JP2014063639A - Electric wire with overcurrent cutoff function - Google Patents

Electric wire with overcurrent cutoff function Download PDF

Info

Publication number
JP2014063639A
JP2014063639A JP2012207960A JP2012207960A JP2014063639A JP 2014063639 A JP2014063639 A JP 2014063639A JP 2012207960 A JP2012207960 A JP 2012207960A JP 2012207960 A JP2012207960 A JP 2012207960A JP 2014063639 A JP2014063639 A JP 2014063639A
Authority
JP
Japan
Prior art keywords
overcurrent
conductor
electric wire
circuit
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012207960A
Other languages
Japanese (ja)
Other versions
JP6107020B2 (en
Inventor
Akiko Inoue
明子 井上
Yasuyuki Otsuka
保之 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Sumitomo Electric Toyama Co Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Sumitomo Electric Toyama Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd, Sumitomo Electric Toyama Co Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2012207960A priority Critical patent/JP6107020B2/en
Publication of JP2014063639A publication Critical patent/JP2014063639A/en
Application granted granted Critical
Publication of JP6107020B2 publication Critical patent/JP6107020B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Conductors (AREA)
  • Fuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric wire with an overcurrent cutoff function capable of breaking a circuit safely when an overcurrent is applied, at low cost.SOLUTION: In an electric wire 10 with an overcurrent cutoff function, a conductor 12 made of a metal having a melting point of 700°C or less is used. The conductor 12 is covered with an insulation coating 14. The conductor 12 is melted by an overcurrent.

Description

本発明は、過電流遮断機能付き電線に関し、さらに詳しくは、過電流によって導体が溶断して回路を遮断するヒューズ機能を持った過電流遮断機能付き電線に関するものである。   The present invention relates to an electric wire with an overcurrent interruption function, and more particularly, to an electric wire with an overcurrent interruption function having a fuse function that breaks a conductor due to overcurrent and interrupts a circuit.

電気回路において、万一異常な電流が流れた場合に機器を守るためには、その回路を速やかに遮断することが必要である。過電流に対する回路保護のため、電気回路には通常、ヒューズが挿入されている。また、ヒューズの挿入に代えて、ヒューズと同等の機能を持った電線としてヒュージブルリンク電線が用いられることがある。   In an electric circuit, in order to protect a device when an abnormal current flows, it is necessary to quickly cut off the circuit. In order to protect the circuit against overcurrent, a fuse is usually inserted in the electric circuit. Further, instead of inserting a fuse, a fusible link electric wire may be used as an electric wire having a function equivalent to that of a fuse.

特開平02−213456号公報Japanese Patent Laid-Open No. 02-213456

過電流に対する回路保護のため回路内にヒューズを取り付ける場合、ヒューズの価格やヒューズの取り付け工数が発生することから、コストが大きくなる。これに対し、ヒューズを用いない構成であれば、コストを低く抑えることができる。しかしながら、従来のヒュージブルリンク電線にはスズめっき軟銅が用いられている。軟銅は融点が高いため、従来のヒュージブルリンク電線は溶断の際の発熱量が大きく、周りの機器や絶縁被覆に損傷を与えるおそれがある。そこで、特許文献1では、導体と絶縁被覆との間に耐熱性の高いセラミックス層を介装している。しかしながら、セラミックス層の形成にはコストがかかり、また、セラミックス層は固くもろいためハンドリング性がよくない。   When a fuse is installed in a circuit to protect the circuit against overcurrent, the cost of the fuse and the number of man-hours for installing the fuse are increased, which increases the cost. On the other hand, if the configuration does not use a fuse, the cost can be kept low. However, tin-plated annealed copper is used for conventional fusible link wires. Since soft copper has a high melting point, conventional fusible link electric wires generate a large amount of heat during fusing, and may damage surrounding equipment and insulation coating. Therefore, in Patent Document 1, a ceramic layer having high heat resistance is interposed between the conductor and the insulating coating. However, the formation of the ceramic layer is expensive, and the ceramic layer is hard and brittle, so that the handling property is not good.

本発明の解決しようとする課題は、低コストで、過電流がかかったときに安全に回路を遮断できる過電流遮断機能付き電線を提供することにある。   The problem to be solved by the present invention is to provide an electric wire with an overcurrent cutoff function that can cut off a circuit safely when an overcurrent is applied at low cost.

上記課題を解決するため本発明に係る過電流遮断機能付き電線は、融点が700℃以下の金属よりなる導体が絶縁被覆で覆われ、過電流によって前記導体が溶断することを要旨とするものである。   In order to solve the above problems, an electric wire with an overcurrent interruption function according to the present invention is characterized in that a conductor made of a metal having a melting point of 700 ° C. or less is covered with an insulating coating, and the conductor is blown by overcurrent. is there.

また、本発明に係る他の過電流遮断機能付き電線は、融点が500℃以下の金属よりなる導体が絶縁被覆で覆われ、過電流によって前記導体が溶断することを要旨とするものである。また、本発明に係る他の過電流遮断機能付き電線は、融点が350℃以下の金属よりなる導体が絶縁被覆で覆われ、過電流によって前記導体が溶断することを要旨とするものである。   Further, another electric wire with an overcurrent cutoff function according to the present invention is characterized in that a conductor made of a metal having a melting point of 500 ° C. or less is covered with an insulating coating, and the conductor is blown by overcurrent. Further, another electric wire with an overcurrent interruption function according to the present invention is characterized in that a conductor made of a metal having a melting point of 350 ° C. or lower is covered with an insulating coating, and the conductor is blown by overcurrent.

そして、本発明においては、絶縁被覆よりも内側部分に空隙が設けられていることが好ましい。そして、前記絶縁被覆よりも内側部分に占める空隙の割合が5%以上であることが好ましい。   And in this invention, it is preferable that the space | gap is provided in the inner part rather than the insulation coating. And it is preferable that the ratio of the space | gap which occupies for an inner part rather than the said insulation coating is 5% or more.

本発明に係る過電流遮断機能付き電線によれば、過電流によって溶断する融点が700℃以下の低融点の金属を導体に用いるので、過電流によって溶断する際の発熱量が小さく、周りの機器や絶縁被覆に与える熱的な影響が小さい。したがって、過電流がかかったときに安全に回路を遮断できる。この場合、過電流に対する回路保護に対し回路内にヒューズを用いない構成であるので、コストが低く抑えられる。   According to the electric wire with an overcurrent cutoff function according to the present invention, a low melting point metal having a melting point of 700 ° C. or less that is melted by overcurrent is used as a conductor, so that the amount of heat generated at the time of melting by overcurrent is small, and surrounding devices And the thermal effect on the insulation coating is small. Therefore, the circuit can be safely interrupted when an overcurrent is applied. In this case, since the fuse is not used in the circuit for circuit protection against overcurrent, the cost can be kept low.

導体が融点500℃以下の金属よりなる場合には、過電流によって溶断する際の発熱量がより一層小さいので、周りの機器や絶縁被覆に与える熱的な影響がより一層小さい。したがって、過電流がかかったときにより一層安全に回路を遮断できる。導体が融点350℃以下の金属よりなる場合には、過電流によって溶断する際の発熱量が特に小さいので、周りの機器や絶縁被覆に与える熱的な影響が特に小さい。したがって、過電流がかかったときに特に安全に回路を遮断できる。   When the conductor is made of a metal having a melting point of 500 ° C. or lower, the amount of heat generated when fusing due to overcurrent is further reduced, so that the thermal influence on surrounding equipment and insulation coating is further reduced. Therefore, the circuit can be shut off more safely when an overcurrent is applied. When the conductor is made of a metal having a melting point of 350 ° C. or lower, the amount of heat generated at the time of fusing due to overcurrent is particularly small, so that the thermal influence on surrounding equipment and insulation coating is particularly small. Therefore, the circuit can be shut off particularly safely when an overcurrent is applied.

このとき、絶縁被覆よりも内側部分に占める空隙の割合が5%以上であると、過電流によって導体が溶融したときに空隙を利用して導体が変形しやすくなるので、回路を遮断しやすくなる。   At this time, if the ratio of the gap in the inner portion of the insulating coating is 5% or more, the conductor is likely to be deformed using the gap when the conductor is melted by overcurrent, so that the circuit is easily shut off. .

本発明の一実施形態に係る過電流遮断機能付き電線の模式図(a)とA−A線断面図(b)である。They are a schematic diagram (a) and an AA line sectional view (b) of an electric wire with an overcurrent interruption function concerning one embodiment of the present invention.

次に、本発明の実施形態について詳細に説明する。   Next, an embodiment of the present invention will be described in detail.

図1には、本発明の一実施形態に係る過電流遮断機能付き電線の構成を示している。過電流遮断機能付き電線10は、複数本の金属素線16からなる導体12を有し、導体12の外周が絶縁被覆14により覆われている。   In FIG. 1, the structure of the electric wire with an overcurrent interruption | blocking function which concerns on one Embodiment of this invention is shown. The electric wire 10 with an overcurrent interruption function has a conductor 12 composed of a plurality of metal wires 16, and the outer periphery of the conductor 12 is covered with an insulating coating 14.

複数本の金属素線16は束ねられて撚り合わされて撚線を形成している。撚線は圧縮成形されておらず、撚線内部の金属素線16間には空隙18aが形成されている。   The plurality of metal strands 16 are bundled and twisted to form a stranded wire. The stranded wire is not compression-molded, and a gap 18a is formed between the metal wires 16 inside the stranded wire.

絶縁被覆14は円筒状に成形したものからなる。絶縁被覆14は撚線からなる導体12の外周を覆っており、凹凸状に構成されている導体12の外周表面と絶縁被覆14の内周面との間には空隙18bが形成されている。   The insulating coating 14 is formed in a cylindrical shape. The insulating coating 14 covers the outer periphery of the conductor 12 made of a stranded wire, and a gap 18 b is formed between the outer peripheral surface of the conductor 12 that is configured to be uneven and the inner peripheral surface of the insulating coating 14.

絶縁被覆14よりも内側部分に占める空隙の割合は、図1(b)のA−A線断面図に示すように電線の径方向(軸方向と直交する方向)に電線を切断したときの絶縁被覆14よりも内側部分に占める導体部分の面積を除いた空隙部分(18a,18b)の面積によって表すことができる。   The ratio of the gap in the inner portion of the insulating coating 14 is the insulation when the electric wire is cut in the radial direction (direction perpendicular to the axial direction) of the electric wire as shown in the cross-sectional view along the line AA in FIG. This can be represented by the area of the gap portions (18a, 18b) excluding the area of the conductor portion that occupies the inner portion of the coating 14.

導体12を構成している複数本の金属素線16は低融点の金属によって形成されている。低融点の金属を導体12に用いることで、所定の電流値(過電流)で溶断し、過電流がかかったときに回路を遮断することができる。つまり、導体12に用いる金属は過電流によって溶断するものとする。過電流とは、回路に通常流される電流よりもさらに大きな電流であり、異常電流をいう。例えば回路がショートしたときなどに回路に瞬時に流れる電流などである。   The plurality of metal strands 16 constituting the conductor 12 are formed of a low melting point metal. By using a metal having a low melting point for the conductor 12, the circuit can be cut off when an overcurrent is applied by fusing at a predetermined current value (overcurrent). That is, the metal used for the conductor 12 is blown by overcurrent. An overcurrent is a current that is larger than the current that normally flows through the circuit, and is an abnormal current. For example, a current that instantaneously flows in the circuit when the circuit is short-circuited.

このような低融点の金属としては、Al、Sn、Pb、Zn、これらの合金などが挙げられる。   Examples of such a low melting point metal include Al, Sn, Pb, Zn, and alloys thereof.

上記Al、Sn、Pb、Znとともに合金を形成する金属としては、Sb、Cu、Ag、Bi、Ge、Sn、Al、Mg、Fe、Mn、Siなどが挙げられる。Al合金としては、Al−Fe合金、Al−Si合金、Al−Mg合金などが挙げられる。Sn合金としては、Sn−Cu合金、Sn−Sb−Cu合金、Sn−Ag−Bi合金、Sn−Ag−Bi−Cu合金、Sn−Ag−Bi−Cu−Ge合金などが挙げられる。Pb合金としては、Pb−Sn−Cu合金、Pb−Ag−Sn合金、Pb−Sn−Cu合金などが挙げられる。Zn合金としては、Zn−Al合金、Zn−Al−Mg合金、Zn−Al−Cu−Mg合金、Zn−Al−Fe合金、Zn−Al−Cu合金、Zn−Cu合金、Zn−Cu−Mg合金、Zn−Mn合金、Zn−Fe合金などが挙げられる。   Examples of the metal that forms an alloy with Al, Sn, Pb, and Zn include Sb, Cu, Ag, Bi, Ge, Sn, Al, Mg, Fe, Mn, and Si. Examples of the Al alloy include an Al—Fe alloy, an Al—Si alloy, and an Al—Mg alloy. Examples of the Sn alloy include a Sn—Cu alloy, a Sn—Sb—Cu alloy, a Sn—Ag—Bi alloy, a Sn—Ag—Bi—Cu alloy, and a Sn—Ag—Bi—Cu—Ge alloy. Examples of the Pb alloy include a Pb—Sn—Cu alloy, a Pb—Ag—Sn alloy, and a Pb—Sn—Cu alloy. Examples of the Zn alloy include a Zn—Al alloy, a Zn—Al—Mg alloy, a Zn—Al—Cu—Mg alloy, a Zn—Al—Fe alloy, a Zn—Al—Cu alloy, a Zn—Cu alloy, and a Zn—Cu—Mg alloy. An alloy, a Zn-Mn alloy, a Zn-Fe alloy, etc. are mentioned.

導体断面積としては、所定の電流値(過電流)で溶断しやすいなどの観点から、0.5mm以下であることが好ましい。金属素線16の径は、所望の導体断面積となるよう金属素線16の本数などに応じて適宜定められる。 The cross-sectional area of the conductor is preferably 0.5 mm 2 or less from the viewpoint of easy melting at a predetermined current value (overcurrent). The diameter of the metal strand 16 is appropriately determined according to the number of the metal strands 16 so as to have a desired conductor cross-sectional area.

絶縁被覆14に用いられる絶縁材としては、特に限定されるものではなく、電線被覆材として用いられる絶縁材を適用することができる。このような絶縁材としては、塩化ビニル系樹脂材料、オレフィン系樹脂材料、エンジニアリングプラスチックなどが挙げられる。   The insulating material used for the insulating coating 14 is not particularly limited, and an insulating material used as a wire coating material can be applied. Examples of such an insulating material include vinyl chloride resin materials, olefin resin materials, engineering plastics, and the like.

絶縁被覆14は、過電流によって導体12が溶断する際の熱による影響が小さくなるように、耐熱性に優れることが好ましい。したがって、絶縁被覆14は架橋されていてもよい。   It is preferable that the insulation coating 14 is excellent in heat resistance so that the influence of heat when the conductor 12 is melted by overcurrent is reduced. Therefore, the insulating coating 14 may be cross-linked.

以上の構成の過電流遮断機能付き電線10によれば、過電流によって溶断する融点が700℃以下の低融点の金属を導体12に用いているので、過電流によって溶断する際の発熱量が小さく、周りの機器や絶縁被覆14に与える熱的な影響が小さい。したがって、過電流がかかったときに安全に回路を遮断できる。この場合、過電流に対する回路保護に対し回路内にヒューズを用いない構成であるので、コストが低く抑えられる。   According to the electric wire 10 with an overcurrent cutoff function having the above configuration, a low melting point metal having a melting point of 700 ° C. or less that is melted by overcurrent is used for the conductor 12, so that the amount of heat generated when melted by overcurrent is small. The thermal influence on surrounding devices and the insulation coating 14 is small. Therefore, the circuit can be safely interrupted when an overcurrent is applied. In this case, since the fuse is not used in the circuit for circuit protection against overcurrent, the cost can be kept low.

そして、複数本の金属素線16からなる導体12の内部や導体12と絶縁被覆14との間には空隙18aや空隙18bが設けられており、過電流によって導体12が溶融したときには空隙18aや空隙18bを利用して導体12が変形できるため、溶融した部分で導体12が切れやすくなっている。すなわち、回路を遮断しやすくなっている。   And the space | gap 18a and the space | gap 18b are provided in the inside of the conductor 12 which consists of the several metal strand 16, and between the conductor 12 and the insulation coating 14, When the conductor 12 fuse | melts by overcurrent, the space | gap 18a or Since the conductor 12 can be deformed using the gap 18b, the conductor 12 is easily cut at the melted portion. That is, it is easy to interrupt the circuit.

導体12に用いる低融点の金属の融点としては、より好ましくは500℃以下、さらに好ましくは350℃以下である。融点が500℃以下であると、過電流によって溶断する際の発熱量がより一層小さいので、周りの機器や絶縁被覆14に与える熱的な影響がより一層小さい。したがって、過電流がかかったときにより一層安全に回路を遮断できる。融点350℃以下であると、過電流によって溶断する際の発熱量が特に小さいので、周りの機器や絶縁被覆に与える熱的な影響が特に小さい。したがって、過電流がかかったときに特に安全に回路を遮断できる。   The melting point of the low melting point metal used for the conductor 12 is more preferably 500 ° C. or lower, and further preferably 350 ° C. or lower. When the melting point is 500 ° C. or lower, the amount of heat generated at the time of fusing due to overcurrent is much smaller, so the thermal influence on the surrounding equipment and the insulation coating 14 is even smaller. Therefore, the circuit can be shut off more safely when an overcurrent is applied. When the melting point is 350 ° C. or lower, the amount of heat generated at the time of fusing due to overcurrent is particularly small, so the thermal influence on surrounding equipment and insulation coating is particularly small. Therefore, the circuit can be shut off particularly safely when an overcurrent is applied.

本発明に係る過電流遮断機能付き電線においては、過電流によって溶断するのであれば、撚線内部あるいは導体と絶縁被覆との間に空隙が設けられていない構成であってもよい。また、導体は複数本の金属素線ではなく単線によって構成していてもよい。また、絶縁被覆は円筒状に成形したものでなくてもよく、導体の外周表面に密着するように成形していてもよい。また、導体が複数本の金属素線で構成する場合には、圧縮成形していてもよい。   The electric wire with an overcurrent cutoff function according to the present invention may have a configuration in which no gap is provided inside the stranded wire or between the conductor and the insulating coating as long as the electric wire is melted by overcurrent. The conductor may be constituted by a single wire instead of a plurality of metal strands. Further, the insulating coating does not have to be formed into a cylindrical shape, and may be formed so as to be in close contact with the outer peripheral surface of the conductor. Further, when the conductor is composed of a plurality of metal strands, it may be compression molded.

本発明に係る過電流遮断機能付き電線は、過電流によって導体が溶断して回路を遮断するヒューズ機能を持った電線である。したがって、ヒューズが挿入される種々の回路の一部あるいは全部の配線に適用することができる。また、導体に用いる金属の抵抗が比較的高いことから、本発明に係る過電流遮断機能付き電線は、大電流を流すパワー回路よりも、微小の電流しか流れない検知線などの信号回路などに好適に用いられる。   The electric wire with an overcurrent interruption function according to the present invention is an electric wire having a fuse function in which a conductor is blown by an overcurrent to interrupt a circuit. Therefore, the present invention can be applied to a part or all of various circuits into which fuses are inserted. In addition, since the resistance of the metal used for the conductor is relatively high, the electric wire with an overcurrent cutoff function according to the present invention is more suitable for a signal circuit such as a detection line that flows only a minute current than a power circuit that flows a large current. Preferably used.

本発明においては、検知線の全長あるいはその一部に過電流遮断機能付き電線を用いるので、検知線の導体同士が接触して過電流が流れたときに、導体の接触部などが瞬時に溶融することで検知回路の遮断を可能にしている。これにより、機器や他の回路を保護することができる。   In the present invention, since an electric wire with an overcurrent interruption function is used for the entire length of the detection line or a part of the detection line, when the conductors of the detection line come into contact with each other and an overcurrent flows, the contact portion of the conductor instantaneously melts. By doing so, the detection circuit can be shut off. Thereby, equipment and other circuits can be protected.

以下、本発明を実施例によって説明する。   Hereinafter, the present invention will be described by way of examples.

(実施例)
表1に記載の合金組成からなる合金をそれぞれφ0.3mmに伸線加工し、7本を撚り合わせて撚線導体とした。その後、導体の外周に塩化ビニル系絶縁材を図1(b)に示すように円筒状に押出加工した(被覆厚0.3mm)。これにより、過電流遮断機能付き電線を作製した。
(Example)
The alloys having the alloy compositions shown in Table 1 were each drawn to φ0.3 mm, and seven were twisted to form a stranded conductor. Thereafter, a vinyl chloride insulating material was extruded into a cylindrical shape on the outer periphery of the conductor as shown in FIG. 1B (covering thickness: 0.3 mm). This produced the electric wire with an overcurrent interruption function.

作製した各過電流遮断機能付き電線について、溶断特性を調べた。また、評価1にしたがって短絡時の挙動を調べた。さらに、評価2にしたがって各過電流遮断機能付き電線を配線の一部に用いた場合における大電流が流れたときの挙動を調べた。測定方法および評価基準を以下に示す。また、これらの結果を表1〜2に示す。   The fusing characteristics of each manufactured electric wire with an overcurrent interruption function were examined. Moreover, the behavior at the time of a short circuit was investigated according to Evaluation 1. Furthermore, the behavior when a large current flows in the case of using each electric wire with an overcurrent cutoff function as a part of the wiring according to Evaluation 2 was examined. The measurement method and evaluation criteria are shown below. Moreover, these results are shown to Tables 1-2.

(溶断特性)
作製した過電流遮断機能付き電線(長さ1m)に所定の電流を加え、断線するまでの時間(溶断時間)を測定した。
(Fusing characteristics)
A predetermined current was applied to the manufactured electric wire with an overcurrent interruption function (length: 1 m), and the time until the wire was broken (melting time) was measured.

(評価1)
作製した過電流遮断機能付き電線を2本(長さ各50cm)準備し、それぞれの電線の片端部の導体を1cmずつ露出させ、露出させた導体同士を軽く接触させた。この状態を保持したままもう一方の端部から所定の電流値で通電を行い、このときの挙動を調べた。導体の発熱による絶縁被覆からの発煙や絶縁被覆の燃焼が起こることなく安全に回路遮断した場合を合格「○」とし、安全に回路遮断しなかった場合を不合格「×」とした。
(Evaluation 1)
Two electric wires with an overcurrent interruption function were prepared (each 50 cm in length), the conductor at one end of each electric wire was exposed 1 cm at a time, and the exposed conductors were lightly brought into contact with each other. While maintaining this state, electricity was applied at a predetermined current value from the other end, and the behavior at this time was examined. The case where the circuit was safely interrupted without causing smoke from the insulation coating or the combustion of the insulation coating due to the heat generated by the conductor was judged as “good”, and the case where the circuit was not safely intercepted was judged as “failed”.

(評価2)
銅電線(導体断面積0.5mm、塩化ビニル系絶縁材、被覆厚0.3mm、長さ1m)の導体に、金属スリーブを用いて、作製した過電流遮断機能付き電線(長さ2cm)の導体を圧着接続した。これに所定の電流値で通電を行い、このときの挙動を調べた。導体の発熱による絶縁被覆からの発煙や絶縁被覆の燃焼が起こることなく安全に回路遮断した場合を合格「○」とし、安全に回路遮断しなかった場合を不合格「×」とした。
(Evaluation 2)
An electric wire with an overcurrent cutoff function (length: 2 cm) produced by using a metal sleeve for a copper wire (conductor cross-sectional area: 0.5 mm 2 , vinyl chloride insulating material, coating thickness: 0.3 mm, length: 1 m) The conductors were crimped and connected. This was energized at a predetermined current value, and the behavior at this time was examined. The case where the circuit was safely interrupted without causing smoke from the insulation coating or the combustion of the insulation coating due to the heat generated by the conductor was judged as “good”, and the case where the circuit was not safely intercepted was judged as “failed”.

Figure 2014063639
Figure 2014063639

Figure 2014063639
Figure 2014063639

作製した各過電流遮断機能付き電線は、導体を構成するいずれの合金も融点が700℃以下で低融点である。特に、Sn合金、Pb合金、Zn合金の一部は融点が400℃以下でさらに低融点である。溶断特性の評価では、0.5Aの通電、1Aの通電では断線しなかったがこれらの通電量は過電流ではなく、導体の発熱量も大きくないため、絶縁被覆の外観変化は特に観察されなかった。10A以上の通電に対しては、いずれの過電流遮断機能付き電線も断線した。10Aの通電では数秒〜130秒の時間を要したが、比較的速いうちに導体が溶断したので、絶縁被覆からの発煙や絶縁被覆の燃焼は観察されなかった。また、50A以上の各通電量においても速いうちに導体が溶断したので、絶縁被覆からの発煙や絶縁被覆の燃焼は観察されなかった。そして、導体金属の融点が500℃以下であると溶断時間が格段に短く、絶縁被覆に与える熱的な影響が格段に小さいことが確認された。また、導体金属の融点が350℃以下であると溶断時間がさらに短く、絶縁被覆に与える熱的な影響がさらに小さいことが確認された。   Each of the manufactured electric wires with an overcurrent cutoff function has a melting point of 700 ° C. or lower and a low melting point for any alloy constituting the conductor. In particular, some of the Sn alloy, Pb alloy, and Zn alloy have a melting point of 400 ° C. or lower and a lower melting point. In the evaluation of the fusing characteristics, disconnection was not caused by 0.5A energization and 1A energization, but these energization amounts were not overcurrent, and the amount of heat generated by the conductor was not large. It was. For energization of 10 A or more, any electric wire with an overcurrent cutoff function was disconnected. The energization of 10A required several seconds to 130 seconds, but since the conductor was blown out relatively quickly, no smoke was emitted from the insulation coating or combustion of the insulation coating was observed. Further, since the conductor was blown out quickly even at each energization amount of 50 A or more, no smoke was emitted from the insulation coating or combustion of the insulation coating was observed. And when melting | fusing point of a conductor metal was 500 degrees C or less, it was confirmed that the fusing time is remarkably short and the thermal influence which it has on insulation coating is remarkably small. Further, it was confirmed that when the melting point of the conductor metal is 350 ° C. or lower, the fusing time is further shortened and the thermal influence on the insulating coating is further reduced.

評価1では、50A以上の通電に対して、いずれの過電流遮断機能付き電線も導体同士の接触部で断線した。そして、導体の発熱による絶縁被覆からの発煙や絶縁被覆の燃焼が起こることなく安全に回路遮断できた。   In the evaluation 1, with respect to energization of 50 A or more, any electric wire with an overcurrent cutoff function was disconnected at the contact portion between the conductors. The circuit could be safely shut off without causing smoke from the insulation coating or burning of the insulation coating due to heat generated by the conductor.

評価2では、50A以上の通電に対して、いずれの場合も過電流遮断機能付き電線の部分で断線した。そして、導体の発熱による絶縁被覆からの発煙や絶縁被覆の燃焼が起こることなく安全に回路遮断できた。   In the evaluation 2, in each case, with respect to energization of 50 A or more, the electric wire with an overcurrent interruption function was disconnected. The circuit could be safely shut off without causing smoke from the insulation coating or burning of the insulation coating due to heat generated by the conductor.

以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.

10 過電流遮断機能付き電線
12 導体
14 絶縁被覆
16 金属素線
18a,18b 空隙
10 Electric wire with overcurrent blocking function 12 Conductor 14 Insulation coating 16 Metal element wires 18a, 18b Air gap

Claims (5)

融点が700℃以下の金属よりなる導体が絶縁被覆で覆われ、過電流によって前記導体が溶断することを特徴とする過電流遮断機能付き電線。   An electric wire with an overcurrent interruption function, wherein a conductor made of a metal having a melting point of 700 ° C or less is covered with an insulating coating, and the conductor is melted by overcurrent. 融点が500℃以下の金属よりなる導体が絶縁被覆で覆われ、過電流によって前記導体が溶断することを特徴とする過電流遮断機能付き電線。   An electric wire with an overcurrent cutoff function, wherein a conductor made of a metal having a melting point of 500 ° C or less is covered with an insulating coating, and the conductor is melted by an overcurrent. 融点が350℃以下の金属よりなる導体が絶縁被覆で覆われ、過電流によって前記導体が溶断することを特徴とする過電流遮断機能付き電線。
An electric wire with an overcurrent blocking function, wherein a conductor made of a metal having a melting point of 350 ° C or less is covered with an insulating coating, and the conductor is melted by an overcurrent.
前記絶縁被覆よりも内側には空隙が設けられていることを特徴とする請求項1から3のいずれか1項に記載の過電流遮断機能付き電線。   The electric wire with an overcurrent interruption function according to any one of claims 1 to 3, wherein a gap is provided inside the insulating coating. 前記絶縁被覆よりも内側部分に占める空隙の割合が5%以上であることを特徴とする請求項4に記載の過電流遮断機能付き電線。   The electric wire with an overcurrent interruption function according to claim 4, wherein a ratio of voids in an inner portion of the insulating coating is 5% or more.
JP2012207960A 2012-09-21 2012-09-21 Electric wire with overcurrent cutoff function Active JP6107020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012207960A JP6107020B2 (en) 2012-09-21 2012-09-21 Electric wire with overcurrent cutoff function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012207960A JP6107020B2 (en) 2012-09-21 2012-09-21 Electric wire with overcurrent cutoff function

Publications (2)

Publication Number Publication Date
JP2014063639A true JP2014063639A (en) 2014-04-10
JP6107020B2 JP6107020B2 (en) 2017-04-05

Family

ID=50618702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012207960A Active JP6107020B2 (en) 2012-09-21 2012-09-21 Electric wire with overcurrent cutoff function

Country Status (1)

Country Link
JP (1) JP6107020B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016038968A (en) * 2014-08-06 2016-03-22 株式会社オートネットワーク技術研究所 Wire with overcurrent cutoff function
JP2016066555A (en) * 2014-09-26 2016-04-28 デクセリアルズ株式会社 Electric wire
EP3942589B1 (en) * 2019-05-16 2022-09-21 SIBA Fuses GmbH Fusible conductor and fuse

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030592Y1 (en) * 1970-12-24 1975-09-08
JPS5030593Y1 (en) * 1970-12-24 1975-09-08
JPS5946411U (en) * 1982-09-21 1984-03-28 日立電線株式会社 fusible electric wire
JPH02213456A (en) * 1989-02-15 1990-08-24 Sumitomo Electric Ind Ltd Fuse

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030592Y1 (en) * 1970-12-24 1975-09-08
JPS5030593Y1 (en) * 1970-12-24 1975-09-08
JPS5946411U (en) * 1982-09-21 1984-03-28 日立電線株式会社 fusible electric wire
JPH02213456A (en) * 1989-02-15 1990-08-24 Sumitomo Electric Ind Ltd Fuse

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016038968A (en) * 2014-08-06 2016-03-22 株式会社オートネットワーク技術研究所 Wire with overcurrent cutoff function
JP2016066555A (en) * 2014-09-26 2016-04-28 デクセリアルズ株式会社 Electric wire
KR20170039720A (en) 2014-09-26 2017-04-11 데쿠세리아루즈 가부시키가이샤 Electric wire
US20170278663A1 (en) * 2014-09-26 2017-09-28 Dexerials Corporation Electric wire
KR20180108865A (en) 2014-09-26 2018-10-04 데쿠세리아루즈 가부시키가이샤 Electric wire
US10672582B2 (en) 2014-09-26 2020-06-02 Dexerials Corporation Electric wire
EP3942589B1 (en) * 2019-05-16 2022-09-21 SIBA Fuses GmbH Fusible conductor and fuse

Also Published As

Publication number Publication date
JP6107020B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
US8378778B2 (en) Varistor comprising an electrode having a protruding portion forming a pole and protection device comprising such a varistor
US9007163B2 (en) Device for protection from overvoltages with split thermal disconnectors
US20120086540A1 (en) Device for protection from surges with improved thermal disconnector
TWI521558B (en) Fuse
JP6107020B2 (en) Electric wire with overcurrent cutoff function
TWI672721B (en) wire
KR102273217B1 (en) Functional Heating Cable
JP6252398B2 (en) Electric wire with overcurrent cutoff function
KR20150066697A (en) Complex fuse for preventing over-heating and over-current
KR101514956B1 (en) Complex fuse for preventing over-heating and over-current
JP6023410B2 (en) Fusible link
JP2016186837A (en) Insulation coated wire
KR101539726B1 (en) Fuse
CN111599559A (en) Fuse-resistor assembly and method of manufacturing the same
CN111091939A (en) Fuse-resistor assembly and method of manufacturing a fuse-resistor assembly
KR101987019B1 (en) Power type thermal fuse resistor and method of manufacturing same
WO2014013812A1 (en) Electrical wiring fuse
GB191114803A (en) Improvements in Fusible Cut-outs for Controlling Electric Circuits.
JP2019091670A (en) Power distribution line improving arc fusion characteristics
WO2017047500A1 (en) Insulated wire
US2041093A (en) Safety conductor
CN210182090U (en) Insulated wire
US20160055985A1 (en) Circuit breakers, circuit breaker line power assemblies, and operational methods
KR200404802Y1 (en) High current limited fuse that apply soluble conductor of dual structure
CN112242219A (en) Fuse-resistor assembly and method of manufacturing a fuse-resistor assembly

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150219

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170220

R150 Certificate of patent or registration of utility model

Ref document number: 6107020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150