JP2014061552A - Method of producing tool for polishing - Google Patents

Method of producing tool for polishing Download PDF

Info

Publication number
JP2014061552A
JP2014061552A JP2012206253A JP2012206253A JP2014061552A JP 2014061552 A JP2014061552 A JP 2014061552A JP 2012206253 A JP2012206253 A JP 2012206253A JP 2012206253 A JP2012206253 A JP 2012206253A JP 2014061552 A JP2014061552 A JP 2014061552A
Authority
JP
Japan
Prior art keywords
powder
die
central axis
lower punch
punch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012206253A
Other languages
Japanese (ja)
Other versions
JP6006061B2 (en
Inventor
Yuichi Odaka
雄一 小高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2012206253A priority Critical patent/JP6006061B2/en
Publication of JP2014061552A publication Critical patent/JP2014061552A/en
Application granted granted Critical
Publication of JP6006061B2 publication Critical patent/JP6006061B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a grindstone which enables production of a tool for polishing having different contents of pores according to the radial direction through simple steps.SOLUTION: A method of producing a tool for polishing comprises a lower punch arrangement step S2 of arranging a lower punch in a cylindrical die for powder molding, a powder arrangement step S3 of arranging a powder of raw materials containing a polishing material in the die in such a way that the height from the upper surface of the lower punch increases from the central axis toward the outer periphery of the die, an upper punch arrangement step S4 of arranging an upper punch in the die and a molding step S5 of carrying out compression molding by pressing the powder with the upper and lower punches.

Description

本発明は、レンズ等の光学素子の研削又は研磨に用いられる研磨用工具の製造方法に関する。   The present invention relates to a method for manufacturing a polishing tool used for grinding or polishing an optical element such as a lens.

レンズ等の回転対称形状を有する光学素子を研削又は研磨する場合、所望の曲率をなす球面状(凹球面状又は凸球面状)に形成された研磨用工具(砥石)の加工面を光学素子の被加工面に当接させ、研磨用工具を回転させると共に光学素子を揺動させることにより、被加工面を加工する。   When grinding or polishing an optical element having a rotationally symmetric shape such as a lens, a processing surface of a polishing tool (grinding stone) formed in a spherical shape (concave spherical shape or convex spherical shape) having a desired curvature is provided on the optical element. The surface to be processed is processed by contacting the surface to be processed, rotating the polishing tool and swinging the optical element.

このような回転する研磨用工具においては、加工面の中心軸側よりも円周側の周速が速いため、単位時間当たりに被加工面と接触して擦られる距離は円周側の方が長くなる。その結果、中心軸側と比べて円周側における加工面の磨耗が早くなる。このように、研磨用工具の磨耗は加工面において均一でないため、研磨用工具を使用する過程で、加工面の形状が当初の球面形状から変化してしまい、光学素子の加工精度に影響を与えてしまう。   In such a rotating polishing tool, since the peripheral speed on the circumferential side is faster than the central axis side of the processing surface, the distance rubbed in contact with the processing surface per unit time is more on the circumferential side. become longer. As a result, the processing surface is worn faster on the circumferential side than on the central axis side. In this way, since the wear of the polishing tool is not uniform on the processing surface, the shape of the processing surface changes from the original spherical shape in the process of using the polishing tool, which affects the processing accuracy of the optical element. End up.

加工面における磨耗量を均一にするため、特許文献1には、砥石の中心軸側と円周側とで気胞(気孔)の含有構成(含有率)を変えることにより、砥石自体の磨耗し易さに分布を持たせる技術が提案されている。具体的には、砥石内の気孔の含有構成を中心軸側よりも円周側で小さくしている。それにより、円周側が中心軸側と比べて磨耗し難くなるので、加工面を光学素子に当接させて回転させた場合に、砥石の磨耗を均一にすることができる。   In order to make the amount of wear on the processed surface uniform, Patent Document 1 describes that the grindstone itself is easily worn by changing the composition (content ratio) of the air bubbles (pores) between the central axis side and the circumferential side of the grindstone. A technique for giving a distribution to the length has been proposed. Specifically, the pore-containing structure in the grindstone is made smaller on the circumferential side than on the central axis side. As a result, the circumferential side is less likely to be worn compared to the central axis side, and therefore, the wear of the grindstone can be made uniform when the processed surface is brought into contact with the optical element and rotated.

特開昭61−103768号公報JP-A-61-103768

しかしながら、上記特許文献1には、砥石内の気孔の含有率を径方向で変化させる具体的な方法は開示されていない。砥石に気孔を含有させる方法としては、例えば、成形前の原料の粉末(砥粒)に発泡剤を混入する方法が考えられるが、このような方法により気孔の含有率を径方向で変化させることは非常に困難であり、製造工程が複雑になってしまう。   However, Patent Document 1 does not disclose a specific method for changing the content of pores in the grindstone in the radial direction. As a method of incorporating pores in the grindstone, for example, a method of mixing a foaming agent into the raw material powder (abrasive grains) before molding can be considered. By such a method, the pore content is changed in the radial direction. Is very difficult and complicates the manufacturing process.

本発明は、上記に鑑みてなされたものであって、気孔の含有率が径方向で異なる研磨用工具を簡単な工程で製造することができる砥石の製造方法を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the manufacturing method of the grindstone which can manufacture the polishing tool from which the content rate of a pore differs in a radial direction by a simple process.

上述した課題を解決し、目的を達成するために、本発明に係る研磨用工具の製造方法は、円筒状をなす粉体成形用のダイに下パンチを配置する下パンチ配置工程と、前記ダイ内に研磨材を含む原料の粉体を、前記ダイの中心軸から外周に向かって、前記下パンチの上面からの高さが高くなるように配置する粉体配置工程と、前記ダイに上パンチを配置する上パンチ配置工程と、前記上パンチ及び前記下パンチにより前記粉体に圧力を加えて圧縮成形を行う成形工程と、を含むことを特徴とする。   In order to solve the above-described problems and achieve the object, a method for manufacturing a polishing tool according to the present invention includes a lower punch arranging step of arranging a lower punch on a cylindrical powder forming die, and the die A powder disposing step of disposing a raw material powder containing an abrasive in the die so that a height from the upper surface of the lower punch increases from a central axis of the die toward an outer periphery; and an upper punch on the die And an upper punch placement step of placing the upper punch and the lower punch, and a molding step of compressing the powder by applying pressure to the powder.

上記研磨用工具の製造方法において、前記粉体配置工程は、前記ダイに前記粉体を投入し、前記中心軸を回転軸として前記ダイを回転させることを特徴とする。   In the method for manufacturing a polishing tool, in the powder arranging step, the powder is put into the die and the die is rotated with the central axis as a rotation axis.

上記研磨用工具の製造方法において、前記下パンチは、前記ダイの中心軸を通って該中心軸方向に貫通する孔部が形成された外周部と、前記孔部に対して挿抜可能な抜き栓とを備え、前記粉体配置工程は、前記ダイに前記粉体を投入した後で前記抜き栓を抜き、前記孔部から前記粉体の一部を排出した後、前記抜き栓を前記孔部に挿入することを特徴とする。   In the method for manufacturing a polishing tool, the lower punch includes an outer peripheral portion in which a hole passing through the central axis of the die in the direction of the central axis is formed, and a plug that can be inserted into and removed from the hole. The powder disposing step includes removing the plug after discharging the powder into the die, discharging a part of the powder from the hole, and then removing the plug from the hole. It is characterized by being inserted into.

本発明によれば、ダイ内に原料の粉体を、ダイの中心軸から外周に向かって下パンチの上面からの高さが高くなる、所謂すり鉢状となるように配置して圧縮成形を行うので、気孔の含有率が径方向で異なる研磨用工具を簡単な工程で製造することが可能となる。   According to the present invention, the raw material powder is placed in the die so as to form a so-called mortar shape in which the height from the upper surface of the lower punch increases from the central axis of the die toward the outer periphery, and compression molding is performed. Therefore, it becomes possible to manufacture polishing tools having different pore content ratios in the radial direction by a simple process.

図1は、本発明の実施の形態1に係る研磨用工具の製造方法を示すフローチャートである。FIG. 1 is a flowchart showing a method for manufacturing a polishing tool according to Embodiment 1 of the present invention. 図2Aは、図1に示す下パンチの配置工程及び原料の粉体の配置工程を説明する模式図である。FIG. 2A is a schematic diagram for explaining the lower punch arrangement step and the raw material powder arrangement step shown in FIG. 1. 図2Bは、図1に示す原料の粉体の配置工程を説明する模式図である。FIG. 2B is a schematic diagram for explaining a raw material powder arranging step shown in FIG. 1. 図2Cは、原料の粉体がすり鉢状に配置された様子を示す模式図である。FIG. 2C is a schematic diagram showing a state in which the raw material powder is arranged in a mortar shape. 図2Dは、図1に示す上パンチの配置工程及び圧縮成形工程を説明する模式図である。FIG. 2D is a schematic diagram for explaining an upper punch arranging step and a compression molding step shown in FIG. 1. 図3は、図1に示す圧縮成形工程により得られた圧粉体と、該圧粉体における密度分布を示す図である。FIG. 3 is a diagram showing the green compact obtained by the compression molding process shown in FIG. 1 and the density distribution in the green compact. 図4は、図1に示す加熱工程により得られた円柱状の砥石部材を示す模式図である。FIG. 4 is a schematic view showing a cylindrical grindstone member obtained by the heating step shown in FIG. 図5Aは、実施の形態2に係る研磨用工具の製造方法のうち、原料の粉体の配置工程を示す模式図である。FIG. 5A is a schematic diagram illustrating a raw material powder arranging step in the method for manufacturing a polishing tool according to Embodiment 2. 図5Bは、実施の形態2に係る研磨用工具の製造方法のうち、原料の粉体の配置工程を示す模式図である。FIG. 5B is a schematic diagram illustrating a raw material powder arranging step in the method for manufacturing a polishing tool according to Embodiment 2. 図5Cは、実施の形態2に係る研磨用工具の製造方法のうち、圧縮成形工程を示す模式図である。FIG. 5C is a schematic diagram illustrating a compression molding step in the method for manufacturing a polishing tool according to Embodiment 2. 図6は、図5Cに示す圧縮成形工程により得られた圧粉体と、該圧粉体における密度分布を示す図である。FIG. 6 is a diagram showing the green compact obtained by the compression molding process shown in FIG. 5C and the density distribution in the green compact. 図7は、実施の形態2の変形例1においてダイに与える回転パターンの一例を示すグラフである。FIG. 7 is a graph showing an example of a rotation pattern given to the die in the first modification of the second embodiment. 図8は、変形例2に係る研磨用工具の製造方法を説明するための模式図である。FIG. 8 is a schematic diagram for explaining a method for manufacturing a polishing tool according to the second modification.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、これら実施の形態によって本発明が限定されるものではない。また、各図面の記載において、同一部分には同一の符号を付して示している。図面は模式的なものであり、各部の寸法の関係や比率は、現実と異なることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited by these embodiments. Moreover, in description of each drawing, the same code | symbol is attached | subjected and shown to the same part. It should be noted that the drawings are schematic, and the dimensional relationships and ratios of each part are different from the actual ones. Also between the drawings, there are included portions having different dimensional relationships and ratios.

(実施の形態1)
図1は、本発明の実施の形態1に係る研磨用工具の製造方法を示すフローチャートである。また、図2A〜図2Dは、実施の形態1に係る研磨用工具の製造方法を説明するための模式図である。
(Embodiment 1)
FIG. 1 is a flowchart showing a method for manufacturing a polishing tool according to Embodiment 1 of the present invention. 2A to 2D are schematic diagrams for explaining the method for manufacturing the polishing tool according to Embodiment 1. FIG.

工程S1において、原料の粉体を作製する。実施の形態1においては、研磨材が樹脂によって結着された複合粉体を原料として用いる。そのために、まず、粉末又はフレーク状の樹脂材料を溶媒に溶解させることにより、樹脂溶液を調整する。樹脂材料としては、フェノール系樹脂、エポキシ系樹脂、ポリイミド系樹脂、ポリアミド系樹脂等が用いられ、必要に応じて、シラン、チタンのカップリング剤、フッ化炭素、二硫化モリブデン、フッ化エチレン、強化樹脂等が添加される。また、溶媒としては、NMP系、モノグライム、ジグライム、ブチルラクトン、トルエン、アセトン、トリクレン等の有機溶剤が使用される。   In step S1, raw material powder is produced. In Embodiment 1, a composite powder in which an abrasive is bound with a resin is used as a raw material. For this purpose, first, a resin solution is prepared by dissolving a powder or flaky resin material in a solvent. As the resin material, phenol resin, epoxy resin, polyimide resin, polyamide resin, etc. are used. If necessary, silane, titanium coupling agent, fluorocarbon, molybdenum disulfide, ethylene fluoride, A reinforced resin or the like is added. As the solvent, organic solvents such as NMP, monoglyme, diglyme, butyl lactone, toluene, acetone, and trichrene are used.

続いて、粉体状の研磨材(砥粒)を上記樹脂溶液に混合して攪拌することにより、研磨材泥(スラリー)を作製する。研磨材としては、酸化セリウム、酸化ジルコニウム、酸化アルミニウム、酸化クロム、ダイヤモンド等が使用される。そして、この研磨材泥を薄く引き伸ばし、溶媒を揮発させて乾燥させることにより、シート状の複合材を作製する。さらに、このシート状の複合材を粉砕してフレーク状にし、ミキサー、ボールミル、乳鉢等を用いて粉体状になるまで粉砕する。これを原料の粉体とする。なお、粉体の粒径は特に限定されず、好ましくは1μm程度から500μm程度の範囲にすると良い。   Subsequently, abrasive mud (slurry) is produced by mixing and stirring the powdery abrasive (abrasive grains) in the resin solution. As the abrasive, cerium oxide, zirconium oxide, aluminum oxide, chromium oxide, diamond and the like are used. Then, the abrasive mud is stretched thinly, the solvent is volatilized and dried to produce a sheet-like composite material. Furthermore, this sheet-like composite material is pulverized into flakes, and pulverized using a mixer, a ball mill, a mortar or the like until it becomes powdery. This is the raw material powder. The particle size of the powder is not particularly limited and is preferably in the range of about 1 μm to about 500 μm.

続く工程S2において、図2Aに示すように、粉体成形用のダイ10の下側開口に下パンチ11をセットする。ここで、ダイ10は粉体の圧縮成形加工において一般的に用いられる加工具であり、円筒状をなしている。一方、下パンチ11は、ダイ10の内周に嵌合可能なパンチであって、ダイ10の中心軸R1を通って該中心軸R1方向に貫通する孔部が形成された外周部11aと、外周部11aの孔部に対して挿抜可能な内周部11bとを備える。この下パンチ11をダイ10に嵌め込むことにより、ダイ10内に円柱状のキャビティが形成される。内周部11bは、下パンチ11によって閉じられるダイ10の底面の抜き栓として機能する。   In the subsequent step S2, as shown in FIG. 2A, the lower punch 11 is set in the lower opening of the powder forming die 10. Here, the die 10 is a processing tool generally used in powder compression molding processing, and has a cylindrical shape. On the other hand, the lower punch 11 is a punch that can be fitted to the inner periphery of the die 10 and has an outer peripheral portion 11a in which a hole that passes through the central axis R1 of the die 10 in the direction of the central axis R1 is formed. And an inner peripheral part 11b that can be inserted into and removed from the hole part of the outer peripheral part 11a. By fitting the lower punch 11 into the die 10, a cylindrical cavity is formed in the die 10. The inner peripheral portion 11 b functions as a plug on the bottom surface of the die 10 that is closed by the lower punch 11.

続く工程S3において、原料の粉体1をダイ10内に、すり鉢状に配置する。ここで、すり鉢状とは、ダイ10の中心軸R1近傍から外周に向かって、下パンチ11の上面から見た原料の粉体1の高さが高くなった状態のことである。   In the subsequent step S3, the raw material powder 1 is arranged in a mortar shape in the die 10. Here, the mortar shape is a state in which the height of the raw material powder 1 as viewed from the upper surface of the lower punch 11 increases from the vicinity of the central axis R1 of the die 10 toward the outer periphery.

そのために、まず、図2Aに示すように、ダイ10内に粉体1を投入し、その後、図2Bに示すように、下パンチ11の内周部11bを抜く。それにより、ダイ10の中心軸R1近傍の領域から粉体1の一部が排出され、ダイ10内に残った粉体1が、中心部が凹んだすり鉢状となる。その後、図2Cに示すように、内周部11bを再び外周部11aに嵌め込み、栓をする。   For this purpose, first, as shown in FIG. 2A, the powder 1 is put into the die 10, and then the inner peripheral portion 11b of the lower punch 11 is pulled out as shown in FIG. 2B. Thereby, a part of the powder 1 is discharged from the area near the central axis R1 of the die 10, and the powder 1 remaining in the die 10 becomes a mortar shape having a recessed central part. Then, as shown to FIG. 2C, the inner peripheral part 11b is again fitted in the outer peripheral part 11a, and it plugs.

工程S4において、図2Dに示すように、粉体1のすり鉢状態を維持しつつ、ダイ10及び下パンチ11を圧縮成形装置の台座13上に載置し、ダイ10の上側開口に上パンチ12を配置する。   In step S4, as shown in FIG. 2D, while maintaining the mortar state of the powder 1, the die 10 and the lower punch 11 are placed on the base 13 of the compression molding apparatus, and the upper punch 12 is placed in the upper opening of the die 10. Place.

続く工程S5において、上パンチ12を降下させ、下パンチ11及び上パンチ12により粉体1に所定の圧力を加えることにより圧縮成形を行い、圧粉体を得る。   In the subsequent step S5, the upper punch 12 is lowered, and compression molding is performed by applying a predetermined pressure to the powder 1 by the lower punch 11 and the upper punch 12 to obtain a green compact.

続く工程S6において、ダイ10から圧粉体を取り出して加熱する。それにより、原料の粉体1に含まれる樹脂同士を溶着させる。なお、加熱温度や加熱時間等の加工条件については、樹脂の種類等に応じて適宜設定される。それにより、円柱状の砥石部材が得られる。   In the subsequent step S6, the green compact is taken out from the die 10 and heated. Thereby, the resins contained in the raw material powder 1 are welded together. The processing conditions such as the heating temperature and the heating time are appropriately set according to the type of resin. Thereby, a cylindrical grindstone member is obtained.

ここで、図3は、工程S5により得られた圧粉体を示す模式図である。また、図4は、工程S6により得られた砥石部材を示す模式図である。なお、図4においては、気孔率の違いをグレーの濃淡で表しており、グレーの濃い方が気孔率が低いことを示す。   Here, FIG. 3 is a schematic view showing the green compact obtained in step S5. FIG. 4 is a schematic diagram showing the grindstone member obtained in step S6. In FIG. 4, the difference in porosity is represented by gray shades, and the darker the gray, the lower the porosity.

上述したように、図3に示す圧粉体2は、ダイ10内にすり鉢状に配置された粉体1を、中心軸R1と平行な向きに押圧して得られたものである。このため、圧粉体2においては、中心軸R1近傍で粉体1の圧縮密度が低く、外周に向かうほど粉体1の圧縮密度が高くなる。従って、このような圧粉体2を熱処理した後の砥石部材3においては、中心軸R1近傍で気孔の含有率が高く、外周に向かうほど気孔の含有率が低くなる。   As described above, the green compact 2 shown in FIG. 3 is obtained by pressing the powder 1 arranged in a mortar shape in the die 10 in a direction parallel to the central axis R1. For this reason, in the green compact 2, the compression density of the powder 1 is low near the central axis R1, and the compression density of the powder 1 increases toward the outer periphery. Therefore, in the grindstone member 3 after heat treatment of such a green compact 2, the pore content is high in the vicinity of the central axis R1, and the pore content is reduced toward the outer periphery.

さらに、工程S7において、円柱状の砥石部材3に対し、カーブジェネレータ加工等により球面を創成し、さらにラップ加工を行うことにより、所望の曲率の球面形状をなす加工面3aを形成する。それにより、実施の形態1に係る研磨用工具が完成する。   Furthermore, in step S7, a spherical surface is created for the cylindrical grindstone member 3 by curve generator processing or the like, and further lapping is performed to form a processing surface 3a having a spherical shape with a desired curvature. Thereby, the polishing tool according to Embodiment 1 is completed.

以上説明したように、実施の形態1によれば、中心軸R1近傍において気孔の含有率が高く、外周に向かうほど気孔の含有率が低くなる研磨用工具を容易に製造することができる。このような研磨用工具においては、中心軸R1から外周に向かうほど磨耗し難くなる。従って、研磨用工具を回転させて使用した際に、周速が相対的に遅い中心軸R1側と、周速が相対的に早い円周側とにおいて、加工面における磨耗量を均一にすることが可能となる。   As described above, according to the first embodiment, it is possible to easily manufacture a polishing tool in which the pore content is high in the vicinity of the central axis R1, and the pore content decreases toward the outer periphery. In such a polishing tool, it becomes difficult to wear away from the central axis R1 toward the outer periphery. Therefore, when the polishing tool is rotated and used, the amount of wear on the processed surface is made uniform on the central axis R1 side where the peripheral speed is relatively slow and on the circumferential side where the peripheral speed is relatively fast. Is possible.

(実施の形態2)
次に、本発明の実施の形態2に係る研磨用工具の製造方法について説明する。
実施の形態2に係る研磨用工具の製造方法は、全体として図1に示すものと同様であり、主に工程S3における原料の粉体の配置方法が実施の形態1とは異なる。図5A〜図5Dは、実施の形態2に係る研磨用工具の製造方法を説明するための模式図である。
(Embodiment 2)
Next, a method for manufacturing a polishing tool according to Embodiment 2 of the present invention will be described.
The manufacturing method of the polishing tool according to the second embodiment is generally the same as that shown in FIG. 1, and the raw material powder arrangement method in step S3 is different from the first embodiment. 5A to 5D are schematic views for explaining a method for manufacturing a polishing tool according to Embodiment 2. FIG.

実施の形態2においては、粉体1の圧縮成形用の型として、図5Aに示すダイ20及び下パンチ21を用いる。ダイ20及び下パンチ21は、粉体の圧縮成形加工において一般的に用いられる加工具である。ダイ20は筒状をなし、下パンチ21をダイ20に嵌め込むことにより、ダイ20内に円柱状のキャビティが形成される。   In the second embodiment, a die 20 and a lower punch 21 shown in FIG. 5A are used as a mold for compression molding of the powder 1. The die 20 and the lower punch 21 are processing tools generally used in powder compression molding processing. The die 20 has a cylindrical shape, and a cylindrical cavity is formed in the die 20 by fitting the lower punch 21 into the die 20.

ダイ20に下パンチ21をセットした後(工程S2)、工程S3において、原料の粉体1をダイ20内に、すり鉢状に配置する。この際、実施の形態2においては、まず、図5Aに示すように、ダイ20内に原料の粉体1を投入する。そして、図5Bに示すように、ダイ20及び下パンチ21を回転モータ23が備えられた回転テーブル22上に載置し、所定の回転数(例えば、500rpm程度)となるまで回転させる。それにより、ダイ20内に配置された粉体1に遠心力が発生して外周方向に移動し、粉体1がすり鉢状となる。また、それと同時に、粉体1の密度が中心軸R2から外周に向かって高くなる。さらに、回転により粉体1が分級され、粉体1の中でも粒径が大きくて重い粉体1aが外周方向に移動し、粒径が小さくて軽い粉体1bは中心軸R2近傍に残留する。回転テーブル22が所定の回転数に至った後、回転モータ23を停止する。   After the lower punch 21 is set on the die 20 (step S2), the raw material powder 1 is arranged in a mortar shape in the die 20 in step S3. At this time, in the second embodiment, first, the raw material powder 1 is put into the die 20 as shown in FIG. 5A. Then, as shown in FIG. 5B, the die 20 and the lower punch 21 are placed on a rotary table 22 provided with a rotary motor 23 and rotated until a predetermined rotational speed (for example, about 500 rpm) is reached. Thereby, a centrifugal force is generated in the powder 1 arranged in the die 20 and moves in the outer peripheral direction, and the powder 1 becomes a mortar shape. At the same time, the density of the powder 1 increases from the central axis R2 toward the outer periphery. Furthermore, the powder 1 is classified by the rotation, and the powder 1a having a large particle size and heavy in the powder 1 moves in the outer peripheral direction, and the powder 1b having a small particle size and light remains in the vicinity of the central axis R2. After the rotary table 22 reaches a predetermined rotational speed, the rotary motor 23 is stopped.

その後、図5Cに示すように、ダイ20及び下パンチ21を圧縮成形装置の台座25上に載置して、上側開口に上パンチ24を配置する(工程S4)。そして、上パンチ24を降下させ、下パンチ21及び上パンチ24により粉体1に所定の圧力を加えることにより圧縮成形を行う(工程S5)。   Thereafter, as shown in FIG. 5C, the die 20 and the lower punch 21 are placed on the base 25 of the compression molding apparatus, and the upper punch 24 is disposed in the upper opening (step S4). Then, the upper punch 24 is lowered, and compression molding is performed by applying a predetermined pressure to the powder 1 by the lower punch 21 and the upper punch 24 (step S5).

図6は、実施の形態2の工程S5において得られた圧粉体を示す模式図である。工程S5においては、上述したように、中心軸R2から外周に向かうほど高さ及び密度が高くなり、径も大きくなる粉体1を、中心軸R2と平行な向きに押圧する。このため、それによって得られた圧粉体4においては、中心軸R2近傍と比較して、円周側の圧縮密度が非常に高くなる。また、粒径が大きく、研磨能力の高い研磨材も円周側に多く存在することになる。
その後の工程S6以降については、実施の形態1と同様である。
FIG. 6 is a schematic diagram showing the green compact obtained in step S5 of the second embodiment. In step S5, as described above, the powder 1 whose height and density are increased and the diameter is increased toward the outer periphery from the central axis R2 is pressed in a direction parallel to the central axis R2. For this reason, in the green compact 4 obtained thereby, the compression density on the circumferential side is very high as compared with the vicinity of the central axis R2. In addition, many abrasives having a large particle size and high polishing ability are present on the circumferential side.
The subsequent step S6 and subsequent steps are the same as those in the first embodiment.

以上説明したように、実施の形態2によれば、ダイ20内において原料の粉体1に遠心力を生じさせるので、中心軸R2から外周に向かうほど粉体1の圧縮密度が高くなり、且つ、粒径が大きくて重い粉体1aが増加する圧粉体4を容易に形成することができる。このような圧粉体4にさらに熱処理を施して作製した研磨用工具においては、中心軸R2と比較して円周側における気孔の含有率が非常に低くなると共に、研磨材の平均粒径が大きくなる。即ち、中心軸R2から外周に向かうほど、磨耗し難くなると共に、研磨能力が高くなる。従って、研磨用工具を回転させて使用した際に、周速が相対的に遅い中心軸R2側と、周速が相対的に早い円周側とにおいて、加工面における磨耗量を均一にすることが可能となる。   As described above, according to the second embodiment, since the centrifugal force is generated in the raw material powder 1 in the die 20, the compression density of the powder 1 increases from the central axis R2 toward the outer periphery, and The green compact 4 having a large particle size and increasing the heavy powder 1a can be easily formed. In the polishing tool produced by further heat-treating such a green compact 4, the content of pores on the circumferential side is very low compared to the central axis R2, and the average particle size of the abrasive is growing. That is, as it goes from the central axis R2 to the outer periphery, it becomes harder to wear and the polishing ability becomes higher. Therefore, when the polishing tool is rotated and used, the amount of wear on the processed surface is made uniform on the central axis R2 side where the peripheral speed is relatively slow and on the circumferential side where the peripheral speed is relatively fast. Is possible.

(変形例1)
次に、実施の形態2の変形例1について説明する。図7は、実施の形態2の工程S3においてダイ20に与える回転のパターンの一例を示すグラフである。
工程S3においては、ダイ20に粉体1を投入した後、図7に示すように回転モータ23の回転運動を制御して、ダイ20を間欠的に回転させても良い。具体的には、回転数をNmaxまで上げた後、すぐにNminまで落とす間欠パターンを3回繰り返した後、再び回転数をNmaxまで上げて、所定時間回転させる。
(Modification 1)
Next, Modification 1 of Embodiment 2 will be described. FIG. 7 is a graph showing an example of a rotation pattern given to the die 20 in step S3 of the second embodiment.
In step S3, after the powder 1 is put into the die 20, the rotary motion of the rotary motor 23 may be controlled as shown in FIG. 7 to rotate the die 20 intermittently. Specifically, after increasing the number of revolutions to N max and then repeating the intermittent pattern that immediately drops to N min three times, the number of revolutions is again increased to N max and rotated for a predetermined time.

このように回転を間欠的に与えることにより、粉体1の流動が活発化するので、粉体1がすり鉢状になるまでの時間を短縮することができる。また、粒径が大きい粉体1aと粒径が小さい粉体1bとの分級度合いも高くなるため、圧粉体4の径方向における平均粒径の差がより大きくなる。従って、変形例1によれば、中心軸R2から外周に向かうほど圧縮密度が高くなり、且つ研磨能力の高い粒径の大きな粉体1aが増加する圧粉体4を、より効率的に作製することが可能となる。   Since the flow of the powder 1 is activated by intermittently applying rotation in this manner, the time until the powder 1 becomes a mortar shape can be shortened. In addition, since the degree of classification between the powder 1a having a large particle size and the powder 1b having a small particle size is increased, the difference in the average particle size in the radial direction of the green compact 4 is further increased. Therefore, according to the first modification, the green compact 4 in which the compression density increases from the central axis R2 toward the outer periphery and the powder 1a having a large particle size with high polishing ability increases more efficiently. It becomes possible.

(変形例2)
次に、実施の形態2の変形例2について説明する。図8は、変形例2に係る研磨用工具の製造方法を説明するための模式図である。
実施の形態2の工程S3においてダイ20を回転させる際には、ダイ20に対し、直接又は間接的に振動を与えても良い。例えば、図8に示すように、回転モータ23に超音波発振装置26を取り付け、回転テーブル22及びダイ20を回転させながら、回転モータ23及び回転テーブル22を介してダイ20に超音波振動を与える。それにより、超音波振動が粉体1に伝達して流動が活発化し、粉体1がすり鉢状になるまでの時間を短縮することができる。また、粒径が大きい粉体1aと小さい粉体1bとの分級度合いも高くなるため、圧粉体4の径方向における平均粒径の差がより大きくなる。従って、変形例2によれば、中心軸R2から外周に向かうほど圧縮密度が高くなり、且つ研磨能力の高い粒径の大きな粉体1aが増加する圧粉体4を、より効率的に作製することが可能となる。
なお、超音波発振装置26は、回転モータ23に設ける他、回転テーブル22上に設置しても良いし、ダイ20の側面や上端部に直接設けても良い。
(Modification 2)
Next, a second modification of the second embodiment will be described. FIG. 8 is a schematic diagram for explaining a method for manufacturing a polishing tool according to the second modification.
When the die 20 is rotated in step S3 of the second embodiment, vibration may be applied to the die 20 directly or indirectly. For example, as shown in FIG. 8, an ultrasonic oscillation device 26 is attached to the rotary motor 23, and ultrasonic vibration is applied to the die 20 via the rotary motor 23 and the rotary table 22 while rotating the rotary table 22 and the die 20. . Thereby, ultrasonic vibration is transmitted to the powder 1 and the flow is activated, and the time until the powder 1 becomes a mortar shape can be shortened. Moreover, since the classification degree of the powder 1a with a large particle size and the small powder 1b also becomes high, the difference of the average particle diameter in the radial direction of the green compact 4 becomes larger. Therefore, according to the modified example 2, the green compact 4 in which the powder density 1a increases in compression density and increases in the polishing ability and increases in the particle diameter 1a from the central axis R2 to the outer periphery is more efficiently produced. It becomes possible.
The ultrasonic oscillator 26 may be provided on the rotary table 22 in addition to the rotary motor 23, or may be provided directly on the side surface or upper end of the die 20.

1、1a、1b 粉体
2、4 圧粉体
3 砥石部材
3a 加工面
10、20 ダイ
11、21 下パンチ
11a 外周部
11b 内周部
12、24 上パンチ
13、25 台座
22 回転テーブル
23 回転モータ
26 超音波発振装置
DESCRIPTION OF SYMBOLS 1, 1a, 1b Powder 2, 4 Compact 3 Grinding wheel member 3a Processing surface 10, 20 Die 11, 21 Lower punch 11a Outer peripheral part 11b Inner peripheral part 12, 24 Upper punch 13, 25 Base 22 Rotary table 23 Rotary motor 26 Ultrasonic oscillator

Claims (3)

円筒状をなす粉体成形用のダイに下パンチを配置する下パンチ配置工程と、
前記ダイ内に研磨材を含む原料の粉体を、前記ダイの中心軸から外周に向かって、前記下パンチの上面からの高さが高くなるように配置する粉体配置工程と、
前記ダイに上パンチを配置する上パンチ配置工程と、
前記上パンチ及び前記下パンチにより前記粉体に圧力を加えて圧縮成形を行う成形工程と、
を含むことを特徴とする研磨用工具の製造方法。
A lower punch placement step of placing a lower punch on a cylindrical powder forming die;
A powder disposing step of disposing a raw material powder containing an abrasive in the die so as to increase in height from the upper surface of the lower punch from the central axis of the die toward the outer periphery,
An upper punch placement step of placing an upper punch on the die;
A molding step of performing compression molding by applying pressure to the powder by the upper punch and the lower punch;
A method for producing a polishing tool, comprising:
前記粉体配置工程は、前記ダイに前記粉体を投入し、前記中心軸を回転軸として前記ダイを回転させることを特徴とする請求項1に記載の研磨用工具の製造方法。   2. The method for manufacturing a polishing tool according to claim 1, wherein in the powder arranging step, the powder is put into the die and the die is rotated about the central axis as a rotation axis. 前記下パンチは、前記ダイの中心軸を通って該中心軸方向に貫通する孔部が形成された外周部と、前記孔部に対して挿抜可能な抜き栓とを備え、
前記粉体配置工程は、前記ダイに前記粉体を投入した後で前記抜き栓を抜き、前記孔部から前記粉体の一部を排出した後、前記抜き栓を前記孔部に挿入することを特徴とする請求項1に記載の研磨用工具の製造方法。
The lower punch includes an outer peripheral portion in which a hole that passes through the central axis of the die in the direction of the central axis is formed, and a plug that can be inserted into and removed from the hole.
In the powder arranging step, the powder is put into the die, the plug is removed, a part of the powder is discharged from the hole, and the plug is inserted into the hole. The method for producing a polishing tool according to claim 1.
JP2012206253A 2012-09-19 2012-09-19 Manufacturing method of polishing tool Expired - Fee Related JP6006061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012206253A JP6006061B2 (en) 2012-09-19 2012-09-19 Manufacturing method of polishing tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012206253A JP6006061B2 (en) 2012-09-19 2012-09-19 Manufacturing method of polishing tool

Publications (2)

Publication Number Publication Date
JP2014061552A true JP2014061552A (en) 2014-04-10
JP6006061B2 JP6006061B2 (en) 2016-10-12

Family

ID=50617302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012206253A Expired - Fee Related JP6006061B2 (en) 2012-09-19 2012-09-19 Manufacturing method of polishing tool

Country Status (1)

Country Link
JP (1) JP6006061B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08290362A (en) * 1995-04-19 1996-11-05 Yano Kazuya Grinding wheel for cutting and its manufacture
JPH1110396A (en) * 1997-06-25 1999-01-19 Mitsubishi Materials Corp Compacting method and compacting device
JP2000354968A (en) * 1999-06-14 2000-12-26 Hiroshi Tsukatani Centrifugal molding method of disc type molding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08290362A (en) * 1995-04-19 1996-11-05 Yano Kazuya Grinding wheel for cutting and its manufacture
JPH1110396A (en) * 1997-06-25 1999-01-19 Mitsubishi Materials Corp Compacting method and compacting device
JP2000354968A (en) * 1999-06-14 2000-12-26 Hiroshi Tsukatani Centrifugal molding method of disc type molding

Also Published As

Publication number Publication date
JP6006061B2 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
CN1082567A (en) The polymeric substrate and the making and use method thereof that contain the polymerization microelements
CN105563363B (en) A kind of method that centrifugal drying granulating technique prepares vitrified bond accumulation abrasive material
US11344989B2 (en) Rotational abrasive micro/nano-finishing
TWI719097B (en) Method for manufacturing cutting blade and cutting blade
CN106239351B (en) A kind of grinding device
TWI737928B (en) Apparatus of chemical mechanical polishing and operating method thereof
KR102100654B1 (en) Methods and systems for centrifugal casting of polymer polish pads and polishing pads made by the methods
CN107502199A (en) A kind of preparation method of monolayer surface abrasive particle gel ball
TWI665033B (en) Method and system for making a multilayer chemical mechanical planarization pad using centrifugal casting
JPH05344766A (en) Stator for ultrasonic motor and manufacture thereof
CN109176217A (en) A kind of chip beveling device and bevelling method
JP6006061B2 (en) Manufacturing method of polishing tool
US20170043447A1 (en) Rotational abrasive micro/nano-finishing
JP2008194771A (en) Method and device for grinding lens sphere
TW201805401A (en) Polishing body and manufacturing method therefor
JP2018058204A5 (en)
JP6076191B2 (en) Polishing tool manufacturing method and polishing tool manufacturing mold
JP5511266B2 (en) Abrasive body manufacturing method
JP2007301665A (en) Grinding wheel and its manufacturing method
JP5988898B2 (en) Grinding stone and manufacturing method thereof
CN202225064U (en) Ring-shaped processing face of polishing pad conditioner as well as manufacturing die structure of ring-shaped processing face
JP2009214246A (en) Manufacturing method for sheet-shaped polishing body
JP5455023B2 (en) Green ball polishing method, ceramic ball manufacturing method and polishing apparatus
JP4555580B2 (en) Super abrasive wheel for precision grinding of hard and brittle materials, method for producing the same, and grinding method using the super abrasive wheel
JP6963438B2 (en) Rotating whetstone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160908

R151 Written notification of patent or utility model registration

Ref document number: 6006061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees