極活物質に対して1.0質量%となるようにアルミニウムラミネートフィルムの内側に塗布した後、真空下100℃で2h乾燥させることで、Na3PO4を担持したアルミニウムラミネートフィルムを得た。
<Supporting Na 3 PO 4 on Aluminum Laminate Film>
10 g of Na 3 PO 4 was added to 10 g of NMP solution containing 8% by mass of PVDF and stirred to obtain a PVDF / NMP dispersion containing 50% by mass of Na 3 PO 4 . This was applied to the inside of the aluminum laminate film so that Na 3 PO 4 was 1.0% by mass with respect to the positive electrode active material, and then dried at 100 ° C. for 2 hours under vacuum to carry Na 3 PO 4 . An aluminum laminate film was obtained.

<実施例16>
正極活物質量に対して1.0質量%のLi3PO4に代えて、正極活物質量に対して1.8質量%の平均粒径50μmのK3PO4を用いたこと以外は実施例1と同様にして、非水電解質二次電池を作製して、電池評価を行った。その結果を表2に示す。
<Example 16>
Implemented except that K 3 PO 4 having an average particle diameter of 50 μm of 1.8% by mass with respect to the amount of the positive electrode active material was used instead of 1.0% by mass of Li 3 PO 4 with respect to the amount of the positive electrode active material. In the same manner as in Example 1, a nonaqueous electrolyte secondary battery was produced and evaluated for the battery. The results are shown in Table 2.

<実施例17>
正極活物質量に対して1.0質量%のLi3PO4に代えて、正極活物質量に対して1.3質量%の平均粒径10μmのCa3(PO42を用いたこと以外は実施例1と同様にして、非水電解質二次電池を作製して、電池評価を行った。その結果を表2に示す。
<Example 17>
Instead of 1.0% by mass of Li 3 PO 4 with respect to the amount of the positive electrode active material, 1.3% by mass of Ca 3 (PO 4 ) 2 having an average particle diameter of 10 μm with respect to the amount of the positive electrode active material was used. Except that, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and the battery was evaluated. The results are shown in Table 2.

<実施例18>
正極活物質量に対して1.0質量%のLi3PO4に代えて、正極活物質量に対して1.1質量%の平均粒径10μmのAlPO4を用いたこと以外は実施例1と同様にして、非水電解質二次電池を作製して、電池評価を行った。その結果を表2に示す。
<Example 18>
Example 1 except that AlPO 4 having an average particle diameter of 10 μm of 1.1% by mass with respect to the amount of the positive electrode active material was used instead of 1.0% by mass of Li 3 PO 4 with respect to the amount of the positive electrode active material. In the same manner as described above, a non-aqueous electrolyte secondary battery was produced and evaluated for the battery. The results are shown in Table 2.

<実施例19>
Na3PO4を正極に混合する代わりに、1.4質量%のNa3PO4をコーティングしたLiNi0.5Mn1.54を用いたこと以外は、実施例4と同様にして、非水電解質二次電池を作製して、電池評価を行った。その結果を表2に示す。
<Example 19>
Instead of mixing the Na 3 PO 4 in the positive electrode, except for using LiNi 0.5 Mn 1.5 O 4 coated with Na 3 PO 4 1.4% by weight, in the same manner as in Example 4, a non-aqueous electrolyte secondary A secondary battery was prepared and evaluated. The results are shown in Table 2.

<コーティング>
・LiNi0.5Mn1.54のNa3PO4コーティング
Na3PO40.50gを精製水50mLに溶解し、0.06mol/LのNa3PO4水溶液50mLを調整した。次いで、0.06mol/LのNa3PO4水溶液中にLiNi0.5Mn1.54を35g加えて1時間撹拌を行った後、乾燥して水を除去することで1.4質量%のNa3PO4をコーティングしたLiNi0.5Mn1.54を得た。コーティング量は、マイクロウェーブ(アナリティクイエナ社製 TOPwave(登録商標))により酸分解したNa3PO4コーティングLiNi0.5Mn1.54をICP(Perkin Elmer社製 Optima8300)を用いてP量を測定することで確認した。
<Coating>
-LiNi 0.5 Mn 1.5 O 4 Na 3 PO 4 Coating 0.50 g of Na 3 PO 4 was dissolved in 50 mL of purified water to prepare 50 mL of a 0.06 mol / L Na 3 PO 4 aqueous solution. Next, 35 g of LiNi 0.5 Mn 1.5 O 4 was added to a 0.06 mol / L Na 3 PO 4 aqueous solution and stirred for 1 hour, followed by drying to remove water, thereby removing 1.4% by mass of Na 3. LiNi 0.5 Mn 1.5 O 4 coated with PO 4 was obtained. The amount of coating is measured using ICP (Optima 8300 manufactured by Perkin Elmer) for Na 3 PO 4 coated LiNi 0.5 Mn 1.5 O 4 acid-decomposed by microwave (TOPwave (registered trademark) manufactured by Analyque Jena). I confirmed that.

<実施例20>
Na3PO4の代わりに、1.8質量%のK3PO4をコーティングしたLiNi0.5Mn1.54を用いたこと以外は、実施例19と同様にして、非水電解質二次電池を作製して、電池評価を行った。その結果を表2に示す。
<Example 20>
Instead of Na 3 PO 4, except for using LiNi 0.5 Mn 1.5 O 4 coated with K 3 PO 4 1.8% by weight, in the same manner as in Example 19, producing a non-aqueous electrolyte secondary battery Then, battery evaluation was performed. The results are shown in Table 2.

<コーティング>
・LiNi0.5Mn1.54のK3PO4コーティング
3PO40.64gを精製水50mLに溶解し、0.06mol/LのK3PO4水溶液50mLを調製した。次いで、0.06mol/LのK3PO4水溶液中にLiNi0.5Mn1.54を35g加えて1時間撹拌を行った後、乾燥して水を除去することで1.8質量%のK3PO4をコーティングしたLiNi0.5Mn1.54を得た。コーティング量は、マイクロウェーブ(アナリティクイエナ社製 TOPwave(登録商標))により酸分解したK3PO4コーティングLiNi0.5Mn1.54をICP(Perkin Elmer社製 Optima8300)を用いてP量を測定することで確認した。
<Coating>
-LiNi 0.5 Mn 1.5 O 4 K 3 PO 4 coating 0.63 g of K 3 PO 4 was dissolved in 50 mL of purified water to prepare 50 mL of a 0.06 mol / L aqueous K 3 PO 4 solution. Next, 35 g of LiNi 0.5 Mn 1.5 O 4 was added to 0.06 mol / L K 3 PO 4 aqueous solution and stirred for 1 hour, followed by drying to remove water and 1.8% by mass of K 3 LiNi 0.5 Mn 1.5 O 4 coated with PO 4 was obtained. The amount of coating is measured using ICP (Optima 8300 manufactured by Perkin Elmer) for K 3 PO 4 coated LiNi 0.5 Mn 1.5 O 4 acid-decomposed by microwave (TOPwave (registered trademark) manufactured by Analiquiena). I confirmed that.

<実施例21>
正極の正極活物質量をLiNi1/3Mn1/3Co1/32に変え、充電電圧を全て4.2Vに変更したこと以外は実施例4と同様にして、非水電解質二次電池を作製して、電池評価を行った。その結果を表3に示す。
<Example 21>
The nonaqueous electrolyte secondary was the same as in Example 4 except that the amount of the positive electrode active material of the positive electrode was changed to LiNi 1/3 Mn 1/3 Co 1/3 O 2 and the charging voltage was all changed to 4.2V. A battery was prepared and evaluated. The results are shown in Table 3.

<LiNi1/3Mn1/3Co1/32の合成>
遷移金属元素のモル比として1:1:1の割合の硫酸ニッケルと硫酸マンガンと硫酸コバルトを、水に溶解し、金属イオン濃度の総和が2mol/Lになるようにニッケル−マンガン−コバルト混合水溶液を調製した。次いで、このニッケル−マンガン−コバルト混合水溶液を、70℃に加温した濃度2mol/Lの炭酸ナトリウム水溶液3000mL中に、12.5mL/minの添加速度で120分間滴下した。なお、滴下時には、攪拌の下、200mL/minの流量の窒素を水溶液中にバブリングしながら吹き込んだ。これにより析出物質が発生し、得られた析出物質を蒸留水で十分洗浄し、乾燥して、ニッケルマンガンコバルト化合物を得た。得られたニッケルマンガンコバルト化合物と粒径2μmの炭酸リチウムとを、リチウム:ニッケル:マンガン:コバルトのモル比が3:1:1:1になるように秤量し、1時間乾式混合した後、得られた混合物を大気中において950℃で5時間焼成し、LiNi1/3Mn1/3Co1/32で表される正極活物質を得た。得られたLiNi1/3Mn1/3Co1/32活物質の窒素吸着比表面積は1.0m2/gであった。
<Synthesis of LiNi 1/3 Mn 1/3 Co 1/3 O 2 >
A nickel-manganese-cobalt mixed aqueous solution in which nickel sulfate, manganese sulfate, and cobalt sulfate in a molar ratio of the transition metal element of 1: 1: 1 are dissolved in water so that the total metal ion concentration is 2 mol / L. Was prepared. Subsequently, this nickel-manganese-cobalt mixed aqueous solution was dropped into 3000 mL of a 2 mol / L sodium carbonate aqueous solution heated to 70 ° C. at an addition rate of 12.5 mL / min for 120 minutes. At the time of dropping, nitrogen at a flow rate of 200 mL / min was bubbled into the aqueous solution while stirring. As a result, a precipitated substance was generated, and the obtained precipitated substance was sufficiently washed with distilled water and dried to obtain a nickel manganese cobalt compound. The obtained nickel manganese cobalt compound and lithium carbonate having a particle size of 2 μm were weighed so that the molar ratio of lithium: nickel: manganese: cobalt was 3: 1: 1: 1 and dry-mixed for 1 hour. The obtained mixture was fired at 950 ° C. for 5 hours in the air to obtain a positive electrode active material represented by LiNi 1/3 Mn 1/3 Co 1/3 O 2 . The obtained NiNi 1/3 Mn 1/3 Co 1/3 O 2 active material had a nitrogen adsorption specific surface area of 1.0 m 2 / g.

<比較例1>
正極にLi3PO4を含まないこと以外は実施例1と同様にして、非水電解質二次電池を作製して、電池評価を行った。その結果を表2に示す。
<Comparative Example 1>
A non-aqueous electrolyte secondary battery was produced and evaluated in the same manner as in Example 1 except that the positive electrode did not contain Li 3 PO 4 . The results are shown in Table 2.

<比較例2>
正極にNa3PO4を含まないこと以外は実施例14と同様にして、非水電解質二次電池を作製して、電池評価を行った。その結果を表2に示す。
<Comparative example 2>
A non-aqueous electrolyte secondary battery was produced and evaluated in the same manner as in Example 14 except that the positive electrode did not contain Na 3 PO 4 . The results are shown in Table 2.

<比較例3>
正極の正極活物質量をLiNi1/3Mn1/3Co1/32に変え、充電電圧を4.2Vに変更したこと以外は比較例1と同様にして、非水電解質二次電池を作製し、電池評価を行った。その結果を表3に示す。
<Comparative Example 3>
The non-aqueous electrolyte secondary battery is the same as Comparative Example 1 except that the positive electrode active material amount of the positive electrode is changed to LiNi 1/3 Mn 1/3 Co 1/3 O 2 and the charging voltage is changed to 4.2V. The battery was evaluated. The results are shown in Table 3.

Figure 2014067700
充電電圧4.8V LiNi0.5Mn1.54
Figure 2014067700
Charging voltage 4.8V LiNi 0.5 Mn 1.5 O 4

Figure 2014067700
充電電圧4.8V LiNi0.5Mn1.54
Figure 2014067700
Charging voltage 4.8V LiNi 0.5 Mn 1.5 O 4

Figure 2014067700
充電電圧4.2V LiNi1/3Mn1/3Co1/32
Figure 2014067700
Charging voltage 4.2V LiNi 1/3 Mn 1/3 Co 1/3 O 2

本発明によると、4.2Vの電圧条件においてもリーク電流、サイクル特性、保存特性の改善効果を発揮するが、それ以上の高電圧条件で更に大きな改善効果を発揮することは明白である。   According to the present invention, the effect of improving leakage current, cycle characteristics, and storage characteristics is exhibited even under a voltage condition of 4.2 V, but it is apparent that a greater improvement effect is exhibited under higher voltage conditions.

本発明の非水電解質二次電池は、各種民生用機器用電源、自動車用電源への産業上利用可能性を有する。   The nonaqueous electrolyte secondary battery of the present invention has industrial applicability to various consumer equipment power supplies and automobile power supplies.

Claims (17)

正極と、負極と、非水電解質と、外装体と、を少なくとも備え、
前記正極、前記負極、前記非水電解質及び前記外装体のうち少なくとも1つが塩基性化合物を含む、非水電解質二次電池。
A positive electrode, a negative electrode, a non-aqueous electrolyte, and an outer package,
A nonaqueous electrolyte secondary battery in which at least one of the positive electrode, the negative electrode, the nonaqueous electrolyte, and the outer package contains a basic compound.
前記塩基性化合物に含まれるアニオンの塩基解離定数(pKb)は、10.83以下である、請求項1に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein a base dissociation constant (pKb) of an anion contained in the basic compound is 10.83 or less. 前記塩基性化合物に含まれるアニオンは、PO4 3-、HPO4 2-、CO3 2-、HCO3 -、及びSiO3 2-からなる群より選ばれる1種以上である、請求項1又は2に記載の非水電解質二次電池。 The anion contained in the basic compound is at least one selected from the group consisting of PO 4 3− , HPO 4 2− , CO 3 2− , HCO 3 , and SiO 3 2−. 2. The nonaqueous electrolyte secondary battery according to 2. 前記塩基性化合物に含まれるアニオンは、PO4 3-及びHPO4 2-からなる群より選ばれる1種以上である、請求項1〜3のいずれか1項に記載の非水電解質二次電池。 4. The nonaqueous electrolyte secondary battery according to claim 1, wherein the anion contained in the basic compound is at least one selected from the group consisting of PO 4 3− and HPO 4 2−. . 前記塩基性化合物に含まれるカチオンが、Na+、K+、Be2+、Mg2+、Ca2+、及びAl3+からなる群より選ばれる1種以上である、請求項1〜4のいずれか1項に記載の非水電解質二次電池。 The cation contained in the basic compound is at least one selected from the group consisting of Na + , K + , Be 2+ , Mg 2+ , Ca 2+ , and Al 3+ . The nonaqueous electrolyte secondary battery according to any one of the above. 前記塩基性化合物が、Na3PO4、K3PO4、Ca3(PO42、及びAlPO4からなる群より選ばれる1種以上である、請求項1〜5のいずれか1項に記載の非水電解質二次電池。 The basic compound, Na 3 PO 4, K 3 PO 4, Ca 3 (PO 4) 2, and AlPO is at least one selected from the group consisting of 4, in any one of claims 1 to 5 The nonaqueous electrolyte secondary battery as described. 前記塩基性化合物の平均粒径が、0.1〜100μmである、請求項1〜6のいずれか1項に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the basic compound has an average particle size of 0.1 to 100 μm. 前記塩基性化合物の平均粒径が、10〜50μmである、請求項1〜7のいずれか1項に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the basic compound has an average particle size of 10 to 50 μm. 前記正極は、正極活物質を含み、該正極活物質の比表面積が0.6m2/g以上である、請求項1〜8のいずれか1項に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode includes a positive electrode active material, and the specific surface area of the positive electrode active material is 0.6 m 2 / g or more. 前記正極活物質は、マンガンを含むリチウム遷移金属酸化物を含む、請求項1〜9のいずれか1項に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material includes a lithium transition metal oxide containing manganese. 前記塩基性化合物を、前記正極活物質量に対して0.1〜10質量%含む、請求項9又は10に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 9 or 10, comprising 0.1 to 10% by mass of the basic compound with respect to the amount of the positive electrode active material. 前記正極活物質の電位が、リチウム基準で4.5V以上である、請求項9〜11のいずれか1項に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to any one of claims 9 to 11, wherein a potential of the positive electrode active material is 4.5 V or more based on lithium. 前記正極活物質は、下記一般式(1):
LixMn2-yyz (1)
(式中、Mは、遷移金属元素からなる群より選ばれる少なくとも1種の元素を示し、0<x≦1.3、0.2<y<0.8、3.5<z<4.5である。)
で表される酸化物を含む、請求項9〜12のいずれか1項に記載の非水電解質二次電池。
The positive electrode active material has the following general formula (1):
Li x Mn 2- y My O z (1)
(In the formula, M represents at least one element selected from the group consisting of transition metal elements, and 0 <x ≦ 1.3, 0.2 <y <0.8, 3.5 <z <4. 5)
The nonaqueous electrolyte secondary battery of any one of Claims 9-12 containing the oxide represented by these.
前記非水電解質は、六フッ化リン酸リチウムを含む、請求項1〜13のいずれか1項に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte includes lithium hexafluorophosphate. 前記塩基性化合物を、前記非水電解質に含まれる六フッ化リン酸リチウムに対して0.001〜10mol%含む、請求項14に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 14, wherein the basic compound is included in an amount of 0.001 to 10 mol% with respect to lithium hexafluorophosphate included in the nonaqueous electrolyte. 前記外装体が、角型及び/又はラミネート型である、請求項1〜15のいずれか1項に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to any one of claims 1 to 15, wherein the outer package is a square type and / or a laminate type. 前記非水電解質に含まれる非水溶媒は、F元素を含まない、請求項1〜16のいずれか1項に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to any one of claims 1 to 16, wherein the nonaqueous solvent contained in the nonaqueous electrolyte does not contain an F element.
JP2013181365A 2012-09-07 2013-09-02 Nonaqueous electrolyte secondary battery Pending JP2014067700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013181365A JP2014067700A (en) 2012-09-07 2013-09-02 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012197580 2012-09-07
JP2012197580 2012-09-07
JP2013181365A JP2014067700A (en) 2012-09-07 2013-09-02 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2014067700A true JP2014067700A (en) 2014-04-17

Family

ID=50743866

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2013139919A Active JP6345915B2 (en) 2012-09-07 2013-07-03 Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery
JP2013181365A Pending JP2014067700A (en) 2012-09-07 2013-09-02 Nonaqueous electrolyte secondary battery
JP2017232563A Active JP6545238B2 (en) 2012-09-07 2017-12-04 Non-aqueous electrolyte secondary battery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013139919A Active JP6345915B2 (en) 2012-09-07 2013-07-03 Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017232563A Active JP6545238B2 (en) 2012-09-07 2017-12-04 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (3) JP6345915B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016038967A (en) * 2014-08-06 2016-03-22 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2018056409A (en) * 2016-09-30 2018-04-05 旭化成株式会社 Nonaqueous lithium power storage element
WO2018105701A1 (en) * 2016-12-08 2018-06-14 株式会社Gsユアサ Nonaqueous electrolyte electricity storage element and method for producing same
JP2018125209A (en) * 2017-02-02 2018-08-09 株式会社Gsユアサ Nonaqueous electrolyte electric storage device and manufacturing method thereof
JP2018125210A (en) * 2017-02-02 2018-08-09 株式会社Gsユアサ Nonaqueous electrolyte storage device and manufacturing method thereof
JP2018137147A (en) * 2017-02-22 2018-08-30 株式会社Gsユアサ Positive electrode for nonaqueous electrolyte power storage element, nonaqueous electrolyte power storage element and method for producing positive electrode mixture paste

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6396154B2 (en) * 2014-09-30 2018-09-26 旭化成株式会社 Storage device separator
KR102343231B1 (en) * 2014-11-19 2021-12-23 삼성에스디아이 주식회사 Separator for rechargeable lithium battery and rechargeable lithium battery including the same
JP6436248B2 (en) * 2016-07-01 2018-12-12 宇部興産株式会社 Separator and power storage device
JP6597796B2 (en) * 2016-10-28 2019-10-30 東レ株式会社 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
WO2019044308A1 (en) * 2017-08-29 2019-03-07 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
JP7096978B2 (en) * 2019-02-20 2022-07-07 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
US20220102808A1 (en) * 2019-02-28 2022-03-31 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
WO2023182081A1 (en) * 2022-03-22 2023-09-28 三井化学株式会社 Electrode binder, electrode, lithium ion secondary battery, and method for producing electrode

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354155A (en) * 1998-06-09 1999-12-24 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005071641A (en) * 2003-08-27 2005-03-17 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2005116398A (en) * 2003-10-09 2005-04-28 Nec Corp Nonaqueous electrolyte solution secondary battery
JP2007220335A (en) * 2006-02-14 2007-08-30 Univ Nagoya Lithium ion secondary battery
JP2008243810A (en) * 2007-02-27 2008-10-09 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2008251218A (en) * 2007-03-29 2008-10-16 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2010257893A (en) * 2009-04-28 2010-11-11 Nissan Motor Co Ltd Bipolar type electrode and bipolar type secondary battery using this
WO2012018035A1 (en) * 2010-08-03 2012-02-09 日立マクセルエナジー株式会社 Negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP2015046350A (en) * 2013-08-29 2015-03-12 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8517571D0 (en) * 1985-07-11 1985-08-14 Raychem Ltd Polymer composition
JPH11204145A (en) * 1998-01-20 1999-07-30 Yuasa Corp Lithium secondary battery
KR100467705B1 (en) * 2002-11-02 2005-01-24 삼성에스디아이 주식회사 Seperator having inorganic protective film and lithium battery using the same
KR100775310B1 (en) * 2004-12-22 2007-11-08 주식회사 엘지화학 Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
KR100901535B1 (en) * 2005-10-26 2009-06-08 주식회사 엘지화학 Secondary Battery of Improved Life Characteristics
JP2007141591A (en) * 2005-11-17 2007-06-07 Matsushita Electric Ind Co Ltd Separator for lithium ion secondary battery, and lithium ion secondary battery using it
US7977410B2 (en) * 2006-02-01 2011-07-12 Maruo Calcium Co., Ltd. Fine pore formation agent for porous resin film and composition containing the same for porous resin film
KR100947181B1 (en) * 2007-11-19 2010-03-15 주식회사 엘지화학 A separator having porous coating layer and electrochemical device containing the same
JP5209943B2 (en) * 2007-12-11 2013-06-12 三星エスディアイ株式会社 Separator for non-aqueous lithium secondary battery
JP5087383B2 (en) * 2007-12-11 2012-12-05 三星エスディアイ株式会社 Separator for non-aqueous lithium secondary battery
TW201101560A (en) * 2009-02-24 2011-01-01 Teijin Ltd Porous membrane for nonaqueous secondary battery, separator for nonaqueous secondary battery, adsorbent for nonaqueous secondary battery, and nonaqueous secondary battery
JP5583419B2 (en) * 2010-02-03 2014-09-03 日立マクセル株式会社 Lithium ion secondary battery
JP2012049060A (en) * 2010-08-30 2012-03-08 Sanyo Electric Co Ltd Cathode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
WO2012073747A1 (en) * 2010-11-30 2012-06-07 三洋電機株式会社 Positive electrode for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
JP5853639B2 (en) * 2011-11-25 2016-02-09 ソニー株式会社 Lithium ion battery, separator for lithium ion battery, battery pack, electronic device, electric vehicle, power storage device, and power system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354155A (en) * 1998-06-09 1999-12-24 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005071641A (en) * 2003-08-27 2005-03-17 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2005116398A (en) * 2003-10-09 2005-04-28 Nec Corp Nonaqueous electrolyte solution secondary battery
JP2007220335A (en) * 2006-02-14 2007-08-30 Univ Nagoya Lithium ion secondary battery
JP2008243810A (en) * 2007-02-27 2008-10-09 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2008251218A (en) * 2007-03-29 2008-10-16 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2010257893A (en) * 2009-04-28 2010-11-11 Nissan Motor Co Ltd Bipolar type electrode and bipolar type secondary battery using this
WO2012018035A1 (en) * 2010-08-03 2012-02-09 日立マクセルエナジー株式会社 Negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP2015046350A (en) * 2013-08-29 2015-03-12 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016038967A (en) * 2014-08-06 2016-03-22 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
KR101945639B1 (en) 2014-08-06 2019-02-07 도요타지도샤가부시키가이샤 Nonaqueous electrolyte secondary battery
JP2018056409A (en) * 2016-09-30 2018-04-05 旭化成株式会社 Nonaqueous lithium power storage element
WO2018105701A1 (en) * 2016-12-08 2018-06-14 株式会社Gsユアサ Nonaqueous electrolyte electricity storage element and method for producing same
US11108041B2 (en) 2016-12-08 2021-08-31 Gs Yuasa International Ltd. Nonaqueous electrolyte energy storage device and method for producing the same
JP2018125209A (en) * 2017-02-02 2018-08-09 株式会社Gsユアサ Nonaqueous electrolyte electric storage device and manufacturing method thereof
JP2018125210A (en) * 2017-02-02 2018-08-09 株式会社Gsユアサ Nonaqueous electrolyte storage device and manufacturing method thereof
JP2018137147A (en) * 2017-02-22 2018-08-30 株式会社Gsユアサ Positive electrode for nonaqueous electrolyte power storage element, nonaqueous electrolyte power storage element and method for producing positive electrode mixture paste

Also Published As

Publication number Publication date
JP6545238B2 (en) 2019-07-17
JP2018032649A (en) 2018-03-01
JP2014067693A (en) 2014-04-17
JP6345915B2 (en) 2018-06-20

Similar Documents

Publication Publication Date Title
JP2014067700A (en) Nonaqueous electrolyte secondary battery
EP2784855B1 (en) Positive electrode active material, nonaqueous electrolyte battery, and battery pack
KR101822249B1 (en) Electrode active material, electrode, and electricity- storage device
JP6407515B2 (en) Positive electrode active material, non-aqueous electrolyte secondary battery, battery pack and vehicle
JP6387227B2 (en) Positive electrode active material, positive electrode, and nonaqueous electrolyte secondary battery
JP6388978B1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2016170756A1 (en) Nonaqueous electrolyte secondary battery
JP5677271B2 (en) Electrode, non-aqueous electrolyte battery and battery pack
TW201815667A (en) Electrode material for electricity storage devices, electrode for electricity storage devices, and electricity storage device
JPWO2015025844A1 (en) Lithium iron manganese composite oxide and lithium ion secondary battery using the same
JP2015170464A (en) Nonaqueous electrolyte secondary battery
CN105390752A (en) Nonaqueous electrolyte secondary battery and method of manufacturing same, and separator for nonaqueous electrolyte secondary battery
JP6374650B2 (en) Nonaqueous electrolyte secondary battery
JP2017091698A (en) Nonaqueous electrolyte secondary battery
JP2015090859A (en) Nonaqueous electrolyte secondary battery
CN109792048B (en) Positive electrode for nonaqueous electrolyte secondary battery
JP6374649B2 (en) Nonaqueous electrolyte secondary battery
JP6011177B2 (en) Non-aqueous lithium secondary battery
JP2015099659A (en) Positive electrode active material, positive electrode, and nonaqueous electrolyte secondary battery
JP2018041710A (en) Active material-carbon material composite, positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and carbon material
JP2018174161A (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP6200079B2 (en) Lithium manganese nickel composite oxide, method for producing the same, and active material, positive electrode and nonaqueous electrolyte secondary battery for nonaqueous electrolyte secondary battery including the same
JP2014110228A (en) Electrolyte for nonaqueous power storage device and lithium ion secondary battery
JP2015018820A (en) Separator for nonaqueous electrolyte battery
JP2016110797A (en) Cathode active material, cathode, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171122