JP2014062164A - Treatment agent - Google Patents

Treatment agent Download PDF

Info

Publication number
JP2014062164A
JP2014062164A JP2012207082A JP2012207082A JP2014062164A JP 2014062164 A JP2014062164 A JP 2014062164A JP 2012207082 A JP2012207082 A JP 2012207082A JP 2012207082 A JP2012207082 A JP 2012207082A JP 2014062164 A JP2014062164 A JP 2014062164A
Authority
JP
Japan
Prior art keywords
sulfur
treatment agent
anions
aqueous solution
integers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012207082A
Other languages
Japanese (ja)
Other versions
JP6326197B2 (en
Inventor
Masaaki Tabata
正明 田端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujiken KK
Fujiken Co Ltd
Original Assignee
Fujiken KK
Fujiken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujiken KK, Fujiken Co Ltd filed Critical Fujiken KK
Priority to JP2012207082A priority Critical patent/JP6326197B2/en
Publication of JP2014062164A publication Critical patent/JP2014062164A/en
Application granted granted Critical
Publication of JP6326197B2 publication Critical patent/JP6326197B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a treatment agent for fixing heavy metals.SOLUTION: The treatment agent includes an aqueous solution including high-polymer anions (S(x and m are integers.)) of sulphur and particulate sulfur as a principal component. The treatment agent includes the aqueous solution including the high-polymer anions (S(x and m are integers.)) of sulphur and forms sulphur anions and solid sulfur from the high-polymer anions of sulphur during the treatment.

Description

本発明は、処理剤に関するものであり、特に、重金属の固定化処理に適する処理剤に関するものである。   The present invention relates to a treatment agent, and particularly to a treatment agent suitable for heavy metal immobilization treatment.

従来より、産業廃棄物や都市ごみなどは、焼却処理された後に埋立処分されている。   Conventionally, industrial waste and municipal waste have been incinerated after being incinerated.

そして、焼却処理により発生する焼却灰や飛灰などには、人体等に有害な重金属が含まれているために、埋立処分した焼却灰や飛灰などから重金属が溶出しないように重金属の固定化処理を行っている(たとえば、特許文献1参照。)。   Incineration ash and fly ash generated by incineration contain heavy metals that are harmful to the human body, etc., so that heavy metals are fixed so that heavy metals do not elute from landfilled incineration ash or fly ash. Processing is performed (for example, see Patent Document 1).

特開2012−87163公報JP 2012-87163 A

本発明者は、重金属の固定化処理に適した処理剤を鋭意研究し、本発明を成すに至った。   The inventor diligently studied a treatment agent suitable for the heavy metal immobilization treatment, and reached the present invention.

すなわち、請求項1に係る本発明では、硫黄の高分子陰イオン(S m−(x、mは整数。))と粒子状の硫黄を含有する水溶液を主成分とすることを特徴とする処理剤を提供する。 That is, the present invention according to claim 1 is characterized in that an aqueous solution containing sulfur polymer anions (S X m- (x and m are integers)) and particulate sulfur is a main component. A treatment agent is provided.

また、請求項2に係る本発明では、硫黄の高分子陰イオン(S m−(x、mは整数。))を含有する水溶液であり、処理時に硫黄の高分子陰イオンから硫黄の陰イオン(S2−)と固体(S)が生成されることを特徴とする処理剤を提供する。 Further, the present invention according to claim 2 is an aqueous solution containing a sulfur polymer anion (S X m- (x and m are integers)). Provided is a treating agent characterized in that ions (S 2− ) and solids (S) are produced.

本発明に係る処理剤は、硫黄の高分子陰イオンと粒子状の硫黄を含有する水溶液を主成分としており、硫黄の高分子陰イオンの作用によって、重金属の固定化処理を行うことができる。   The treatment agent according to the present invention is mainly composed of an aqueous solution containing a sulfur polymer anion and particulate sulfur, and the heavy metal can be fixed by the action of the sulfur polymer anion.

この処理剤は、アスベストの結晶の層間で硫黄の陰イオンの酸化反応(分解反応)が進んでアスベストの繊維を分解することができるとともに、固体分の硫黄に吸着されて沈殿分離することもできる。   This treatment agent is capable of decomposing asbestos fibers by proceeding with an oxidation reaction (decomposition reaction) of sulfur anions between the layers of asbestos crystals, and is also adsorbed by solid sulfur and separated by precipitation. .

そのため、本発明に係る処理剤は、重金属の固定処理を行う処理剤として有効であるとともに、アスベストの分解処理を行う処理剤としても有効である。   Therefore, the treatment agent according to the present invention is effective as a treatment agent for fixing heavy metals, and is also effective as a treatment agent for decomposing asbestos.

本発明に係る処理剤のXANESスペクトル(a)と硫黄のXANESスペクトル(b)。The XANES spectrum (a) of the processing agent which concerns on this invention, and the XANES spectrum (b) of sulfur.

本発明に係る処理剤は、硫黄の高分子陰イオン(S m−(x、mは整数。))と粒子状の硫黄を含有する水溶液を主成分とする。 The treatment agent according to the present invention is mainly composed of an aqueous solution containing sulfur polymer anions (S x m- (x and m are integers)) and particulate sulfur.

製造方法は、特に限定されないが、たとえば下記に説明するようにして製造することができる。   Although a manufacturing method is not specifically limited, For example, it can manufacture as explained below.

まず、硫黄10重量部とアルカリ水100重量部とを反応容器に投入し、上蓋を閉じ、混合機で約10分間混合する。なお、ここでは、アルカリ水として消石灰の水溶液を用いている。   First, 10 parts by weight of sulfur and 100 parts by weight of alkaline water are put into a reaction vessel, the upper lid is closed, and the mixture is mixed for about 10 minutes with a mixer. Here, a slaked lime aqueous solution is used as the alkaline water.

次に、反応容器の上蓋を開け、反応容器に中性又は陰性の界面活性剤5重量部を投入する。ここで、中性の界面活性剤としては、ノニオン性界面活性剤を使用し、陰性の界面活性剤としては、アニオン性界面活性剤を使用することができる。   Next, the upper lid of the reaction vessel is opened, and 5 parts by weight of a neutral or negative surfactant is put into the reaction vessel. Here, a nonionic surfactant can be used as the neutral surfactant, and an anionic surfactant can be used as the negative surfactant.

次に、反応容器の上蓋を閉じ、混合機で約10分間混合する。その際に、反応容器に高周波振動機で振動を加えてもよい。   Next, the upper lid of the reaction vessel is closed, and mixing is performed for about 10 minutes with a mixer. At that time, the reaction vessel may be vibrated with a high-frequency vibrator.

次に、反応容器を加熱装置で加熱し、反応容器の内部圧力が2.5Kg/cm2以下、内部温度が90℃以上となるようにする。反応容器の内部温度が110℃に達してから約30分間放置して、反応容器の内部で混合反応させる。 Next, the reaction vessel is heated with a heating device so that the internal pressure of the reaction vessel is 2.5 kg / cm 2 or less and the internal temperature is 90 ° C. or more. After the internal temperature of the reaction vessel reaches 110 ° C., the reaction vessel is left to stand for about 30 minutes to cause a mixing reaction inside the reaction vessel.

その後、加熱を停止するとともに、内部圧力が低下するまで放置し、安定したら排気を行って内部圧力を大気圧とし、上蓋を開ける。   After that, the heating is stopped and the system is left until the internal pressure decreases. When the internal pressure is stabilized, the exhaust is performed to bring the internal pressure to atmospheric pressure, and the upper cover is opened.

これにより、反応容器には、液体状の薬液90重量部と固体状の沈殿物10重量部とが得られる。このようにして得られた薬液について調べたところ、薬液は、硫黄の高分子陰イオン(S m−(x、mは整数。))と粒子状の硫黄を含有する水溶液であることがわかった。 As a result, 90 parts by weight of liquid chemical solution and 10 parts by weight of solid precipitate are obtained in the reaction vessel. When the chemical solution thus obtained was examined, it was found that the chemical solution was an aqueous solution containing sulfur polymer anions (S X m- (x and m are integers)) and particulate sulfur. It was.

通常であれば、消石灰と硫黄と水とを反応させた場合、多硫化カルシウムの水溶液が生成されると考えられるが、上記薬液についてXANES(X−ray Absorption Near Edge Structure:X線吸収端近傍構造)法によりXANESスペクトルを測定したところ、固体の硫黄と近似することがわかった。   Normally, when slaked lime, sulfur, and water are reacted, an aqueous solution of calcium polysulfide is considered to be produced. However, the XANES (X-ray Absorption Near Edge Structure: X-ray absorption edge vicinity structure of the above chemical solution is considered. ) Method to measure the XANES spectrum, it was found to approximate solid sulfur.

すなわち、上記薬液のXANESスペクトル(蛍光収量)は、図1(a)に示すように、2471.3eVに主ピークを有し、2479.5eVにブロードピークを有している。なお、2469.5eVに小さな立ち上がりが検出された。   That is, the XANES spectrum (fluorescence yield) of the chemical solution has a main peak at 2471.3 eV and a broad peak at 2479.5 eV, as shown in FIG. A small rising edge was detected at 2469.5 eV.

これに対して、固体の硫黄のXANESスペクトル(電子収量)は、図1(b)に示すように、ほぼ同じく2471.3eVに主ピークを有し、2478.4eVにブロードピークを有している。   On the other hand, the XANES spectrum (electron yield) of solid sulfur has a main peak at 2471.3 eV and a broad peak at 2478.4 eV, as shown in FIG. .

このことから、上記薬液は、水溶液中に多硫化カルシウムではなく固体の硫黄として含有されていることがわかった。また、2469.5eVに検出された小さな立ち上がりがNaSの水溶液の2470.9eVのピークと近似していることから、一部が硫黄の陰イオン(たとえば、S2−)の酸化状態として含有されていることがわかる。 From this, it was found that the chemical solution was contained in the aqueous solution not as calcium polysulfide but as solid sulfur. Moreover, since the small rising edge detected at 2469.5 eV approximates the peak of 2470.9 eV of the aqueous solution of Na 2 S, a part of it is contained as an oxidation state of sulfur anion (for example, S 2− ). You can see that

そして、硫黄が水に不溶であるのに上記薬液が透明な溶液であり、ゼータ電位を測定したところ−93.39mVと非常に大きく、また、粒子径を測定したところ約8μmと非常に大きいことから、この水溶液には硫黄が高分子陰イオン(S m−(x、mは整数。)、たとえば、S2−)の状態で存在しており、硫黄のポリマー分子に負電荷が非局在化した構造で存在していると考えられる。 Although the above chemical solution is a transparent solution even though sulfur is insoluble in water, the zeta potential was measured to be very large as -93.39 mV, and the particle size was measured to be very large as about 8 μm. In this aqueous solution, sulfur exists in the state of a polymer anion (S X m- (x, m is an integer), for example, S 2− ), and the sulfur polymer molecule has no negative charge. It is considered that it exists in a naturalized structure.

この硫黄の高分子陰イオンは不可逆的に硫黄の陰イオンと固体の硫黄とを生成する。そのため、処理時には、硫黄の高分子陰イオンから硫黄の陰イオンとコロイド状の固体の硫黄とが生成され、硫黄の陰イオンの酸化反応が進んで重金属と結合するとともに固体分の硫黄によって吸着され、沈殿分離することができる。   The sulfur polymer anion irreversibly generates a sulfur anion and solid sulfur. Therefore, during processing, sulfur anions and colloidal solid sulfur are produced from sulfur polymer anions, and the oxidation reaction of sulfur anions proceeds to be combined with heavy metals and adsorbed by solid sulfur. The precipitate can be separated.

なお、処理剤をアスベストに塗布した場合には、アスベストの結晶の層間に硫黄の陰イオンがインターカレートした後に酸化反応(分解反応)が進んでイオン半径が大きな硫酸イオン等になって結晶破壊が起きてアスベストの繊維を分解することができるとともに、固体分の硫黄に吸着されて沈殿分離することもできる。   When the treatment agent is applied to asbestos, sulfur anions intercalate between the asbestos crystal layers, followed by an oxidation reaction (decomposition reaction) that causes sulfate ions with a large ion radius to break the crystal. As a result, the asbestos fibers can be decomposed and can be adsorbed by solid sulfur and separated by precipitation.

そのため、上記薬剤は、重金属の固定処理を行う処理剤として有効であるのみならず、アスベストの分解処理を行う処理剤としても有効である。   Therefore, the said chemical | medical agent is not only effective as a processing agent which performs the fixed process of a heavy metal, but is effective also as a processing agent which performs a decomposition process of asbestos.

なお、上記XANES法では、液体状の薬液の蛍光収量と固体状の硫黄の電子収量を比較しているが、本発明者は、XANES法を用いた場合、液体の蛍光収量と固体の電子収量とがほぼ同じ傾向を示すことや、陽イオンの違いによる影響がないことについて検証を行っており、液体状の薬液の蛍光収量と固体状の硫黄の電子収量とを比較することで薬液の成分を特定しても何ら問題はない。   In the XANES method, the fluorescence yield of the liquid chemical solution and the electron yield of solid sulfur are compared. However, when the XANES method is used, the present inventor has analyzed the fluorescence yield of the liquid and the electron yield of the solid. Are showing the same tendency and are not affected by the difference in cations, comparing the fluorescence yield of liquid chemical and the electron yield of solid sulfur, There is no problem even if it is specified.

Claims (2)

硫黄の高分子陰イオン(S m−(x、mは整数。))と粒子状の硫黄を含有する水溶液を主成分とすることを特徴とする処理剤。 A treating agent comprising an aqueous solution containing sulfur polymer anions (S X m- (x and m are integers)) and particulate sulfur as main components. 硫黄の高分子陰イオン(S m−(x、mは整数。))を含有する水溶液であり、処理時に硫黄の高分子陰イオンから硫黄の陰イオンと固体の硫黄が生成されることを特徴とする処理剤。 It is an aqueous solution containing sulfur polymer anions (S X m- (x and m are integers)), and sulfur anions and solid sulfur are generated from sulfur polymer anions during processing. Characteristic treatment agent.
JP2012207082A 2012-09-20 2012-09-20 Method for producing treatment agent Active JP6326197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012207082A JP6326197B2 (en) 2012-09-20 2012-09-20 Method for producing treatment agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012207082A JP6326197B2 (en) 2012-09-20 2012-09-20 Method for producing treatment agent

Publications (2)

Publication Number Publication Date
JP2014062164A true JP2014062164A (en) 2014-04-10
JP6326197B2 JP6326197B2 (en) 2018-05-16

Family

ID=50617708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012207082A Active JP6326197B2 (en) 2012-09-20 2012-09-20 Method for producing treatment agent

Country Status (1)

Country Link
JP (1) JP6326197B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5162186A (en) * 1974-11-29 1976-05-29 Nichireki Chem Ind Co Odeino shorihoho
JPS5959281A (en) * 1982-09-30 1984-04-05 Kazuhisa Hoshino Chemical liquid composition for treatment of noxious waste matter and its preparation
JP2002086128A (en) * 2000-09-14 2002-03-26 Shimizu Corp Method for cleaning contaminated soil
JP2004033812A (en) * 2002-06-28 2004-02-05 Jfe Engineering Kk Cleaning method of polluted soil or the like and cleaning equipment
JP2009209231A (en) * 2008-03-03 2009-09-17 Koda Tooru Method for producing polysulfide chemical agent for heavy metal fixation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5162186A (en) * 1974-11-29 1976-05-29 Nichireki Chem Ind Co Odeino shorihoho
JPS5959281A (en) * 1982-09-30 1984-04-05 Kazuhisa Hoshino Chemical liquid composition for treatment of noxious waste matter and its preparation
JP2002086128A (en) * 2000-09-14 2002-03-26 Shimizu Corp Method for cleaning contaminated soil
JP2004033812A (en) * 2002-06-28 2004-02-05 Jfe Engineering Kk Cleaning method of polluted soil or the like and cleaning equipment
JP2009209231A (en) * 2008-03-03 2009-09-17 Koda Tooru Method for producing polysulfide chemical agent for heavy metal fixation

Also Published As

Publication number Publication date
JP6326197B2 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
Liu et al. A novel method to extract vanadium and chromium from vanadium slag using molten NaOH‐NaNO 3 binary system
Wei et al. High-efficiency adsorption of tetracycline by the prepared waste collagen fiber-derived porous biochar
Kong et al. Specific H2S release from thiosulfate promoted by UV irradiation for removal of arsenic and heavy metals from strongly acidic wastewater
KR101572914B1 (en) Poly ferric sulfate manufacture method using disuse sulfuric acid of semiconductor production process
CN104069815A (en) Sulfur doped grapheme foam, preparation method thereof and sewage treatment method employing same
Wells et al. Stabilizing chromium from leather waste in biochar
Kitamura et al. Effect of reaction temperature on the size and morphology of scorodite synthesized using ultrasound irradiation
Pérez et al. Phosphorus release from hydrothermally carbonized digested sewage sludge using organic acids
JP4954131B2 (en) Treatment method of water containing borofluoride
KR101715109B1 (en) Method for refining carbon concentration
Neto et al. Heterostructures obtained by ultrasonic methods for photocatalytic application: A review
Liu et al. Complex leaching process of scheelite in hydrochloric and phosphoric solutions
Liao et al. Removal of high-concentration of arsenic in acidic wastewater through zero-valent aluminium powder and characterisation of products
WO2008001464A1 (en) Method of asbestos degradation and asbestos degradation apparatus
JP6326197B2 (en) Method for producing treatment agent
Shi et al. Removal of arsenic from copper smelting wastewater using zinc slag to synthesize scorodite
Phenrat et al. Leaching behaviors of arsenic from arsenic-iron hydroxide sludge during TCLP
KR102051246B1 (en) Asbestos-free detoxification method and treatment agent used in the method
JPWO2008149629A1 (en) Asbestos decomposition treatment agent and asbestos decomposition treatment method
JP5046250B2 (en) Wastewater treatment method
JP4598743B2 (en) Method for producing a drug mainly composed of polysulfide (however, Sx (x = 2 to 12))
KR101026668B1 (en) Method of fixing asbestos
JP2007203135A (en) Treatment method of waste liquid containing boron fluoride ion
Sandu et al. New ways to use the red mud waste as raw material for inorganic-organic hybrid hydrogels
JP6059477B2 (en) Decontamination method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170131

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170207

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180416

R150 Certificate of patent or registration of utility model

Ref document number: 6326197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150