JP2014064444A - Separately excited variable reluctance power generator - Google Patents

Separately excited variable reluctance power generator Download PDF

Info

Publication number
JP2014064444A
JP2014064444A JP2012223612A JP2012223612A JP2014064444A JP 2014064444 A JP2014064444 A JP 2014064444A JP 2012223612 A JP2012223612 A JP 2012223612A JP 2012223612 A JP2012223612 A JP 2012223612A JP 2014064444 A JP2014064444 A JP 2014064444A
Authority
JP
Japan
Prior art keywords
phase
pole
rotor
pole teeth
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012223612A
Other languages
Japanese (ja)
Inventor
Kaoru Nishimura
薫 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012223612A priority Critical patent/JP2014064444A/en
Publication of JP2014064444A publication Critical patent/JP2014064444A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separately excited variable reluctance power generator in which generated voltage and frequency per rotation are large and which can control output voltage from outside.SOLUTION: In a multi-pole type variable reluctance power generator, a plurality of small magnetic pole teeth are arranged on confronted faces of both end outer peripheries of a rotor and an inner periphery of a stator, and voltage and a frequency per rotation are increased. Excitation winding controllable from outside is installed in a center of the stators with both poles. Magnetic flux can be controlled and output voltage can be controlled from the outside and cogging torque at the time of starting can be reduced.

Description

1回転当たりの発生電圧及び周波数が大きく,かつ,外部よりその出力を制御できる励磁式可変リラクタンス発電機に関する。The present invention relates to an excitation variable reluctance generator having a large generated voltage and frequency per rotation and capable of controlling its output from the outside.

比較的小形の数10rpm程度の低速域で使用する水車又は風車などで駆動される既存の発電機などでは,蓄電池の充電器などに必要な安定した10V以上の電圧を発生するために,増速機で増速などするする必要があった。In existing generators driven by water turbines or wind turbines that are used in a relatively small low speed range of several tens of rpm, the speed increases to generate a stable voltage of 10 V or more required for battery chargers. It was necessary to increase the speed with the machine.

これにより発電装置全体の重量が増加するとともに増速機による効率の低下と価格の高騰を招き,また,直流発電機では,その刷子の寿命が短く,またその摩擦のために効率が低下するので,小形の水車又は風車などでの使用は困難であった。This increases the overall weight of the generator and causes a reduction in efficiency and a price increase due to the gearbox. In addition, in a DC generator, the brush life is short and the efficiency decreases due to friction. , It was difficult to use with small water turbines or windmills.

また,数kW程度の小型の高周波加熱機器の高周波電源などとして使用されている半導体式インバータは,装置が大きく,高価であり,また,スイッチィングノイズによる電磁波障害が発生する恐れがあった。In addition, a semiconductor inverter used as a high-frequency power source for a small-sized high-frequency heating apparatus of about several kW has a large device and is expensive, and there is a possibility that electromagnetic interference due to switching noise occurs.

これらの問題に対処するために,ステッピングモーターを外部より駆動して発電機として利用されることがあるが,回転子が永久磁石で励磁されているので,発生電圧の制御が不可能であり,高速時に必要以上の電圧が発生したり,起動時のコキングトルクが大きく,さらに,大形化するにしたがって発電機の全価格に占める永久磁石の価格比が高くなり入手も困難になる欠点があった。In order to deal with these problems, the stepping motor may be driven from outside to be used as a generator, but the generated voltage cannot be controlled because the rotor is excited by a permanent magnet. There are drawbacks that unnecessarily high voltages are generated at high speeds, the coking torque at startup is large, and that the permanent magnets account for the total price of the generator as the size increases, making it difficult to obtain. It was.

特開平11−313473号公報JP 11-313473 A 特開2000−60092号公報JP 2000-60092 A 特開2011−259633号公報JP 2011-259633 A

なしNone

課題を解決するための課題Challenges to solve the challenges

従来の直流及び交流発電機では,1回転当たりの極数が少なく,数10rpm程度の低速域での発生電圧および周波数が低く,増速機により増速または多極発電機によって,目的とする電圧を得ていたが,増速機の大きさは,外寸の大型化とともに重量の増加と,価格の高騰を招き,さらに増速機による効率の低下と騒音の発生を避けることができなかった。In conventional DC and AC generators, the number of poles per revolution is small, the generated voltage and frequency in a low speed range of about several tens of rpm are low, and the target voltage is increased by a speed increaser or by a multipolar generator. However, the size of the gearbox increased the weight and the price as the outer size increased, and the efficiency and noise generation due to the gearbox could not be avoided. .

また,小形の水車または風車で駆動されるこの種の小形の発電機は,これを駆動する水車又は風車の回転速度は2〜5倍の範囲で大きく変化する。他方,充電器などの許容入力電圧範囲は,通常1.5倍程度なので,この必要な最高電圧を超える場合には,折角,発電した電力を有効に利用できないのみでなく,充電器などを破損する恐れがあった。In addition, in this type of small generator driven by a small water wheel or windmill, the rotational speed of the water wheel or windmill driving the power generator varies greatly within a range of 2 to 5 times. On the other hand, the allowable input voltage range for chargers is usually about 1.5 times, so if this required maximum voltage is exceeded, not only the corners and the generated power can be used effectively, but also the charger is damaged. There was a fear.

小形の発電機として[特許文献1]のごときステッピングモーターおよび市販のPM又はHB型ステッピングモーターを外部より駆動して発電することもあるが,これらは永久磁石で励磁しているので発生電圧の制御が困難であり,また,コキングによる起動トルクが大きく,風車などに利用する場合には,起動風速(カットイン風速)が大きくなり, さらに,ステッピングモーターを大形化する場合には,大きな永久磁石が必要であり,これの入手の困難さと価格が上昇する欠点があった。As a small generator, a stepping motor such as [Patent Document 1] and a commercially available PM or HB type stepping motor may be driven from outside to generate power, but these are excited by a permanent magnet, so that the generated voltage is controlled. In addition, the starting torque due to coking is large, and when it is used for a windmill, the starting wind speed (cut-in wind speed) increases, and when the stepping motor is enlarged, a large permanent magnet is required. However, it was difficult to obtain and had the disadvantage of increasing the price.

また,[特許文献2]のごとき多極式発電機では,永久磁石及び巻線の極数が多く,構造が複雑で,外径が大きくなるために,発電装置全体の外形および重量も増大し,大形化と価格の上昇の原因となっていた。In addition, in a multi-pole generator such as [Patent Document 2], the number of poles of the permanent magnets and windings is large, the structure is complicated, and the outer diameter is increased. , Which caused the increase in size and price.

[特許文献3]のリラクタンス発電機は,構造上,極数を増やすことが困難で,また磁場の強さが一定なために,コキングトルクすなわち起動トルクが大きく,風力発電などに利用する場合には,起動風速(カットイン風速)が大きくなる欠点があった。The reluctance generator of [Patent Document 3] is difficult to increase the number of poles because of its structure, and since the strength of the magnetic field is constant, the coking torque, that is, the starting torque is large, and is used for wind power generation, etc. However, there was a drawback that the startup wind speed (cut-in wind speed) was increased.

さらに,これでも,まだ極数が少ないために,低速回転時の電圧及び周波数が低く,蓄電池などを充電するための風力及び水力発電装置などには,増速が必要であった。In addition, since the number of poles is still small, the voltage and frequency during low-speed rotation are low, and it is necessary to increase the speed of wind power and hydroelectric power generators for charging storage batteries.

また,前述の[0010]〜[0012]の発電機は,励磁が永久磁石のみで,出力電圧は,ほぼ回転数に比例するので,充電器の許容最高電圧を超えるような,必要以上の高い回転速度時に発生する無駄な電力を抑制できず,エネルギーの利用効率の低下を招くとともに,蓄電池などを充電するためには,広い入力電圧範囲の充電器が必要であった。In addition, the generators [0010] to [0012] described above are excited only with permanent magnets, and the output voltage is almost proportional to the number of revolutions. Unnecessary power generated at the rotation speed could not be suppressed, resulting in a decrease in energy use efficiency, and a charger with a wide input voltage range was required to charge storage batteries.

また,上記の特許文献以外にも,焼入れ,焼戻し,ろー付,はんだ付,樹脂コーティング用など数kW程度の高周波加熱機器の高周波電源としては,半導体式インバータが使用されているが,装置が大きく,高価であり,また,スイッチィングノイズによる電磁波障害が発生する恐れがあった。In addition to the above-mentioned patent documents, semiconductor inverters are used as high-frequency power supplies for high-frequency heating equipment of several kW, such as quenching, tempering, soldering, soldering, and resin coating. It is large and expensive, and there is a risk of electromagnetic interference due to switching noise.

課題を解決するための手段Means for solving the problem

本発明は,これらの問題点を解決するために,回転子の両端部の固定子対向内面に,円周方向に沿って複数個の回転子小磁極歯が等分に配設され,その両端の小磁極歯の相互間の位相を,同相または(π/相数)ラジアン移相し,その外周に,それぞれに巻線を巻回された固定子が放射状に配設され,その各回転子との対向内周面に,それぞれ1個以上の小磁極歯が形成された複数対の固定子を有する可変リラクタンス発電機において,そのS及びN両固定子環間の軸方向中央部に,外周にリング状の継鉄を有する励磁巻線を巻回して,外部より励磁することにより,発生電圧の制御を可能した。In order to solve these problems, in the present invention, a plurality of rotor small magnetic pole teeth are equally disposed along the circumferential direction on the stator-facing inner surfaces of both ends of the rotor, The phases of the small magnetic pole teeth are phase-shifted by the same phase or (π / number of phases) radians, and stators each wound with a winding are arranged radially on the outer circumference of each rotor. In the variable reluctance generator having a plurality of pairs of stators each formed with one or more small magnetic pole teeth on the inner peripheral surface facing each other, the outer periphery is formed at the axial center between the S and N stator rings. The generated voltage can be controlled by winding an excitation winding with a ring-shaped yoke and exciting it from the outside.

発明の効果Effect of the invention

本発明の発電機は,発電機の極数を非常に多くして磁束の変化率を高めることにより,発生する電圧および周波数を高くすることが出来る。The generator of the present invention can increase the generated voltage and frequency by increasing the number of poles of the generator and increasing the rate of change of magnetic flux.

さらに,上記の発電機を電圧制御装置より励磁して励磁式発電機とすることにより発生電力を任意の値に制御できるとともに,起動時の励磁電流を小さくことによりコキングトルクを小さくできるので,小さい起動トルクでの起動を実現できる。Furthermore, it is possible to control the generated power to an arbitrary value by exciting the above generator from the voltage control device to make it an excitation generator, and the coking torque can be reduced by reducing the excitation current at start-up, so that it is small Start-up with start-up torque can be realized.

このことは,小形の風力および水力用の発電機として,構造が簡単で,かつ小型・軽量で,起動トルクが小さく,低速から高速まで,安定した出力制御の容易な発電機を提供することができる。This means that, as a small wind and hydraulic power generator, it is possible to provide a generator with a simple structure, small size and light weight, low starting torque, and stable and easy output control from low speed to high speed. it can.

また,上述の発電機を高速で駆動することにより,焼入れ,焼戻し,ろー付,はんだ付,樹脂コーティング用などに,電磁波障害がなく,外部より電力制御のできる高周波加熱機器などの高周波発電機を提供できる。In addition, high-frequency generators such as high-frequency heating equipment that can control power from the outside without quenching, tempering, brazing, soldering, resin coating, etc., without electromagnetic interference, by driving the above-mentioned generator at high speed. Can provide.

本発明の発電機の8極2相の場合の断面図Sectional view of the generator of the present invention in the case of 8-pole 2-phase 図1の発電機の回転子部の磁極の関係を示す詳細図Detailed view showing the relationship of the magnetic poles of the rotor part of the generator of FIG. 図1の発電機のE−E断面の回転子と固定子の磁極歯の位置関係を示す拡大図The enlarged view which shows the positional relationship of the rotor of the EE cross section of the generator of FIG. 1, and the magnetic pole tooth of a stator. 図1の発電機のF−F断面の回転子と固定子の磁極歯の位置関係を示す拡大図The enlarged view which shows the positional relationship of the rotor of the FF cross section of the generator of FIG. 1, and the magnetic pole tooth of a stator. 2相の場合の出力制御の可能な発電機の接続図例Example of connection diagram of generator capable of output control in case of two phases

一般の発電機において,発生する電圧は,コイル巻数と,そのコイルと交差する磁束の変化量とその時間的変化率とに比例し,周波数は,回転速度と全周に配設された極極数との積に比例する。In a general generator, the generated voltage is proportional to the number of coil turns, the amount of change in the magnetic flux crossing the coil, and the rate of change over time, and the frequency is the rotational speed and the number of poles arranged all around. Is proportional to the product of

本発明は,軸方向に分離された回転子の両端に,外周に複数個の小さい磁極歯を有するリング状の磁極と,該磁極歯に当接され固定子対向内周面に,それぞれ複数個の小磁極歯が形成された複数対の固定子磁極と,該固定子磁極の個々に巻かれた巻線とを有する固定子とを備えて,実質的な極数を多くすることにより,磁束の時間的変化率を大きくして,駆動軸の1回転に対する発生電圧およびその周波数を大きくした可変リラクタンス発電機において,固定子の軸方向中央部内周にリング状の励磁巻線を設けることにより,回転子を軸方向に外部より励磁して磁束の強さの制御を可能にする。The present invention provides a ring-shaped magnetic pole having a plurality of small magnetic pole teeth on the outer periphery at both ends of the rotor separated in the axial direction, and a plurality of each on the inner peripheral surface facing the stator and facing the magnetic pole teeth. A plurality of pairs of stator magnetic poles formed with small magnetic pole teeth, and a stator having individual windings of the stator magnetic poles, and by increasing the substantial number of poles, In a variable reluctance generator in which the time change rate of the drive shaft is increased and the generated voltage and frequency for one rotation of the drive shaft are increased, a ring-shaped excitation winding is provided on the inner periphery in the axial center of the stator. The rotor is excited in the axial direction from the outside to control the strength of the magnetic flux.

図1は,本発明の8極4対2相の場合の発電機例の断面図で,各固定子に巻線が巻設された場合の例を示した基本形式の断面図で,図1(a)に示す如く,ハウジング3に軸受け2を介して回転自由に支持された駆動軸1に取り付けられた比較的導電率の小さい高透磁率の磁性体製の回転子鉄心4の両端部外周に図2(図の場合36枚)に示す如く小磁歯10および11を配設する。FIG. 1 is a cross-sectional view of an example of a generator in the case of the 8-pole 4-pair 2-phase of the present invention, and is a cross-sectional view of a basic form showing an example in which a winding is wound around each stator. As shown in (a), the outer periphery of both ends of a rotor core 4 made of a magnetic material with a relatively low conductivity and a high magnetic permeability attached to a drive shaft 1 rotatably supported by a housing 3 via a bearing 2 In FIG. 2, small magnetic teeth 10 and 11 are arranged as shown in FIG.

なお,この場合,回転子両極の磁極歯の相互角度は,図2に示すごとく,機械的角の
位相角の(π/相数)ラジアン移相されている。
In this case, the mutual angle of the magnetic pole teeth of the rotor poles is phase-shifted by (π / number of phases) radians of the phase angle of the mechanical angle as shown in FIG.

他方,この両端の回転子磁極歯と対応する固定子の内周面に,回転子の磁極歯と同一ピッチの複数個の磁極歯を有する複数対の固定子鉄心6〜9が配置されている。なお,この場合の固定子鉄心内周の磁極歯数は,1位以上で,回転子磁極歯数を固定子極数で除した整数値より1枚以上少なくする。On the other hand, a plurality of pairs of stator cores 6 to 9 having a plurality of magnetic pole teeth having the same pitch as the magnetic pole teeth of the rotor are arranged on the inner peripheral surface of the stator corresponding to the rotor magnetic pole teeth at both ends. . In this case, the number of magnetic pole teeth on the inner circumference of the stator core is 1 or more, and is one or more less than the integer value obtained by dividing the number of rotor magnetic pole teeth by the number of stator poles.

さらに,各相両極の各固定子間を軸方向に2分して,その中央部に,外周に継鉄5を有する励磁巻線18が組み込まれており,この励磁巻線に外部より制御された励磁電流を流すことにより,回転子鉄心4は,軸方向に,例えば図1(a)に示す如く,図の右側はN極に,左側はS極に,励磁電流にほぼ比例した強さで磁化される。Further, the stator windings of each phase are divided in half in the axial direction, and an excitation winding 18 having a yoke 5 on the outer periphery is incorporated in the center thereof, and this excitation winding is controlled from the outside. As shown in FIG. 1A, for example, the rotor core 4 has a strength substantially proportional to the excitation current in the axial direction, such as the N pole on the right side and the S pole on the left side. It is magnetized by.

図3及び図4は,回転子両端の磁極歯10と11間の角度を1/2ピッチずらした場合の発電機の同一の回転角度位置での磁極の位置関係を示す拡大図で,図3のE−E断面図に示す如くS極に於いては,円周を等分する位置に配置されている4個のS極A相固定子鉄心6の磁極歯12とS極回転子磁極歯10とは,位相ずれがなく,したがって,A相の磁気抵抗は最小となり,他方,4個のS極B相固定子鉄心8のS極B相固定子磁極歯14とS極回転子磁極歯10とは,機械的位相が1/2ピッチずれているので,B相の磁気抵抗は最大となる。3 and 4 are enlarged views showing the positional relationship of the magnetic poles at the same rotational angle position of the generator when the angle between the magnetic pole teeth 10 and 11 at both ends of the rotor is shifted by 1/2 pitch. As shown in the EE cross-sectional view of FIG. 4, in the S pole, the magnetic pole teeth 12 of the four S pole A phase stator cores 6 and the S pole rotor magnetic pole teeth, which are arranged at positions that equally divide the circumference. 10, there is no phase shift, and therefore the A-phase magnetic resistance is minimized, while the S-pole B-phase stator pole teeth 14 and the S-pole rotor pole teeth of the four S-pole B-phase stator cores 8. 10 is that the mechanical phase is shifted by 1/2 pitch, so the B-phase magnetic resistance is maximized.

この回転位置のとき,図4のF−F断面図に示すごとく,N極では,4個のN極B相固定子鉄心9の磁極歯15とN極回転子磁極歯11とは,位相ずれがなく,B相の磁気抵抗は最小となり,他方,4個のN極A相固定子鉄心7のN極A相固定子磁極歯13とN極回転子磁極歯11とは,機械的位相が1/2ピッチずれているので,A相の磁気抵抗は最大となる。At this rotational position, as shown in the FF cross-sectional view of FIG. 4, in the N pole, the magnetic pole teeth 15 of the four N pole B phase stator cores 9 and the N pole rotor magnetic pole teeth 11 are out of phase. The magnetic resistance of the B phase is minimized, while the N pole A phase stator pole teeth 13 and the N pole rotor pole teeth 11 of the four N pole A phase stator cores 7 have a mechanical phase. Since it is shifted by 1/2 pitch, the magnetic resistance of the A phase is maximized.

したがって,この回転位置において,図1(a)の回転子鉄心4−N極回転子磁極歯11→N極B相固定子磁極歯15→N極B相固定子鉄心9→継鉄5→S極A相固定子鉄心6→S極A相固定子磁極歯12→S極回転子磁極歯1→回転子鉄心4へと流れる磁束は最大となり,他方,N極A相固定子鉄心7及びS極B相固定子磁極歯14に流れる磁束は最小となる。Accordingly, at this rotational position, the rotor core 4-N pole rotor magnetic pole teeth 11 → N pole B phase stator magnetic pole teeth 15 → N pole B phase stator core 9 → relay 5 → S in FIG. The magnetic flux flowing from the pole A phase stator core 6 to the S pole A phase stator pole teeth 12 to the S pole rotor pole teeth 1 to the rotor core 4 is maximized, while the N pole A phase stator core 7 and S The magnetic flux flowing through the pole B phase stator pole teeth 14 is minimized.

図示していないが,この状態から,回転子が機械的位相で1/2ピッチ回転すると,S極側においては,A相の磁極歯は,1/2ピッチずれて磁気抵抗は最大となり,B相の磁極歯は,ずれが無くなるので磁気抵抗は最小となる。したがって,S極A相固定子鉄心6に流れる磁束は最小となり,S極B相固定子鉄心8に流れる磁束は最大となる。Although not shown, if the rotor rotates 1/2 pitch in the mechanical phase from this state, on the S pole side, the A-phase pole teeth are shifted by 1/2 pitch and the magnetic resistance becomes maximum, and B The magnetic pole teeth of the phase have no deviation, so the magnetic resistance is minimized. Therefore, the magnetic flux flowing through the S pole A phase stator core 6 is minimized, and the magnetic flux flowing through the S pole B phase stator core 8 is maximized.

他方,N極側においては,A相の磁極歯は,位相ずれがなく,B相の磁極歯は,機械的位相が1/2ピッチずれるので,A相の磁気抵抗は最小となり,B相の磁気抵抗は最大となる。したがって,N極A相固定子鉄心7に流れる磁束は最大となり,N極B相固定子鉄心9に流れる磁束は最小となり,各固定子に流れる磁束の最大値と最小値は,すなわち,この変化の間の磁束の増減の方向は,前述の[0030]と逆方向となる。On the other hand, on the N pole side, the A phase magnetic pole teeth have no phase shift, and the B phase magnetic pole teeth have a mechanical phase shift of 1/2 pitch. Magnetoresistance is maximized. Therefore, the magnetic flux flowing through the N-pole A-phase stator core 7 is maximized, the magnetic flux flowing through the N-pole B-phase stator core 9 is minimized, and the maximum value and the minimum value of the magnetic flux flowing through each stator are expressed by this change. The direction of increase / decrease of the magnetic flux between is opposite to the aforementioned [0030].

このようにして,回転子が1回転すると,各相の固定子磁極を通る磁束の変化は,最大値と最小値の間を,回転子磁極歯の歯数だけ繰り返すことになり,各固定子鉄心に巻かれている固定子巻線には,A相とB相には,逆相の交番電圧が発生し,個々の固定子巻線に発生する交番電圧の大きさは,回転子4の磁束が一定の場合,固定子内の(磁束の変化量)×(磁束の時間的変化率)×(固定子巻線の巻数)即ち(磁束の変化量)×(回転子磁極歯の歯数)×(固定子巻線の全巻数)に比例し,その周波数も,(回転子磁極歯の歯数)×(回転数)に比例する。例えば,100rpmの低速でも商用周波数に近い比較的高い周波数(図の場合30Hz)で,10V以上の高いA相,B相が逆相の交番電圧を発生させることが出来るし,また,2000rpmで駆動する場合には600Hzの周波数の電力を得ることが出来き,磁極歯の枚数を増やせば,さらに高い周波数の電力を得ることが出来る。Thus, when the rotor makes one rotation, the change in the magnetic flux passing through the stator magnetic poles of each phase is repeated between the maximum value and the minimum value by the number of teeth of the rotor magnetic pole teeth. In the stator winding wound around the iron core, an alternating voltage of opposite phase is generated in the A phase and the B phase, and the magnitude of the alternating voltage generated in each stator winding is as follows. When the magnetic flux is constant, (variation of magnetic flux) x (temporal change rate of magnetic flux) x (number of turns of stator winding), ie, (variation of magnetic flux) x (number of teeth of rotor magnetic pole teeth) ) X (total number of stator windings), and its frequency is also proportional to (number of rotor pole teeth) x (number of revolutions). For example, even at a low speed of 100 rpm, a high frequency close to the commercial frequency (30 Hz in the figure) can generate an alternating voltage with a high phase A and phase B higher than 10V, and it can be driven at 2000 rpm. In this case, power with a frequency of 600 Hz can be obtained, and power with a higher frequency can be obtained by increasing the number of magnetic pole teeth.

また,図2と異なり,回転子両極の磁極歯の相互角度にずれがなく同相の場合には,両極における磁極歯の位相関係は同一,すなわち,図1の回転位値の時のE−E断面の位相関係は,S極及びN極ともに図3のごとく同一となり,この場合,S極A相固定子鉄心6の磁極歯12とS極回転子磁極歯10及び,N極A相固定子鉄心7の磁極歯13とN極回転子磁極歯11とも,位相ずれがないので,すべてのA相の磁気抵抗は最小となり,他方,S極B相固定子鉄心8の磁極歯14とS極回転子磁極歯10及びN極B相固定子鉄心9の磁極歯15とN極回転子磁極歯11とは,位相ずれが1/2ピッチとなり,すべてのB相の磁気抵抗は最大となる。この状態から,回転子が1/2ピッチ回転すると,すべてのA相の磁気抵抗は最大となり,他方,すべてのB相の磁気抵抗は最大となる。In contrast to FIG. 2, when the mutual angle of the magnetic pole teeth of the rotor poles is not shifted and in phase, the phase relation of the magnetic pole teeth in both poles is the same, that is, EE at the rotational position value in FIG. The phase relationship between the cross sections is the same for both the S pole and the N pole as shown in FIG. 3. In this case, the magnetic pole teeth 12 of the S pole A phase stator core 6, the S pole rotor magnetic pole teeth 10, and the N pole A phase stator. Since both the magnetic pole teeth 13 of the iron core 7 and the N pole rotor magnetic pole teeth 11 are not out of phase, the magnetic resistances of all the A phases are minimized, while the magnetic pole teeth 14 and the S poles of the S pole B phase stator core 8 are minimized. The magnetic pole teeth 15 of the rotor magnetic pole teeth 10 and the N-pole B-phase stator core 9 and the N-pole rotor magnetic pole teeth 11 have a phase shift of ½ pitch, and the magnetic resistances of all the B phases are maximized. From this state, when the rotor rotates 1/2 pitch, all the A-phase magnetoresistances become maximum, while all the B-phase magnetoresistances become maximum.

この状態から回転子が1回転すると,同一相のN,S両極の固定子に巻線には,[0033]と同じく,すべて磁束の変化率に比例するA相とB相が逆相の交番電圧が誘起される。したがって,これらA相およびB相の巻線を,逆相に接続することにより低速回転でも高い電圧を得ることができる。When the rotor makes one rotation from this state, the windings on the same-phase N and S stators are all alternating with the A and B phases being in proportion to the rate of change of the magnetic flux, as in [0033]. A voltage is induced. Therefore, by connecting these A-phase and B-phase windings in opposite phases, a high voltage can be obtained even at a low speed.

以上,[0024]〜[0035]に記述した8極4対2相の場合の発電機例についての動作及び効果は,回転子の両端の小磁極歯の相互間の位相を,同相または(π/相数)ラジアン移相するか,相数の偶数倍の2倍すなわち相数と同じ極対数で,それぞれに巻線を巻回された固定子が放射状に配設することにより,相数及び極対数に関係なく発揮できる。As described above, the operation and effect of the generator example in the case of the 8-pole 4-pair 2-phase described in [0024] to [0035] is that the phase between the small magnetic pole teeth at both ends of the rotor is the same phase or (π / Number of phases) The number of phases and the number of phases can be increased by arranging the stators, each of which has a phase shift of radians, or twice the even number of phases, that is, the same number of pole pairs as the number of phases and wound with windings. It can be demonstrated regardless of the number of pole pairs.

また,コキングトルクは,磁極間の吸引力に起因するので,起動時のみに影響し,一旦起動した後は,反発力と吸引力とが相殺してコキングの影響は無くなる。風力発電などの場合,できるだけ低風速でも起動できる必要があるが,本発明の場合は,起動時は,残留磁束のみで励磁されて,励磁電流が少ないので,起動時のコキングトルクを小さく出来る特長がある。In addition, since the coking torque is caused by the attractive force between the magnetic poles, it affects only at the time of start-up, and after starting once, the repulsive force and the attractive force cancel each other and the influence of coking is eliminated. In the case of wind power generation, etc., it is necessary to be able to start at as low a wind speed as possible. However, in the case of the present invention, at the time of start-up, it is excited by only the residual magnetic flux and the excitation current is small, so the coking torque at start-up can be reduced. There is.

図5は,出力電圧を一定に安定させるための接続図例であり,整流器25により整流された直流出力電圧と,電圧設定器24による設定電圧とを電圧調整器23で比較した励磁電流により,設定電圧を制御する回路であり,電圧調整器23内の制御特性を変更することにより,定電圧制御又は定電流制御のみでなく,種々の負荷特性の要求に対応した出力が得られ,起動時に励磁電流の立ち上がりを遅くすることによりコキングトルクも小さくでき,起動トルクを小さくできる。FIG. 5 is an example of a connection diagram for stabilizing the output voltage constant. By the excitation current obtained by comparing the DC output voltage rectified by the rectifier 25 and the set voltage by the voltage setter 24 by the voltage regulator 23, This circuit controls the set voltage. By changing the control characteristics in the voltage regulator 23, not only constant voltage control or constant current control, but also outputs corresponding to various load characteristics can be obtained. By slowing the rise of the excitation current, the coking torque can be reduced and the starting torque can be reduced.

また,上述の電圧制御を行うことにより,必要以上の電圧時のエネルギー損の発生を防止できるので,その分,駆動源の動力を有効に利用できる。Further, by performing the voltage control described above, it is possible to prevent the occurrence of energy loss when the voltage is higher than necessary, so that the power of the drive source can be used effectively.

以上は,主として直流出力を利用する場合について記述したが,同様の励磁回路を使用して,発電機の交流出力をそのまま利用して,高周波発電機などとして使用することもできる。In the above, the case where the DC output is mainly used has been described. However, it is also possible to use the AC output of the generator as it is by using a similar excitation circuit and use it as a high frequency generator.

通常,小形の水力発電装置,風力発電装置などでは回転速度が数60rpm程度で,また回転速度の変化範囲も大きく,他方これに使用する発電機としては,蓄電池の充電など10V以上の電圧を安定して発生する必要があった。このために,増速機を組合せたり,極数の極端に多い特別な発電機,または数台の発電機を直列に直結することが必要であったが,大型で,重量も大きく,高価であり,特に自己浮上形の水力発電機,柱上設置形風力発電機など使用が困難であった。Usually, small hydroelectric power generators, wind power generators, etc., have a rotational speed of about several 60 rpm, and the range of change in the rotational speed is large. On the other hand, as a generator used for this, a voltage of 10 V or more such as charging of a storage battery is stable. Needed to occur. For this purpose, it was necessary to combine a gearbox, or to connect a special generator with an extremely large number of poles or several generators in series, but it was large, heavy and expensive. In particular, it was difficult to use self-floating hydroelectric generators and pole-mounted wind generators.

本発明の発電機によれば,これらの弊害がなく,また,小型軽量で,安価な,低回転速度でも,商用周波数に近い周波数の十分な電圧を得ることができるので平滑回路も簡単にでき,小形の水車又は風車への利用価値が高い。According to the generator of the present invention, there is no such adverse effect, and a smoothing circuit can be simplified since a sufficient voltage of a frequency close to the commercial frequency can be obtained even at a low rotation speed with a small size and light weight. , High utility value for small water turbine or windmill.

また,本発明の発電機を電動機または発動機で,高速回転で駆動することにより,高い周波数の交流電力が得られ,これを焼入れ,焼戻し,ろー付,はんだ付,樹脂コーティング用など高周波加熱機器のインバータ式高周波電源に代わって高周波電源として使用することができる。In addition, by driving the generator of the present invention at high speed with an electric motor or engine, high frequency AC power can be obtained, which is subjected to high frequency heating such as quenching, tempering, brazing, soldering, and resin coating. It can be used as a high frequency power supply in place of the inverter type high frequency power supply of equipment.

1 駆動軸 2 軸受け 3 ハウジング 4 回転子鉄心 5 継鉄
6 S極A相固定子鉄心 7 N極A相固定子鉄心 8 S極B相固定子鉄心
9 N極B相固定子鉄心 10 S極回転子磁極歯 11 N極回転子磁極歯
12S極A相固定子磁極歯 13N極A相固定子磁極歯 14S極B相固定子磁極歯
15N極B相固定子磁極歯 16 A相巻線 17 B相巻線
18 励磁巻線 19 S極A相巻線 20 N極A相巻線
21 S極B相巻線 22 N極B相巻線
23 電圧調整器 24 電圧設定器 25 整流器
26 コンデンサ 27 放電抵抗 28 負荷
DESCRIPTION OF SYMBOLS 1 Drive shaft 2 Bearing 3 Housing 4 Rotor core 5 Relay 6 S pole A phase stator core 7 N pole A phase stator core 8 S pole B phase stator core 9 N pole B phase stator core 10 S pole rotation Slave pole teeth 11 N pole rotor pole teeth 12 S pole A phase stator pole teeth 13 N pole A phase stator pole teeth 14 S pole B phase stator pole teeth 15 N pole B phase stator pole teeth 16 A phase winding 17 B phase Winding 18 Excitation winding 19 S pole A phase winding 20 N pole A phase winding 21 S pole B phase winding 22 N pole B phase winding 23 Voltage regulator 24 Voltage setter 25 Rectifier 26 Capacitor 27 Discharge resistor 28 load

Claims (1)

回転子の両端部の固定子対向内面に,円周方向に沿って複数個の回転子小磁極歯が等分に配設され,その両端の小磁極歯の相互間の位相を,同相または(π/相数)ラジアン移相した一対の回転子鉄心において,その外周に,それぞれに巻線を巻回された固定子が放射状に配設され,その各回転子との対向内周面に,それぞれ1個以上の小磁極歯が形成された複数対の固定子小磁極を有する可変リラクタンス発電機において,そのS及びN両固定子環間の軸方向中央部に,外周にリング状の継鉄を有する励磁巻線を巻回して,外部より励磁することにより,発生電圧の制御を可能した他励式可変リラクタンス発電機。A plurality of rotor small magnetic pole teeth are equally distributed along the circumferential direction on the inner surface facing the stator at both ends of the rotor, and the phase between the small magnetic pole teeth at both ends is the same phase or ( π / number of phases) In a pair of radiant phase-shifted rotor cores, stators wound with windings are radially arranged on the outer periphery, and on the inner peripheral surface facing each rotor, In a variable reluctance generator having a plurality of pairs of stator small magnetic poles each formed with one or more small magnetic pole teeth, a ring-shaped yoke is provided on the outer periphery at the center in the axial direction between the S and N stator rings. A separately-excited variable reluctance generator that can control the generated voltage by winding an excitation winding with
JP2012223612A 2012-09-19 2012-09-19 Separately excited variable reluctance power generator Pending JP2014064444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012223612A JP2014064444A (en) 2012-09-19 2012-09-19 Separately excited variable reluctance power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012223612A JP2014064444A (en) 2012-09-19 2012-09-19 Separately excited variable reluctance power generator

Publications (1)

Publication Number Publication Date
JP2014064444A true JP2014064444A (en) 2014-04-10

Family

ID=50619172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012223612A Pending JP2014064444A (en) 2012-09-19 2012-09-19 Separately excited variable reluctance power generator

Country Status (1)

Country Link
JP (1) JP2014064444A (en)

Similar Documents

Publication Publication Date Title
US9496768B2 (en) Electrical machines
US20110042965A1 (en) Wind turbine power train
CN110971095B (en) Double-stator wind driven generator and power generation system
CN105207436B (en) A kind of ring-shaped yoke portion armature winding high power density composite excitation permanent magnet motor
US20140292134A1 (en) Rotating electrical machine
JP2010220383A (en) Driving device for rotary electric machine
CN107196477A (en) Electric rotating machine
JP2007068239A (en) Dynamo-electric machine and electromagnetic apparatus
CN105186749B (en) A kind of ring-shaped yoke portion double winding composite excitation permanent magnet motor
CN102904405A (en) Birotor synchronous generator
RU2437202C1 (en) Non-contact magnetoelectric machine with axial excitation
KR101265825B1 (en) Dual stator rfpm(radial flux permanent magnet) generator
CN102684341B (en) Permanent-magnet wind-driven generator capable of realizing self-acceleration of magnetic field
JP2010516224A (en) Multi-phase drive or generator machine
CN107733197A (en) A kind of permanent magnet direct driving motor
Wang et al. Design of a multi-power-terminals permanent magnet machine with magnetic field modulation
JP2015061464A (en) Permanent magnet rotary electric machine and wind generator system
WO2012121685A2 (en) Low-speed multipole synchronous generator
JP5460807B1 (en) Synchronous motor
JP6286115B2 (en) Structure of stator of rotating electrical machine
JP5795170B2 (en) Power generation system
JP2014064444A (en) Separately excited variable reluctance power generator
CN204013151U (en) A kind of reluctance motor
CN103078463A (en) Axial magnetizing permanent magnet motor
EP3084942B1 (en) Wind power generator