JP2014062781A - Ultrasonic flaw detector - Google Patents

Ultrasonic flaw detector Download PDF

Info

Publication number
JP2014062781A
JP2014062781A JP2012207251A JP2012207251A JP2014062781A JP 2014062781 A JP2014062781 A JP 2014062781A JP 2012207251 A JP2012207251 A JP 2012207251A JP 2012207251 A JP2012207251 A JP 2012207251A JP 2014062781 A JP2014062781 A JP 2014062781A
Authority
JP
Japan
Prior art keywords
flaw detection
detection material
support
probe
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012207251A
Other languages
Japanese (ja)
Other versions
JP6070004B2 (en
Inventor
Takashi Sako
崇 佐古
Daisuke Mori
大輔 森
Munehiro Mitsuhashi
宗宏 三ツ橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2012207251A priority Critical patent/JP6070004B2/en
Publication of JP2014062781A publication Critical patent/JP2014062781A/en
Application granted granted Critical
Publication of JP6070004B2 publication Critical patent/JP6070004B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic flaw detector capable of detecting an internal flaw with high accuracy.SOLUTION: A first support body 46 is supported so as to be movable in a Z direction by a traveling body 42 capable of reciprocally moving along an X direction. A support shaft 50 whose axial line is aligned in a Y direction is supported so as to be movable in the Y direction by the first support body 46. A second support body 52 is suspended so as to be integrally movable by the support shaft 50, and the second support body 52 is supported so as to be freely rotatable by the support shaft 50. A contactor 54 with a transmission/reception face directed downward is disposed so as to be integrally movable in the second support body 52. A plurality of rollers 60 are disposed so as to be rotatable in contact with a material 12 to be flaw-detected in the second support body 52. Then, when the rollers 60 move along the material 12 to be flaw-detected, the contactor 54 is displaced with high accuracy following the outer shape of the material 12 to be flaw-detected.

Description

本発明は、水に浸漬した被探傷材料に向けて超音波を発信して内部欠陥を検知する超音波探傷装置に関するものである。   The present invention relates to an ultrasonic flaw detection apparatus that detects an internal defect by transmitting an ultrasonic wave toward a flaw detection material immersed in water.

被探傷材料の内部欠陥を検知する超音波探傷装置として、水槽に貯留した水に被探傷材料および探触子を浸漬した状態で、探触子を被探傷材料の長手方向に移動しつつ該探触子から被探傷材料に向けて超音波を発信して内部欠陥を検知する水浸式の超音波探傷装置が知られている(例えば、特許文献1参照)。   As an ultrasonic flaw detector that detects internal defects in a flaw detection material, the flaw detection material and the probe are immersed in water stored in a water tank, and the probe is moved in the longitudinal direction of the flaw detection material while moving the probe. There is known a water immersion type ultrasonic flaw detector that detects an internal defect by transmitting an ultrasonic wave from a touch sensor toward a material to be flawed (see, for example, Patent Document 1).

特開平7−280776号公報JP-A-7-280776

特許文献1の探傷装置では、探触子を被探傷材料の長手方向および左右方向の軸線回りに回転自在に支持することで、自重によって被探傷材料に載っている探触子の姿勢が被探傷材料の外形に倣うように変化するよう構成されている。しかしながら、探触子を左右方向の軸線回りに回転自在に支持する構成では、被探傷材料が左右方向に曲がっている場合には、探触子が被探傷材料の曲がり倣って姿勢や位置を変えることができず、探触子と被探傷材料との相対位置が変化してしまい、探触子から発信される超音波の被探傷材料に対する入射位置がズレて超音波が屈折してしまい、精度のよい探傷ができなくなって探傷結果の信頼度を低下する問題があった。特に、丸棒鋼等のような中実な被探傷材料の場合では、超音波の入射位置のズレによる超音波の屈折の影響が探傷結果に大きく反映するため、被探傷材料と探触子との相対位置の変化によって探傷結果の信頼度が大きく低下する難点が指摘される。   In the flaw detection apparatus of Patent Literature 1, the posture of the probe placed on the flaw detection material is determined by the weight of the flaw by supporting the probe so as to be rotatable about the longitudinal and lateral axes of the flaw detection material. It is configured to change so as to follow the outer shape of the material. However, in the configuration in which the probe is supported so as to be rotatable around the horizontal axis, when the material to be inspected is bent in the left-right direction, the probe changes its posture and position by following the bending of the material to be inspected. The relative position between the probe and the material to be inspected changes, the incident position of the ultrasonic wave transmitted from the probe to the material to be inspected deviates and the ultrasonic wave is refracted, and the accuracy However, there is a problem that the reliability of the flaw detection result is lowered because good flaw detection becomes impossible. In particular, in the case of a solid flaw detection material such as a round steel bar, the influence of ultrasonic refraction due to the deviation of the incident position of the ultrasonic wave greatly reflects the flaw detection result, so the flaw detection material and the probe It is pointed out that the reliability of the flaw detection results greatly decreases due to the change of the relative position.

すなわち本発明は、前記従来の技術に内在する前記課題に鑑み、これを好適に解決するべく提案されたものであって、高精度で内部欠陥を検知し得る超音波探傷装置を提供することを目的とする。   That is, the present invention has been proposed in view of the above-described problems inherent in the prior art, and provides an ultrasonic flaw detector capable of detecting internal defects with high accuracy. Objective.

前記課題を克服し、所期の目的を達成するため、請求項1の発明に係る超音波探傷装置は、
水が貯留された水槽と、中実な被探傷材料を水槽内に水に浸漬した状態で支持する支持台と、該支持台で支持された被探傷材料に向けて超音波を照射する探触子とを備えた超音波探傷装置において、
前記被探傷材料の長手方向に沿って移動可能な移動体と、
前記移動体に対して上下方向に移動可能に支持されると共に、被探傷材料の長手方向および上下方向の夫々と直交する左右方向に移動可能に支持され、かつ該左右方向に延在する軸線回りに回転可能に支持されて前記探触子が配設された倣い手段と、
前記倣い手段に配設され、前記支持台に支持された被探傷材料に当接して回転可能な複数のローラとを備え、
前記支持台で支持された被探傷材料に対してローラを当接した状態で移動体を被探傷材料の長手方向に移動する際に、前記倣い手段と共に探触子が被探傷材料の外形に倣って上下方向、左右方向および前記軸線回りに変位可能に構成したことを要旨とする。
In order to overcome the above-mentioned problems and achieve the intended purpose, an ultrasonic flaw detection apparatus according to the invention of claim 1 is provided:
A water tank in which water is stored, a support base that supports a solid flaw detection material immersed in water in the water tank, and a probe that irradiates ultrasonic waves toward the flaw detection material supported by the support base In an ultrasonic flaw detector provided with a child,
A movable body movable along the longitudinal direction of the flaw detection material;
An axis that is supported so as to be movable in the vertical direction with respect to the moving body, is supported so as to be movable in the left-right direction perpendicular to the longitudinal direction and the vertical direction of the flaw detection material, and extends in the left-right direction. A scanning means that is rotatably supported by the probe, and
A plurality of rollers disposed in the copying means and rotatable in contact with the material to be detected supported by the support base;
When the moving body is moved in the longitudinal direction of the flaw detection material while the roller is in contact with the flaw detection material supported by the support base, the probe together with the copying means follows the outer shape of the flaw detection material. The gist of the present invention is that it can be displaced in the vertical direction, the horizontal direction, and around the axis.

請求項1に係る発明によれば、被探傷材料の長手方向に移動する移動体に対し、探触子を上下方向、左右方向および左右方向に延在する軸線回りに移動可能に支持するよう構成したので、被探傷材料に対して探触子を高精度で倣わせることができる。すなわち、被探傷材料と探触子との相対的な位置関係を一定に保ったまま被探傷材料の全長に亘って探傷することができ、高精度で内部欠陥を検知することができる。   According to the first aspect of the present invention, the probe is movably supported about the axis extending in the vertical direction, the horizontal direction, and the horizontal direction with respect to the moving body that moves in the longitudinal direction of the flaw detection material. Therefore, the probe can be made to follow the flaw detection material with high accuracy. That is, flaw detection can be performed over the entire length of the flaw detection material while keeping the relative positional relationship between the flaw detection material and the probe constant, and internal defects can be detected with high accuracy.

請求項2に係る発明では、前記支持台を昇降調節する調節手段を備えたことを要旨とする。
請求項2に係る発明によれば、被探傷材料の支持台を昇降調節して探触子との相対的な位置関係を一定とし得るので、直径が異なる被探傷材料に対応し得る。
The gist of the invention according to claim 2 is that it is provided with adjusting means for raising and lowering the support base.
According to the second aspect of the invention, since the relative positional relationship with the probe can be made constant by raising and lowering the support base of the flaw detection material, it is possible to deal with flaw detection materials having different diameters.

請求項3に係る発明では、前記移動体に対して倣い手段を上向きに付勢する付勢手段を備えたことを要旨とする。
請求項3に係る発明によれば、ローラを被探傷材料に当接して倣わせる際に、該被探傷材料に加わる倣い手段の重量の一部を付勢手段に担わせることができ、被探傷材料の外形に探触子をスムーズに倣わせ得る。
The gist of the invention according to claim 3 is that biasing means for biasing the copying means upward with respect to the moving body is provided.
According to the invention of claim 3, when the roller is brought into contact with the flaw detection material and copied, the biasing means can bear a part of the weight of the copying means applied to the flaw detection material. The probe can smoothly follow the outer shape of the flaw detection material.

請求項4に係る発明では、前記被探傷材料における長手方向の一端を把持する把持具を有し、該把持具を所定角度毎に回転するインデックス装置を備えたことを要旨とする。
請求項4に係る発明によれば、被探傷材料を全周に亘って探傷することができる。
The gist of the invention according to claim 4 is provided with an indexing device that has a gripping tool for gripping one end in the longitudinal direction of the material to be inspected and rotates the gripping tool at a predetermined angle.
According to the invention which concerns on Claim 4, a flaw detection material can be flawed over the perimeter.

本発明に係る超音波探傷装置によれば、被探傷材料の内部欠陥を高精度で検知することができる。   According to the ultrasonic flaw detector according to the present invention, it is possible to detect an internal defect of a material to be detected with high accuracy.

実施例に係る超音波探傷装置を示す要部概略正面図である。It is a principal part schematic front view which shows the ultrasonic flaw detector which concerns on an Example. 実施例に係る超音波探傷装置の概略側断面図である。1 is a schematic sectional side view of an ultrasonic flaw detector according to an embodiment. 実施例に係る探触子の支持部分を一部破断して示す概略正面図である。It is a schematic front view which partially fractures and shows the support part of the probe which concerns on an Example. 実施例に係る探触子の支持部分を一部破断して示す概略側面図である。It is a schematic side view which shows the support part of the probe which concerns on an Example partially broken, and is shown. 実施例に係る探触子と被探傷材料との関係を示す説明図である。It is explanatory drawing which shows the relationship between the probe which concerns on an Example, and a to-be-examined material.

次に、本発明に係る超音波探傷装置につき、好適な実施例を挙げて、添付図面を参照しながら以下説明する。   Next, a preferred embodiment of the ultrasonic flaw detector according to the present invention will be described below with reference to the accompanying drawings.

図1,図2は、実施例に係る超音波探傷装置10の全体構成を示すものであって、実施例では、後述する支持装置16で支持された被探傷材料12の長手方向をX方向、該X方向と直交する左右方向をY方向、X方向およびY方向と直交する上下方向をZ方向、Y方向に延在する軸線回りの方向をM方向と指称する場合もある。また、実施例の超音波探傷装置10は、中実で断面円形の丸棒状の被探傷材料12の探傷に好適に用いられる。なお、被探傷材料12のX方向における後述する把持具24で把持される一端を始端、他端を終端と指称する場合もある。   1 and 2 show an overall configuration of an ultrasonic flaw detection apparatus 10 according to an embodiment. In the embodiment, the longitudinal direction of the flaw detection material 12 supported by a support apparatus 16 described later is the X direction, The horizontal direction orthogonal to the X direction may be referred to as the Y direction, the vertical direction orthogonal to the X direction and the Y direction may be referred to as the Z direction, and the direction around the axis extending in the Y direction may be referred to as the M direction. In addition, the ultrasonic flaw detection apparatus 10 according to the embodiment is suitably used for flaw detection on a flaw detection material 12 having a solid round bar shape with a circular cross section. Note that one end gripped by the gripping tool 24 described later in the X direction of the flaw detection material 12 may be referred to as a start end and the other end may be referred to as a termination end.

前記超音波探傷装置10は、図1,図2に示す如く、被探傷材料12を水が貯留された水槽14の内部に浸漬した略水平姿勢で支持する支持装置16を備える。この支持装置16は、水槽14の内部に昇降動自在に配設されて被探傷材料12のX方向に離間する複数の支持台18と、該支持台18を昇降調節するパワーシリンダ等の調節手段20とを備え、被探傷材料12の直径に応じて調節手段20によって支持台18を昇降調節することで、支持台18で支持された被探傷材料12の中心C0を、前記把持具24の回転中心と一致させ得るよう構成される。なお、複数の支持台18と調節手段20とは図示しないリンク機構等の連繋機構を介して接続されており、調節手段20を作動することによって全ての支持台18が同期して昇降移動するよう構成されている。また、調節手段20は制御手段64に接続されており、該制御手段64に入力された被探傷材料12の直径等のデータに基づいて制御手段64の制御下に調節手段20が作動制御されて、支持台18を昇降調節するよう構成される。 As shown in FIGS. 1 and 2, the ultrasonic flaw detector 10 includes a support device 16 that supports the flaw detection material 12 in a substantially horizontal posture immersed in a water tank 14 in which water is stored. The support device 16 is provided inside the water tank 14 so as to be movable up and down, and is provided with a plurality of support bases 18 that are separated from each other in the X direction of the flaw detection material 12, and adjusting means such as a power cylinder that adjusts the support base 18 up and down. 20 and adjusting the support base 18 up and down by the adjusting means 20 in accordance with the diameter of the flaw detection material 12, the center C 0 of the flaw detection material 12 supported by the support base 18 is It is configured to be able to coincide with the center of rotation. Note that the plurality of support bases 18 and the adjusting means 20 are connected via a linkage mechanism such as a link mechanism (not shown), and by operating the adjusting means 20, all the support bases 18 are moved up and down synchronously. It is configured. The adjusting means 20 is connected to the control means 64, and the adjusting means 20 is controlled to operate under the control of the control means 64 based on data such as the diameter of the material to be inspected 12 input to the control means 64. The support base 18 is configured to be adjusted up and down.

前記支持台18は、図4および図5に示す如く、上面にY方向の中間に向けて下方傾斜する逆ハ字状となる2つの傾斜面からなる支持面18aが形成されており、該支持面18aに載置された被探傷材料12の中心C0が、支持台18のY方向の中央を通る鉛直線L上に位置するよう構成される。また、探傷する被探傷材料12の直径が変わった場合においても、該支持台18の支持面18aに被探傷材料12を載置することで、被探傷材料12の中心C0が常に鉛直線L上に位置するようになっている。 As shown in FIGS. 4 and 5, the support base 18 has a support surface 18 a formed of two inclined surfaces having an inverted C shape inclined downward toward the middle in the Y direction on the upper surface. The center C 0 of the flaw detection material 12 placed on the surface 18 a is configured to be positioned on a vertical line L passing through the center of the support base 18 in the Y direction. Further, when the diameter of the test object material 12 is changed to testing also, by placing the test object material 12 to the support surface 18a of the support base 18, the center C 0 is always vertical line L of the test object material 12 It is designed to be located above.

なお、前記支持装置16は、後述する探触子54により被探傷材料12の内部欠陥を検知する探傷工程において、前記支持台18に載置された被探傷材料12に接触する後述するローラ60と干渉しない位置で該被探傷材料12を把持して位置固定する固定手段(図示せず)を備えている。   The support device 16 includes a later-described roller 60 that contacts the flaw detection material 12 placed on the support table 18 in a flaw detection process in which an inner defect of the flaw detection material 12 is detected by a probe 54 described later. A fixing means (not shown) is provided for gripping and fixing the flaw detection material 12 at a position where it does not interfere.

前記水槽14におけるX方向の一端側に、図1に示す如く、被探傷材料12の始端部を把持可能な把持具24を開閉自在に備え、前記制御手段64により作動制御されるインデックス装置26が配設されている。このインデックス装置26は、把持具24を、被探傷材料12の始端部を把持可能な把持位置および始端部から離間する退避位置の間をX方向に移動するよう構成される。またインデックス装置26は、把持具24を所定角度単位毎に回転し得るように構成されており、被探傷材料12の始端部を把持した把持具24を所定角度単位で回転することで、該被探傷材料12を全周に亘って探傷し得るよう構成される。実施例では、後述する探触子54により一度に探傷可能な被探傷材料12の中心C0に対する測定角度θ(図5参照)は、約58度に設定されている。そして、インデックス装置26では、測定角度θより大きな60度が1回の回転角度(以後、インデックス角度という場合もある)に設定されて、被探傷材料12をインデックス角度回転する毎に探触子54で長手方向の全長に亘る探傷を実施する工程を7回繰り返すことで、該被探傷材料12の全周を探傷し得るよう構成してある。 As shown in FIG. 1, an index device 26, which is openable and closable at one end side in the X direction of the water tank 14, can be opened and closed and is controlled by the control means 64. It is arranged. The index device 26 is configured to move the gripping tool 24 in the X direction between a gripping position where the starting end portion of the flaw detection material 12 can be gripped and a retracted position separated from the starting end portion. The index device 26 is configured to be able to rotate the gripping tool 24 by a predetermined angle unit. By rotating the gripping tool 24 that grips the starting end portion of the flaw detection material 12 by a predetermined angle unit, the indexing device 26 is rotated. The flaw detection material 12 is configured to be capable of flaw detection over the entire circumference. In the embodiment, the measurement angle θ (see FIG. 5) with respect to the center C 0 of the flaw detection material 12 that can be flaw detected at once by the probe 54 described later is set to about 58 degrees. In the index device 26, 60 degrees larger than the measurement angle θ is set as one rotation angle (hereinafter sometimes referred to as an index angle), and the probe 54 is rotated every time the flaw detection material 12 is rotated by the index angle. The process of carrying out the flaw detection over the entire length in the longitudinal direction is repeated seven times so that the entire circumference of the flaw detection material 12 can be flawed.

図1および図2に示す如く、前記水槽14の側部上方に位置する支持フレーム28に、上下に離間してX方向に沿って平行に延在する一対のガイドレール30,30が配設され、該ガイドレール30,30に移動基台32がX方向に沿って往復移動可能に支持されている。また支持フレーム28には、両ガイドレール30,30の間にラック34が平行に延在するよう配設されている。移動基台32に、前記ラック34に噛合するピニオン36を回転駆動する駆動手段としてのサーボモータ38が配設されており、該サーボモータ38を正逆回転することで、移動基台32をX方向に沿って往復移動するよう構成される。サーボモータ38は、前記制御手段64に接続されて、該制御手段64によって回転制御される。実施例では、ラック34、ピニオン36、サーボモータ38から、移動基台32をX方向に移動する移動機構が構成されている。   As shown in FIGS. 1 and 2, a pair of guide rails 30, 30 that are spaced apart in the vertical direction and extend in parallel along the X direction are disposed on the support frame 28 located above the side of the water tank 14. The moving base 32 is supported by the guide rails 30 and 30 so as to be capable of reciprocating along the X direction. A rack 34 is disposed on the support frame 28 so as to extend in parallel between the guide rails 30 and 30. The moving base 32 is provided with a servo motor 38 as a driving means for rotationally driving a pinion 36 that meshes with the rack 34. By rotating the servo motor 38 forward and backward, the moving base 32 is moved to X. It is configured to reciprocate along the direction. The servo motor 38 is connected to the control means 64 and is rotationally controlled by the control means 64. In the embodiment, the rack 34, the pinion 36, and the servo motor 38 constitute a moving mechanism that moves the moving base 32 in the X direction.

前記移動基台32に、図2に示す如く、水槽14の上方に張出す張出し部32aが設けられており、該張出し部32aに、ピストンロッド40aを下方に向けた姿勢で昇降用シリンダ40が配設されている。昇降用シリンダ40は、前記制御手段64に接続されて、該制御手段64によって制御されるようになっている。また、前記ピストンロッド40aに移動体42が連結されており、該昇降用シリンダ40を正逆付勢することで、移動体42を昇降移動するよう構成される。移動体42には、超音波の発信および受信を行なう探触子54を備える探傷機構部43が昇降移動可能に支持されている。この探傷機構部43は、移動体42に対して昇降移動可能に支持される第1支持体46と、該第1支持体46に対してY方向およびM方向に移動可能に支持される第2支持体(倣い手段)52と、該第2支持体52に配設されて被探傷材料12に当接可能なガイドローラ組56,58および探触子54を備える。   As shown in FIG. 2, the moving base 32 is provided with an overhanging portion 32a that protrudes above the water tank 14, and the lifting cylinder 40 is placed on the overhanging portion 32a with the piston rod 40a facing downward. It is arranged. The lifting cylinder 40 is connected to the control means 64 and is controlled by the control means 64. A moving body 42 is connected to the piston rod 40a, and the moving body 42 is moved up and down by urging the lifting cylinder 40 forward and backward. A flaw detection mechanism 43 including a probe 54 that transmits and receives ultrasonic waves is supported on the moving body 42 so as to be movable up and down. The flaw detection mechanism 43 is supported by a first support 46 that is movable up and down with respect to the moving body 42, and a second support that is supported by the first support 46 so as to be movable in the Y and M directions. A support body (copying means) 52, guide roller sets 56 and 58, and a probe 54, which are disposed on the second support body 52 and can come into contact with the flaw detection material 12, are provided.

前記探傷機構部43の第1支持体46には、上面に複数のガイドロッド44が立設されており、各ガイドロッド44が、移動体42に穿設した通孔に摺動自在に挿通されて、第1支持体46は、移動体42に対して平行な姿勢を保ったまま昇降移動し得るよう構成される。また、図3,図4に示す如く、各ガイドロッド44における移動体42の上方に臨む上端に規制部44aが設けられると共に、該ガイドロッド44には、規制部44aと移動体42の上面との間に付勢手段としての圧縮バネ48が巻装されており、第1支持体46は複数の圧縮バネ48によって上方に向けて付勢されている。すなわち、第1支持体46を移動体42に対して複数の圧縮バネ48で支持することで、該第1支持体46の重量および該第1支持体46に配設される後述の第2支持体52,探触子54,ガイドローラ組56,58,固定用シリンダ66)の重量を合わせた総重量(探傷機構部43の重量)を略相殺して第1支持体46のZ方向のスムーズな変位を許容し得るよう構成してある。   A plurality of guide rods 44 are erected on the upper surface of the first support 46 of the flaw detection mechanism 43, and each guide rod 44 is slidably inserted into a through hole formed in the moving body 42. Thus, the first support 46 is configured to move up and down while maintaining a parallel posture with respect to the moving body 42. Further, as shown in FIGS. 3 and 4, a restricting portion 44 a is provided at the upper end of each guide rod 44 facing the moving body 42, and the guide rod 44 includes a restricting portion 44 a and an upper surface of the moving body 42. A compression spring 48 as an urging means is wound between the first support 46 and the first support 46 is urged upward by a plurality of compression springs 48. That is, by supporting the first support body 46 with respect to the moving body 42 by a plurality of compression springs 48, the weight of the first support body 46 and a second support described later disposed on the first support body 46. The total weight (weight of the flaw detection mechanism 43) of the body 52, the probe 54, the guide roller sets 56 and 58, and the fixing cylinder 66) is substantially canceled out, and the first support 46 is smoothly moved in the Z direction. It is constructed so as to allow a large displacement.

前記第1支持体46には、図4に示す如く、Y方向に離間して一対の支持部46a,46aが垂設されており、両支持部46a,46aに、Y方向に軸線を揃えた支持軸50が、Y方向に移動可能に支持されている。この支持軸50は、図示しないバネ等の弾性部材によって軸方向(Y方向)の中央が、前記支持台18に支持された被探傷材料12の中心C0を通る鉛直線L上に位置するように構成される。また支持軸50には、第2支持体52が一体的に移動自在に吊下げられると共に、該第2支持体52は支持軸50に対して回動自在に支持されている。すなわち、第2支持体52は、第1支持体46に対してY方向に移動可能で、かつY方向に延在する軸線回り、すなわちM方向に回転可能に支持されている。 As shown in FIG. 4, the first support 46 is provided with a pair of support portions 46a, 46a that are spaced apart from each other in the Y direction, and the axes are aligned in the Y direction on both support portions 46a, 46a. The support shaft 50 is supported so as to be movable in the Y direction. The support shaft 50 is positioned such that the center in the axial direction (Y direction) is located on a vertical line L passing through the center C 0 of the flaw detection material 12 supported by the support base 18 by an elastic member such as a spring (not shown). Configured. Further, the second support body 52 is suspended from the support shaft 50 so as to be integrally movable, and the second support body 52 is rotatably supported with respect to the support shaft 50. That is, the second support body 52 is supported so as to be movable in the Y direction with respect to the first support body 46 and to be rotatable around an axis extending in the Y direction, that is, in the M direction.

前記第2支持体52には、図3および図4に示す如く、前記支持軸50におけるY方向の中央の真下に、超音波の送受信面54aを下向きとした探触子54が一体的に移動するように配設されている。すなわち、前記移動体42に対して第1支持体46を介して吊下げ状態で支持された探触子54は、Y方向、Z方向およびM方向に移動可能になっており、被探傷材料12の外形に高精度で倣って変位し得るよう構成される。この探触子54は、前記制御手段64に接続されており、被探傷材料12の外面に対向する送受信面54aから被探傷材料12に向けて超音波を発信し、該超音波の反射波を送受信面54aで受信して、該受信信号を制御手段64に入力することで、内部欠陥を検知するよう構成される。   As shown in FIGS. 3 and 4, the probe 54 with the ultrasonic transmission / reception surface 54 a facing downward is integrally moved to the second support 52 just below the center of the support shaft 50 in the Y direction. It is arranged to do. That is, the probe 54 supported in a suspended state with respect to the moving body 42 via the first support body 46 is movable in the Y direction, the Z direction, and the M direction, and the flaw detection material 12 It is configured so that it can be displaced by following the outer shape of this with high accuracy. The probe 54 is connected to the control means 64, transmits ultrasonic waves from the transmitting / receiving surface 54 a facing the outer surface of the flaw detection material 12 toward the flaw detection material 12, and reflects the reflected waves of the ultrasonic waves. An internal defect is detected by receiving the signal on the transmission / reception surface 54a and inputting the received signal to the control means 64.

前記探触子54の送受信面54aは、図5に示すように上側に凸となる円弧面に形成されると共に、該送受信面54aの円弧を形成する仮想円の中心C1を通る軸線がX方向に沿うように設定されており、前記昇降用シリンダ40によって移動体42(探傷機構部43)を後述するローラ60,60が支持台18に支持されている被探傷材料12に当接する位置まで移動することで、該仮想円の中心C1を被探傷材料12の中心C0と一致させ得るようになっている。そして、被探傷材料12の中心C0と送受信面54aの円弧の中心C1とを一致した状態で、該送受信面54aと被探傷材料12の外面との間は一定距離離間するよう構成される。なお、送受信面54aの仮想円の中心C1を被探傷材料12の中心C0と一致させた状態で、該送受信面54aから被探傷材料12に向けて発信される超音波によって探傷可能な測定角度θが、被探傷材料12の中心C0に対して約58度となるように送受信面54aの円弧が設定されている(図5参照)。 Receiving surface 54a of the probe 54 is formed in a circular arc surface that is convex upward as shown in FIG. 5, the axis passing through the center C 1 of the virtual circle forming the arc of said transmission reception surface 54a is X The moving cylinder 42 (flaw detection mechanism 43) is moved to the position where rollers 60 and 60, which will be described later, come into contact with the flaw detection material 12 supported by the support base 18 by the lifting cylinder 40. By moving, the center C 1 of the virtual circle can coincide with the center C 0 of the flaw detection material 12. Then, in a state that matches the center C 1 of the center of the arc C 0 and receiving surface 54a of the test object material 12, is configured to be separated a predetermined distance between the outer surface of said transmission reception surface 54a and test object material 12 . Incidentally, the center C 1 of the virtual circle transceiver surface 54a in a state of being aligned with the center C 0 of the flaw detection material 12, flaw detection can be determined by ultrasonic waves transmitted toward the wound material 12 test object from said transmission reception surface 54a The arc of the transmission / reception surface 54a is set so that the angle θ is about 58 degrees with respect to the center C 0 of the flaw detection material 12 (see FIG. 5).

前記第2支持体52には、探触子54の配設位置を挟んでX方向の両側に一対のガイドローラ組56,58が配設されている。各ガイドローラ組56,58は、Y方向に離間する一対のローラ60,60から構成される。両ローラ60,60の軸線は、下側に向かうにつれて相互に離間するよう傾斜して、該軸線回りにローラ60が自由回転するように配設されており、図4に示す如く、前記支持台18に支持されている被探傷材料12に対して各ローラ60は周面が斜めに当接した状態で回転するよう構成される。各ローラ60,60は、探触子54より下方において被探傷材料12に当接するように配設位置が設定されており、該ローラ60,60を被探傷材料12に当接した状態において、探触子54における送受信面54aと被探傷材料12の外面との離間距離を一定に保つよう構成される。また、各ローラ60,60の配設位置は、該ローラ60,60を被探傷材料12に当接した状態で、探触子54における送受信面54aの円弧の中心C1が被探傷材料12の中心C0と一致する位置に設定されている。なお、ローラ60,60は、第2支持体52に対して位置調節可能に配設されており、被探傷材料12の直径が変わった場合はローラ60,60を位置調節することで、探触子54における送受信面54aの円弧の中心C1を被探傷材料12の中心C0と一致させ得るよう構成される。実施例では、被探傷材料12の始端側(インデックス装置26側)に位置するガイドローラ組56を始端側ガイドローラ組と指称すると共に、被探傷材料12の終端側に位置するガイドローラ組58を終端側ガイドローラ組と指称する場合もある。 The second support 52 is provided with a pair of guide roller sets 56 and 58 on both sides in the X direction across the position where the probe 54 is disposed. Each guide roller set 56, 58 is composed of a pair of rollers 60, 60 that are separated in the Y direction. The axes of the two rollers 60, 60 are inclined so as to be separated from each other toward the lower side, and the rollers 60 are arranged so as to freely rotate around the axis. As shown in FIG. Each roller 60 is configured to rotate in a state where the peripheral surface is in contact with the flaw detection material 12 supported by 18 in an oblique manner. The rollers 60, 60 are arranged at positions below the probe 54 so as to contact the material to be inspected 12, and in a state in which the rollers 60, 60 are in contact with the material to be inspected 12, The distance between the transmitting / receiving surface 54a of the contact 54 and the outer surface of the flaw detection material 12 is kept constant. Further, the arrangement position of the rollers 60 and 60, the rollers 60, 60 in contact with the target flaw material 12, the center C 1 of arc transmitting and receiving surface 54a in the probe 54 of the flaw material 12 The position coincides with the center C 0 . The rollers 60, 60 are disposed so as to be adjustable with respect to the second support 52. When the diameter of the material to be inspected 12 changes, the position of the rollers 60, 60 is adjusted, thereby detecting the probe. The center C 1 of the arc of the transmitting / receiving surface 54 a of the child 54 is configured to be coincident with the center C 0 of the flaw detection material 12. In the embodiment, the guide roller set 56 positioned on the start end side (index device 26 side) of the flaw detection material 12 is referred to as a start end side guide roller set, and the guide roller set 58 positioned on the end side of the flaw detection material 12 is designated. It may also be referred to as an end side guide roller set.

前記第2支持体52には、前記支持台18に支持されている被探傷材料12のX方向の端部(始端および終端)を検知可能な検知センサ62が配設されており(図3参照)、該検知センサ62の検知信号は、制御手段64に入力されるようになっている。   The second support 52 is provided with a detection sensor 62 capable of detecting the end portions (starting end and terminating end) in the X direction of the flaw detection material 12 supported by the support base 18 (see FIG. 3). ), The detection signal of the detection sensor 62 is input to the control means 64.

図3に示す如く、前記第1支持体46には、前記支持軸50の支持位置を挟んでX方向に離間する位置に、前記制御手段64によって作動制御される固定用シリンダ66が夫々配設されており、該固定用シリンダ66は、ピストンロッド66aを第1支持体46から下方に進退可能に構成されている。また、ピストンロッド66aの下端に押圧部68が設けられ、固定用シリンダ66を正逆付勢することで、押圧部68を第2支持体52に当接する固定位置と上方に離間する退避位置との間を移動するよう構成される。そして、両押圧部68,68を固定位置に位置させることで(図3の二点鎖線参照)、第2支持体52のM方向の回転を規制し得るよう構成される。なお、実施例では、両押圧部68,68でM方向の回転が規制された第2支持体52の姿勢を基準姿勢というものとする。   As shown in FIG. 3, the first support 46 is provided with a fixing cylinder 66 that is controlled by the control means 64 at positions spaced apart in the X direction across the support position of the support shaft 50. The fixing cylinder 66 is configured such that the piston rod 66a can be advanced and retracted downward from the first support 46. Also, a pressing portion 68 is provided at the lower end of the piston rod 66a, and by urging the fixing cylinder 66 forward and backward, a fixing position where the pressing portion 68 abuts on the second support body 52 and a retreat position where the pressing portion 68 is separated upward are provided. Configured to move between. And it is comprised so that rotation in the M direction of the 2nd support body 52 can be controlled by positioning both the press parts 68 and 68 in a fixed position (refer the dashed-two dotted line of FIG. 3). In the embodiment, the posture of the second support body 52 in which the rotation in the M direction is restricted by the pressing portions 68 and 68 is referred to as a reference posture.

前記制御手段64には、前記サーボモータ38の回転系に配設されたエンコーダ(図示せず)が接続されており、該制御手段64は、エンコーダからのパルス信号によって、探触子54の現在位置を常時監視し得るよう構成される。また制御手段64は、探触子54によって被探傷材料12の内部欠陥を検知する探傷工程に先立って行なわれる被探傷材料12の測長工程において、前記検知センサ62が被探傷材料12の始端および終端を検知した検知信号と前記エンコーダからのパルス信号(パルス数)とによって、被探傷材料12の長さを測定し得るよう構成してある。そして、制御手段64は、測定工程によって測定した被探傷材料12の長さを記憶し、該記憶した長さを基に、探傷工程においてガイドローラ組56,58が被探傷材料12の始端または終端に近づいたときに、前記固定用シリンダ66,66を付勢して第2支持体52がM方向に回転するのを規制する状態とするよう設定される。   An encoder (not shown) disposed in the rotation system of the servo motor 38 is connected to the control means 64, and the control means 64 is connected to the current position of the probe 54 by a pulse signal from the encoder. It is configured to be able to constantly monitor the position. Further, the control means 64 is configured such that, in the length measurement process of the flaw detection material 12 performed prior to the flaw detection process in which the probe 54 detects the internal defect of the flaw detection material 12, the detection sensor 62 causes the start end of the flaw detection material 12 and The length of the flaw detection material 12 can be measured by the detection signal that detects the end and the pulse signal (number of pulses) from the encoder. Then, the control means 64 stores the length of the flaw detection material 12 measured in the measurement process, and based on the stored length, the guide roller sets 56 and 58 in the flaw detection process cause the start or end of the flaw detection material 12 to be detected. Is set so as to restrict the rotation of the second support 52 in the M direction by urging the fixing cylinders 66, 66.

〔実施例の作用〕
次に、前述のように構成された超音波探傷装置10の作用につき説明する。
(Effects of Example)
Next, the operation of the ultrasonic flaw detector 10 configured as described above will be described.

(測定工程について)
図示しない供給装置によって被探傷材料12を前記水槽14の内部に供給して前記複数の支持台18上に載置する。前記制御手段64は、被探傷材料12の中心C0が前記把持具24の回転中心と一致するように、調節手段20を制御して支持台18の高さ位置を被探傷材料12の直径に応じて調節する。また、前記探傷機構部43を、前記検知センサ62が被探傷材料12の始端を検知しないX方向に離間した位置(図1においてインデックス装置26側に離間する位置)に位置させると共に、前記昇降用シリンダ40を付勢して検知センサ62が被探傷材料12を検知可能な高さ位置まで探傷機構部43(移動体42)を下降したもとで、前記サーボモータ38を回転駆動して前記移動基台32を被探傷材料12の終端側に向けてX方向に移動する。前記制御手段64は、検知センサ62が被探傷材料12の始端を検知した位置から終端を検知した位置までの前記エンコーダからのパルス信号に基づいて被探傷材料12の長さを計測して記憶する。また制御手段64は、検知センサ62が被探傷材料12の始端を検知した位置を原点位置として記憶する。
(About measurement process)
The flaw detection material 12 is supplied into the water tank 14 by a supply device (not shown) and placed on the plurality of support bases 18. The control means 64 controls the adjusting means 20 so that the center C 0 of the flaw detection material 12 coincides with the rotation center of the gripping tool 24 so that the height position of the support base 18 becomes the diameter of the flaw detection material 12. Adjust accordingly. In addition, the flaw detection mechanism 43 is positioned at a position separated in the X direction where the detection sensor 62 does not detect the start end of the flaw detection material 12 (a position separated from the index device 26 in FIG. 1), The cylinder 40 is energized and the flaw detection mechanism 43 (moving body 42) is lowered to a height position at which the detection sensor 62 can detect the flaw detection material 12, and the servo motor 38 is rotated to drive the movement. The base 32 is moved in the X direction toward the terminal end side of the flaw detection material 12. The control means 64 measures and stores the length of the flaw detection material 12 based on the pulse signal from the encoder from the position where the detection sensor 62 detects the start end of the flaw detection material 12 to the position where the detection end is detected. . Further, the control means 64 stores the position where the detection sensor 62 has detected the starting end of the flaw detection material 12 as the origin position.

(探傷工程について)
探傷工程では、先ず被探傷材料12における始端部の探傷を行なう。すなわち、測定工程で記憶された原点位置(被探傷材料12の始端)に基づいて、サーボモータ38を回転駆動して移動基台32を移動して、前記始端側ガイドローラ組56が原点位置より被探傷材料12の終端側の上方に臨むように位置決めする。そして、前記昇降用シリンダ40を付勢して、前記ローラ60,60が被探傷材料12に当接する位置まで探傷機構部43を移動する。このとき、探傷機構部43の重量によって縮んでいる前記圧縮バネ48が所定量だけ伸びる位置まで移動体42を下降することで、探傷機構部43の重量の一部が被探傷材料12に加わるようにして(探傷機構部43の重量の一部を圧縮バネ48の付勢力によって担わせる)、探傷機構部43が被探傷材料12の外形のZ方向の変位にスムーズに追従して移動体42に対して変位し得るようにする。また、ローラ60,60が被探傷材料12に当接した状態では、図5に示す如く、前記探触子54における送受信面54aと被探傷材料12との離間距離が一定に保持されると共に、該送受信面54aの円弧の中心C1が被探傷材料12の中心C0と一致する。
(About flaw detection process)
In the flaw detection process, first, flaw detection is performed on the starting end portion of the flaw detection material 12. That is, based on the origin position (starting end of the flaw detection material 12) stored in the measurement process, the servo motor 38 is rotationally driven to move the moving base 32 so that the starting end side guide roller set 56 is moved from the origin position. It positions so that it may face above the terminal side of the to-be-examined material 12. Then, the raising / lowering cylinder 40 is energized to move the flaw detection mechanism 43 to a position where the rollers 60, 60 abut against the flaw detection material 12. At this time, the moving spring 42 is lowered to a position where the compression spring 48 contracted by the weight of the flaw detection mechanism 43 extends by a predetermined amount so that a part of the weight of the flaw detection mechanism 43 is added to the flaw detection material 12. (A part of the weight of the flaw detection mechanism 43 is borne by the urging force of the compression spring 48), and the flaw detection mechanism 43 smoothly follows the displacement in the Z direction of the outer shape of the flaw detection material 12 to the moving body 42. To be able to be displaced. Further, when the rollers 60, 60 are in contact with the material to be inspected 12, as shown in FIG. 5, the distance between the transmitting / receiving surface 54a of the probe 54 and the material to be inspected 12 is kept constant, and The center C 1 of the arc of the transmission / reception surface 54 a coincides with the center C 0 of the flaw detection material 12.

前記押圧部68,68を退避位置に位置させた状態で、前記サーボモータ38を回転駆動して探傷機構部43(移動基台32)を被探傷材料12の始端側に向けて移動しつつ、前記探触子54の送受信面54aから被探傷材料12に向けて超音波を発信して探傷を実施する。前記押圧部68,68が退避位置に位置して第2支持体52のM方向の回転が規制されていない状態では、該第2支持体52、すなわち探触子54は、Y方向、Z方向およびM方向に変位可能であるので、前記ローラ60,60が被探傷材料12に当接しつつ移動することで、探触子54は被探傷材料12の外形に倣うように姿勢が変位し、前記送受信面54aは被探傷材料12の外面に対して一定の位置関係に保持される。具体的には、被探傷材料12のY方向の曲がりに対しては、前記第1支持体46に対して支持軸50と共に第2支持体52がY方向に変位することで、探触子54の送受信面54aと被探傷材料12とのY方向の相対的な位置関係は一定に保持される。また、被探傷材料12のZ方向の曲がりに対しては、前記移動体42に対して探傷機構部43がZ方向に変位すると共に、第2支持体52が支持軸50に対して回転することで、探触子54の送受信面54aと被探傷材料12とのZ方向の相対的な位置関係は一定に保持される。これにより、被探傷材料12の精度の高い探傷を行なうことができる。また、移動体42に対して第1支持体46を圧縮バネ48で支持し、探傷機構部43の重量の一部のみが被探傷材料12に加わるようにしているので、被探傷材料12が探傷機構部43の重量によって橈むのを防止すると共に探傷機構部43のZ方向のスムーズな変位が許容され、精度の高い倣いを実行し得る。なお、探傷工程において被探傷材料12に加わる探傷機構部43の重量については、昇降用シリンダ40による探傷機構部43の下降位置を調節することで変えることができる。   With the pressing portions 68 and 68 positioned at the retracted position, the servo motor 38 is rotationally driven to move the flaw detection mechanism portion 43 (moving base 32) toward the starting end side of the flaw detection material 12, An ultrasonic wave is transmitted from the transmitting / receiving surface 54a of the probe 54 toward the material to be inspected 12 to carry out the flaw detection. In a state where the pressing portions 68 and 68 are located at the retracted position and the rotation of the second support 52 in the M direction is not restricted, the second support 52, that is, the probe 54 is in the Y direction and the Z direction. Since the rollers 60, 60 move while abutting against the flaw detection material 12, the probe 54 is displaced in the posture so as to follow the outer shape of the flaw detection material 12. The transmission / reception surface 54 a is held in a fixed positional relationship with respect to the outer surface of the flaw detection material 12. Specifically, with respect to the bending of the flaw detection material 12 in the Y direction, the probe 54 is displaced by the second support 52 being displaced in the Y direction together with the support shaft 50 with respect to the first support 46. The relative positional relationship in the Y direction between the transmitting / receiving surface 54a and the flaw detection material 12 is kept constant. Further, with respect to the bending of the flaw detection material 12 in the Z direction, the flaw detection mechanism 43 is displaced in the Z direction with respect to the moving body 42, and the second support body 52 rotates with respect to the support shaft 50. Thus, the relative positional relationship between the transmitting / receiving surface 54a of the probe 54 and the flaw detection material 12 in the Z direction is kept constant. Thereby, a highly accurate flaw detection of the flaw detection material 12 can be performed. Further, since the first support 46 is supported by the compression spring 48 with respect to the moving body 42 and only a part of the weight of the flaw detection mechanism 43 is applied to the flaw detection material 12, the flaw detection material 12 is flaw-detected. It is possible to prevent chamfering due to the weight of the mechanism unit 43 and to allow a smooth displacement in the Z direction of the flaw detection mechanism unit 43 to perform high-precision copying. Note that the weight of the flaw detection mechanism 43 applied to the flaw detection material 12 in the flaw detection process can be changed by adjusting the lowering position of the flaw detection mechanism 43 by the lifting cylinder 40.

前記制御手段64は、測定工程で設定された原点位置に基づいて、前記始端側ガイドローラ組56が被探傷材料12の始端から外れる直前において、前記固定用シリンダ66,66を付勢して押圧部68,68を第2支持体52に当接することで、該第2支持体52がM方向に回転するのを規制する。この状態で、探傷機構部43が更に被探傷材料12の始端側に移動すると、始端側ガイドローラ組56のローラ60,60が被探傷材料12から外れるが、第2支持体52は基準姿勢に保持されているので該第2支持体52が傾くことはなく、前記探触子54の送受信面54aと被探傷材料12との位置関係が変化しないので、被探傷材料12の始端部を高精度で探傷し得る。   The control means 64 urges and presses the fixing cylinders 66 and 66 immediately before the start end side guide roller set 56 is detached from the start end of the flaw detection material 12 based on the origin position set in the measurement process. The portions 68 and 68 are brought into contact with the second support body 52 to restrict the rotation of the second support body 52 in the M direction. In this state, when the flaw detection mechanism 43 further moves to the start end side of the flaw detection material 12, the rollers 60 and 60 of the start end side guide roller set 56 are disengaged from the flaw detection material 12, but the second support 52 is in the reference posture. Since the second support 52 is not tilted because it is held, the positional relationship between the transmitting / receiving surface 54a of the probe 54 and the material to be inspected 12 does not change. Can be flawed.

前記被探傷材料12の始端部の探傷を完了した後に、両ガイドローラ組56,58の各ローラ60,60が被探傷材料12に当接する位置まで探傷機構部43を移動すると共に、前記固定用シリンダ66,66を逆付勢して押圧部68,68を退避位置まで移動することで、前記第2支持体52のM方向の回転を許容する状態とする。そして、前記サーボモータ38の回転駆動により探傷機構部43を被探傷材料12の終端側に向けて移動しつつ、前記探触子54の送受信面54aから被探傷材料12に向けて超音波を照射して探傷を実施する。前記押圧部68,68により第2支持体52のM方向の回転が規制されていない状態では、該第2支持体52、すなわち探触子54は、Y方向、Z方向およびM方向に変位可能であるので、前記ローラ60,60が被探傷材料12に当接しつつ移動することで、探触子54は被探傷材料12に対して送受信面54aが一定の位置関係に保持されたまま移動する。これにより、被探傷材料12の精度の高い探傷を行ない得る。   After completing the flaw detection of the starting end portion of the flaw detection material 12, the flaw detection mechanism 43 is moved to a position where the rollers 60, 60 of both guide roller sets 56, 58 contact the flaw detection material 12, and the fixing The cylinders 66 and 66 are reversely biased to move the pressing portions 68 and 68 to the retracted position, thereby allowing the second support 52 to rotate in the M direction. Then, the ultrasonic wave is irradiated from the transmitting / receiving surface 54a of the probe 54 toward the flaw detection material 12 while the flaw detection mechanism 43 is moved toward the terminal end side of the flaw detection material 12 by the rotational drive of the servo motor 38. And conduct flaw detection. In a state where the rotation of the second support 52 in the M direction is not restricted by the pressing portions 68, 68, the second support 52, that is, the probe 54 can be displaced in the Y direction, the Z direction, and the M direction. Therefore, when the rollers 60 and 60 move while contacting the flaw detection material 12, the probe 54 moves with respect to the flaw detection material 12 while the transmission / reception surface 54a is held in a fixed positional relationship. . Thereby, highly accurate flaw detection of the flaw detection material 12 can be performed.

前記制御手段64は、前記エンコーダからのパルス信号と前記測定工程で測定された被探傷材料12の長さのデータとに基づき、終端側ガイドローラ58が被探傷材料12の終端から外れる直前に至ったとき、前記固定用エアシリダ66,66を付勢して押圧部68,68を第2支持体52に当接することで、該第2支持体52がM方向に回転するのを規制する。この状態で、探傷機構部43が更に被探傷材料12の終端側に移動すると、終端側ガイドローラ組58のローラ60,60が被探傷材料12から外れるが、第2支持体52は基準姿勢に保持されているので、探触子54の送受信面54aと被探傷材料12との位置関係が変化することはなく、被探傷材料12の終端部を高精度で探傷し得る。   Based on the pulse signal from the encoder and the data of the length of the flaw detection material 12 measured in the measurement step, the control means 64 reaches immediately before the end-side guide roller 58 is released from the end of the flaw detection material 12. At this time, the fixing air cylinders 66 and 66 are urged to bring the pressing portions 68 and 68 into contact with the second support body 52, thereby restricting the rotation of the second support body 52 in the M direction. In this state, when the flaw detection mechanism 43 further moves to the end side of the flaw detection material 12, the rollers 60 and 60 of the end side guide roller set 58 are disengaged from the flaw detection material 12, but the second support 52 is in the reference posture. Since it is held, the positional relationship between the transmission / reception surface 54a of the probe 54 and the flaw detection material 12 does not change, and the end portion of the flaw detection material 12 can be flawed with high accuracy.

前記被探傷材料12の終端まで探傷を完了すると、前記制御手段64は探傷機構部43を上昇するように昇降用シリンダ40を付勢して、前記両ガイドローラ組56,58を被探傷材料12から離間すると共に、前記サーボモータ38を回転駆動して探傷機構部43を前述した被探傷材料12の始端部を探傷可能な位置まで移動して停止する。また、前記インデックス装置26の把持具24で被探傷材料12の始端部を把持すると共に、前記固定手段による被探傷材料12の固定を解除する。そして、把持具24を所定のインデックス角度だけ回転して、被探傷材料12における前記探触子54による探傷部位を変更し、該被探傷材料12を固定手段で位置決め固定する。被探傷材料12をインデックス角度回転した後、前記把持具24による把持を解除すると共に把持具24を被探傷材料12の始端から離間する退避位置まで移動した状態で、前述したと同様に探触子54による被探傷材料12の探傷を行なう。   When the flaw detection is completed up to the end of the flaw detection material 12, the control means 64 urges the elevating cylinder 40 so as to raise the flaw detection mechanism 43, and the guide roller sets 56 and 58 are moved to the flaw detection material 12. The servo motor 38 is driven to rotate, and the flaw detection mechanism 43 is moved to the position where the flaw detection material 12 can be flawed and stopped. Further, the gripping tool 24 of the index device 26 grips the starting end portion of the flaw detection material 12 and releases the fixation of the flaw detection material 12 by the fixing means. Then, the gripping tool 24 is rotated by a predetermined index angle to change a flaw detection site by the probe 54 in the flaw detection material 12, and the flaw detection material 12 is positioned and fixed by a fixing means. After the flaw detection material 12 is rotated by an index angle, the probe is released in the same manner as described above in a state where the grip by the gripper 24 is released and the gripper 24 is moved to the retracted position away from the starting end of the flaw detection material 12. The flaw detection material 12 is flawed by 54.

前記探触子54をX方向に移動して探傷する毎に被探傷材料12をインデックス角度回転する工程を所定回数(実施例では7回)繰り返すことで、該被探傷材料12の全周の探傷を完了する。   Each time the probe 54 is moved in the X direction and flaw detection is performed, the process of rotating the flaw detection material 12 by an index angle is repeated a predetermined number of times (in the embodiment, seven times), so that flaw detection is performed all around the flaw detection material 12. To complete.

実施例の超音波探傷装置10では、被探傷材料12の長手方向(X方向)に移動する移動体42に対して探触子54をY方向、Z方向およびM方向に変位可能に支持したので、前記ローラ60,60が被探傷材料12に当接して移動する際に、該被探傷材料12の外形に精度よく倣うように探触子54の姿勢が変位する。すなわち、被探傷材料12と探触子54の送受信面54aとの位置関係を一定に保持した状態で、該被探傷材料12を探傷することができ、高精度で内部欠陥を検知することができる。また実施例では、被探傷材料12の始端部および終端部の探傷に際し、第2支持体52のM方向の回転を規制するように構成したので、被探傷材料12の始端から終端まで精度のよい探傷を実施することができる。   In the ultrasonic flaw detector 10 of the embodiment, the probe 54 is supported so as to be displaceable in the Y direction, Z direction, and M direction with respect to the moving body 42 that moves in the longitudinal direction (X direction) of the flaw detection material 12. When the rollers 60, 60 move in contact with the material to be inspected 12, the posture of the probe 54 is displaced so as to accurately follow the outer shape of the material to be inspected 12. That is, the flaw detection material 12 can be flawed in a state where the positional relationship between the flaw detection material 12 and the transmission / reception surface 54a of the probe 54 is kept constant, and an internal defect can be detected with high accuracy. . Further, in the embodiment, the flaw detection material 12 is configured to restrict the rotation of the second support body 52 in the M direction at the time of flaw detection at the start end portion and the end end portion of the flaw detection material 12, so that the accuracy from the start end to the end of the flaw detection material 12 is high. A flaw detection can be carried out.

オーダー変更等によって被探傷材料12の直径が変わった場合は、前記制御手段64は、新たなオーダーに係る被探傷材料12の直径に応じて、前記調節手段20を制御して支持台18の高さを調節し、該支持台18に載置される被探傷材料12の中心C0を把持具24の回転中心と一致させる。これにより、把持具24の高さ位置を変更することなく該把持具24による材料始端部の把持が可能となり、被探傷材料12の直径が変わるオーダー変更に簡単に対応し得る。また、支持装置16の支持台18は、被探傷材料12を支持する支持面18aを2つの傾斜面から構成したので、被探傷材料12の直径が変わっても被探傷材料12の中心C0を前記鉛直線L上に位置させることができ、前記探触子54との位置関係を一定に保つことができる。 When the diameter of the flaw detection material 12 changes due to an order change or the like, the control means 64 controls the adjusting means 20 according to the diameter of the flaw detection material 12 according to the new order to increase the height of the support base 18. The center C 0 of the flaw detection material 12 placed on the support base 18 is made to coincide with the rotation center of the gripping tool 24 by adjusting the height. Thus, the material starting end can be gripped by the gripping tool 24 without changing the height position of the gripping tool 24, and an order change in which the diameter of the flaw detection material 12 changes can be easily dealt with. Further, since the support base 18 of the support device 16 includes the support surface 18a for supporting the flaw detection material 12 having two inclined surfaces, the center C 0 of the flaw detection material 12 is changed even if the diameter of the flaw detection material 12 changes. It can be positioned on the vertical line L, and the positional relationship with the probe 54 can be kept constant.

〔変更例〕
本発明は、実施例の構成に限定されず、種々の変更が可能であり、例えば以下の構成を採用し得る。
(1) 実施例では、移動体に対してZ方向に移動可能に支持した第1支持体に、第2支持体をY方向およびM方向に移動可能に支持するよう構成したが、探触子を配設した支持体(倣い手段)を、移動体に対してZ方向、Y方向およびM方向に移動可能に支持する構成を採用し得る。
(2) 実施例では、移動体に対してZ方向に移動可能に支持した第1支持体に、第2支持体をY方向およびM方向に移動可能に支持するよう構成したが、移動体に対して第1支持体をY方向およびM方向に移動可能に支持し、該第1支持体に対して第2支持体をZ方向に移動可能に支持する構成を採用し得る。
(3) 実施例では、第1支持体に対して第2支持体をY方向およびM方向に移動可能に支持するよう構成したが、第1支持体に対して別の支持体をY方向およびM方向の何れか一方の方向に移動可能に支持し、該別の支持体に対して第2支持体を他の方向に移動可能に支持する構成を採用することができる。すなわち、探触子が配設された支持体が、Z方向、Y方向およびM方向に移動可能に支持される構成であればよい。
(4) 実施例では、移動基台(移動体)をX方向に移動する移動機構としてラックとピニオンとを用いた機構で説明したが、該移動機構はこれに限られるものではなく、チェンやベルト等の索体と回転体とを用いた機構、その他公知の各種機構を採用し得る。
(5) インデックス装置により被探傷材料を回転するインデックス角度は、探触子により一度に探傷可能な測定角度に依存するものであって、該測定角度より大きく設定されていればよい。また、インデックス装置により被探傷材料を回転する回数は、未探傷領域が発生しない回数であればよい。
(6) 実施例では、移動体を昇降移動する手段としてシリンダを用いたが、モータとボールネジとを組み合わせた手段等、移動体を昇降移動可能な各種の手段を採用し得る。また、昇降手段としてシリンダを用いる場合に、サーボモータを用いた昇降機構を別途設け、該サーボモータにより被探傷材料に加わる荷重の微調節を行なうようにしてもよい。
(7) 実施例では、被探傷材料を複数の支持台で支持するようにしたが、被探傷材料が橈まないように該被探傷材料を全長に亘って支持可能な1つの支持台を用いることができる。。
(8) 実施例では、探傷機構部の重量を相殺するように移動体に支持する付勢手段として圧縮バネを挙げたが、移動体に対して探傷機構部を引張りバネ(付勢手段)によって吊下げる構成を採用し得る。また付勢手段は、バネに限らずゴム等であってもよい。
(9) 実施例では、探触子がZ方向、Y方向およびM方向の3つの自由度を持つ構成としたが、更にZ方向に延在する軸線回りに回転可能に構成してもよい。例えば、第1支持体に対してZ方向に延在する軸線回りに回転可能に配設した回転盤に、支持軸を支持する支持体を設けた構成を採用し得る。
[Example of change]
The present invention is not limited to the configuration of the embodiment, and various modifications are possible. For example, the following configurations can be adopted.
(1) In the embodiment, the first support body supported so as to be movable in the Z direction with respect to the moving body is configured to support the second support body so as to be movable in the Y direction and the M direction. It is possible to adopt a configuration in which the support body (copying means) provided with is movably supported in the Z direction, the Y direction, and the M direction with respect to the moving body.
(2) In the embodiment, the second support is supported to be movable in the Y direction and the M direction on the first support that is supported so as to be movable in the Z direction with respect to the movable body. On the other hand, it is possible to adopt a configuration in which the first support is supported so as to be movable in the Y direction and the M direction, and the second support is supported so as to be movable in the Z direction with respect to the first support.
(3) In the embodiment, the second support is supported so as to be movable in the Y direction and the M direction with respect to the first support. However, another support is supported in the Y direction with respect to the first support. It is possible to adopt a configuration in which the second support is supported so as to be movable in any one direction of the M direction and the second support is supported so as to be movable in the other direction with respect to the other support. That is, it is only necessary that the support on which the probe is disposed is supported so as to be movable in the Z direction, the Y direction, and the M direction.
(4) In the embodiment, a mechanism using a rack and a pinion as a moving mechanism for moving the moving base (moving body) in the X direction has been described, but the moving mechanism is not limited to this, and A mechanism using a cable body such as a belt and a rotating body, and various other known mechanisms can be adopted.
(5) The index angle at which the flaw detection material is rotated by the index device depends on the measurement angle at which flaw detection can be performed at once by the probe, and may be set larger than the measurement angle. Further, the number of rotations of the flaw detection material by the index device may be any number that does not generate an undetected region.
(6) In the embodiment, the cylinder is used as the means for moving the moving body up and down. However, various means capable of moving the moving body up and down, such as a combination of a motor and a ball screw, can be used. Further, when a cylinder is used as the lifting means, a lifting mechanism using a servo motor may be separately provided, and the load applied to the flaw detection material may be finely adjusted by the servo motor.
(7) In the embodiment, the flaw detection material is supported by a plurality of support bases, but one support base that can support the flaw detection material over the entire length is used so that the flaw detection material does not spill. be able to. .
(8) In the embodiment, the compression spring is cited as the biasing means that supports the moving body so as to offset the weight of the flaw detection mechanism, but the flaw detection mechanism is held by a tension spring (biasing means) with respect to the moving body. A hanging configuration may be employed. Further, the biasing means is not limited to a spring but may be rubber or the like.
(9) In the embodiment, the probe has a configuration with three degrees of freedom in the Z direction, the Y direction, and the M direction. However, the probe may be configured to be rotatable around an axis extending in the Z direction. For example, the structure which provided the support body which supports a support shaft in the rotating disk arrange | positioned so that rotation to the surroundings of the axis line extended in a Z direction with respect to a 1st support body can be employ | adopted.

12 被探傷材料,14 水槽,18 支持台,20 調節手段,24 把持具
26 インデックス装置,42 移動体,46 第1支持体,48 圧縮バネ(付勢手段)
52 第2支持体(倣い手段),54 探触子,60 ローラ
12 flaw detection material, 14 water tank, 18 support base, 20 adjustment means, 24 gripping tool 26 index device, 42 moving body, 46 first support body, 48 compression spring (biasing means)
52 Second support (copying means), 54 probe, 60 rollers

Claims (4)

水が貯留された水槽(14)と、中実な被探傷材料(12)を水槽(14)内に水に浸漬した状態で支持する支持台(18)と、該支持台(18)で支持された被探傷材料(12)に向けて超音波を照射する探触子(54)とを備えた超音波探傷装置において、
前記被探傷材料(12)の長手方向に沿って移動可能な移動体(42)と、
前記移動体(42)に対して上下方向に移動可能に支持されると共に、被探傷材料(12)の長手方向および上下方向の夫々と直交する左右方向に移動可能に支持され、かつ該左右方向に延在する軸線回りに回転可能に支持されて前記探触子(54)が配設された倣い手段(52)と、
前記倣い手段(52)に配設され、前記支持台(18)に支持された被探傷材料(12)に当接して回転可能な複数のローラ(60)とを備え、
前記支持台(18)で支持された被探傷材料(12)に対してローラ(60)を当接した状態で移動体(42)を被探傷材料(12)の長手方向に移動する際に、前記倣い手段(52)と共に探触子(54)が被探傷材料(12)の外形に倣って上下方向、左右方向および前記軸線回りに変位可能に構成した
ことを特徴とする超音波探傷装置。
A water tank (14) in which water is stored, a support base (18) that supports a solid flaw detection material (12) immersed in water in the water tank (14), and a support base (18) In the ultrasonic flaw detector provided with a probe (54) for irradiating ultrasonic waves toward the material to be flawed (12),
A movable body (42) movable along the longitudinal direction of the flaw detection material (12),
The movable body (42) is supported so as to be movable in the vertical direction, and is supported so as to be movable in the left-right direction orthogonal to the longitudinal direction and the vertical direction of the flaw detection material (12). A copying means (52) supported by the probe (54) so as to be rotatable around an axis extending to
A plurality of rollers (60) disposed in the copying means (52) and rotatable in contact with the material to be inspected (12) supported by the support base (18),
When moving the moving body (42) in the longitudinal direction of the flaw detection material (12) with the roller (60) in contact with the flaw detection material (12) supported by the support base (18), An ultrasonic flaw detector characterized in that the probe (54) can be displaced along the contour of the flaw detection material (12) in the vertical direction, the horizontal direction, and around the axis along with the copying means (52).
前記支持台(18)を昇降調節する調節手段(20)を備えた請求項1記載の超音波探傷装置。   The ultrasonic flaw detector according to claim 1, further comprising an adjusting means (20) for adjusting the support (18) to move up and down. 前記移動体(42)に対して倣い手段(52)を上向きに付勢する付勢手段(48)を備えた請求項1または2記載の超音波探傷装置。   The ultrasonic flaw detector according to claim 1 or 2, further comprising a biasing means (48) for biasing the copying means (52) upward with respect to the moving body (42). 前記被探傷材料(12)における長手方向の一端を把持する把持具(24)を有し、該把持具(24)を所定角度毎に回転するインデックス装置(26)を備えた請求項1〜3の何れか一項に記載の超音波探傷装置。   An index device (26) having a gripping tool (24) for gripping one end in the longitudinal direction of the flaw detection material (12) and rotating the gripping tool (24) at a predetermined angle. The ultrasonic flaw detector according to any one of the above.
JP2012207251A 2012-09-20 2012-09-20 Ultrasonic flaw detector Active JP6070004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012207251A JP6070004B2 (en) 2012-09-20 2012-09-20 Ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012207251A JP6070004B2 (en) 2012-09-20 2012-09-20 Ultrasonic flaw detector

Publications (2)

Publication Number Publication Date
JP2014062781A true JP2014062781A (en) 2014-04-10
JP6070004B2 JP6070004B2 (en) 2017-02-01

Family

ID=50618158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012207251A Active JP6070004B2 (en) 2012-09-20 2012-09-20 Ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JP6070004B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107367623A (en) * 2017-08-16 2017-11-21 中机精密成形产业技术研究院(安徽)股份有限公司 A kind of bar automatic flaw detection apparatus
CN108318508A (en) * 2018-05-07 2018-07-24 丹东市中讯科技有限公司 A kind of flaw detection mechanical structure
CN108693248A (en) * 2018-03-30 2018-10-23 无锡莱林检测机械有限公司 Pipe end non-blind area ultrasonic inspection machine
KR102011293B1 (en) * 2018-09-21 2019-08-16 대한민국 Probe fixing device for ultrasonic test instrument
CN113984897A (en) * 2021-11-02 2022-01-28 上海艾柯检测科技有限公司 Device for detecting bonding defects of composite material
WO2022165516A1 (en) * 2021-02-01 2022-08-04 Baker Hughes Holdings Llc Ultrasonic probe holder with mechanical follower
CN116482224A (en) * 2023-04-25 2023-07-25 江苏联能电力科学研究院有限公司 Nondestructive inspection system and method based on ultrasonic guided wave nondestructive inspection
RU222474U1 (en) * 2023-09-04 2023-12-27 Акционерное общество "Фирма ТВЕМА" Measuring and tracking device of a mobile ultrasonic flaw detector
CN117907434A (en) * 2024-03-12 2024-04-19 陕西天成航空材料股份有限公司 Water immersion type ultrasonic flaw detection equipment for titanium alloy bar

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141555A (en) * 1980-04-07 1981-11-05 Daido Steel Co Ltd Ultrasonic flaw detecting method
JPS60104764U (en) * 1983-12-21 1985-07-17 株式会社トキメック Probe holding mechanism
JPS61243358A (en) * 1985-04-19 1986-10-29 Kawasaki Steel Corp Confirmation of following accuracy of ultrasonic flaw detection head at weld part of seam welded pipe
JPH03293560A (en) * 1990-04-12 1991-12-25 Sumitomo Metal Ind Ltd Ultrasonic flaw detector for seam welded pipe
JPH04164249A (en) * 1990-10-29 1992-06-09 Hitachi Constr Mach Co Ltd Ultrasonic inspection device
JPH06242089A (en) * 1993-02-18 1994-09-02 Shimadzu Corp Ultrasonic flaw detector and probe therefor
JPH06347250A (en) * 1993-06-04 1994-12-20 Asahi Eng Co Ltd Plate-thickness measuring apparatus
JPH1096713A (en) * 1996-09-25 1998-04-14 Mitsubishi Heavy Ind Ltd Inspecting apparatus
JP2003194784A (en) * 2001-12-27 2003-07-09 Mitsuboshi Belting Ltd Method of inspecting flaws of polyamide resin molded body and inspecting device thereof
US20060048576A1 (en) * 2002-01-17 2006-03-09 Akihiro Kiuchi Bearing steel,method for evaluating large-sized inclusions in the steel and rolling bearing
JP2008122090A (en) * 2006-11-08 2008-05-29 Daido Steel Co Ltd Ultrasonic flaw detection method of rod material, and ultrasonic flaw detection system
JP2008139191A (en) * 2006-12-04 2008-06-19 Sumitomo Metal Ind Ltd Follower device for flaw detection of pipe and automatic flaw detector of pipe using it

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141555A (en) * 1980-04-07 1981-11-05 Daido Steel Co Ltd Ultrasonic flaw detecting method
JPS60104764U (en) * 1983-12-21 1985-07-17 株式会社トキメック Probe holding mechanism
JPS61243358A (en) * 1985-04-19 1986-10-29 Kawasaki Steel Corp Confirmation of following accuracy of ultrasonic flaw detection head at weld part of seam welded pipe
JPH03293560A (en) * 1990-04-12 1991-12-25 Sumitomo Metal Ind Ltd Ultrasonic flaw detector for seam welded pipe
JPH04164249A (en) * 1990-10-29 1992-06-09 Hitachi Constr Mach Co Ltd Ultrasonic inspection device
JPH06242089A (en) * 1993-02-18 1994-09-02 Shimadzu Corp Ultrasonic flaw detector and probe therefor
JPH06347250A (en) * 1993-06-04 1994-12-20 Asahi Eng Co Ltd Plate-thickness measuring apparatus
JPH1096713A (en) * 1996-09-25 1998-04-14 Mitsubishi Heavy Ind Ltd Inspecting apparatus
JP2003194784A (en) * 2001-12-27 2003-07-09 Mitsuboshi Belting Ltd Method of inspecting flaws of polyamide resin molded body and inspecting device thereof
US20060048576A1 (en) * 2002-01-17 2006-03-09 Akihiro Kiuchi Bearing steel,method for evaluating large-sized inclusions in the steel and rolling bearing
JP2008122090A (en) * 2006-11-08 2008-05-29 Daido Steel Co Ltd Ultrasonic flaw detection method of rod material, and ultrasonic flaw detection system
JP2008139191A (en) * 2006-12-04 2008-06-19 Sumitomo Metal Ind Ltd Follower device for flaw detection of pipe and automatic flaw detector of pipe using it

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107367623A (en) * 2017-08-16 2017-11-21 中机精密成形产业技术研究院(安徽)股份有限公司 A kind of bar automatic flaw detection apparatus
CN107367623B (en) * 2017-08-16 2023-09-05 中机精密成形产业技术研究院(安徽)股份有限公司 Automatic flaw detection equipment for bar
CN108693248B (en) * 2018-03-30 2024-02-02 无锡莱林检测机械有限公司 Pipe end non-blind area ultrasonic flaw detector
CN108693248A (en) * 2018-03-30 2018-10-23 无锡莱林检测机械有限公司 Pipe end non-blind area ultrasonic inspection machine
CN108318508A (en) * 2018-05-07 2018-07-24 丹东市中讯科技有限公司 A kind of flaw detection mechanical structure
KR102011293B1 (en) * 2018-09-21 2019-08-16 대한민국 Probe fixing device for ultrasonic test instrument
WO2022165516A1 (en) * 2021-02-01 2022-08-04 Baker Hughes Holdings Llc Ultrasonic probe holder with mechanical follower
CN113984897A (en) * 2021-11-02 2022-01-28 上海艾柯检测科技有限公司 Device for detecting bonding defects of composite material
CN113984897B (en) * 2021-11-02 2023-12-22 上海艾柯检测科技有限公司 Device for detecting bonding defect of composite material
CN116482224A (en) * 2023-04-25 2023-07-25 江苏联能电力科学研究院有限公司 Nondestructive inspection system and method based on ultrasonic guided wave nondestructive inspection
CN116482224B (en) * 2023-04-25 2024-02-09 江苏联能电力科学研究院有限公司 Nondestructive inspection system and method based on ultrasonic guided wave nondestructive inspection
RU222474U1 (en) * 2023-09-04 2023-12-27 Акционерное общество "Фирма ТВЕМА" Measuring and tracking device of a mobile ultrasonic flaw detector
CN117907434A (en) * 2024-03-12 2024-04-19 陕西天成航空材料股份有限公司 Water immersion type ultrasonic flaw detection equipment for titanium alloy bar
CN117907434B (en) * 2024-03-12 2024-05-31 陕西天成航空材料股份有限公司 Water immersion type ultrasonic flaw detection equipment for titanium alloy bar
RU226878U1 (en) * 2024-04-25 2024-06-27 Акционерное общество "Фирма ТВЕМА" Measuring and tracking device of a mobile ultrasonic flaw detector

Also Published As

Publication number Publication date
JP6070004B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP6070004B2 (en) Ultrasonic flaw detector
JP5880096B2 (en) Inner diameter measuring device
CA2775223C (en) Method and apparatus for a railway wheel ultrasonic testing apparatus
JP4632962B2 (en) Coaxiality / perpendicularity measuring apparatus and method
US8596125B2 (en) Railway wheel ultrasonic testing apparatus
KR101287181B1 (en) Automatic ultrasonic testing apparatus
KR101463338B1 (en) Apparatus for measuring bending angle of specimen automatically
JP2001147115A (en) Collision preventing device of measuring machine
CN108072407A (en) Turbine case flow-paths inspection system and method
KR101255837B1 (en) Automatic ultrasonic testing apparatus
CN105353778A (en) Automatic attitude adjusting device used for residual stress test
CA1106054A (en) Apparatus for ultrasonic inspection of the welding seam of large pipes
KR101539538B1 (en) Inspection device of penetration for reactor upper head
KR101458426B1 (en) Auto defects detection apparatus and method for testing inner side of cylinder tube
KR101889150B1 (en) Apparatus for measuring surface roughness of specimen
CN105806953A (en) Water-immersion ultrasonic angle adjusting device and method capable of realizing underwater calibrating
CN107339967A (en) A kind of roundness measuring equipment
JP4255901B2 (en) Rail test equipment
CN105021160B (en) Reducing steel tube both-end variable-distance ovality detecting system based on six-axis linkage
CN114088263A (en) Method for monitoring residual stress of self-reinforced ultrahigh-pressure tubular reactor
CN108917623B (en) Automobile glass window thickness detection tool
KR100622264B1 (en) Dimensional measurement and inspection system of candu fuel bundle in-bay of candu power plant
CN217033688U (en) Optical detection platform for plates
KR20190025198A (en) Wind turbine blade inspection platform device and inspection device maintaining constant inspection pressure
JPS61243358A (en) Confirmation of following accuracy of ultrasonic flaw detection head at weld part of seam welded pipe

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20141210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R150 Certificate of patent or registration of utility model

Ref document number: 6070004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150