JP2014062495A - Fuel injection device of internal combustion engine - Google Patents

Fuel injection device of internal combustion engine Download PDF

Info

Publication number
JP2014062495A
JP2014062495A JP2012207921A JP2012207921A JP2014062495A JP 2014062495 A JP2014062495 A JP 2014062495A JP 2012207921 A JP2012207921 A JP 2012207921A JP 2012207921 A JP2012207921 A JP 2012207921A JP 2014062495 A JP2014062495 A JP 2014062495A
Authority
JP
Japan
Prior art keywords
fuel
spray
fuel spray
fuel injection
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012207921A
Other languages
Japanese (ja)
Other versions
JP6002517B2 (en
Inventor
Yuichi Toyama
裕一 外山
Masayuki Saruwatari
匡行 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2012207921A priority Critical patent/JP6002517B2/en
Publication of JP2014062495A publication Critical patent/JP2014062495A/en
Application granted granted Critical
Publication of JP6002517B2 publication Critical patent/JP6002517B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder

Abstract

PROBLEM TO BE SOLVED: To suck a fuel into a combustion chamber from a side far from a curvature center of a curved portion and a side close to the same with good balance, in a port-injection type internal combustion engine including an intake port provided with the curved portion between a fuel injection valve and an intake valve.SOLUTION: A fuel injection valve 21 injects first fuel spray FS1 directing to a wall surface 15a2 at a side close to a curvature center of a curved portion 15a, and second fuel spray FS2 directing to a side far from the curvature center of the curved portion 15a with respect to the first fuel spray FS1. A penetrating force of the first fuel spray FS1 is determined to be higher than that of the second fuel spray FS2. Thus the first fuel spray FS1 attaches to a wall surface 15a2 at the side close to the curvature center of the curved portion 15a, and vaporized fuel flows into a combustion chamber 13 to the side close to the curvature center of the curved portion 15a from the side close thereto. On the other hand, the second fuel spray FS2 flows into the combustion chamber 13 from the side far from the curvature center of the curved portion 15a accompanying intake air floating in an intake port 15 and flowing while deviating to the side far from the curvature center of the curved portion 15a.

Description

本発明は、吸気バルブと燃料噴射装置との間の吸気ポートに湾曲部が形成され、吸気ポート内に燃料を噴射する内燃機関の燃料噴射装置に関する。   The present invention relates to a fuel injection device for an internal combustion engine in which a curved portion is formed in an intake port between an intake valve and a fuel injection device, and fuel is injected into the intake port.

特許文献1には、気筒内に臨む点火プラグに燃料噴霧が吹き掛からないようにして前記点火プラグの両側に向かって延びる2つの燃料噴霧を噴射可能な燃料噴射弁を有し、前記燃料噴射弁にて噴射される前記2つの燃料噴霧のいずれか一方の貫徹力が他方の貫徹力よりも低くされた、筒内噴射式内燃機関が開示されている。   Patent Document 1 has a fuel injection valve capable of injecting two fuel sprays extending toward both sides of the spark plug so that the fuel spray does not spray on the spark plug facing the cylinder, and the fuel injection valve An in-cylinder injection internal combustion engine is disclosed in which the penetrating force of one of the two fuel sprays injected at is lower than the penetrating force of the other.

特開2006−299888号公報JP 2006-299888 A

吸気バルブと燃料噴射装置との間の吸気ポートに湾曲部が形成され、吸気ポート内に燃料を噴射するポート噴射式内燃機関においては、湾曲部の湾曲中心Cに近い側の壁面(湾曲の内側となる壁面)が障害物となって、湾曲部の湾曲中心Cに近い側となる吸気バルブの周縁部分を直接狙って燃料を噴射させることができない場合がある。
このような場合、吸気ポート内に噴射される燃料噴霧の貫徹力が弱いと、吸気の流れに燃料噴霧が乗ることで、湾曲部の湾曲中心Cから遠い側(湾曲の外側となる壁面)に燃料噴霧が偏る一方、燃料噴霧の貫徹力が強いと、湾曲部の湾曲中心Cに近い側の壁面に多くの燃料が付着してしまう。
このため、1つの燃料噴霧の貫徹力を調整する方法では、湾曲部の湾曲中心Cから遠い側と近い側とからバランス良く燃料を燃焼室内に吸引させることが困難であり、燃焼室内における混合気の均質度が低下し、燃費性能が目減りしてしまうという問題があった。
In a port injection type internal combustion engine in which a curved portion is formed in an intake port between an intake valve and a fuel injection device and fuel is injected into the intake port, a wall surface (inside of the curve) on the side close to the curved center C of the curved portion. The wall surface becomes an obstacle, and fuel may not be able to be injected directly at the peripheral portion of the intake valve on the side close to the bending center C of the bending portion.
In such a case, if the penetration force of the fuel spray injected into the intake port is weak, the fuel spray rides on the flow of the intake air, so that it is on the side far from the curve center C of the curved portion (the wall surface on the outside of the curve). If the fuel spray is biased while the penetration force of the fuel spray is strong, a large amount of fuel adheres to the wall surface of the curved portion near the curved center C.
For this reason, in the method of adjusting the penetration force of one fuel spray, it is difficult to suck the fuel into the combustion chamber in a well-balanced manner from the side far from the curved center C of the curved portion, and the mixture in the combustion chamber. There is a problem that the homogeneity of the fuel consumption decreases and the fuel efficiency decreases.

本発明は上記問題点に鑑みなされたものであり、吸気バルブと燃料噴射装置との間の吸気ポートに湾曲部が形成され、吸気ポート内に燃料を噴射するポート噴射式内燃機関において、吸気ポートの湾曲部の湾曲中心Cから遠い側と近い側とからバランス良く燃料を燃焼室内に吸引させることができる、燃料噴射装置を提供することを目的とする。   The present invention has been made in view of the above problems, and in a port injection type internal combustion engine in which a curved portion is formed in an intake port between an intake valve and a fuel injection device and fuel is injected into the intake port, the intake port An object of the present invention is to provide a fuel injection device capable of sucking fuel into a combustion chamber in a well-balanced manner from the side far from the bending center C of the curved portion of the curved portion.

そのため、本願発明に係る燃料噴射装置では、吸気ポートの湾曲部の湾曲中心Cに近い側の壁面を指向する第1燃料噴霧、及び、第1燃料噴霧よりも湾曲中心Cから遠い側の壁面寄りを指向する第2燃料噴霧を噴射し、かつ、第1燃料噴霧の貫徹力が第2燃料噴霧の貫徹力よりも高く設定されるようにした。   Therefore, in the fuel injection device according to the present invention, the first fuel spray directed to the wall surface near the curve center C of the curved portion of the intake port, and the wall surface closer to the wall farther from the curve center C than the first fuel spray. And the penetration force of the first fuel spray is set higher than the penetration force of the second fuel spray.

上記発明によると、指向方向及び貫徹力が相互に異なる第1燃料噴霧、第2燃料噴霧によって、吸気ポートの湾曲部の湾曲中心Cから遠い側と近い側とからバランス良く燃料を燃焼室内に吸引させることができ、燃費性能が改善する。   According to the above-described invention, fuel is sucked into the combustion chamber in a well-balanced manner from the side far from the curved center C of the curved portion of the intake port and the side close to the first fuel spray and the second fuel spray having different directivity directions and penetrating forces. Can improve fuel efficiency.

実施形態における内燃機関のシステム構成図である。1 is a system configuration diagram of an internal combustion engine in an embodiment. 実施形態における燃料噴射弁の噴孔部分を示す断面図である。It is sectional drawing which shows the nozzle hole part of the fuel injection valve in embodiment. 実施形態における第1燃料噴霧FS1と第2燃料噴霧FS2との組み合わせパターンを示す図である。It is a figure which shows the combination pattern of 1st fuel spray FS1 and 2nd fuel spray FS2 in embodiment. 実施形態における第1燃料噴霧FS1と第2燃料噴霧FS2との組み合わせパターンを示す図である。It is a figure which shows the combination pattern of 1st fuel spray FS1 and 2nd fuel spray FS2 in embodiment. 実施形態における第1燃料噴霧FS1と第2燃料噴霧FS2との組み合わせパターンを示す図である。It is a figure which shows the combination pattern of 1st fuel spray FS1 and 2nd fuel spray FS2 in embodiment. 実施形態における第1燃料噴霧FS1と第2燃料噴霧FS2との組み合わせパターンを示す図である。It is a figure which shows the combination pattern of 1st fuel spray FS1 and 2nd fuel spray FS2 in embodiment. 実施形態における内燃機関のシステム構成図である。1 is a system configuration diagram of an internal combustion engine in an embodiment. 実施形態における噴霧方向の設定を示す図である。It is a figure which shows the setting of the spraying direction in embodiment.

以下に本発明の実施の形態を説明する。
図1は、本発明に係る燃料噴射装置を備えた内燃機関を示す。
図1に示した内燃機関11のシリンダヘッド12には、各気筒の燃焼室13の上部(換言すれば、ピストン14の頂面と対向する面)に開口し、吸気バルブ16によって開閉される吸気ポート15が形成されている。
Embodiments of the present invention will be described below.
FIG. 1 shows an internal combustion engine equipped with a fuel injection device according to the present invention.
The cylinder head 12 of the internal combustion engine 11 shown in FIG. 1 opens to the upper part of the combustion chamber 13 of each cylinder (in other words, the surface facing the top surface of the piston 14), and intake air that is opened and closed by an intake valve 16. A port 15 is formed.

吸気バルブ16と、吸気ポート15内に燃料を噴射する燃料噴射弁21(燃料噴射装置)との間の吸気ポート15に、湾曲部15aが形成されている。
吸気ポート15は、シリンダ17の軸方向からシリンダヘッド12を見たときに、シリンダ17の径方向に略沿ってシリンダヘッド12の外側から燃焼室13の近傍にまで延設される。そして、吸気ポート15の湾曲部15aは、シリンダ17の軸方向において吸気ポート15の軸線よりもピストン14寄りを湾曲中心Cとして湾曲し、燃焼室13に接続される。
尚、図1に示す湾曲中心Cは、図示を簡略化するために、吸気ポート15の曲率半径が一定であると仮定して記載しているが、曲率半径が変化する吸気ポート15であって湾曲中心が複数存在する場合であっても、その集合として湾曲中心Cを特定するものとし、湾曲中心Cは、湾曲部15aの湾曲内側を示す。
A curved portion 15 a is formed in the intake port 15 between the intake valve 16 and a fuel injection valve 21 (fuel injection device) that injects fuel into the intake port 15.
The intake port 15 extends from the outside of the cylinder head 12 to the vicinity of the combustion chamber 13 along the radial direction of the cylinder 17 when the cylinder head 12 is viewed from the axial direction of the cylinder 17. Then, the curved portion 15 a of the intake port 15 is bent with the center of the piston 14 closer to the piston 14 than the axis of the intake port 15 in the axial direction of the cylinder 17, and is connected to the combustion chamber 13.
1 is described assuming that the radius of curvature of the intake port 15 is constant in order to simplify the illustration, but the intake port 15 in which the radius of curvature changes is illustrated. Even when there are a plurality of bending centers, the bending center C is specified as the set, and the bending center C indicates the inner side of the bending portion 15a.

また、燃焼室13を形成するシリンダヘッド12の中央付近には、点火プラグ18が配置され、この点火プラグ18を挟んで吸気バルブ16及び排気バルブ19が設けられ、排気バルブ19によって排気ポート20が開閉される。
吸気ポート15の湾曲部15aの湾曲中心Cから遠い側の壁面15a1の上流部には、各気筒の吸気ポート15内に燃料を噴射する燃料噴射装置として、燃料噴射弁21を設けてある。即ち、内燃機関11は、気筒毎に1本の燃料噴射弁を備える。
An ignition plug 18 is disposed near the center of the cylinder head 12 forming the combustion chamber 13, and an intake valve 16 and an exhaust valve 19 are provided across the ignition plug 18. Opened and closed.
A fuel injection valve 21 is provided in the upstream portion of the wall surface 15a1 far from the bending center C of the curved portion 15a of the intake port 15 as a fuel injection device that injects fuel into the intake port 15 of each cylinder. That is, the internal combustion engine 11 includes one fuel injection valve for each cylinder.

燃料噴射弁21は、ソレノイドによる電磁力で弁体を開動作させる電磁駆動式の噴射弁であり、開弁時間に比例する量の燃料を噴射する。
マイクロコンピュータを備え内燃機関11を制御する制御装置である、エンジンコントロールユニット(ECU)30は、燃料噴射弁21のソレノイドへの通電を制御する噴射パルス信号を出力する。
The fuel injection valve 21 is an electromagnetically driven injection valve that opens the valve body with electromagnetic force generated by a solenoid, and injects fuel in an amount proportional to the valve opening time.
An engine control unit (ECU) 30 that is a control device that includes a microcomputer and controls the internal combustion engine 11 outputs an injection pulse signal that controls energization of the solenoid of the fuel injection valve 21.

ECU30は、内燃機関11の運転状態を検出する各種センサの出力信号を入力する。前記各種のセンサとして、内燃機関11の吸入空気流量QAを検出するエアフローセンサ31、内燃機関11のクランクシャフトの回転に同期してパルス信号POSを出力するクランク角センサ32、内燃機関11の冷却水の温度TWを検出する水温センサ33などを設けてある。
ECU30は、各種センサからの信号(機関運転状態)に基づいて、燃料噴射弁21の開弁時間(燃料噴射量)を調整するための噴射パルス幅TIを演算し、係る噴射パルス幅TIの噴射パルス信号を、各気筒のサイクルに合わせ、噴射タイミングである気筒の燃料噴射弁21に対して出力する。即ち、本実施形態の燃料噴射制御は、所謂シーケンシャル噴射制御と称される制御方式のものである。
The ECU 30 inputs output signals from various sensors that detect the operating state of the internal combustion engine 11. As the various sensors, an airflow sensor 31 that detects the intake air flow rate QA of the internal combustion engine 11, a crank angle sensor 32 that outputs a pulse signal POS in synchronization with the rotation of the crankshaft of the internal combustion engine 11, and cooling water for the internal combustion engine 11 A water temperature sensor 33 for detecting the temperature TW is provided.
The ECU 30 calculates an injection pulse width TI for adjusting the valve opening time (fuel injection amount) of the fuel injection valve 21 based on signals (engine operating state) from various sensors, and injection of the injection pulse width TI is performed. The pulse signal is output to the fuel injection valve 21 of the cylinder at the injection timing in accordance with the cycle of each cylinder. That is, the fuel injection control of the present embodiment is of a control method called so-called sequential injection control.

燃料噴射装置を構成する燃料噴射弁21は、1つの吸気バルブ16を通過して燃焼室13内に吸引させる燃料噴霧として、噴霧特性及び指向方向が相互に異なる2つの燃料噴霧を噴射する。
燃料噴射弁21が噴射する第1燃料噴霧FS1は、燃料噴射弁21が配置される部分よりも下流側である、湾曲部15aの湾曲中心Cに近い側の壁面15a2(湾曲の内側となる壁面)を指向する。また、燃料噴射弁21が噴射する第2燃料噴霧FS2は、第1燃料噴霧FS1よりも湾曲部15aの湾曲中心Cから遠い側の壁面15a1(湾曲の外側となる壁面)寄りとなる、吸気バルブ16の傘部16aを略指向する。
The fuel injection valve 21 constituting the fuel injection device injects two fuel sprays having different spray characteristics and directing directions as fuel sprays that pass through one intake valve 16 and are sucked into the combustion chamber 13.
The first fuel spray FS1 injected by the fuel injection valve 21 is downstream of the portion where the fuel injection valve 21 is disposed, and is closer to the curved center C of the curved portion 15a (wall surface 15a2 on the inner side of the curved surface). ). Further, the second fuel spray FS2 injected by the fuel injection valve 21 is closer to the wall surface 15a1 (the wall surface on the outside of the curve) on the side farther from the curve center C of the curved portion 15a than the first fuel spray FS1. The 16 umbrella portions 16a are substantially oriented.

更に、第1燃料噴霧FS1の貫徹力(流速)が第2燃料噴霧FS2の貫徹力(流速)よりも高く(速く)なるように、燃料噴射弁21の噴霧特性を設定してある。より詳細には、貫徹力が第1燃料噴霧FS1よりも弱い第2燃料噴霧FS2は、吸気ポート15の壁面にまで殆ど到達することなく吸気ポート15内に浮遊し、貫徹力が第2燃料噴霧FS2よりも強い第1燃料噴霧FS1は、対向する吸気ポート15の壁面(湾曲部15aの湾曲中心Cに近い側の壁面15a2)まで到達して付着するように、各燃料噴霧FS1,FS2の貫徹力を設定してある。
尚、貫徹力が第1燃料噴霧FS1に比べて弱い第2燃料噴霧FS2の指向方向は、第1燃料噴霧FS1との干渉を抑えることができ、かつ、吸気ポート15の湾曲部15aの外周側壁面などに対する燃料の付着を十分に抑制できる範囲内に設定すればよく、吸気バルブ16の傘部16aを指向する設定に限定されるものではない。
Further, the spray characteristics of the fuel injection valve 21 are set so that the penetration force (flow velocity) of the first fuel spray FS1 is higher (faster) than the penetration force (flow velocity) of the second fuel spray FS2. More specifically, the second fuel spray FS2 whose penetration force is weaker than that of the first fuel spray FS1 floats in the intake port 15 without almost reaching the wall surface of the intake port 15, and the penetration force is the second fuel spray. The first fuel spray FS1 stronger than FS2 penetrates the fuel sprays FS1 and FS2 so as to reach and adhere to the wall surface of the opposed intake port 15 (the wall surface 15a2 on the side close to the bending center C of the bending portion 15a). The power is set.
In addition, the directivity direction of the second fuel spray FS2 whose penetration force is weaker than that of the first fuel spray FS1 can suppress interference with the first fuel spray FS1, and the outer peripheral side of the curved portion 15a of the intake port 15 What is necessary is just to set in the range which can fully suppress adhesion of the fuel with respect to a wall surface etc., and it is not limited to the setting which orient | assigns the umbrella part 16a of the intake valve 16. FIG.

図2は、燃料噴射弁21の噴孔構造の一例を示す部分拡大断面図である。
図2に示す燃料噴射弁21は、球状の弁体211が、漏斗状に形成した弁座212に着座して閉弁状態となり、図示省略した電磁コイルの磁気吸引力によって弁体211がリフトし、弁座212から離れると開弁状態となる。燃料噴射弁21の弁体211がリフトして開弁状態になると、燃料は、弁体211と弁座212との隙間を通って、弁体211と噴孔213が形成される噴孔プレート214とで挟まれる燃料溜り215に流入した後、噴孔213から噴射される。
FIG. 2 is a partially enlarged sectional view showing an example of the injection hole structure of the fuel injection valve 21.
In the fuel injection valve 21 shown in FIG. 2, a spherical valve body 211 is seated on a valve seat 212 formed in a funnel shape, and the valve body 211 is lifted by a magnetic attractive force of an electromagnetic coil (not shown). When the valve seat 212 is separated, the valve is opened. When the valve body 211 of the fuel injection valve 21 is lifted and opened, the fuel passes through the gap between the valve body 211 and the valve seat 212, and the nozzle plate 214 in which the valve body 211 and the nozzle hole 213 are formed. And then injected into the fuel reservoir 215 sandwiched between the nozzle holes 213.

ここで、噴孔213は、第1燃料噴霧FS1を噴射するための少なくとも1つの噴孔からなる第1噴孔群213aと、第2燃料噴霧FS2を噴射するための少なくとも1つの噴孔からなる第2噴孔群213bとを含む。
燃料噴射弁21は、その円筒状本体の中心軸Hの延長線上に、吸気バルブ16の傘部16aが略位置するように、吸気ポート15に対して取り付けられる。
Here, the injection hole 213 includes a first injection hole group 213a including at least one injection hole for injecting the first fuel spray FS1, and at least one injection hole for injecting the second fuel spray FS2. 2nd nozzle hole group 213b.
The fuel injection valve 21 is attached to the intake port 15 so that the umbrella portion 16a of the intake valve 16 is substantially positioned on an extension line of the central axis H of the cylindrical main body.

そして、第1噴孔群213aから噴射される第1燃料噴霧FS1が、吸気ポート15の湾曲部15aの湾曲中心Cに近い側の壁面15a2を指向するように、第1噴孔群213aは、湾曲部15aの湾曲中心Cに近い側の壁面15a2に近い側の噴孔プレート214に対し、噴孔の軸線が下流側に向けて徐々に中心軸Hから離れるような傾斜角を有して形成されている。
一方、第2噴孔群213bから噴射される第2燃料噴霧FS2が、吸気バルブ16の傘部16aを略指向するように、第2噴孔群213bは、湾曲部15aの湾曲中心Cから遠い側の壁面15a1に近い側の噴孔プレート214に対し、噴孔の軸線が略中心軸Hと平行となるように形成されている。
The first injection hole group 213a is directed so that the first fuel spray FS1 injected from the first injection hole group 213a is directed to the wall surface 15a2 on the side close to the bending center C of the bending portion 15a of the intake port 15. Formed with an inclination angle such that the axis of the injection hole gradually moves away from the central axis H toward the downstream side with respect to the injection hole plate 214 near the wall surface 15a2 near the bending center C of the bending portion 15a. Has been.
On the other hand, the second injection hole group 213b is far from the bending center C of the bending portion 15a so that the second fuel spray FS2 injected from the second injection hole group 213b is substantially directed to the umbrella portion 16a of the intake valve 16. The nozzle hole axis 214 is formed so that the axis of the nozzle hole is substantially parallel to the central axis H with respect to the nozzle hole plate 214 on the side close to the side wall surface 15a1.

これにより、第1燃料噴霧FS1の指向方向と燃料噴射弁21の中心軸Hとがなす角度をθ1とし、第2燃料噴霧FS2の指向方向と燃料噴射弁21の中心軸Hとがなす角度をθ2としたときに、θ1>θ2となるようにしてある。
尚、燃料噴射弁21の中心軸Hが、湾曲部15aの湾曲中心Cに近い側の壁面15a2に向くように、燃料噴射弁21を吸気ポート15に対して取り付けることができ、係る取り付け方向に設定した場合も、第1燃料噴霧FS1が、吸気ポート15の湾曲部15aの湾曲中心Cに近い側の壁面15a2を指向し、第2燃料噴霧FS2が、第1燃料噴霧FS1よりも吸気ポート15の湾曲中心Cから遠い側の壁面15a1寄りを指向するように、第1噴孔群213a及び第2噴孔群213bを設定する。
As a result, the angle formed by the directing direction of the first fuel spray FS1 and the central axis H of the fuel injection valve 21 is θ1, and the angle formed by the directing direction of the second fuel spray FS2 and the central axis H of the fuel injection valve 21 is set. When θ2, θ1> θ2 is set.
The fuel injection valve 21 can be attached to the intake port 15 so that the central axis H of the fuel injection valve 21 faces the wall surface 15a2 on the side close to the bending center C of the bending portion 15a. Even when the first fuel spray FS1 is set, the first fuel spray FS1 is directed to the wall surface 15a2 closer to the curved center C of the curved portion 15a of the intake port 15, and the second fuel spray FS2 is directed to the intake port 15 than the first fuel spray FS1. The first nozzle hole group 213a and the second nozzle hole group 213b are set so as to be directed toward the wall surface 15a1 on the side farther from the bending center C.

また、各気筒に2つの吸気バルブ16を有し、各吸気バルブ16で開閉される2つの吸気ポートが上流側で合流する場合には、合流部よりも上流側に1本の燃料噴射弁21を配置する。そして、燃料噴射弁21は、2つ吸気ポートそれぞれを指向する2本の第1燃料噴霧FS1と、2つの吸気ポートそれぞれを指向する2本の第2燃料噴霧FS2との計4本の噴霧を噴射するように設定する。   When each cylinder has two intake valves 16 and two intake ports opened and closed by each intake valve 16 merge on the upstream side, one fuel injection valve 21 on the upstream side of the merging portion. Place. The fuel injection valve 21 performs a total of four sprays, two first fuel sprays FS1 directed to the two intake ports and two second fuel sprays FS2 directed to the two intake ports, respectively. Set to spray.

一方、第1燃料噴霧FS1と第2燃料噴霧FS2との貫徹力の違いは、噴孔から噴射される噴霧に与える旋回力、噴霧角度、噴霧の衝突の有無、噴霧の粒径などによって設定される。
図3〜図6は、第1燃料噴霧FS1及び第2燃料噴霧FS2の噴霧特性の組み合わせパターンの例を示すものであり、吸気ポート15の横断面における噴霧形状を示している。
On the other hand, the difference in penetration force between the first fuel spray FS1 and the second fuel spray FS2 is set by the turning force applied to the spray injected from the nozzle hole, the spray angle, the presence or absence of the collision of the spray, the particle size of the spray, and the like. The
3 to 6 show examples of combination patterns of the spray characteristics of the first fuel spray FS1 and the second fuel spray FS2, and show the spray shape in the cross section of the intake port 15. FIG.

図3に示す例では、第2噴孔群213bを構成する複数の噴孔から噴射された複数の噴霧を相互に衝突させて、1本の第2燃料噴霧FS2(衝突噴霧)を形成させるようにする一方、第1噴孔群213aを構成する噴孔から噴射される噴霧は、相互に衝突することなく第1燃料噴霧FS1(非衝突噴霧)を形成するようにしてある。
この場合、第2燃料噴霧FS2は、噴霧の衝突によって、第1燃料噴霧FS1に比べて広角になると共に、流速が弱まり、かつ、燃料の粒径が小径となり、噴霧を衝突させない第1燃料噴霧FS1に比べて貫徹力が弱い噴霧となる。
In the example shown in FIG. 3, a plurality of sprays injected from a plurality of nozzle holes constituting the second nozzle hole group 213b collide with each other to form one second fuel spray FS2 (impact spray). On the other hand, the spray injected from the nozzle holes constituting the first nozzle hole group 213a forms the first fuel spray FS1 (non-impact spray) without colliding with each other.
In this case, the second fuel spray FS2 has a wider angle than the first fuel spray FS1 due to the collision of the spray, the flow velocity becomes weaker, the fuel particle size becomes smaller, and the first fuel spray does not collide with the spray. The spray is weaker in penetration than FS1.

図3において、第2噴孔群213bを構成する複数の噴孔は、湾曲部15aの曲率半径方向に略沿って間隔をおいて配置されており、これらの噴孔から噴射された噴霧が相互に衝突することで、噴孔の並び方向(湾曲部15aの曲率半径方向)に直交する方向に長い、横断面が楕円状の第2燃料噴霧FS2が形成される。
一方、第1噴孔群213aを構成する噴孔からは、第2燃料噴霧FS2の横断面における長手方向の噴霧角よりも狭い噴霧角である略円錐状の第1燃料噴霧FS1が噴射される。
In FIG. 3, the plurality of nozzle holes constituting the second nozzle hole group 213b are arranged at intervals along the radius of curvature of the curved portion 15a, and the sprays injected from these nozzle holes are mutually connected. , The second fuel spray FS2 that is long in the direction perpendicular to the direction in which the nozzle holes are arranged (the curvature radius direction of the curved portion 15a) and has an elliptical cross section is formed.
On the other hand, the substantially conical first fuel spray FS1 having a spray angle narrower than the spray angle in the longitudinal direction in the cross section of the second fuel spray FS2 is injected from the nozzle holes constituting the first nozzle hole group 213a. .

尚、衝突噴霧としての第2燃料噴霧FS2を噴射させるための第2噴孔群213bは、2つ以上の噴孔で構成することができ、非衝突噴霧としての第1燃料噴霧FS1を噴射させるための第1噴孔群213aは、1つ以上の噴孔で構成することができる。そして、第1噴孔群213aが複数の噴孔を備える場合には、相互の衝突が抑制されるようにした複数の噴霧の集合として第1燃料噴霧FS1を形成させるようにする。   The second nozzle hole group 213b for injecting the second fuel spray FS2 as the collision spray can be composed of two or more injection holes, and injects the first fuel spray FS1 as the non-impact spray. Therefore, the first nozzle hole group 213a can be composed of one or more nozzle holes. When the first nozzle hole group 213a includes a plurality of nozzle holes, the first fuel spray FS1 is formed as a set of a plurality of sprays that are prevented from colliding with each other.

図4に示す例では、第1燃料噴霧FS1を図3と同様に非衝突噴霧とする一方、第2燃料噴霧FS2を噴射させるための第2噴孔群213bを構成する噴孔が、燃料にスワール(旋回力)を付与するスワール室を介して燃料を噴射するようにし、第2燃料噴霧FS2をスワールが付与された噴霧(スワール噴霧)としている。
尚、スワール噴霧を形成するためのスワール室、噴孔の構造として、例えば特開2012−077664号公報等に開示されるような公知の構造を適用できる。また、スワール噴霧は、複数のスワール噴霧の集合として形成させることができる。
上記のような非衝突噴霧である第1燃料噴霧FS1とスワール噴霧である第2燃料噴霧FS2との組み合わせにおいても、第2燃料噴霧FS2にスワールが付与されることで、第2燃料噴霧FS2の貫徹力は、スワールが付与されない第1燃料噴霧FS1に比べて弱くなる。
In the example shown in FIG. 4, the first fuel spray FS <b> 1 is a non-collision spray as in FIG. 3, while the nozzle holes constituting the second nozzle hole group 213 b for injecting the second fuel spray FS <b> 2 are formed in the fuel. The fuel is injected through a swirl chamber that imparts a swirl (swirl force), and the second fuel spray FS2 is a spray imparted with a swirl (swirl spray).
In addition, as a structure of the swirl chamber for forming a swirl spray, and a nozzle hole, a well-known structure as disclosed by Unexamined-Japanese-Patent No. 2012-077664 etc. is applicable, for example. Also, the swirl spray can be formed as a collection of a plurality of swirl sprays.
Even in the combination of the first fuel spray FS1 that is a non-impact spray as described above and the second fuel spray FS2 that is a swirl spray, swirl is imparted to the second fuel spray FS2, so that the second fuel spray FS2 The penetration force is weaker than that of the first fuel spray FS1 to which no swirl is applied.

また、図5に示す例では、衝突噴霧である第1燃料噴霧FS1と、スワール噴霧である第2燃料噴霧FS2とを組み合わせている。この場合も、第2燃料噴霧FS2の貫徹力を第1燃料噴霧FS1に比べて弱く設定することができる。
即ち、衝突噴霧は、非衝突噴霧に比べて貫徹力が弱くなるものの、衝突噴霧の貫徹力よりもスワール噴霧の貫徹力を更に弱くすることができる。そして、第1燃料噴霧FS1として衝突噴霧を用いるようにすれば、衝突噴霧は噴霧角が広くなるため、湾曲部15aの湾曲中心Cに近い側の壁面15a2の広い範囲に燃料を薄く付着させて、付着燃料からの気化を促進させることができる。
Further, in the example shown in FIG. 5, the first fuel spray FS1 that is a collision spray and the second fuel spray FS2 that is a swirl spray are combined. Also in this case, the penetration force of the second fuel spray FS2 can be set weaker than that of the first fuel spray FS1.
In other words, although the collision spray has a lower penetration force than the non-impact spray, the penetration force of the swirl spray can be further weakened than that of the collision spray. If collision spray is used as the first fuel spray FS1, since the spray angle of the collision spray becomes wide, the fuel is thinly adhered to a wide range of the wall surface 15a2 on the side near the curved center C of the curved portion 15a. , Vaporization from the attached fuel can be promoted.

また、図6に示す例では、第1燃料噴霧FS1及び第2燃料噴霧FS2を双方共にスワール噴霧とする一方、第1燃料噴霧FS1の噴霧角が第2燃料噴霧FS2の噴霧角よりも挟角となるようにすることで、第2燃料噴霧FS2(広角スワール噴霧)の貫徹力を第1燃料噴霧FS1(挟角スワール噴霧)に比べて弱く設定している。
この他、噴射される燃料の粒径が、噴孔の径が小さくなるほど小さくなって貫徹力が弱まることや、噴霧に対して空気流を衝突させることで燃料の粒径を小さくして貫徹力を弱める方法など用いて、貫徹力の異なる燃料噴霧を噴射させることができ、貫徹力を調整する公知の手段(噴孔仕様)を適宜組み合わせて、第1燃料噴霧FS1と当該第1燃料噴霧FS1よりも貫徹力の弱い第2燃料噴霧FS2とを噴射させることができる。
In the example shown in FIG. 6, the first fuel spray FS1 and the second fuel spray FS2 are both swirl sprays, while the spray angle of the first fuel spray FS1 is smaller than the spray angle of the second fuel spray FS2. By doing so, the penetration force of the second fuel spray FS2 (wide angle swirl spray) is set weaker than that of the first fuel spray FS1 (narrow angle swirl spray).
In addition, the particle size of the injected fuel becomes smaller as the diameter of the injection hole becomes smaller and the penetration force becomes weaker. The first fuel spray FS1 and the first fuel spray FS1 can be appropriately combined with known means (injection hole specifications) for adjusting the penetrating force. It is possible to inject the second fuel spray FS2 having a lower penetration force.

上記のように、第1燃料噴霧FS1は、貫徹力(流速)が第2燃料噴霧FS2よりも高く(速く)、かつ、吸気ポート15の湾曲部15aの湾曲中心Cに近い側の壁面15a2を指向するように噴射されるので、吸気ポート15の湾曲部15aの湾曲中心Cに近い側の壁面15a2に液状となって付着して液膜を生成する。
湾曲部15aの湾曲中心Cに近い側の壁面15a2に生成される燃料液膜は、吸気ポート15の壁面の熱(内燃機関11の熱)で気化し、気化した燃料は、吸気ポート15内の吸気の流れに乗って、湾曲部15aの湾曲中心Cに近い側から吸気バルブ16を通過し、燃焼室13内に流入する。
As described above, the first fuel spray FS1 has a penetration force (flow velocity) higher (faster) than the second fuel spray FS2 and the wall surface 15a2 on the side close to the curve center C of the curved portion 15a of the intake port 15. Since it is injected so as to be directed, it adheres in a liquid state and forms a liquid film on the wall surface 15a2 on the side near the bending center C of the bending portion 15a of the intake port 15.
The liquid fuel film generated on the wall surface 15a2 on the side of the curved portion 15a near the curve center C is vaporized by the heat of the wall surface of the intake port 15 (heat of the internal combustion engine 11), and the vaporized fuel is contained in the intake port 15. It rides on the flow of intake air and passes through the intake valve 16 from the side near the bending center C of the bending portion 15 a and flows into the combustion chamber 13.

一方、第2燃料噴霧FS2は、第1燃料噴霧FS1に比べて貫徹力が弱く、しかも、第1燃料噴霧FS1よりも吸気ポート15の湾曲部15aの湾曲中心Cから遠い側の壁面15a1寄りである吸気バルブ16の傘部16aを略指向するので、吸気ポート15の内壁に対する付着が抑制されて、吸気ポート15内に浮遊する。そして、吸気ポート15内に浮遊する燃料噴霧は、湾曲部15aの湾曲中心Cから遠い側に偏って流れる吸気に乗って、湾曲部15aの湾曲中心Cから遠い側に偏って吸気バルブ16を通過し、燃焼室13内に流入する。
即ち、第1燃料噴霧FS1と第2燃料噴霧FS2とを噴射させることで、湾曲部15aの湾曲中心Cから遠い側と湾曲中心Cに近い側の双方から燃料を燃焼室13内に流入させることができ、これによって燃焼室13における燃料の均質度が向上し、燃焼性が向上するので、燃費性能を改善できる。
On the other hand, the second fuel spray FS2 has a lower penetration force than the first fuel spray FS1, and is closer to the wall surface 15a1 farther from the curve center C of the curved portion 15a of the intake port 15 than the first fuel spray FS1. Since the head portion 16a of the intake valve 16 is substantially directed, adhesion to the inner wall of the intake port 15 is suppressed, and the intake port 15 floats in the intake port 15. The fuel spray that floats in the intake port 15 rides on the intake air that flows biased away from the curved center C of the curved portion 15a and passes through the intake valve 16 while biased toward the far side from the curved center C of the curved portion 15a. And flows into the combustion chamber 13.
That is, by injecting the first fuel spray FS1 and the second fuel spray FS2, the fuel flows into the combustion chamber 13 from both the side far from the curved center C of the curved portion 15a and the side near the curved center C. As a result, the homogeneity of the fuel in the combustion chamber 13 is improved and the combustibility is improved, so that the fuel efficiency can be improved.

燃料噴射弁21から1つの吸気バルブ16に向けて1本の燃料噴霧を噴射させ、かつ、湾曲部15aの湾曲中心Cから遠い側と湾曲中心Cに近い側との双方から燃料を燃焼室13内に流入させるには、噴霧を傘部16aの全域に均等に衝突させることが要求されることになる。
しかし、吸気ポート15が湾曲部15aを有する場合、燃料噴射弁21の噴孔側から吸気バルブ16を見たときに、吸気バルブ16の一部が湾曲部15aの湾曲中心Cに近い側の壁面15a2の影になる場合がある。このような場合、吸気ポート内に噴射される燃料噴霧の貫徹力が弱いと、吸気の流れに燃料噴霧が乗ることで、湾曲部の湾曲中心Cから遠い側(湾曲の外側となる壁面)に燃料噴霧が偏る一方、燃料噴霧の貫徹力が強いと、湾曲部の湾曲中心Cに近い側の壁面に多くの燃料が付着してしまう。
One fuel spray is injected from the fuel injection valve 21 toward one intake valve 16, and fuel is injected into the combustion chamber 13 from both the side far from the bending center C of the bending portion 15a and the side close to the bending center C. In order to make it flow in, it will be requested | required to make a spray collide uniformly to the whole region of the umbrella part 16a.
However, when the intake port 15 has a curved portion 15a, when the intake valve 16 is viewed from the injection hole side of the fuel injection valve 21, the wall surface on the side where a part of the intake valve 16 is close to the curved center C of the curved portion 15a. It may become a shadow of 15a2. In such a case, if the penetration force of the fuel spray injected into the intake port is weak, the fuel spray rides on the flow of the intake air, so that it is on the side far from the curve center C of the curved portion (the wall surface on the outside of the curve). If the fuel spray is biased while the penetration force of the fuel spray is strong, a large amount of fuel adheres to the wall surface of the curved portion near the curved center C.

このため、燃料噴霧の貫徹力が高いと、湾曲部15aの湾曲中心Cに近い側の壁面15a2に多くの燃料が付着してしまい、湾曲部15aの湾曲中心Cから遠い側から燃焼室13内に流入する燃料量が過少になってしまう。一方、燃料噴霧の貫徹力を弱め、吸気ポート15内に燃料噴霧が浮遊するようにすれば、湾曲部15aの湾曲中心Cに近い側の壁面15a2に対する燃料の付着は抑制されるものの、湾曲部15aの湾曲中心Cから遠い側に偏って流れる吸気の流れに浮遊燃料が乗ることで、湾曲部15aの湾曲中心Cに近い側から燃焼室13内に流入する燃料量が過少になってしまう。
従って、燃料噴射弁21から噴射させた1本の(噴霧特性が一定である)燃料噴霧を、1つの吸気バルブ16を介して吸引させる場合、湾曲部15aの湾曲中心Cから遠い側と近い側との双方から適当な割合で燃料を燃焼室13に流入させることが難しく、筒内における燃料の均質度を十分に高めることが難しい。
For this reason, if the penetration force of the fuel spray is high, a large amount of fuel adheres to the wall surface 15a2 on the side close to the bending center C of the bending portion 15a, and the inside of the combustion chamber 13 from the side far from the bending center C of the bending portion 15a. The amount of fuel flowing into the tank will be too small. On the other hand, if the penetration force of the fuel spray is weakened so that the fuel spray floats in the intake port 15, the adhesion of fuel to the wall surface 15a2 on the side close to the bending center C of the bending portion 15a is suppressed, but the bending portion The floating fuel rides on the flow of intake air that flows biased away from the curved center C of 15a, so that the amount of fuel flowing into the combustion chamber 13 from the side near the curved center C of the curved portion 15a becomes too small.
Therefore, when a single fuel spray injected from the fuel injection valve 21 (with a constant spray characteristic) is sucked through the single intake valve 16, the side far from the curved center C of the curved portion 15a is closer to the side. Therefore, it is difficult to cause the fuel to flow into the combustion chamber 13 at an appropriate ratio, and it is difficult to sufficiently increase the homogeneity of the fuel in the cylinder.

これに対して、燃料噴射弁21は、噴霧の指向方向及び貫徹力が異なる2つの燃料噴霧FS1,FS2を噴射し、貫徹力(流速)が相対的高く(速く)、かつ、吸気ポート15の湾曲部15aの湾曲中心Cに近い側の壁面15a2を指向する第1燃料噴霧FS1は、湾曲部15aの湾曲中心Cに近い側の壁面15a2に付着し、係る液膜から気化した燃料は、湾曲部15aの湾曲中心Cに近い側から吸気バルブ16を通過して燃焼室13に流入する。
更に、貫徹力(流速)が相対的低い(遅い)第2燃料噴霧FS2は、吸気ポート15内に浮遊し、湾曲部15aの湾曲中心Cから遠い側に偏って流れる吸気の流れに乗ることで、湾曲部15aの湾曲中心Cから遠い側から吸気バルブ16を通過して燃焼室13に流入する。
このため、燃料噴射弁21(燃料噴射装置)を備える内燃機関11では、湾曲部15aの湾曲中心Cから遠い側と近い側との双方から適当な割合で燃料を燃焼室13に流入させることができ、燃焼室13内における燃料の均質度を十分に高めて、燃費性能を向上させることができる。
In contrast, the fuel injection valve 21 injects two fuel sprays FS1 and FS2 having different spray directing directions and penetrating forces, the penetrating force (flow velocity) is relatively high (fast), and the intake port 15 The first fuel spray FS1 directed to the wall surface 15a2 near the bending center C of the bending portion 15a adheres to the wall surface 15a2 near the bending center C of the bending portion 15a, and the fuel vaporized from the liquid film is bent. From the side of the portion 15 a close to the center of curvature C, it passes through the intake valve 16 and flows into the combustion chamber 13.
Further, the second fuel spray FS2 having a relatively low (slow) penetration force (flow velocity) floats in the intake port 15 and rides on the flow of the intake air flowing away from the bending center C of the bending portion 15a. Then, it passes through the intake valve 16 from the side far from the bending center C of the bending portion 15 a and flows into the combustion chamber 13.
For this reason, in the internal combustion engine 11 provided with the fuel injection valve 21 (fuel injection device), the fuel can flow into the combustion chamber 13 at an appropriate ratio from both the side far from the bending center C of the bending portion 15a and the side closer to the bending center 15a. It is possible to improve the fuel efficiency by sufficiently increasing the homogeneity of the fuel in the combustion chamber 13.

ここで、燃料噴射弁21による噴射タイミングは、噴射の開始が排気行程中(吸気バルブ16の閉弁期間中、即ち、吸気バルブ16の開弁前)で、かつ、噴射の終了が吸気行程中(吸気バルブ16の開弁期間中、即ち、吸気バルブ16の開弁後)となるような噴射タイミングとする。
第1燃料噴霧FS1は、湾曲部15aの湾曲中心Cに近い側の壁面15a2に燃料を付着させるべく噴射されるが、吸気ポート15内に吸気の流れが生じる吸気行程中は、第1燃料噴霧FS1が吸気によって流されて、湾曲部15aの湾曲中心Cに近い側から燃焼室13に流入する燃料量が減ってしまう。このため、湾曲部15aの湾曲中心Cから遠い側から燃焼室13に流入する燃料量が過多となり、燃焼室13内のおける燃料の均質度が低下してしまう。
Here, the injection timing by the fuel injection valve 21 is that the start of injection is in the exhaust stroke (during the closing period of the intake valve 16, that is, before the intake valve 16 is opened), and the end of injection is in the intake stroke. The injection timing is such that the intake valve 16 is opened (that is, after the intake valve 16 is opened).
The first fuel spray FS1 is injected so that fuel adheres to the wall surface 15a2 on the side close to the bending center C of the bending portion 15a, but during the intake stroke in which the flow of intake air occurs in the intake port 15, the first fuel spray FS1. The amount of fuel flowing into the combustion chamber 13 from the side close to the bending center C of the bending portion 15a is reduced when the FS1 is caused to flow by the intake air. For this reason, the amount of fuel flowing into the combustion chamber 13 from the side far from the bending center C of the bending portion 15a becomes excessive, and the homogeneity of the fuel in the combustion chamber 13 decreases.

従って、湾曲部15aの湾曲中心Cに近い側から吸気バルブ16を通って燃焼室13に流入する燃料量を確保するためには、排気行程中(吸気バルブ16の閉弁中)に燃料を噴射させ、第1燃料噴霧FS1によって湾曲部15aの湾曲中心Cに近い側の壁面15a2に燃料を付着させる必要がある。
しかし、第1燃料噴霧FS1及び第2燃料噴霧FS2の噴射は同時に行われるので、燃料噴射を排気行程中に終えてしまうと、第2燃料噴霧FS2も吸気の流れがない吸気ポート15中に噴射されることになってしまう。このため、第2燃料噴霧FS2が過剰に拡散して、吸気ポート15の壁面に付着したりして、湾曲部15aの湾曲中心Cから遠い側から燃焼室13に流入する燃料量が減ってしまう。
Therefore, in order to secure the amount of fuel flowing into the combustion chamber 13 through the intake valve 16 from the side near the bending center C of the bending portion 15a, fuel is injected during the exhaust stroke (while the intake valve 16 is closed). It is necessary to cause the fuel to adhere to the wall surface 15a2 on the side close to the bending center C of the bending portion 15a by the first fuel spray FS1.
However, since the first fuel spray FS1 and the second fuel spray FS2 are injected at the same time, if the fuel injection is finished during the exhaust stroke, the second fuel spray FS2 is also injected into the intake port 15 where there is no intake flow. Will be done. For this reason, the second fuel spray FS2 diffuses excessively and adheres to the wall surface of the intake port 15, so that the amount of fuel flowing into the combustion chamber 13 from the side far from the bending center C of the bending portion 15a decreases. .

従って、湾曲部15aの湾曲中心Cから遠い側から燃焼室13に流入する燃料量を確保するためには、吸気行程中(吸気バルブ16の開弁中)に燃料を噴射させ、第2燃料噴霧FS2を吸気の流れに乗せることが望まれる。
そこで、第1燃料噴霧FS1及び第2燃料噴霧FS2が同時に同期間だけ噴射される燃料噴射弁21では、排気行程中(吸気バルブ16の閉弁中)における第1燃料噴霧FS1の噴射と、吸気行程中(吸気バルブ16の開弁中)における第2燃料噴霧FS2の噴射とを行わせるために、排気行程から吸気行程にわたって燃料噴射が行われるように噴射タイミングを設定する。
Therefore, in order to secure the amount of fuel flowing into the combustion chamber 13 from the side far from the bending center C of the bending portion 15a, the fuel is injected during the intake stroke (while the intake valve 16 is opened), and the second fuel spray is performed. It is desirable to place FS2 on the flow of intake air.
Therefore, in the fuel injection valve 21 in which the first fuel spray FS1 and the second fuel spray FS2 are simultaneously injected only during the same period, the injection of the first fuel spray FS1 and the intake air during the exhaust stroke (while the intake valve 16 is closed) In order to perform the injection of the second fuel spray FS2 during the stroke (while the intake valve 16 is open), the injection timing is set so that the fuel is injected from the exhaust stroke to the intake stroke.

これにより、湾曲部15aの湾曲中心Cから遠い側から燃焼室13に流入する燃料量と、近い側から燃焼室13に流入する燃料量とを適当な割合として、燃焼室13内における燃料の均質度を高めるようにする。
また、燃料噴射弁21において、第1燃料噴霧FS1として噴射される燃料量と、第2燃料噴霧FS2として噴射される燃料量とを同じに設定した場合、即ち、噴射量の分担比を50%:50%に設定した場合、湾曲部15aの湾曲中心Cに近い側の壁面15a2の液膜から気化する燃料量が不足し、湾曲部15aの湾曲中心Cに近い側から燃焼室13に流入する燃料量が過少となってしまう場合がある。
As a result, the amount of fuel flowing into the combustion chamber 13 from the side far from the bending center C of the curved portion 15a and the amount of fuel flowing into the combustion chamber 13 from the near side are set as appropriate ratios so that the fuel in the combustion chamber 13 is homogeneous. Try to increase the degree.
Further, in the fuel injection valve 21, when the fuel amount injected as the first fuel spray FS1 and the fuel amount injected as the second fuel spray FS2 are set to be the same, that is, the share ratio of the injection amount is 50%. When set to 50%, the amount of fuel vaporized from the liquid film on the wall surface 15a2 near the bending center C of the bending portion 15a is insufficient, and flows into the combustion chamber 13 from the side near the bending center C of the bending portion 15a. The amount of fuel may become too small.

そこで、第2燃料噴霧FS2として噴射される燃料量よりも、第1燃料噴霧FS1として噴射される燃料量が多くなるように、第1燃料噴霧FS1による噴射量の分担比が、第2燃料噴霧FS2による噴射量の分担比よりも多くなるようにする。係る分担比の設定は、噴孔の数や径の設定を、第1噴孔群213aと第2噴孔群213bとで異ならせることで実現できる。
これにより、湾曲部15aの湾曲中心Cに近い側の壁面15a2の液膜から気化する燃料量として十分な量を確保でき、湾曲部15aの湾曲中心Cから遠い側から燃焼室13に流入する燃料量と、近い側から燃焼室13に流入する燃料量とを適当な割合として、燃焼室13内における燃料の均質度を高めることができる。
Therefore, the share ratio of the injection amount by the first fuel spray FS1 is set so that the fuel amount injected as the first fuel spray FS1 is larger than the fuel amount injected as the second fuel spray FS2. It is made to become larger than the share ratio of the injection amount by FS2. The setting of the sharing ratio can be realized by making the number and diameter of the nozzle holes different between the first nozzle hole group 213a and the second nozzle hole group 213b.
Thereby, it is possible to secure a sufficient amount of fuel to be vaporized from the liquid film on the wall surface 15a2 on the side close to the bending center C of the bending portion 15a, and the fuel flowing into the combustion chamber 13 from the side far from the bending center C of the bending portion 15a. The homogeneity of the fuel in the combustion chamber 13 can be increased by setting the amount and the amount of fuel flowing into the combustion chamber 13 from the near side to an appropriate ratio.

ところで、図1に示した燃料噴射装置は、1本の燃料噴射弁21から第1燃料噴霧FS1と第2燃料噴霧FS2とを噴射させるが、図7に示すように、第1燃料噴霧FS1を噴射する第1燃料噴射弁21aと、第2燃料噴霧FS2を噴射する第2燃料噴射弁21bとを備える燃料噴射装置とすることができる。
図7に示す燃料噴射装置では、吸気ポート15の湾曲部15aの湾曲中心Cから遠い側の壁面15a1の上流部に、第1燃料噴射弁21a及び第2燃料噴射弁21bを設け、かつ、第1燃料噴射弁21aの下流側に第2燃料噴射弁21bを配置してある。
Incidentally, the fuel injection device shown in FIG. 1 injects the first fuel spray FS1 and the second fuel spray FS2 from one fuel injection valve 21, but as shown in FIG. 7, the first fuel spray FS1 is injected. It can be set as a fuel injection device provided with the 1st fuel injection valve 21a which injects, and the 2nd fuel injection valve 21b which injects the 2nd fuel spray FS2.
In the fuel injection device shown in FIG. 7, the first fuel injection valve 21 a and the second fuel injection valve 21 b are provided in the upstream portion of the wall surface 15 a 1 far from the bending center C of the bending portion 15 a of the intake port 15, and the first A second fuel injection valve 21b is disposed downstream of the one fuel injection valve 21a.

第1燃料噴射弁21aは、湾曲部15aの湾曲中心Cに近い側の壁面15a2を指向する第1燃料噴霧FS1を噴射し、この第1燃料噴霧FS1は、第2燃料噴射弁21bが噴射する第2燃料噴霧FS2に比べて貫徹力が強くなるように設定してある。
一方、第2燃料噴射弁21aによる第2燃料噴霧FS2の指向方向は、第1燃料噴射弁21aが噴射する第1燃料噴霧よりも湾曲部15aの湾曲中心Cから遠い側の壁面15a1寄りを指向する。より詳細には、第2燃料噴射弁21aによる第2燃料噴霧FS2の指向方向は、第2燃料噴霧FS2が第1燃料噴霧FS1に干渉することを十分に抑制することができ、かつ、吸気ポート15の湾曲部15aの湾曲中心Cから遠い側の壁面15a1などに対する燃料の付着を十分に抑制できる範囲内とする。
The first fuel injection valve 21a injects the first fuel spray FS1 directed to the wall surface 15a2 on the side close to the bending center C of the bending portion 15a, and the first fuel spray FS1 is injected by the second fuel injection valve 21b. The penetration force is set to be stronger than that of the second fuel spray FS2.
On the other hand, the directing direction of the second fuel spray FS2 by the second fuel injection valve 21a is directed toward the wall surface 15a1 farther from the bending center C of the bending portion 15a than the first fuel spray injected by the first fuel injection valve 21a. To do. More specifically, the directing direction of the second fuel spray FS2 by the second fuel injection valve 21a can sufficiently suppress the second fuel spray FS2 from interfering with the first fuel spray FS1, and the intake port It is set within a range in which the adhesion of fuel to the wall surface 15a1 on the side far from the bending center C of the 15 bending portions 15a can be sufficiently suppressed.

また、図8に示すように、1つの気筒に2つの吸気バルブ16a,16bを備え、これらの吸気バルブ16a,16bで開閉される2つの吸気ポート151,152が各気筒に設けられ、気筒毎の吸気ポート15が途中から2つの吸気ポート151,152に分岐する場合には、係る分岐部よりも上流側に、第1燃料噴射弁21a及び第2燃料噴射弁21bを配置する。
そして、第1燃料噴射弁21aからは、吸気ポート151,152それぞれに向かう2方向に第1燃料噴霧FS1を噴射させ、第2燃料噴射弁21bからは、吸気ポート151,152それぞれに向かう2方向に第2燃料噴霧FS2を噴射させる。
Further, as shown in FIG. 8, two cylinders are provided with two intake valves 16a and 16b, and two intake ports 151 and 152 that are opened and closed by these intake valves 16a and 16b are provided in each cylinder. When the first intake port 15 branches to the two intake ports 151, 152 from the middle, the first fuel injection valve 21a and the second fuel injection valve 21b are arranged upstream of the branching portion.
The first fuel injection valve 21a injects the first fuel spray FS1 in two directions toward the intake ports 151 and 152, and the second fuel injection valve 21b in two directions toward the intake ports 151 and 152, respectively. To inject the second fuel spray FS2.

このように、第1燃料噴霧FS1を噴射する第1燃料噴射弁21aと、第2燃料噴霧FS2を噴射する第2燃料噴射弁21bとを個別に設ける場合、2本の燃料噴射弁21a,21bにおける噴射タイミング及び噴射パルス幅を相互に個別に設定できる。
従って、第1燃料噴射弁21aの噴射開始時期よりも、第2燃料噴射弁21bの噴射開始時期を遅らせることができ、例えば、第1燃料噴射弁21aの噴射開始時期を、排気行程中(吸気バルブ16の開弁前)に設定する一方、第2燃料噴射弁21bの噴射開始時期を吸気行程中(吸気バルブ16の開弁時若しくは開弁後)に設定することができる。
As described above, when the first fuel injection valve 21a for injecting the first fuel spray FS1 and the second fuel injection valve 21b for injecting the second fuel spray FS2 are provided separately, the two fuel injection valves 21a and 21b are provided. The injection timing and the injection pulse width in can be individually set.
Therefore, the injection start timing of the second fuel injection valve 21b can be delayed from the injection start timing of the first fuel injection valve 21a. For example, the injection start timing of the first fuel injection valve 21a is set during the exhaust stroke (intake air). On the other hand, the injection start timing of the second fuel injection valve 21b can be set during the intake stroke (when the intake valve 16 is opened or after the valve is opened).

また、各燃料噴射弁21a,21bに出力する噴射パルス信号のパルス幅の設定によって、第1燃料噴霧FS1として噴射される燃料量、及び、第2燃料噴霧FS2として噴射される燃料量を任意に設定でき、係る噴射パルス幅の設定によって、第1燃料噴霧FS1として噴射される燃料量を、第2燃料噴霧FS2として噴射される燃料量よりも多くすることができる。
尚、第1燃料噴射弁21aが単位時間だけ開弁したときに噴射する燃料量を、第2燃料噴射弁21aが単位時間だけ開弁したときに噴射する燃料量よりも多くなるように設定し、同じ噴射パルス幅の噴射パルス信号を各燃料噴射弁21a,21bに出力しつつ、各燃料噴射弁21a,21bから噴射される燃料量が異なるようにすることができる。
Further, the amount of fuel injected as the first fuel spray FS1 and the amount of fuel injected as the second fuel spray FS2 can be arbitrarily set by setting the pulse width of the injection pulse signal output to each fuel injection valve 21a, 21b. By setting the injection pulse width, the amount of fuel injected as the first fuel spray FS1 can be made larger than the amount of fuel injected as the second fuel spray FS2.
The amount of fuel injected when the first fuel injection valve 21a is opened for a unit time is set to be larger than the amount of fuel injected when the second fuel injection valve 21a is opened for a unit time. While the injection pulse signal having the same injection pulse width is output to each fuel injection valve 21a, 21b, the amount of fuel injected from each fuel injection valve 21a, 21b can be made different.

また、第1燃料噴射弁21aが単位時間だけ開弁したときに噴射する燃料量を、第2燃料噴射弁21aが単位時間だけ開弁したときに噴射する燃料量よりも多くなるように設定しつつ、更に、第1燃料噴射弁21aの噴射パルス幅を、第2燃料噴射弁21aの噴射パルス幅よりも長くして、第1燃料噴霧FS1として噴射される燃料量を、第2燃料噴霧FS2として噴射される燃料量よりも多くすることができる。
即ち、図7に示す燃料噴射装置では気筒毎に2本の燃料噴射弁21a,21bを備えることで、図1に示した気筒毎に1本の燃料噴射弁21を備える燃料噴射装置に比べて、第1燃料噴霧FS1及び第2燃料噴霧FS2の噴射タイミングや噴射量の設定自由度が高く、燃焼室13における燃料の均質度を更に向上させることが可能となる。
一方、図1に示した、気筒毎に1本の燃料噴射弁21を備える燃料噴射装置であれば、燃料噴射弁の使用本数を少なくできるため、燃料噴射装置のコストを抑制でき、かつ、燃焼室13における燃料の均質度を十分に高めることができる。
Further, the amount of fuel injected when the first fuel injection valve 21a is opened for a unit time is set to be larger than the amount of fuel injected when the second fuel injection valve 21a is opened for a unit time. In addition, the injection pulse width of the first fuel injection valve 21a is made longer than the injection pulse width of the second fuel injection valve 21a, and the amount of fuel injected as the first fuel spray FS1 is changed to the second fuel spray FS2. The amount of fuel injected can be increased.
In other words, the fuel injection device shown in FIG. 7 includes two fuel injection valves 21a and 21b for each cylinder, so that the fuel injection device includes one fuel injection valve 21 for each cylinder shown in FIG. The degree of freedom in setting the injection timing and the injection amount of the first fuel spray FS1 and the second fuel spray FS2 is high, and the homogeneity of the fuel in the combustion chamber 13 can be further improved.
On the other hand, if the fuel injection device shown in FIG. 1 is provided with one fuel injection valve 21 for each cylinder, the number of fuel injection valves used can be reduced, so that the cost of the fuel injection device can be suppressed and combustion can be performed. The homogeneity of the fuel in the chamber 13 can be sufficiently increased.

以上、好ましい実施形態を具体的に説明したが、当業者であれば、種々の変形態様を採り得ることは自明である。
例えば、図1及び図7に示した燃料噴射装置の双方において、機関温度(吸気ポート15の壁面温度)、機関負荷、機関回転速度(吸気流速)、燃料性状などの運転条件に応じて噴射タイミングを変更することができる。
また、図7に示した、気筒毎に2本の燃料噴射弁21a,21bを備える燃料噴射装置においては、機関温度(吸気ポート15の壁面温度)、機関負荷、機関回転速度(吸気流速)、燃料性状などの運転条件に応じて、2本の噴射弁(第1燃料噴霧FS1,第2燃料噴霧FS2)における燃料噴射量の分担比を変更することができる。
Although the preferred embodiments have been specifically described above, it is obvious that those skilled in the art can take various modifications.
For example, in both of the fuel injection devices shown in FIGS. 1 and 7, the injection timing depends on the operating conditions such as the engine temperature (the wall surface temperature of the intake port 15), the engine load, the engine rotational speed (intake flow velocity), and the fuel properties. Can be changed.
Further, in the fuel injection device provided with two fuel injection valves 21a and 21b for each cylinder shown in FIG. 7, the engine temperature (the wall surface temperature of the intake port 15), the engine load, the engine rotation speed (intake flow velocity), The share ratio of the fuel injection amount in the two injection valves (the first fuel spray FS1 and the second fuel spray FS2) can be changed according to the operating conditions such as the fuel properties.

ここで、上記実施形態から把握し得る請求項以外の技術的思想について、以下に効果と共に記載する。
(イ)内燃機関の吸気ポート内に燃料を噴射するための燃料噴射弁であって、
前記燃料噴射弁の軸線と燃料噴霧の指向方向とがなす角度がθ1である第1燃料噴霧と、前記燃料噴射弁の軸線と燃料噴霧の指向方向とがなす角度が前記角度θ1よりも小さいθ2である第2燃料噴霧とを噴射し、かつ、前記第1燃料噴霧の貫徹力が前記第2燃料噴霧の貫徹力よりも高く設定される、燃料噴射弁。
上記発明によると、湾曲部の湾曲中心Cに近い側の壁面に付着することになる第1燃料噴霧と、吸気ポート内に浮遊することになる第2燃料噴霧を噴射させることができ、吸気の流れに乗せて燃料を燃焼室内に吸引させ、また、湾曲部の湾曲中心Cに近い側の壁面における液膜から気化した燃料を燃焼室内に吸引させることができる。
Here, technical ideas other than the claims that can be grasped from the above embodiment will be described together with effects.
(A) A fuel injection valve for injecting fuel into an intake port of an internal combustion engine,
The angle formed between the axis of the fuel injection valve and the directing direction of the fuel spray is θ1, and the angle formed between the axis of the fuel injection valve and the directing direction of the fuel spray is smaller than the angle θ1. A fuel injection valve in which the second fuel spray is injected and the penetration force of the first fuel spray is set higher than the penetration force of the second fuel spray.
According to the above invention, the first fuel spray that adheres to the wall surface of the curved portion near the curve center C and the second fuel spray that floats in the intake port can be injected. The fuel can be sucked into the combustion chamber in the flow, and the fuel vaporized from the liquid film on the wall surface of the curved portion near the curved center C can be sucked into the combustion chamber.

(ロ)前記第2燃料噴霧が、複数の燃料噴霧の衝突によって形成される衝突噴霧であり、前記第1燃料噴霧が、非衝突噴霧である、請求項1記載の内燃機関の燃料噴射装置。
上記発明によると、複数の燃料噴霧を衝突させることで、衝突させない場合に比べて貫通力が弱くなり、衝突噴霧である第2燃料噴霧よりも貫徹力が強い第1燃料噴霧を噴射させることができる。
(B) The fuel injection device for an internal combustion engine according to claim 1, wherein the second fuel spray is a collision spray formed by a collision of a plurality of fuel sprays, and the first fuel spray is a non-collision spray.
According to the above invention, by causing a plurality of fuel sprays to collide with each other, the penetrating force becomes weaker than when not colliding, and the first fuel spray having a penetrating force stronger than the second fuel spray that is a colliding spray can be injected. it can.

(ハ)前記第2燃料噴霧が、燃料噴霧にスワールを付与したスワール噴霧である、請求項1記載の内燃機関の燃料噴射装置。
上記発明によると、燃料噴霧にスワールを付与することで、貫徹力を弱い第2燃料噴霧とすることができる。
(C) The fuel injection device for an internal combustion engine according to claim 1, wherein the second fuel spray is a swirl spray obtained by imparting a swirl to the fuel spray.
According to the said invention, it can be set as the 2nd fuel spray with a weak penetration force by giving a swirl to fuel spray.

11…内燃機関(エンジン)、12…シリンダヘッド、13…燃焼室、14…ピストン、15…吸気ポート、15a…湾曲部、16…吸気バルブ、17…シリンダ、18…点火プラグ、19…排気バルブ、20…排気ポート、21…燃料噴射弁、30…エンジンコントロールユニット、31…エアフローセンサ、32…クランク角センサ、33…水温センサ   DESCRIPTION OF SYMBOLS 11 ... Internal combustion engine (engine), 12 ... Cylinder head, 13 ... Combustion chamber, 14 ... Piston, 15 ... Intake port, 15a ... Curved part, 16 ... Intake valve, 17 ... Cylinder, 18 ... Spark plug, 19 ... Exhaust valve 20 ... exhaust port, 21 ... fuel injection valve, 30 ... engine control unit, 31 ... air flow sensor, 32 ... crank angle sensor, 33 ... water temperature sensor

Claims (3)

吸気バルブと燃料噴射装置との間の吸気ポートに湾曲部が形成され、吸気ポート内に燃料を噴射する内燃機関の燃料噴射装置であって、
前記吸気ポートの湾曲部の湾曲中心に近い側の壁面を指向する第1燃料噴霧、及び、前記第1燃料噴霧よりも湾曲中心から遠い側の壁面寄りを指向する第2燃料噴霧を噴射し、かつ、前記第1燃料噴霧の貫徹力が前記第2燃料噴霧の貫徹力よりも高く設定される、内燃機関の燃料噴射装置。
A fuel injection device for an internal combustion engine in which a curved portion is formed in an intake port between an intake valve and a fuel injection device, and fuel is injected into the intake port,
Injecting a first fuel spray directed to a wall surface closer to the curve center of the curved portion of the intake port, and a second fuel spray directed to a wall surface farther from the curve center than the first fuel spray; And the fuel-injection apparatus of an internal combustion engine by which the penetration force of the said 1st fuel spray is set higher than the penetration force of the said 2nd fuel spray.
前記第1燃料噴霧を噴射する噴孔及び前記第2燃料噴霧を噴射する噴孔を備えた燃料噴射弁、又は、前記第1燃料噴霧を噴射する第1燃料噴射弁及び前記第2燃料噴霧を噴射する第2燃料噴射弁を含む、請求項1記載の内燃機関の燃料噴射装置。   A fuel injection valve having an injection hole for injecting the first fuel spray and an injection hole for injecting the second fuel spray, or a first fuel injection valve and the second fuel spray for injecting the first fuel spray. The fuel injection device for an internal combustion engine according to claim 1, further comprising a second fuel injection valve that injects fuel. 前記第1燃料噴霧による燃料噴射量が、前記第2燃料噴霧による燃料噴射量よりも多く設定される、請求項1記載の内燃機関の燃料噴射装置。   The fuel injection device for an internal combustion engine according to claim 1, wherein a fuel injection amount by the first fuel spray is set to be larger than a fuel injection amount by the second fuel spray.
JP2012207921A 2012-09-21 2012-09-21 Fuel injection device for internal combustion engine Expired - Fee Related JP6002517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012207921A JP6002517B2 (en) 2012-09-21 2012-09-21 Fuel injection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012207921A JP6002517B2 (en) 2012-09-21 2012-09-21 Fuel injection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2014062495A true JP2014062495A (en) 2014-04-10
JP6002517B2 JP6002517B2 (en) 2016-10-05

Family

ID=50617933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012207921A Expired - Fee Related JP6002517B2 (en) 2012-09-21 2012-09-21 Fuel injection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6002517B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137960A (en) * 2002-10-17 2004-05-13 Nissan Motor Co Ltd Fuel injection device for internal combustion engine
JP2007051624A (en) * 2005-08-19 2007-03-01 Denso Corp Fuel injection nozzle
JP2008045465A (en) * 2006-08-11 2008-02-28 Toyota Motor Corp Fuel injection valve
JP2010065622A (en) * 2008-09-11 2010-03-25 Hitachi Automotive Systems Ltd Fuel injection valve, fuel injection device for internal combustion engine, and control device for internal combustion engine
JP2012067679A (en) * 2010-09-24 2012-04-05 Toyota Motor Corp Fuel injection control device for internal combustion engine
JP2012122441A (en) * 2010-12-10 2012-06-28 Bosch Corp Fuel injection valve

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137960A (en) * 2002-10-17 2004-05-13 Nissan Motor Co Ltd Fuel injection device for internal combustion engine
JP2007051624A (en) * 2005-08-19 2007-03-01 Denso Corp Fuel injection nozzle
JP2008045465A (en) * 2006-08-11 2008-02-28 Toyota Motor Corp Fuel injection valve
JP2010065622A (en) * 2008-09-11 2010-03-25 Hitachi Automotive Systems Ltd Fuel injection valve, fuel injection device for internal combustion engine, and control device for internal combustion engine
JP2012067679A (en) * 2010-09-24 2012-04-05 Toyota Motor Corp Fuel injection control device for internal combustion engine
JP2012122441A (en) * 2010-12-10 2012-06-28 Bosch Corp Fuel injection valve

Also Published As

Publication number Publication date
JP6002517B2 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
US6390059B1 (en) Cylinder-injection type internal combustion engine, method of controlling the engine, and fuel injection nozzle
JP2008202483A (en) Cylinder injection type internal combustion engine and injector used therefor
JP4787867B2 (en) Fuel injection valve, fuel injection device for internal combustion engine, and control device for internal combustion engine
CN105986877A (en) Internal combustion engine
JP2005307904A (en) Fuel injection system
JP2012188937A (en) Internal combustion engine
JP2020002844A (en) Control system of internal combustion engine
US20120227706A1 (en) Internal combustion engine
JP6002517B2 (en) Fuel injection device for internal combustion engine
JP2012036757A (en) Control device for internal combustion engine
JP2017044174A (en) Fuel injection valve
JP7152915B2 (en) FUEL INJECTION CONTROL DEVICE AND FUEL INJECTION CONTROL METHOD
JP2004245204A (en) Fuel injection apparatus for internal combustion engine
US20190040814A1 (en) Fuel Injection Valve Control Device
JP2007187166A (en) Cylinder injection type internal combustion engine, control method of internal combustion engine and fuel injection valve
JP2006037794A (en) Cylinder direct injection type spark ignition internal combustion engine
JP5865603B2 (en) In-cylinder injection engine and fuel injection method thereof
JP2003314413A (en) Fuel injection device of internal combustion engine
JP4311300B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2020067021A (en) Internal combustion engine and its control device
JP6657629B2 (en) engine
JP2006070862A (en) Cylinder direct injection type spark ignition internal combustion engine
JP2007064174A (en) Direct injection internal combustion engine
JP2008133812A (en) Fuel supply device for internal combustion engine and fuel supply method for internal combustion engine
JP2006177181A (en) Control device for cylinder direct injection type spark ignition internal combustion engine

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160905

R150 Certificate of patent or registration of utility model

Ref document number: 6002517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees