WO2008001464A1 - Method of asbestos degradation and asbestos degradation apparatus - Google Patents

Method of asbestos degradation and asbestos degradation apparatus Download PDF

Info

Publication number
WO2008001464A1
WO2008001464A1 PCT/JP2006/313116 JP2006313116W WO2008001464A1 WO 2008001464 A1 WO2008001464 A1 WO 2008001464A1 JP 2006313116 W JP2006313116 W JP 2006313116W WO 2008001464 A1 WO2008001464 A1 WO 2008001464A1
Authority
WO
WIPO (PCT)
Prior art keywords
asbestos
hydrofluoric acid
reaction
water
tank
Prior art date
Application number
PCT/JP2006/313116
Other languages
French (fr)
Japanese (ja)
Inventor
Hisao Kakegawa
Yoshihiro Suenaga
Yasuhiro Tanaka
Shuzo Kakinuma
Hitoshi Takanashi
Original Assignee
Onc Co., Ltd.
E.S.T Japan Co., Ltd.
National University Corporation Kagawa University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onc Co., Ltd., E.S.T Japan Co., Ltd., National University Corporation Kagawa University filed Critical Onc Co., Ltd.
Priority to PCT/JP2006/313116 priority Critical patent/WO2008001464A1/en
Priority to TW095134922A priority patent/TW200800328A/en
Publication of WO2008001464A1 publication Critical patent/WO2008001464A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/0066Disposal of asbestos
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/36Detoxification by using acid or alkaline reagents
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/40Inorganic substances
    • A62D2101/41Inorganic fibres, e.g. asbestos

Definitions

  • the present invention relates to an asbestos decomposition processing method and a decomposition processing apparatus. More specifically, the present invention relates to a practical treatment technology that makes asbestos harmless safely and reliably.
  • Asbestos has been used in many building materials and industrial products because of its excellent heat resistance, acid resistance, and wear resistance. Since this asbestos is very fine and has a jagged surface with a jagged surface, it is known to cause carcinogenesis that is difficult to be excreted when inhaled into the lungs. However, since this asbestos is a naturally occurring mineral crystal, its chemical stability is extremely high, strong and difficult to change, so there is currently a technology that can safely and safely detoxify asbestos in large quantities. Not.
  • Patent Document 1 describes a technique for reusing an acetylene gas cylinder containing asbestos.
  • the asbestos-containing material in an acetylene gas cylinder is decomposed with a fluorine-containing organic acid as a decomposition agent, and the decomposed residue is removed from the gas cylinder so that the gas cylinder can be reused.
  • hydrofluoric acid is introduced into the gas cylinder, and the remaining suspension is decomposed from the gas cylinder with a pump.
  • the decomposed residue is neutralized with lime milk.
  • Patent Document 1 is a technology that focuses on the treatment of gas cylinders, it is possible to treat each cylinder one by one, but a large amount of asbestos that has been removed from building materials and industrial products etc. It cannot be processed efficiently.
  • Patent Document 1 JP-A-6-15251
  • Non-Patent Document 1 "Disposal of Asbestos-Containing Products” Hitachi High-Technologies, Quality Assurance Department, issued September 12, 2005
  • the present invention provides a decomposition processing method and a decomposition processing apparatus that do not require any energy for detoxifying asbestos, can completely eliminate asbestos with high safety, and can perform mass processing. Objective.
  • the method for decomposing asbestos according to the first aspect of the present invention is to put untreated asbestos substance and water into a reaction tank, then inject hydrofluoric acid, and stir while stirring the asbestos substance to hydrofluoric acid. It is characterized by decomposing asbestos.
  • the asbestos decomposition treatment apparatus includes a reaction vessel capable of containing water and untreated asbestos material and sealed, a tank for injecting hydrofluoric acid into the reaction vessel, and an asbestos material in the reaction vessel.
  • a stirring powdering machine that stirs and pulverizes the gas and a gas venting gas that discharges the gas generated in the reaction tank.
  • the asbestos decomposition treatment method according to the third aspect of the invention is that the residue after performing the decomposition treatment method of claim 1 is heated and separated into hydrogen fluoride and water to evaporate, and the evaporated gas is passed through water. Thus, hydrofluoric acid is obtained, and the hydrofluoric acid is recovered.
  • the asbestos decomposition treatment method includes a heating device for heating the reaction tank, and a gas evaporated from the heated reaction tank. And a trap tank that allows the water to pass through underwater.
  • the asbestos decomposition treatment method according to the fifth aspect of the invention is the addition of a fluoride ion adsorbent and a metal ion adsorbent to the remaining reaction mixture after the decomposition treatment method of claim 1 is performed, and then the neutralizer is added to the reaction mixture. Neutralize with stirring, and add a flocculant to obtain agglomerates. It is a sign.
  • An asbestos decomposition treatment apparatus includes a reaction vessel that can be filled with a reaction mixture remaining after the decomposition treatment method of claim 1 is sealed, and a fluoride ion adsorbent and a metal ion adsorbent in the reaction vessel. And a stirrer for stirring the reaction mixture in the reaction tank.
  • asbestos is converted into hexafluoroacid (salt) and magnesium fluoride by hydrogen fluoride. Detoxified.
  • asbestos can be decomposed by hydrogen fluoride in a sealed reaction tank, it is safe, and batch processing can be performed by using the reaction tank, so that mass processing is possible.
  • hydrofluoric acid remaining after asbestos decomposition can be recovered by a simple process of evaporation and trapping. For this reason, reuse is also possible.
  • hydrofluoric acid remaining after asbestos decomposition can be recovered by a simple process of evaporation and trapping. For this reason, reuse is also possible.
  • fluorine ions and metal ions are adsorbed by the adsorbent from the reaction mixture obtained by chemically decomposing asbestos, neutralized by the neutralizer, and aggregated by the flocculant, so that they are stabilized in a harmless state. Insolubilized. This prevents contamination after chemical decomposition.
  • each step of ion adsorption, neutralization, and aggregation of the reaction mixture obtained by chemically decomposing asbestos in a sealed reaction vessel can be performed safely, and batch processing can be performed by using the reaction vessel. Processing is possible.
  • the method for decomposing asbestos in the present invention includes (1) chemical decomposition of asbestos with hydrogen fluoride (decomposition step I) and (2) recovery of hydrofluoric acid (recovery step II). )When (3) Includes three steps of stable insolubilization of fluorine ions and metal ions (insolubilization step III).
  • the invention of claim 1 includes only the decomposition step, the invention of claim 3 is an invention including two steps in which the recovery step II is combined with the decomposition step I, and the invention of claim 5 is the above It is an invention comprising two steps in which the insolubilization step ⁇ is combined with the decomposition step I.
  • the invention of claim 2 is an apparatus for performing the decomposition step I, the invention of claim 4 is an apparatus for performing the recovery step II, and the invention of claim 6 is an apparatus for performing the insolubilization step III It is.
  • a reaction vessel 2 made of plastic or corrosion-resistant metal is used.
  • the reaction layer 2 is composed of a double container, and a gap between the outer container 3 and the inner container 4 is filled with a heat insulating material.
  • the reaction tank 2 is made of plastic or corrosion-resistant metal in order to avoid corrosion caused by hydrofluoric acid used for decomposition. Insulation is used to absorb the heat during the reaction and ensure safety.
  • the storage bag 1 containing asbestos material such as asbestos fiber and asbestos contaminants 1 is cut underwater with any tool such as scissors to release the asbestos material into the water.
  • reaction tank 2 With reaction tank 2 sealed, hydrofluoric acid (48% HF) is added from tank 7 to reaction tank 2, stirred with agitator-pulverizer 6, and then left for several hours to chemically decompose asbestos. In the above process, asbestos is completely decomposed by the following reaction formula.
  • the volume ratio of water and hydrofluoric acid is about 1 ::! ⁇ 4: 1 (HF concentration: 12-24%), but it may be adjusted to a more appropriate concentration depending on the situation.
  • asbestos is completely decomposed by the above reaction formula, and is converted into hexafluorosilicate (salt) and magnesium fluoride.
  • the internal air expands due to heat generated during the chemical reaction, but the expanded air is discharged from the degassing pipe 9 in which the activated charcoal tank 8 is installed.
  • an exhaust gas neutralization tank containing an appropriate concentration of sodium hydroxide solution may be installed.
  • the decomposition state of asbestos can be confirmed with an electron microscope, EDX spectrum, X-ray crystal diffraction, etc. If asbestos is present inside the solid material, create slice slices, then perform a thorough analysis at the nano level using the above analysis method to confirm the degradation inside the solid material. In addition, the presence or absence of asbestos scattering may be determined by sampling the air with a dust collector during processing and then observing with an electron microscope.
  • hydrofluoric acid remains. This foot The hydrofluoric acid is dissolved in water, or it remains in the residue after decomposition with water. This hydrofluoric acid can be recovered.
  • This recovery method includes the following two methods. a) After neutralizing with an alkali such as calcium hydroxide or sodium hydroxide, recover as calcium fluoride, sodium fluoride, etc.
  • FIG. 4 shows an apparatus for b), 51 is a heating device, 52 is a trap tank, 53 is an alkaline solution tank, and 54 is an activated carbon tank.
  • the heating device 51 is a device that heats the reaction tank 2 shown in FIGS. 2 to 3 and heats it. Electric heating, gas, or any other means is used as the heating means.
  • hydrofluoric acid separates into hydrogen fluoride and water and evaporates.
  • the evaporated gas is guided to the trap tank 52 through a pipe. Water W is put in the trap tank 52, and the introduced hydrogen fluoride becomes hydrofluoric acid in the water, so that it can be recovered as hydrofluoric acid itself.
  • the number of the trap tanks 52 may be one, but two or more may be connected in series to recover hydrofluoric acid more effectively.
  • an alkaline solution tank 53 may be connected after the trap tank 52 in the final stage.
  • hydrogen fluoride gas flows excessively, it is neutralized and rendered harmless, which increases safety.
  • the generated compound is sodium fluoride when calcium hydroxide is used, and sodium fluoride when sodium hydroxide is used.
  • hydrofluoric acid since hydrofluoric acid is used as described above, a high concentration of hydrofluoric acid remains after the chemical decomposition reaction of asbestos.
  • This hydrofluoric acid may be insolubilized together with the residue that could not be recovered by the recovery step described above, or the residue that was not recovered step II.
  • asbestos-contaminated waste contains toxic metal ions such as lead, cadmium, and copper. In this case, in particular, fluorine ions and It is necessary to insolubilize toxic metal ions.
  • the insolubilization step III will be described in detail with reference to FIGS.
  • fluorine ion and metal ion adsorbents are added from the tank 11 to the reaction mixture containing the acid in the reaction tank 2.
  • fluoride ion adsorbent polyaluminum aluminum, aluminum sulfate, aluminum, aluminum oxide (alumina), iron powder, iron sand and the like can be used alone or in combination.
  • metal ion adsorbent hydroxyapatite, bone charcoal, activated carbon, ion exchange resin and the like can be used.
  • neutralizing agents such as calcium hydroxide (slaked lime) and sodium hydroxide, and neutralize to pH 7 while stirring.
  • insoluble calcium fluoride is produced by the reaction between hydrogen fluoride and calcium hydroxide. At this time, the viscosity rises, but it is adjusted by adding water according to the situation.
  • An appropriate amount of an aggregating agent is further added to the reaction mixture, and the solids are aggregated to form flocs (aggregates).
  • a dehydrator may be used, but it can be easily performed with a hemp bag or the like in consideration of cost reduction.
  • the waste water w is discharged through a purification container 10 filled with a purification agent.
  • a purification agent natural hydroxyapatite particles, activated carbon, ion exchange resin, and the like can be used.
  • natural hydroxyapatite is used, heavy metal ions and the like can be removed, which is suitable for finally purifying waste water.
  • the agglomerates produced in step (3) include a) building materials, rubber, paper, plastics, etc. b) fluorination power, inorganic, magnesium fluoride, hexafluoro-acid (salt), key acid (salt), etc. Compounds are included, but these are separated and processed in groups a) and b). [0023] After separation, a) group of plastics, rubber, building materials, etc. are finally disposed of as partially recycled power or waste. In addition, harmless inorganic compounds in group b) can be used as a fluorine source to replace hotel stone (main component: calcium fluoride).
  • hydrofluoric acid (5 to 48% hydrogen fluoride) can be used by mixing an acid such as sulfuric acid, hydrochloric acid, nitric acid, or trifluoroacetic acid with hydrofluoric acid. Some can also use these acids for pretreatment.
  • the basic substances in concrete may act on hydrofluoric acid to reduce the asbestos decomposition effect.
  • hydrofluoric acid treatment has the advantage that the asbestos decomposition effect is not diminished.
  • glass processing plant wastewater containing high concentration hydrofluoric acid can be used for asbestosic treatment.
  • the wastewater treatment capacity of expensive glass processing plant can be implemented simultaneously with asbestos treatment, so it is possible to reduce the total treatment cost.
  • Example 1 is an example of the decomposition step I
  • Example 2 is an example of the insolubilization step III.
  • Fig. 7 (A) shows untreated asbestos dispersed in water
  • Fig. 7 (B) shows asbestos after chemical decomposition for 15 minutes.
  • asbestos dissolves after 15 minutes, and asbestos-specific fibrous crystals completely disappear, It can be confirmed that the fine powdered stone powder is dispersed in water.
  • the weight of the collected solid sediment was measured to be about 8.8 g and 2.4 g after 15 minutes and 24 hours, respectively, as shown in Fig. (B) and (C). After the reaction, it was confirmed that the solid content was further dissolved.
  • FIG. 8 shows an electron micrograph and a limited-field diffraction pattern obtained from a range of 250 nm.
  • A In the untreated asbestos shown in the figure, tough fibers peculiar to asbestos were observed, and the fibers had a diameter of about 50 nm and a length of about 10 ⁇ .
  • Several single crystal fibers gathered to form a fiber structure unique to asbestos. Although the asbestos fiber bends strongly and supplely, it was observed from the analysis of the limited field diffraction pattern that the two-fold symmetry axis of the fiber axis and the diffraction pattern coincided well, and it was observed that it was a single crystal.
  • FIG. 9 shows an EDX (Energy Dispersive X-ray Spectroscopy) spectrum of the solid precipitate after chemical treatment for 24 hours.
  • EDX Electronic X-ray Spectroscopy
  • Adsorbents such as polychlorinated aluminum chloride, aluminum sulfate, aluminum, aluminum oxide (alumina), iron powder, iron sand, etc. as adsorbents in a strongly acidic solution mixed with asbestos and hydrofluoric acid. After adding 10% (volume ratio), slaked lime (calcium hydroxide) was added to neutralize to pH 7-8. Thereafter, an arbitrary flocculant was added to the reaction mixture to form flocs (aggregates), which were dehydrated using a dehydrator or a filter, and separated into solids and treated water.
  • slaked lime calcium hydroxide
  • the concentration after zinc ion treatment is sufficiently reduced.
  • the present invention provides (1) a chemical decomposition process I of asbestos chemical decomposition with hydrogen fluoride, or a combination of the decomposition process I and (2) a recovery process II or an insolubilization process III. Since the materials used are only a reaction tank, hydrofluoric acid and water, it can be processed at low cost, and it is safe because it does not generate high temperature or high pressure, and there is no special restriction on the size of the reaction tank. Mass processing is possible. Therefore, according to the present invention, a practical asbestos chemical decomposition detoxification treatment that is inexpensive and highly safe can be achieved.
  • the present invention can be implemented as a movable processing apparatus that can perform on-site processing because the force reaction time suitable for the processing system in the processing plant is short.
  • the final product of the detoxification treatment by is non-hazardous calcium fluoride, magnesium fluoride, silicate, etc., which can be used as a source of fluorine instead of hotel stone.
  • FIG. 1 is an overall process diagram in a decomposition processing method of the present invention.
  • FIG. 2 is an explanatory diagram of steps (1) to (3) of decomposition step I in the present invention.
  • FIG. 3 is an explanatory diagram of steps (4) to (5) of decomposition step I in the present invention.
  • FIG. 4 is an explanatory diagram of an apparatus used for the collection step II in the present invention.
  • FIG. 5 is an explanatory diagram of steps (1) and (2) of insolubilization step III in the present invention.
  • FIG. 6 is an explanatory diagram of step (3) of insolubilization step III in the present invention.
  • FIG. 7 (A) is an external view of untreated asbestos dispersed in water, (B) is Aspes (C) is an external view of asbestos chemically treated for 24 hours.
  • FIG. 8 Electron micrograph and restricted-field diffraction pattern, (A) Figure is untreated asbestos, (B) Figure is asbestos after 15 minutes chemical treatment, (C) Figure is asbestos after 24 hours chemical treatment Indicates.
  • FIG. 9 is an EDX spectrum diagram after 24 hours of chemical treatment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Processing Of Solid Wastes (AREA)
  • Fire-Extinguishing Compositions (AREA)

Abstract

Untreated asbestos substance and water are placed in reaction vessel (2). Subsequently, hydrofluoric acid is injected, and agitated while pulverizing the asbestos substance to thereby attain degradation of the asbestos by hydrofluoric acid. After the execution of degradation processing, the resultant reaction mixture is loaded with a fluoride ion adsorbent and a metal ion adsorbent. Thereafter, a neutralizing agent is added, and under agitation, neutralization is effected. Further, a coagulant is added, thereby obtaining aggregates. As the asbestos is converted by hydrogen fluoride into hexafluorosilicic acid (salt) and magnesium fluoride, the asbestos is completely eliminated and becomes nonasbestos inorganic substances, thereby attaining detoxification to human health. As the ion adsorption, neutralization and coagulation steps of the reaction mixture resulting from the chemical degradation of asbestos can be performed in hermetically sealed reaction vessel (2), safety can be ensured. As batch operation can be made by the use of the reaction vessel (2), large-volume processing can be realized.

Description

明 細 書  Specification
アスベストの分解処理方法および分解処理装置  Asbestos decomposition treatment method and decomposition treatment apparatus
技術分野  Technical field
[0001] 本発明は、アスベストの分解処理方法および分解処理装置に関する。さらに詳しく は、アスベストを安全確実に無害化する実用的な処理技術に関する。  The present invention relates to an asbestos decomposition processing method and a decomposition processing apparatus. More specifically, the present invention relates to a practical treatment technology that makes asbestos harmless safely and reliably.
背景技術  Background art
[0002] アスベストは耐熱性、耐酸性、耐摩耗性に優れていることから多くの建材や工業製 品に使用されてきた。このアスベストは非常に微細で表面がギザギザの針状の結晶 体であるため、肺に吸入されると排出されにくぐ発がんの原因になることが知られて いる。しかるに、このアスベストは天然にできた鉱物結晶であるから、化学的安定性が 非常に高ぐ丈夫で変化しにくいことから、アスベストを安全かつ大量に無害化処理 できる技術は、現在のところ存在していない。  [0002] Asbestos has been used in many building materials and industrial products because of its excellent heat resistance, acid resistance, and wear resistance. Since this asbestos is very fine and has a jagged surface with a jagged surface, it is known to cause carcinogenesis that is difficult to be excreted when inhaled into the lungs. However, since this asbestos is a naturally occurring mineral crystal, its chemical stability is extremely high, strong and difficult to change, so there is currently a technology that can safely and safely detoxify asbestos in large quantities. Not.
[0003] 特許文献 1には、アスベストを含有するアセチレン ガスボンベの再利用技術が記 載されている。  [0003] Patent Document 1 describes a technique for reusing an acetylene gas cylinder containing asbestos.
この技術は、アセチレン一ガスボンベ中のアスベスト含有物を分解剤としてフッ素含 有無機酸を用いて分解し、分解された残分をガスボンベから除去し、ガスボンベを再 利用できるようにするというものである。  In this technology, the asbestos-containing material in an acetylene gas cylinder is decomposed with a fluorine-containing organic acid as a decomposition agent, and the decomposed residue is removed from the gas cylinder so that the gas cylinder can be reused. .
分解には、ガスボンベ中にフッ化水素酸を導入して行レ、、分解された残分の懸濁 液はポンプ等でガスボンベから導出する。また、分解された残分は石灰乳で中和す るというものである。  For decomposition, hydrofluoric acid is introduced into the gas cylinder, and the remaining suspension is decomposed from the gas cylinder with a pump. The decomposed residue is neutralized with lime milk.
しかるに、特許文献 1はガスボンベの処理に焦点をあてた技術であるため、ボンべ を 1本 1本処理することは可能であっても、建材や工業製品等から取り外してきた大 量のアスベストを能率よく処理することはできない。  However, since Patent Document 1 is a technology that focuses on the treatment of gas cylinders, it is possible to treat each cylinder one by one, but a large amount of asbestos that has been removed from building materials and industrial products etc. It cannot be processed efficiently.
[0004] そこで、現状でのアスベスト廃棄物の処理方法は、梱包したり固形化したものを廃 棄するか、あるいは溶融化したものを廃棄するしかなぐいずれも産業廃棄物最終処 分場に運搬することになつている(非特許文献 1)。しかし、これではアスベストの害を 完全に無くすことはできない。 また、現段階では、アスベストを溶融固化する方法が検討されているが、アスベスト の融点は、 1540°Cと非常に高ぐ完全溶融するためには膨大なエネルギーを必要と するという問題がある。 [0004] Therefore, asbestos waste treatment methods at present are either final disposal sites for industrial waste, either packing or solidification disposal or melting disposal. It is supposed to be transported (Non-Patent Document 1). However, this does not completely eliminate the harm of asbestos. At the present stage, methods for melting and solidifying asbestos are being studied, but the melting point of asbestos is very high at 1540 ° C, and there is a problem that enormous energy is required for complete melting.
[0005] 特許文献 1 :特開平 6— 15251号 Patent Document 1: JP-A-6-15251
非特許文献 1 :「アスベスト含有製品の廃棄処理について」日立ハイテクノロジーズ 品質保証部 2005年 9月 12日発行  Non-Patent Document 1: "Disposal of Asbestos-Containing Products" Hitachi High-Technologies, Quality Assurance Department, issued September 12, 2005
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明は、アスベストを無害化するためのエネルギーを全く必要とせず、安全性が 高ぐアスベストの完全消滅が可能で、大量処理ができる分解処理方法および分解 処理装置を提供することを目的とする。 [0006] The present invention provides a decomposition processing method and a decomposition processing apparatus that do not require any energy for detoxifying asbestos, can completely eliminate asbestos with high safety, and can perform mass processing. Objective.
課題を解決するための手段  Means for solving the problem
[0007] 第 1発明のアスベストの分解処理方法は、反応槽に未処理のアスベスト物質と水を 入れ、ついでフッ化水素酸を注入し、前記アスベスト物質を粉砕しつつ攪拌してフッ 化水素酸によりアスベストを分解することを特徴とする。 [0007] The method for decomposing asbestos according to the first aspect of the present invention is to put untreated asbestos substance and water into a reaction tank, then inject hydrofluoric acid, and stir while stirring the asbestos substance to hydrofluoric acid. It is characterized by decomposing asbestos.
第 2発明のアスベストの分解処理装置は、水と未処理のアスベスト物質を入れて密 閉できる反応槽と、フッ化水素酸を該反応槽に注入するタンクと、前記反応槽内のァ スベスト物質を攪拌粉砕する攪拌粉碎機と、前記反応槽内で生じたガスを排出する ガス抜き菅とカゝらなることを特徴とする。  The asbestos decomposition treatment apparatus according to the second aspect of the present invention includes a reaction vessel capable of containing water and untreated asbestos material and sealed, a tank for injecting hydrofluoric acid into the reaction vessel, and an asbestos material in the reaction vessel. A stirring powdering machine that stirs and pulverizes the gas and a gas venting gas that discharges the gas generated in the reaction tank.
第 3発明のアスベストの分解処理方法は、請求項 1の分解処理方法を実行したあと の残存物を、加熱してフッ化水素と水に分離して蒸発させ、蒸発した気体を水中に通 すことによりフッ化水素酸とし、そのフッ化水素酸を回収することを特徴とする。  The asbestos decomposition treatment method according to the third aspect of the invention is that the residue after performing the decomposition treatment method of claim 1 is heated and separated into hydrogen fluoride and water to evaporate, and the evaporated gas is passed through water. Thus, hydrofluoric acid is obtained, and the hydrofluoric acid is recovered.
第 4発明のアスベストの分解処理方法は、請求項 1の分解処理方法を実行したあと の残存物が残ってレ、る反応槽を加熱する加熱装置と、加熱された反応槽から蒸発し た気体を水中に通過させるトラップ槽とを備えてレ、ることを特徴とする。  The asbestos decomposition treatment method according to the fourth aspect of the present invention includes a heating device for heating the reaction tank, and a gas evaporated from the heated reaction tank. And a trap tank that allows the water to pass through underwater.
第 5発明のアスベストの分解処理方法は、請求項 1の分解処理方法を実行したあと 残存した反応混合物に、フッ化イオン吸着剤と金属イオン吸着剤を添加し、ついで、 中和剤をカ卩えて攪拌しながら中和し、さらに、凝集剤をカ卩えて凝集物を得ることを特 徴とする。 The asbestos decomposition treatment method according to the fifth aspect of the invention is the addition of a fluoride ion adsorbent and a metal ion adsorbent to the remaining reaction mixture after the decomposition treatment method of claim 1 is performed, and then the neutralizer is added to the reaction mixture. Neutralize with stirring, and add a flocculant to obtain agglomerates. It is a sign.
第 6発明のアスベストの分解処理装置は、請求項 1の分解処理方法を実行したあと 残存した反応混合物を入れて密閉できる反応槽と、該反応槽に、フッ化イオン吸着 剤と金属イオン吸着剤を注入するタンクと、前記反応槽内の反応混合物を攪拌する 攪拌機とからなることを特徴とする。  An asbestos decomposition treatment apparatus according to a sixth aspect of the invention includes a reaction vessel that can be filled with a reaction mixture remaining after the decomposition treatment method of claim 1 is sealed, and a fluoride ion adsorbent and a metal ion adsorbent in the reaction vessel. And a stirrer for stirring the reaction mixture in the reaction tank.
発明の効果  The invention's effect
[0008] 第 1発明によれば、アスベストはフッ化水素によってへキサフルォロケィ酸 (塩)とフ ッ化マグネシウムに変化するので、アスベストを完全消滅させてアスベストではない無 機物となり、人体に対して無害化される。  [0008] According to the first invention, asbestos is converted into hexafluoroacid (salt) and magnesium fluoride by hydrogen fluoride. Detoxified.
第 2発明によれば、密閉された反応槽内でフッ化水素によるアスベストの分解を行 えるので安全であり、反応槽を用いることによりバッチ処理できるので大量処理が可 能となる。  According to the second invention, asbestos can be decomposed by hydrogen fluoride in a sealed reaction tank, it is safe, and batch processing can be performed by using the reaction tank, so that mass processing is possible.
第 3発明によれば、アスベスト分解後に残ったフッ化水素酸を蒸発とトラップという簡 易な工程で、回収することができる。このため、再利用も可能となる。  According to the third invention, hydrofluoric acid remaining after asbestos decomposition can be recovered by a simple process of evaporation and trapping. For this reason, reuse is also possible.
第 4発明によれば、アスベスト分解後に残ったフッ化水素酸を蒸発とトラップという簡 易な工程で、回収することができる。このため、再利用も可能となる。  According to the fourth invention, hydrofluoric acid remaining after asbestos decomposition can be recovered by a simple process of evaporation and trapping. For this reason, reuse is also possible.
第 5発明によれば、アスベストを化学分解した反応混合物から吸着剤によってフッ 素イオンと金属イオンが吸着され、中和剤によって中和され、凝集剤によって凝集さ れるので、無害な状態で安定化し不溶化される。このため化学分解後の汚染が防止 される。  According to the fifth invention, fluorine ions and metal ions are adsorbed by the adsorbent from the reaction mixture obtained by chemically decomposing asbestos, neutralized by the neutralizer, and aggregated by the flocculant, so that they are stabilized in a harmless state. Insolubilized. This prevents contamination after chemical decomposition.
第 6発明によれば、密閉された反応槽内でアスベストを化学分解した反応混合物の イオン吸着、中和、凝集の各工程を行えるので安全であり、反応槽を用いることにより バッチ処理できるので大量処理が可能となる。  According to the sixth aspect of the invention, it is safe because each step of ion adsorption, neutralization, and aggregation of the reaction mixture obtained by chemically decomposing asbestos in a sealed reaction vessel can be performed safely, and batch processing can be performed by using the reaction vessel. Processing is possible.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0009] つぎに、本発明の実施形態を図面に基づき説明する。 Next, embodiments of the present invention will be described with reference to the drawings.
《アスベストの分解処理方法'装置》  《Asbestos decomposition method 'equipment》
本発明におけるアスベストの分解処理方法は、図 1に示すように、(1)フッ化水素に よるアスベストの化学的分解(分解工程 I)と、 (2)フッ化水素酸の回収(回収工程 II)と 、 (3)フッ素イオンおよび金属イオンの安定不溶化(不溶化工程 III)の 3つの工程を 含んでいる。なお、請求項 1の発明は前記分解工程のみを含み、請求項 3の発明は 前記分解工程 Iに前記回収工程 IIを組合わせた 2つの工程を含む発明であり、請求 項 5の発明は前記分解工程 Iに前記不溶化工程 ΠΙを組合わせた 2つの工程を含む発 明である。また、請求項 2の発明は前記分解工程 Iを実施する装置であり、請求項 4の 発明は前記回収工程 IIを実施する装置であり、請求項 6の発明は前記不溶化工程 III を実施する装置である。 As shown in Fig. 1, the method for decomposing asbestos in the present invention includes (1) chemical decomposition of asbestos with hydrogen fluoride (decomposition step I) and (2) recovery of hydrofluoric acid (recovery step II). )When (3) Includes three steps of stable insolubilization of fluorine ions and metal ions (insolubilization step III). The invention of claim 1 includes only the decomposition step, the invention of claim 3 is an invention including two steps in which the recovery step II is combined with the decomposition step I, and the invention of claim 5 is the above It is an invention comprising two steps in which the insolubilization step ΠΙ is combined with the decomposition step I. The invention of claim 2 is an apparatus for performing the decomposition step I, the invention of claim 4 is an apparatus for performing the recovery step II, and the invention of claim 6 is an apparatus for performing the insolubilization step III It is.
[0010] 《分解工程 I》 [0010] << Decomposition process I >>
まず、アスベストの分解工程について、図 2および図 3に基づき詳述する。なお、以 下の番号(1)〜(5)は図 2および図 3の符号(1)〜(5)に対応している。  First, the asbestos decomposition process will be described in detail with reference to FIGS. The following numbers (1) to (5) correspond to the symbols (1) to (5) in FIGS.
(1)収納袋に封入  (1) Enclosed in a storage bag
「アスベスト物質」すなわち、建築物、各種建材、配管シール材、摩耗材等から回収 されたアスベスト繊維、また紙やゴム、接着剤、糊などのアスベスト汚染物、さらにァス ベスト撤去作業時に用いられたビニールシート等は、アスベスト撤去作業時に二重の ポリエチレン製の収納袋 1に封入される。  “Asbestos substances”, that is, asbestos fibers collected from buildings, various building materials, pipe seal materials, wear materials, etc., asbestos contaminants such as paper, rubber, adhesives, glue, and asbestos removal work. Plastic sheets are enclosed in double polyethylene storage bags 1 when asbestos is removed.
[0011] 以下の工程からは、プラスチック製あるいは耐蝕金属製の反応槽 2を用いる。この 反応層 2は、二重の容器からなり、外側容器 3と内側容器 4の間の隙間には断熱材を 詰めている。反応槽 2をプラスチック製あるいは耐蝕金属製で構成するのは分解に用 レ、るフッ化水素酸による腐蝕を避けるためである。断熱材は、反応時の熱を吸収して 安全を確保するために使用される。  [0011] From the following steps, a reaction vessel 2 made of plastic or corrosion-resistant metal is used. The reaction layer 2 is composed of a double container, and a gap between the outer container 3 and the inner container 4 is filled with a heat insulating material. The reaction tank 2 is made of plastic or corrosion-resistant metal in order to avoid corrosion caused by hydrofluoric acid used for decomposition. Insulation is used to absorb the heat during the reaction and ensure safety.
[0012] (2)水中への浸漬  [0012] (2) Immersion in water
上記のアスベスト繊維やアスベスト汚染物を入れた収納袋 1を、反応槽 2内に置き、 収納袋 1が浸る程度に水 Wを加える。この水 Wは、その後の処理時におけるアスペス トの飛散を防止すると共に、過激な反応を抑制することを目的として加えられる。  Place storage bag 1 containing the asbestos fibers and asbestos contaminants in reaction tank 2 and add water W to the extent that storage bag 1 is immersed. This water W is added for the purpose of preventing the scattering of the aspect during the subsequent treatment and suppressing the extreme reaction.
[0013] (3)水中への放出  [0013] (3) Release into water
アスベスト繊維やアスベスト汚染物等のアスベスト物質を入れた収納袋 1は、水中で ハサミ等の任意の工具で切断され、アスベスト物質を水中に放出する。  The storage bag 1 containing asbestos material such as asbestos fiber and asbestos contaminants 1 is cut underwater with any tool such as scissors to release the asbestos material into the water.
(4)攪拌粉砕 ついで、プラスチック製あるいは耐蝕金属製の蓋 5で反応槽 2を密閉した後、攪拌 粉砕機 6でアスベスト物質を細断し粉碎する。 (4) Agitation and grinding Next, after the reaction vessel 2 is sealed with a plastic or corrosion-resistant metal lid 5, the asbestos substance is chopped and powdered with a stirring pulverizer 6.
[0014] (5)化学分解 [0014] (5) Chemical decomposition
反応槽 2を密閉した状態で、タンク 7からフッ化水素酸 (48%HF)を反応槽 2内に加 え、攪拌粉砕機 6で攪拌した後、数時間放置することによりアスベストを化学分解する 上記の工程において、アスベストは、下記の反応式により完全に分解される。  With reaction tank 2 sealed, hydrofluoric acid (48% HF) is added from tank 7 to reaction tank 2, stirred with agitator-pulverizer 6, and then left for several hours to chemically decompose asbestos. In the above process, asbestos is completely decomposed by the following reaction formula.
3MgO -2SiO · 2Η Ο (アスベスト) + 18HF (フッ化水素)→2H SiF (へキサフルォロケィ 酸) +3MgF (フッ化マグネシウム) +9H 0  3MgO -2SiO · 2Η ア ス (asbestos) + 18HF (hydrogen fluoride) → 2H SiF (hexafluorosilicate) + 3MgF (magnesium fluoride) + 9H 0
なお、水とフッ化水素酸の容量比は、 1::!〜 4 : 1 (HF濃度として 12— 24%)程度で あるが、状況に応じてさらに適切な濃度に調節すればよい。  The volume ratio of water and hydrofluoric acid is about 1 ::! ~ 4: 1 (HF concentration: 12-24%), but it may be adjusted to a more appropriate concentration depending on the situation.
[0015] 前記(5)の化学分解工程において、アスベストは、上記の反応式により完全に分解 され、へキサフルォロケィ酸 (塩)とフッ化マグネシウムに変化する。 [0015] In the chemical decomposition step (5), asbestos is completely decomposed by the above reaction formula, and is converted into hexafluorosilicate (salt) and magnesium fluoride.
このとき化学反応時の発熱により内部の空気が膨張するが、膨張した空気は、活性 炭槽 8を設置したガス抜き管 9から排出される。多量の酸性ガスが排出される場合は 、適当な濃度の水酸化ナトリウム溶液を入れた排ガス中和槽を設置すればよい。  At this time, the internal air expands due to heat generated during the chemical reaction, but the expanded air is discharged from the degassing pipe 9 in which the activated charcoal tank 8 is installed. When a large amount of acid gas is discharged, an exhaust gas neutralization tank containing an appropriate concentration of sodium hydroxide solution may be installed.
[0016] (6)分解状態の確認 [6] (6) Confirmation of disassembly
アスベストの分解状態は、電子顕微鏡、 EDXスペクトル、 X線結晶回折等で確認す ること力 Sできる。固形物の内部にアスベストが存在している場合は、スライス切片を作 成した後、上記の分析方法によりナノレベルでの綿密な分析を行い、固形物内部で の分解を確認する。また、アスベストの飛散の有無については、処理の間、集塵機で の大気の採取を行い、その後の電子顕微鏡での観察により判定すればよい。  The decomposition state of asbestos can be confirmed with an electron microscope, EDX spectrum, X-ray crystal diffraction, etc. If asbestos is present inside the solid material, create slice slices, then perform a thorough analysis at the nano level using the above analysis method to confirm the degradation inside the solid material. In addition, the presence or absence of asbestos scattering may be determined by sampling the air with a dust collector during processing and then observing with an electron microscope.
[0017] 以上の化学的処理により、単結晶アスベストは多結晶化することになる。また、その 結晶構造も変化し、外観上の形状が針状の微細繊維ではなくなる。換言すれば、ァ スベストではない無機物に変化する。このため、人体中に混入しても体内に滞留する ことなぐ体外に排出されやすいので、人体に対し完全に無害化されることになる。 [0017] Through the above chemical treatment, single crystal asbestos is polycrystallized. In addition, the crystal structure changes, and the appearance is not a needle-shaped fine fiber. In other words, it changes to an inorganic substance that is not the best. For this reason, even if it is mixed in the human body, it does not stay in the body and is easily discharged outside the body, so that it is completely harmless to the human body.
[0018] 《回収工程 II》 [0018] << Recovery Process II >>
前記分解工程 Iによりアスベストを分解した後にはフッ化水素酸が残る。このフツイ匕 水素酸は水に溶けていたり、分解後の残存物中にも水と一緒に残っている力 このフ ッ化水素酸は回収することができる。この回収方法には以下の二つの方法がある。 a)水酸化カルシウム、水酸化ナトリウム等のアルカリにより中和した後、フッ化カルシ ゥム、フッ化ナトリウム等として回収する。 After the asbestos is decomposed by the decomposition step I, hydrofluoric acid remains. This foot The hydrofluoric acid is dissolved in water, or it remains in the residue after decomposition with water. This hydrofluoric acid can be recovered. This recovery method includes the following two methods. a) After neutralizing with an alkali such as calcium hydroxide or sodium hydroxide, recover as calcium fluoride, sodium fluoride, etc.
b)蒸発させた後、水中でトラップさせフッ化水素酸そのものを回収する。  b) After evaporation, trap in water to recover hydrofluoric acid itself.
図 4は前記 b)のための装置を示しており、 51は加熱装置、 52はトラップ槽、 53はァ ルカリ溶液槽、 54は活性炭槽である。加熱装置 51は、図 2〜図 3で示された反応槽 2 を入れ、加熱する装置であり、加熱する手段には電熱、ガスその他の任意の手段が 用いられる。加熱することにより、フッ化水素酸はフッ化水素と水に分離して蒸発する この蒸発した気体はパイプでトラップ槽 52に導かれる。トラップ槽 52内には水 Wが 入れてあり、導入されたフッ化水素は水中でフッ化水素酸となるので、フッ化水素酸 そのものとして回収することができる。  FIG. 4 shows an apparatus for b), 51 is a heating device, 52 is a trap tank, 53 is an alkaline solution tank, and 54 is an activated carbon tank. The heating device 51 is a device that heats the reaction tank 2 shown in FIGS. 2 to 3 and heats it. Electric heating, gas, or any other means is used as the heating means. By heating, hydrofluoric acid separates into hydrogen fluoride and water and evaporates. The evaporated gas is guided to the trap tank 52 through a pipe. Water W is put in the trap tank 52, and the introduced hydrogen fluoride becomes hydrofluoric acid in the water, so that it can be recovered as hydrofluoric acid itself.
[0019] 前記トラップ槽 52は 1基でもよいが 2基以上であってもよぐ複数個を直列に接続し ておくと、より効果的にフッ化水素酸を回収することができる。 [0019] The number of the trap tanks 52 may be one, but two or more may be connected in series to recover hydrofluoric acid more effectively.
また、最終段のトラップ槽 52の後にアルカリ溶液槽 53を接続しておいてもよい。こ の場合、フッ化水素ガスが余分に流れてきた場合、中和し無害化するので、安全性 が高くなる。ここで、生成される化合物は、水酸化カルシウムを用いた場合、フッ化力 ノレシゥム、水酸化ナトリウムの場合、フッ化ナトリウムである。  Further, an alkaline solution tank 53 may be connected after the trap tank 52 in the final stage. In this case, if hydrogen fluoride gas flows excessively, it is neutralized and rendered harmless, which increases safety. Here, the generated compound is sodium fluoride when calcium hydroxide is used, and sodium fluoride when sodium hydroxide is used.
そして、活性炭槽 54を、排ガスを排気する前に設置しておくと、排気ガスの安全性 を確保すること力 Sできる。  If the activated carbon tank 54 is installed before exhaust gas is exhausted, the safety of exhaust gas can be ensured.
[0020] 《不溶化工程 III》 [0020] << Insolubilization Step III >>
本発明における前記分解工程 Iでは、上記のようにフッ化水素酸が使用されること から、アスベストの化学的分解反応後に高濃度のフッ化水素酸が残存する。このフッ 化水素酸は既述の回収工程 Πで回収できるのである力 回収しきれなかった残存物 、あるいは回収工程 IIを実施しなかった場合の残存物と共に不溶化してもよい。また、 アスベスト汚染廃棄物中には、鉛、カドミウム、銅等の有害金属イオンが混入している こと力 sある。この場合はとくに、アスベスト化学分解後の反応液中のフッ素イオンおよ び有害金属イオンの不溶化処理を行う必要がある。以下、この不溶化工程 IIIを図 5 〜図 6に基づき詳述する。 In the decomposition step I in the present invention, since hydrofluoric acid is used as described above, a high concentration of hydrofluoric acid remains after the chemical decomposition reaction of asbestos. This hydrofluoric acid may be insolubilized together with the residue that could not be recovered by the recovery step described above, or the residue that was not recovered step II. Also, asbestos-contaminated waste contains toxic metal ions such as lead, cadmium, and copper. In this case, in particular, fluorine ions and It is necessary to insolubilize toxic metal ions. Hereinafter, the insolubilization step III will be described in detail with reference to FIGS.
なお、以下の番号(1)〜(4)は、図 5および図 6の符号(1)〜(4)に対応している。  The following numbers (1) to (4) correspond to the symbols (1) to (4) in FIG. 5 and FIG.
[0021] (1)吸着剤添加 '中和 [0021] (1) Addition of adsorbent 'Neutralization
図 5に示すように、反応槽 2内の酸を含む反応混合物にタンク 11からフッ素イオン および金属イオンの各吸着剤 5— 10% (全体の反応混合物に対する容量%)を加え る。フッ素イオン吸着剤としては、ポリ塩ィ匕アルミニウム、硫酸アルミニウム、アルミユウ ム、酸化アルミニウム(アルミナ)、鉄粉、砂鉄などを単独で、または混合して用いるこ ともできる。金属イオン吸着剤としては、ヒドロキシアパタイト、骨炭、活性炭、イオン交 換樹脂などを用いることができる。ついで、水酸化カルシウム(消石灰)や水酸化ナト リウムなどの中和剤を加え、攪拌しながら pH7になるまで中和する。  As shown in FIG. 5, 5-10% of fluorine ion and metal ion adsorbents (volume% with respect to the total reaction mixture) are added from the tank 11 to the reaction mixture containing the acid in the reaction tank 2. As the fluoride ion adsorbent, polyaluminum aluminum, aluminum sulfate, aluminum, aluminum oxide (alumina), iron powder, iron sand and the like can be used alone or in combination. As the metal ion adsorbent, hydroxyapatite, bone charcoal, activated carbon, ion exchange resin and the like can be used. Next, add neutralizing agents such as calcium hydroxide (slaked lime) and sodium hydroxide, and neutralize to pH 7 while stirring.
中和反応の進行により、フッ化水素と水酸化カルシウムの反応によって不溶性のフ ッ化カルシウムが生成する。このとき、粘度が上昇するが、状況に応じて水を加えて 調節する。  As the neutralization reaction proceeds, insoluble calcium fluoride is produced by the reaction between hydrogen fluoride and calcium hydroxide. At this time, the viscosity rises, but it is adjusted by adding water according to the situation.
(2)凝集  (2) Aggregation
上記の反応混合物に、適量の凝集剤を更に加え固形物を凝集しフロック (凝集塊) を形成させる。  An appropriate amount of an aggregating agent is further added to the reaction mixture, and the solids are aggregated to form flocs (aggregates).
(3)ついで、図 6に示すように、脱水処理により凝集物 Fと排水 wに分離する。脱水は 、脱水装置を用いても良いが、低コスト化を考慮して麻袋等で簡易に行うことも可能 である。  (3) Next, as shown in Fig. 6, it is separated into agglomerates F and waste water w by dehydration. For dehydration, a dehydrator may be used, but it can be easily performed with a hemp bag or the like in consideration of cost reduction.
[0022] (4)排水の浄化と;凝集物の分別  [0022] (4) Purification of waste water and separation of aggregates
最終的に排水 wは、浄化剤を詰めた浄化容器 10を通して排出される。浄化剤とし ては、天然型ヒドロキシアパタイト粒子や活性炭、イオン交換樹脂等が使用できる。天 然型ヒドロキシアパタイトを使用した場合は、重金属イオン等を除去できるので、排水 を最終的に浄化するために好適である。  Finally, the waste water w is discharged through a purification container 10 filled with a purification agent. As the purifier, natural hydroxyapatite particles, activated carbon, ion exchange resin, and the like can be used. When natural hydroxyapatite is used, heavy metal ions and the like can be removed, which is suitable for finally purifying waste water.
前記(3)工程で出来た凝集物には、 a)建材、ゴム、紙、プラスチック等と b)フッ化力 ノレシゥム、フッ化マグネシウム、へキサフルォロケィ酸 (塩)、ケィ酸 (塩)等の無機化 合物が含まれるが、これらは、 a)群と b)群に分けて分別収集処理される。 [0023] 分別した後、 a)群のプラスチック、ゴム、建材等は、部分的にリサイクルされる力、あ るいは廃棄物として最終処分される。また、 b)群の無害な無機化合物は、ホテル石( 主成分:フッ化カルシウム)に代わるフッ素源としてリュース可能である。 The agglomerates produced in step (3) include a) building materials, rubber, paper, plastics, etc. b) fluorination power, inorganic, magnesium fluoride, hexafluoro-acid (salt), key acid (salt), etc. Compounds are included, but these are separated and processed in groups a) and b). [0023] After separation, a) group of plastics, rubber, building materials, etc. are finally disposed of as partially recycled power or waste. In addition, harmless inorganic compounds in group b) can be used as a fluorine source to replace hotel stone (main component: calcium fluoride).
[0024] 《他の実施形態》 [0024] << Other Embodiments >>
前記実施形態では、フッ化水素酸(5〜48%フッ化水素)を用いた力 フッ化水素 酸に硫酸、塩酸、硝酸、トリフルォロ酢酸などの酸を混合して用いることができる。ある レ、は、これらの酸を前処理に用いることもできる。  In the above embodiment, hydrofluoric acid (5 to 48% hydrogen fluoride) can be used by mixing an acid such as sulfuric acid, hydrochloric acid, nitric acid, or trifluoroacetic acid with hydrofluoric acid. Some can also use these acids for pretreatment.
例えば、コンクリートなどの塩基性物質を含むアスベスト廃棄物の場合は、コンクリ ート中の塩基性物質がフッ化水素酸に作用してアスベスト分解効果を減殺させるお それがあるが、フッ化水素酸をカ卩える前に、前処理として、硫酸、塩酸などを用いて、 塩基性物質を中和した後、フッ化水素酸処理を行うと、アスベスト分解効果を減殺さ せないという利点がある。  For example, in the case of asbestos waste containing basic substances such as concrete, the basic substances in concrete may act on hydrofluoric acid to reduce the asbestos decomposition effect. If the basic substance is neutralized with sulfuric acid, hydrochloric acid, etc. as a pre-treatment before treatment, hydrofluoric acid treatment has the advantage that the asbestos decomposition effect is not diminished.
[0025] アスベストィヒ学処理にはフッ化水素酸の他に、高濃度のフッ化水素酸を含むガラス 加工工場廃水などを用いることができる。この場合、高価なガラス加工工場廃水処理 力 アスベスト処理と同時に実施できることから、総処理費用を低下させることが可能 である。 [0025] In addition to hydrofluoric acid, glass processing plant wastewater containing high concentration hydrofluoric acid can be used for asbestosic treatment. In this case, the wastewater treatment capacity of expensive glass processing plant can be implemented simultaneously with asbestos treatment, so it is possible to reduce the total treatment cost.
実施例  Example
[0026] つぎに、本発明の実施例を説明する。  Next, examples of the present invention will be described.
実施例 1は分解工程 Iの実施例であり、実施例 2は不溶化工程 IIIの実施例である。  Example 1 is an example of the decomposition step I, and Example 2 is an example of the insolubilization step III.
[0027] (実施例 1) [0027] (Example 1)
プラスチック製の反応槽の中に置レ、たアスベスト 10gに水 75mlを加え、水中に浸漬 させることにより飛散性を無くした後、フッ化水素酸 (48%フッ化水素) 25mlをカ卩えた 。 15分後および 24時間後、ろ紙により沈殿物を採取し、水で洗浄し乾燥させた後、 電子顕微鏡を用いて、処理済アスベストと未処理アスベストの結晶状態を比較観察し た。  After placing in a plastic reaction tank and adding 75 ml of water to 10 g of asbestos and immersing it in water, the dispersion was lost, and then 25 ml of hydrofluoric acid (48% hydrogen fluoride) was prepared. After 15 minutes and 24 hours, the precipitate was collected with a filter paper, washed with water and dried, and then the crystalline state of treated and untreated asbestos was compared and observed using an electron microscope.
図 7の(A)は水に分散させた未処理のアスベストを示し、同図(B)は 15分間化学分 解処理した後のアスベストを示している。 (A)図と(B)図を比較すると明らかなように、 アスベストは、 15分後には溶解し、アスベスト特有の繊維状結晶は、完全に消滅し、 微粉末の石粉が水に分散した状態となることが確認できる。反応後、採取した固形沈 殿物の重量を測定した結果は 15分後および 24時間後、それぞれ約 8.8gおよび 2.4g であり、同図の(B)図と(C)図に示すように、反応後、固形分がさらに溶解することが 確認された。 Fig. 7 (A) shows untreated asbestos dispersed in water, and Fig. 7 (B) shows asbestos after chemical decomposition for 15 minutes. As can be seen by comparing (A) and (B), asbestos dissolves after 15 minutes, and asbestos-specific fibrous crystals completely disappear, It can be confirmed that the fine powdered stone powder is dispersed in water. After the reaction, the weight of the collected solid sediment was measured to be about 8.8 g and 2.4 g after 15 minutes and 24 hours, respectively, as shown in Fig. (B) and (C). After the reaction, it was confirmed that the solid content was further dissolved.
[0028] 図 8に、電子顕微鏡写真と 250nmの範囲から得られた制限視野回折図形を示す。 ( A)図に示す未処理アスベストでは、石綿特有の強靭な繊維が観察され、その繊維 は、約 50nmの直径で、約 10 μ πιの長さであった。その単結晶繊維が、数本集合して 石綿特有の繊維組織を形成していた。強くしなやかに曲がるアスベスト繊維であるが 、制限視野回折図形の分析から繊維軸方向と回折図形の 2回対称軸がよく一致し、 単結晶であることが観察された。  FIG. 8 shows an electron micrograph and a limited-field diffraction pattern obtained from a range of 250 nm. (A) In the untreated asbestos shown in the figure, tough fibers peculiar to asbestos were observed, and the fibers had a diameter of about 50 nm and a length of about 10 μπι. Several single crystal fibers gathered to form a fiber structure unique to asbestos. Although the asbestos fiber bends strongly and supplely, it was observed from the analysis of the limited field diffraction pattern that the two-fold symmetry axis of the fiber axis and the diffraction pattern coincided well, and it was observed that it was a single crystal.
[0029] これに対し、(Β)図に示すように、 15分間の化学的処理後は、アスベスト特有の強 靭でしなやかな長繊維組織は、完全に消失し、脆弱化したことにより細切れの状態に なっていた。さらに直径約 lOOnmの破片が上の方に観察できる力 その長さは、 500η m以下であった。制限視野回折図形は、未処理アスベストとは全く異なっており、同 心円状のリングパターンとなった。また、制限視野回折図形を分析した結果、ルチル 構造の MgF相が確認され、アスベスト単結晶は、全く認められなかった。  [0029] On the other hand, as shown in Fig. (Iii), after 15 minutes of chemical treatment, the strong and supple long fiber structure unique to asbestos disappeared completely and became fragile due to weakening. It was in a state. Furthermore, the force with which a fragment with a diameter of about lOOnm can be observed upward is 500 ηm or less. The limited field diffraction pattern was completely different from the untreated asbestos, resulting in a concentric ring pattern. As a result of analyzing the limited-field diffraction pattern, a rutile-structured MgF phase was confirmed, and no asbestos single crystal was found at all.
[0030] そして、(C)図に示すように、 24時間化学処理後、結晶は、さらに非常に細力べなつ た。 15分間の化学処理後と同様、アスベスト特有の繊維性形態は、全く認められな かった。また、 24時間化学処理後のサンプルの回折図形力 15分間の化学処理後 のサンプルと全く同じであることから、さらなる結晶構造の変化は無いことが確認され た。従って、アスベストの化学的変化(上記の反応式(1) )は、 15分後において、ほぼ 完全に完了していることが確認された。  [0030] Then, as shown in Fig. (C), after 24 hours of chemical treatment, the crystals were much more vigorous. As after 15 minutes of chemical treatment, no asbestos-specific fibrous morphology was observed. In addition, the diffraction pattern force of the sample after 24 hours of chemical treatment is exactly the same as that of the sample after 15 minutes of chemical treatment, so it was confirmed that there was no further change in crystal structure. Therefore, it was confirmed that the chemical change of asbestos (the above reaction formula (1)) was almost completely completed after 15 minutes.
[0031] 図 9に、 24時間化学処理した後の固形沈殿物の EDX(Energy Dispersive X-ray Sp ectroscopy;エネルギー分散型 X線分光装置)スペクトルを示す。同図に示すように、 F および Mgの強いピークが観察された力 アスベストの主構成元素である Siのピークは 、ほぼ消失していた。この結果は、化学処理によってアスベスト(3MgO '2SiO ·2Η〇) 中の Siが溶出し、残った Mgと Fによってフッ化マグネシウムが生成したことを示すもの である。このことは、図 10に示す 15分間の化学処理後の試料の X線回折図形にお レ、ても、ルチル構造の MgF相が確認されたことによっても説明できる。すなわち、ァス ベストは、 15分間の化学処理により、組成中の Siが溶出し、粉末状のフッ化マグネシ ゥムに変化したことが明らかになった。すなわち、アスベスト結晶分子の消滅とフツイ匕 マグネシウムの生成が確認された。 FIG. 9 shows an EDX (Energy Dispersive X-ray Spectroscopy) spectrum of the solid precipitate after chemical treatment for 24 hours. As shown in the figure, strong peaks of F and Mg were observed. The peak of Si, which is the main constituent element of asbestos, almost disappeared. This result shows that Si in asbestos (3MgO '2SiO · 2Η〇) was eluted by chemical treatment, and magnesium fluoride was formed by the remaining Mg and F. This is shown in the X-ray diffraction pattern of the sample after 15 minutes of chemical treatment shown in Fig. 10. This can also be explained by the fact that a rutile MgF phase was confirmed. In other words, it was revealed that asbestos was transformed into powdered magnesium fluoride by elution of Si in the composition after 15 minutes of chemical treatment. That is, the disappearance of asbestos crystal molecules and the formation of magnesium magnesium were confirmed.
[0032] 以上のように、化学的処理によりアスベストを完全に消滅できることが証明された。  [0032] As described above, it has been proved that asbestos can be completely eliminated by chemical treatment.
なお、分解工程の結果、生ずる重金属イオンの処理であるが、これは国際特許出願 PCT/JP2004/004753[H16.3.31] (発明の名称:有害物質を含有する強酸性廃水の処 理方法、出願人:ォリンパスニユーセンチユリ一 (株)、香川大学、発明者:掛川寿夫、 末永慶寛、柿沼修造)に記載されている方法によりアスベスト処理廃水から除去する こと力 Sできる。  This is a treatment of heavy metal ions generated as a result of the decomposition process. This is an international patent application PCT / JP2004 / 004753 [H16.3.31] (Title of Invention: Treatment Method for Strong Acid Waste Water Containing Hazardous Substances, Application People: Olympus New Century Yuli Co., Ltd., Kagawa University, Inventors: Kakegawa Toshio, Suenaga Yoshihiro, Suganuma Shuzo) can be removed from asbestos-treated wastewater.
[0033] (実施例 2)  [0033] (Example 2)
アスベストとフッ化水素酸を混合させ反応させた強酸性溶液に吸着剤であるポリ塩 化アルミニウム、硫酸アルミニウム、アルミニウム、酸化アルミニウム(アルミナ)、鉄粉 、砂鉄などを単独で、または混合物 5〜: 10% (容積比)を加えた後、消石灰(水酸化 カルシウム)を加え、 pH7〜8まで中和した。その後、この反応混合物に任意の凝集 剤を加え、フロック (凝集塊)を形成させた後、脱水装置あるいは濾過装置などを用い て脱水し、固形物と処理水に分離した。  Adsorbents such as polychlorinated aluminum chloride, aluminum sulfate, aluminum, aluminum oxide (alumina), iron powder, iron sand, etc. as adsorbents in a strongly acidic solution mixed with asbestos and hydrofluoric acid. After adding 10% (volume ratio), slaked lime (calcium hydroxide) was added to neutralize to pH 7-8. Thereafter, an arbitrary flocculant was added to the reaction mixture to form flocs (aggregates), which were dehydrated using a dehydrator or a filter, and separated into solids and treated water.
処理水中のフッ素イオンの濃度をランタン *ァリザリンコンプレキソン比色方により測 定した結果、下記表に示すようにフッ素イオンの排出基準の 10mg/L(ppm)以下であ つに。 濃度 (!!¾/!)  As a result of measuring the concentration of fluorine ions in the treated water using the lanthanum * alizarin complexone colorimetric method, the concentration was below 10 mg / L (ppm) of the fluorine ion emission standard as shown in the table below. Concentration (!! ¾ /!)
金属イオン  Metal ions
処理前 処理後  Before processing After processing
フッ素イオン 9 8 0 0 0 1 . 2 上記実験においては、凝集剤は、強酸性状態でカ卩えた方が良好なフッ素イオン除 去効果が得られることも分った。  Fluorine ions 9 8 0 0 0 1.2 In the above experiment, it was also found that the flocculant can obtain a better fluorine ion removal effect when held in a strongly acidic state.
[0034] 上記処理方法による高濃度フッ化水素酸と重金属イオンの複合的汚染廃水の処理 結果を下記に示す。 濃度 ( ゾ [0034] The treatment results of the combined contaminated wastewater of high concentration hydrofluoric acid and heavy metal ions by the above treatment method are shown below. Concentration (Z
金属イオン  Metal ions
処理前 最終処理後  Before processing After final processing
フッ素イオン  Fluorine ion
ホウ素イオン  Boron ion
カドミウムイオン  Cadmium ion
アンチモンイオン  Antimony ion
亜鉛イオン 処理後の濃度は充分に低下してレ、る。  The concentration after zinc ion treatment is sufficiently reduced.
産業上の利用可能性  Industrial applicability
[0035] 本発明は、(1)フッ化水素によるアスベストの化学的分解の分解工程 I、またはこの 分解工程 Iと(2)回収工程 II、あるいは不溶化工程 IIIの組合わせで構成された処理技 術であり、使用材料が反応槽とフッ化水素酸と水だけでよいので安価に処理でき、高 温や高圧を発生しないので安全であり、反応槽の大きさには特別な制限はないので 大量処理が可能である。よって、本発明によれば、安価で安全性の高い実用型のァ スベスト化学的分解無害化処理を達成することができる。 [0035] The present invention provides (1) a chemical decomposition process I of asbestos chemical decomposition with hydrogen fluoride, or a combination of the decomposition process I and (2) a recovery process II or an insolubilization process III. Since the materials used are only a reaction tank, hydrofluoric acid and water, it can be processed at low cost, and it is safe because it does not generate high temperature or high pressure, and there is no special restriction on the size of the reaction tank. Mass processing is possible. Therefore, according to the present invention, a practical asbestos chemical decomposition detoxification treatment that is inexpensive and highly safe can be achieved.
また、本発明は、処理工場内での処理システムに適している力 反応時間が、短時 間であることから、現場での処理ができる可動型の処理装置としても実施可能である さらに本発明による無害化処理の最終産物は、完全無害なフッ化カルシウム、フッ 化マグネシウム、ケィ酸塩等であり、ホテル石に代わるフッ素源としてリュース可能で ある。  In addition, the present invention can be implemented as a movable processing apparatus that can perform on-site processing because the force reaction time suitable for the processing system in the processing plant is short. The final product of the detoxification treatment by is non-hazardous calcium fluoride, magnesium fluoride, silicate, etc., which can be used as a source of fluorine instead of hotel stone.
図面の簡単な説明  Brief Description of Drawings
[0036] [図 1]本発明の分解処理方法における全体工程図である。  FIG. 1 is an overall process diagram in a decomposition processing method of the present invention.
[図 2]本発明における分解工程 Iの(1)〜(3)工程の説明図である。  FIG. 2 is an explanatory diagram of steps (1) to (3) of decomposition step I in the present invention.
[図 3]本発明における分解工程 Iの(4)〜(5)工程の説明図である。  FIG. 3 is an explanatory diagram of steps (4) to (5) of decomposition step I in the present invention.
[図 4]本発明における回収工程 IIに使う装置の説明図である。  FIG. 4 is an explanatory diagram of an apparatus used for the collection step II in the present invention.
[図 5]本発明における不溶化工程 IIIの(1),(2)工程の説明図である。  FIG. 5 is an explanatory diagram of steps (1) and (2) of insolubilization step III in the present invention.
[図 6]本発明における不溶化工程 IIIの(3)工程の説明図である。  FIG. 6 is an explanatory diagram of step (3) of insolubilization step III in the present invention.
[図 7] (A)図は未処理アスベストの水に分散させた状態の外観図、(B)図はアスペス トを 15分間化学処理した状態の外観図、 (C)図はアスベストを 24時間化学処理した 状態の外観図である。 [Fig. 7] (A) is an external view of untreated asbestos dispersed in water, (B) is Aspes (C) is an external view of asbestos chemically treated for 24 hours.
[図 8]電子顕微鏡写真と制限視野回折図形であって、(A)図は未処理アスベスト、 (B )図は 15分間化学処理後のアスベスト、 (C)図は 24時間化学処理後のアスベストを 示す。  [Fig. 8] Electron micrograph and restricted-field diffraction pattern, (A) Figure is untreated asbestos, (B) Figure is asbestos after 15 minutes chemical treatment, (C) Figure is asbestos after 24 hours chemical treatment Indicates.
[図 9]24時間化学処理後の EDXスペクトル図である。  FIG. 9 is an EDX spectrum diagram after 24 hours of chemical treatment.
園 10] 15分間化学処理後の X線回折図形である。 Sono]] X-ray diffraction pattern after 15 minutes of chemical treatment.
符号の説明 Explanation of symbols
1 収納袋  1 Storage bag
2 反応槽  2 Reaction tank
5 蓋  5 lid
6 攪拌粉砕機  6 Stir crusher
7 タンク  7 Tank
8 活性炭槽  8 Activated carbon tank
11 タンク  11 tanks

Claims

請求の範囲 The scope of the claims
[1] 反応槽に未処理のアスベスト物質と水を入れ、  [1] Put untreated asbestos substance and water into the reaction tank,
っレ、でフッ化水素酸を注入し、  Injecting hydrofluoric acid with
前記アスベスト物質を粉砕しつつ攪拌してフッ化水素酸によりアスベストを分解する ことを特徴とするアスベストの分解処理方法。  A method for decomposing asbestos, comprising decomposing asbestos with hydrofluoric acid while stirring the asbestos substance while stirring.
[2] 水と未処理のアスベスト物質を入れて密閉できる反応槽と、  [2] a reaction vessel that can be sealed with water and untreated asbestos material;
フッ化水素酸を該反応槽に注入するタンクと、  A tank for injecting hydrofluoric acid into the reaction vessel;
前記反応槽内のアスベスト物質を攪拌粉砕する攪拌粉砕機と、  An agitation pulverizer for agitating and crushing the asbestos substance in the reaction vessel;
前記反応槽内で生じたガスを排出するガス抜き菅とからなる  It comprises a degasser for discharging the gas generated in the reaction vessel.
ことを特徴とするアスベストの分解処理装置。  An asbestos decomposition treatment apparatus characterized by that.
[3] 請求項 1の分解処理方法を実行したあとの残存物を、加熱してフッ化水素と水に分 離して蒸発させ、蒸発した気体を水中に通すことによりフッ化水素酸とし、そのフッ化 水素酸を回収する [3] The residue after carrying out the decomposition treatment method of claim 1 is heated and separated into hydrogen fluoride and water to evaporate, and the evaporated gas is passed through water to form hydrofluoric acid. Recover hydrofluoric acid
ことを特徴とするアスベストの分解処理装置。  An asbestos decomposition treatment apparatus characterized by that.
[4] 請求項 1の分解処理方法を実行したあとの残存物が残ってレ、る反応槽を加熱する 加熱装置と、加熱された反応槽から蒸発した気体を水中に通過させるトラップ槽とを 備えている [4] A heating apparatus that heats the reaction tank that remains after the decomposition treatment method according to claim 1 is left, and a trap tank that allows the gas evaporated from the heated reaction tank to pass through the water. Have
ことを特徴とするアスベストの分解処理装置。  An asbestos decomposition treatment apparatus characterized by that.
[5] 請求項 1の分解処理方法を実行したあと残存した反応混合物に、フッ化イオン吸着 剤と金属イオン吸着剤を添加し、 [5] A fluoride ion adsorbent and a metal ion adsorbent are added to the reaction mixture remaining after the decomposition treatment method according to claim 1 is performed,
ついで、中和剤をカ卩えて攪拌しながら中和し、  Next, neutralize with stirring while adding neutralizer.
さらに、凝集剤を加えて凝集物を得る  Furthermore, an aggregating agent is added to obtain an aggregate.
ことを特徴とするアスベストの分解処理方法。  A method for decomposing asbestos, characterized in that
[6] 請求項 1の分解処理方法を実行したあと残存した反応混合物を入れて密閉できる 反応槽と、 [6] A reaction tank capable of containing a reaction mixture remaining after the decomposition treatment method according to claim 1 is sealed, and
該反応槽に、フッ化イオン吸着剤と金属イオン吸着剤を注入するタンクと、 前記反応槽内の反応混合物を攪拌する攪拌機とからなる  The reaction tank comprises a tank for injecting a fluoride ion adsorbent and a metal ion adsorbent, and a stirrer for stirring the reaction mixture in the reaction tank.
ことを特徴とするアスベストの分解処理装置。  An asbestos decomposition treatment apparatus characterized by that.
PCT/JP2006/313116 2006-06-30 2006-06-30 Method of asbestos degradation and asbestos degradation apparatus WO2008001464A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/313116 WO2008001464A1 (en) 2006-06-30 2006-06-30 Method of asbestos degradation and asbestos degradation apparatus
TW095134922A TW200800328A (en) 2006-06-30 2006-09-21 Method and equipment for decomposition and disposal of asbestos

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/313116 WO2008001464A1 (en) 2006-06-30 2006-06-30 Method of asbestos degradation and asbestos degradation apparatus

Publications (1)

Publication Number Publication Date
WO2008001464A1 true WO2008001464A1 (en) 2008-01-03

Family

ID=38845239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313116 WO2008001464A1 (en) 2006-06-30 2006-06-30 Method of asbestos degradation and asbestos degradation apparatus

Country Status (2)

Country Link
TW (1) TW200800328A (en)
WO (1) WO2008001464A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105023A (en) * 2006-09-28 2008-05-08 Mitsubishi Materials Corp Detoxification treatment method of asbestos-containing material and cement manufacturing method
JP2009240914A (en) * 2008-03-31 2009-10-22 Mitsubishi Materials Corp Detoxification treatment method for asbestos-containing material and manufacturing method of cement
JP2009241015A (en) * 2008-03-31 2009-10-22 Sumitomo Osaka Cement Co Ltd Method for detoxifying asbestos-containing waste material
JP2009297614A (en) * 2008-06-11 2009-12-24 Utsunomiya Univ Method and device for detoxifying asbestos-containing treated object
JP2010234176A (en) * 2009-03-30 2010-10-21 Sumitomo Osaka Cement Co Ltd Method of treating asbestos-containing waste material
JP2011218341A (en) * 2010-04-12 2011-11-04 Koki Kamisaka Treatment for defanging asbesto by hydration reaction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483574A (en) * 1990-07-26 1992-03-17 Nippon Steel Chem Co Ltd Method for dissolving asbestos to make the same harmless
JPH04226677A (en) * 1990-09-03 1992-08-17 Kali Chem Ag Method and preparation for analysis on asbestos
JPH0615251A (en) * 1992-03-03 1994-01-25 Solvay Umweltchem Gmbh Method and device for changing acetylene gas cylinder having asbestos-containing storing substance into material reusable for recycle
WO2005100253A1 (en) * 2004-03-31 2005-10-27 National University Corporation Kagawa University Method of treating strongly acid wastewater containing harmful substance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483574A (en) * 1990-07-26 1992-03-17 Nippon Steel Chem Co Ltd Method for dissolving asbestos to make the same harmless
JPH04226677A (en) * 1990-09-03 1992-08-17 Kali Chem Ag Method and preparation for analysis on asbestos
JPH0615251A (en) * 1992-03-03 1994-01-25 Solvay Umweltchem Gmbh Method and device for changing acetylene gas cylinder having asbestos-containing storing substance into material reusable for recycle
WO2005100253A1 (en) * 2004-03-31 2005-10-27 National University Corporation Kagawa University Method of treating strongly acid wastewater containing harmful substance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105023A (en) * 2006-09-28 2008-05-08 Mitsubishi Materials Corp Detoxification treatment method of asbestos-containing material and cement manufacturing method
JP2009240914A (en) * 2008-03-31 2009-10-22 Mitsubishi Materials Corp Detoxification treatment method for asbestos-containing material and manufacturing method of cement
JP2009241015A (en) * 2008-03-31 2009-10-22 Sumitomo Osaka Cement Co Ltd Method for detoxifying asbestos-containing waste material
JP2009297614A (en) * 2008-06-11 2009-12-24 Utsunomiya Univ Method and device for detoxifying asbestos-containing treated object
JP2010234176A (en) * 2009-03-30 2010-10-21 Sumitomo Osaka Cement Co Ltd Method of treating asbestos-containing waste material
JP2011218341A (en) * 2010-04-12 2011-11-04 Koki Kamisaka Treatment for defanging asbesto by hydration reaction

Also Published As

Publication number Publication date
TW200800328A (en) 2008-01-01

Similar Documents

Publication Publication Date Title
Lyu et al. Efficient removal of Pb (II) ions from aqueous solution by modified red mud
EP1718566B1 (en) Process for preparing a soluble crystalline biogenic silica and applications using the same
WO2008001464A1 (en) Method of asbestos degradation and asbestos degradation apparatus
Sasaki et al. Evaluation of the capacity of hydroxyapaptite prepared from concrete sludge to remove lead from water
RU2006132259A (en) METHOD FOR PROCESSING MULTI-COMPONENT COMPOSITE AND COMBINED MATERIALS AND USE OF COMPONENTS SHARED BY THIS METHOD
JP2009195791A (en) Treatment method of incineration ash
Yang et al. Coupled microwave hydrothermal dechlorination and geopolymer preparation for the solidification/stabilization of heavy metals and chlorine in municipal solid waste incineration fly ash
KR100318652B1 (en) METHOD AND APPARATUS FOR TRANSFORMING AND UTILIZING TRANSPARENCY TO CONTAMINATED RETURNABLE MATERIAL
US10722742B2 (en) Method for detoxifying asbestos
US10729926B2 (en) Method for detoxifying asbestos
EP2772284B1 (en) Method of removing asbestos from asbestos-containing materials by 99% through low temperature heat treatment
WO2001012352A1 (en) Method for treating hazardous material
WO2017051117A1 (en) Method and stationary or movable device for neutralizing and recycling asbestos waste
JP5192649B2 (en) Asbestos processing method, recycled material derived from asbestos, and manufacturing method thereof
JP4923179B2 (en) Method for detoxifying asbestos and method for producing magnesium carbonate
Pigaga et al. The use of cement kiln dust for the removal of heavy metal ions from aqueous solutions
AU2005212382B2 (en) Soluble biogenic silica and applications using same
JPS61130435A (en) Method and device for treating waste containing mercury
Shim et al. Changes in Adsorption Characterization of MSWI Fly Ash by NaOH Treatment (Ⅰ)
KR101535274B1 (en) Method of 99% removal of asbestos from asbestos-containing materials using low temperature heat treatment
JP2008264774A (en) Method for detoxifying removed asbestos without scattering it in the air
JP2005169306A (en) Waste treating agent and waste treating method
JP5234903B2 (en) Method for processing asbestos-containing material
KR20130070217A (en) Decomposition method of waste pvc by using oyster shell
JP2001327834A (en) Oxidative gas removing agent fo refuse incineration exhaust gas and material for treating refuse incineration fly ash

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06780683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 06780683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP