JP2014061461A - Exhaust gas cleaning catalyst, method for manufacturing an exhaust gas cleaning catalyst, and exhaust gas cleaning catalyst component - Google Patents

Exhaust gas cleaning catalyst, method for manufacturing an exhaust gas cleaning catalyst, and exhaust gas cleaning catalyst component Download PDF

Info

Publication number
JP2014061461A
JP2014061461A JP2012206532A JP2012206532A JP2014061461A JP 2014061461 A JP2014061461 A JP 2014061461A JP 2012206532 A JP2012206532 A JP 2012206532A JP 2012206532 A JP2012206532 A JP 2012206532A JP 2014061461 A JP2014061461 A JP 2014061461A
Authority
JP
Japan
Prior art keywords
oxide
catalyst
mixture
exhaust gas
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012206532A
Other languages
Japanese (ja)
Inventor
Toru Nagai
徹 永井
Hitoshi Donomae
等 堂野前
Toshio Mukai
俊夫 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Materials Co Ltd filed Critical Nippon Steel and Sumikin Materials Co Ltd
Priority to JP2012206532A priority Critical patent/JP2014061461A/en
Publication of JP2014061461A publication Critical patent/JP2014061461A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas cleaning catalyst excellent in terms of heat resistance and cleaning performance using unprecedentedly and radically economized quantities-in-use of rare earth elements; a method for manufacturing an exhaust gas cleaning catalyst; and an exhaust gas cleaning catalyst component.SOLUTION: The provided exhaust gas cleaning catalyst includes a mixture consisting of Oxide 1 including a phase of a perovskite structure, bearing a composition expressed by the following formula (1), and having an average particle diameter of 0.2 μm or less and Oxide 2 including at least one type selected from the group consisting of YO, LaO, CeO, and NiO, through YOindispensably, and having an average particle diameter of 0.1 μm or less in a state where the combined sum of Y, La, Ce and Ni of Oxide 2 with respect to A1 of Oxide 1 is 5 mol% or more and 30 mol% or less and where at least one type of noble metal selected from the group consisting of Pd, Pt, and Rh is being included, supported on the mixture of Oxide 1 and Oxide 2 : A1{FeB1C1}O(Formula 1) (A1 is one or two types of elements selected from the group consisting of Ba, Sr, and Ca, whereas 1.0≤a1≤1.1 holds).

Description

本発明は、燃焼排ガス中の一酸化炭素(CO)、窒素酸化物(NOx)、及び未燃炭化水素(HC)を浄化する排ガス浄化用触媒、排ガス浄化用触媒の製造方法、及び排ガス浄化触媒部材に関する。特に、自動車エンジン等の内燃機関から排出される一酸化炭素(CO)、窒素酸化物(NOx)、及び未燃炭化水素(HC)を浄化する排ガス浄化用触媒、排ガス浄化用触媒の製造方法、及び排ガス浄化触媒部材に関する。   The present invention relates to an exhaust gas purification catalyst for purifying carbon monoxide (CO), nitrogen oxides (NOx), and unburned hydrocarbons (HC) in combustion exhaust gas, a method for producing the exhaust gas purification catalyst, and an exhaust gas purification catalyst. It relates to members. In particular, an exhaust gas purification catalyst for purifying carbon monoxide (CO), nitrogen oxides (NOx), and unburned hydrocarbons (HC) discharged from an internal combustion engine such as an automobile engine, a method for producing an exhaust gas purification catalyst, And an exhaust gas purification catalyst member.

自動車エンジン等の内燃機関から排出されるガス中にはCO、NOx、HCが含まれており、それらを二酸化炭素(CO)、窒素(N)、水(HO)に変換して、CO、NOx、及びHCの排出量を低減させる触媒技術が一般に知られている。このような触媒技術は、内燃機関からの排ガスのみならず、他の燃焼排ガスに対しても利用されている。 The gas discharged from an internal combustion engine such as an automobile engine contains CO, NOx, and HC, which are converted into carbon dioxide (CO 2 ), nitrogen (N 2 ), and water (H 2 O). Catalytic techniques for reducing CO, NOx, and HC emissions are generally known. Such a catalyst technology is used not only for exhaust gas from an internal combustion engine but also for other combustion exhaust gas.

自動車排ガス中のCO、NOx、HCを同時に浄化する三元触媒には、Pt、Pd、Rh等の貴金属を組み合わせた触媒が広く使用されている。これら貴金属は、微粒子として活性アルミナ(γ−アルミナ、ρ−アルミナ、χ−アルミナ、η−アルミナ、δ−アルミナ、κ−アルミナ、θ−アルミナ、無定形アルミナ等)系酸化物粒子の表面に担持されて、さらに金属あるいはセラミックスのハニカムにウォッシュコートされて使用される。   As a three-way catalyst that simultaneously purifies CO, NOx, and HC in automobile exhaust gas, a catalyst that combines noble metals such as Pt, Pd, and Rh is widely used. These noble metals are supported as fine particles on the surface of activated alumina (γ-alumina, ρ-alumina, χ-alumina, η-alumina, δ-alumina, κ-alumina, θ-alumina, amorphous alumina, etc.) oxide particles. Further, it is used after being coated on a honeycomb of metal or ceramic.

三元触媒は、理論空燃比付近で有効に働くが、その有効に働く空燃比幅(ウインド)を拡大すべく、希土類酸化物であるセリウム酸化物等の酸素吸蔵材料を含ませて触媒性能を向上させることも行われている。貴金属/活性アルミナ系酸化物触媒にセリアを適量添加する方法が、例えば、特許文献1に開示されている。セリアによる酸素吸蔵能を付与して触媒性能を向上させているが、貴金属量の削減まで至っていない。   The three-way catalyst works effectively near the stoichiometric air-fuel ratio, but in order to expand the effective air-fuel ratio width (window), oxygen storage materials such as cerium oxide, which is a rare earth oxide, are included to improve catalyst performance. Improvements are also being made. For example, Patent Document 1 discloses a method of adding an appropriate amount of ceria to a noble metal / activated alumina oxide catalyst. The catalyst performance is improved by adding oxygen storage capacity by ceria, but the amount of noble metals has not been reduced.

また、セリア以外の酸素吸蔵性能を有する酸化物として、複合酸化物も検討されており、特に、希土類元素を含むペロブスカイト構造の複合酸化物が検討されてきている。ペロブスカイト型構造の酸化物は、ABOと表され、Aの部分(Aサイト)には、希土類元素やアルカリ土類金属元素を含み、またBの部分(Bサイト)には、遷移元素を中心に、多くの元素を含み得るものである。例えば、特許文献2においては、耐熱性を有する複合酸化物と、Aサイト構成元素として希土類元素を含むことを必須とするぺロブスカイト型複合酸化物と、貴金属とを共存させた触媒が開示されている。この公報では、耐熱性を有する複合酸化物上にペロブスカイト型複合酸化物を担持しているが、それでも実施例によればペロブスカイト構造のいわゆるAサイトの50%以上と多量の希土類元素を含有している。 As oxides having oxygen storage performance other than ceria, composite oxides have been studied, and in particular, composite oxides having a perovskite structure containing rare earth elements have been studied. An oxide having a perovskite structure is represented as ABO 3, and the portion A (A site) contains a rare earth element or an alkaline earth metal element, and the portion B (B site) mainly contains transition elements. In addition, it can contain many elements. For example, Patent Document 2 discloses a catalyst in which a complex oxide having heat resistance, a perovskite complex oxide that must contain a rare earth element as an A site constituent element, and a noble metal coexist. Yes. In this publication, a perovskite type complex oxide is supported on a complex oxide having heat resistance. However, according to the example, the perovskite structure contains 50% or more of the so-called A site and a large amount of rare earth elements. Yes.

またより高い触媒特性を求めて、特許文献3では、耐熱性を有する複合酸化物を含まず、(La,Sr)FeOや(La,Sr)MnOのような希土類元素を含むペロブスカイト型複合酸化物に貴金属元素を担持させることが開示されているが、実施例においてはAサイトの80%以上が希土類元素となっている。さらに、前記(La,Sr)FeOや(La,Sr)MnOの組成や添加元素を検討し、その耐久性や耐熱性の改善も図られているが、希土類元素をAサイトの50%以上と多量に含有している(特許文献4)。さらに、貴金属の触媒活性の耐久性を向上するために、貴金属Rhがペロブスカイト格子に取り込まれ、Aサイトを希土類元素のLaとした、La(Fe,Rh)O等の複合酸化物が開示されている(特許文献5、特許文献6)。 In addition, in order to obtain higher catalyst characteristics, Patent Document 3 does not include a complex oxide having heat resistance, and includes a perovskite type complex including a rare earth element such as (La, Sr) FeO 3 or (La, Sr) MnO 3. Although it is disclosed that a noble metal element is supported on an oxide, in the examples, 80% or more of the A sites are rare earth elements. Furthermore, the composition and additive elements of the (La, Sr) FeO 3 and (La, Sr) MnO 3 have been studied, and their durability and heat resistance have been improved. It is contained in a large amount as described above (Patent Document 4). Furthermore, in order to improve the durability of the catalytic activity of the noble metal, a composite oxide such as La (Fe, Rh) O 3 in which the noble metal Rh is incorporated into the perovskite lattice and the A site is La of the rare earth element is disclosed. (Patent Literature 5, Patent Literature 6).

以上のように、ペロブスカイト型複合酸化物は、多くの種類の元素を構成元素として選択できるが、三元触媒の触媒性能を効果的に向上させ、耐熱性を得るには、比較的高価なLa等の希土類元素を、ペロブスカイト型複合酸化物の主要成分として多量に含有させる事が必須となっていて、コスト的に改善の余地がある。また、最近では希土類元素を含む、いわゆるレアメタルの供給の不安定化が大きな問題となっており、希土類元素の使用量の低減は重要な課題である。   As described above, the perovskite complex oxide can select many kinds of elements as constituent elements. However, in order to effectively improve the catalytic performance of the three-way catalyst and to obtain heat resistance, a relatively expensive La It is essential to contain a large amount of rare earth elements such as the main component of the perovskite complex oxide, and there is room for improvement in cost. In recent years, the destabilization of supply of so-called rare metals containing rare earth elements has become a major problem, and reduction of the amount of rare earth elements used is an important issue.

上記のペロブスカイト型複合酸化物の課題を解決することを目指した技術として、希土類元素を含まない材料も検討されている(特許文献7)。当該公報においては、Aα1−xB'3−δ(AはBa及びSr、BはFe及びCo、B’はNb、Ta、及びTiから選択される1種の元素又は2種以上の元素の組み合わせ)なるペロブスカイト型結晶構造の複合酸化物を、比表面積が10m/g未満とすることにより、高温における比表面積変化が小さく、結果として触媒の使用過程での特性変化が小さく、耐熱性の高い触媒を実現している。しかし発明者の経験からは、このような浄化触媒は、低温での浄化特性や、排ガス中のCOなどの濃度の時間変化が速くて触媒の応答速度が求められる条件での浄化特性に、課題を生じる場合が多いことが判った。また、貴金属を担持している酸化物が低比表面積であるために、触媒の使用過程において、貴金属の粒径の粗大化を生じやすく、触媒の耐熱性に課題がある場合があることが判った。 As a technique aiming at solving the problems of the perovskite complex oxide, a material containing no rare earth element has been studied (Patent Document 7). In this publication, A α B 1-x B ′ x O 3-δ (A is Ba and Sr, B is Fe and Co, B ′ is one element selected from Nb, Ta, and Ti, or 2 By changing the perovskite crystal structure composite oxide, which is a combination of elements of at least species, to a specific surface area of less than 10 m 2 / g, the change in specific surface area at high temperatures is small, resulting in a change in characteristics during the use of the catalyst. A small and highly heat-resistant catalyst has been realized. However, from the inventor's experience, such a purification catalyst has problems in purifying characteristics at low temperatures and purifying characteristics under conditions where the time change of the concentration of CO in exhaust gas is fast and the response speed of the catalyst is required. It has been found that there are many cases where this occurs. In addition, since the oxide supporting the noble metal has a low specific surface area, it is found that the particle size of the noble metal is likely to be coarsened in the process of using the catalyst, and the heat resistance of the catalyst may be problematic. It was.

一方、従来の三元触媒においては、原料を溶媒に溶かして均一化した後、ゲル化や沈殿形成などのプロセスを経た上で、乾燥、焼成して酸化物を得る、いわゆる溶液法で製造を行うことにより、高い比表面積の粉末を得て、高い浄化特性を達成することが一般的である。例えば、特許文献8においては、触媒活性及び耐熱性の向上を目的とした三元触媒として、比表面積が10m/g以上の欠陥ペロブスカイト複合酸化物中にパラジウムが含有されてなる触媒であって、前記パラジウムの10〜50%が欠陥ペロブスカイト複合酸化物中に固溶し、残部のパラジウムがPdOあるいはPdの状態で欠陥ペロブスカイト複合酸化物に担持されてなることを特徴とする触媒が開示されており、該欠陥ペロブスカイト複合酸化物は、溶液法の一種の共沈法で製造される。本発明者らの経験によれば、このような溶液法で製造する触媒は、初期には比較的優れた浄化活性を有するが、高温で焼結し易く、使用中に比表面積が減少し、触媒活性が低下すると共に、共存する別の酸化物と固相反応して変質し易い傾向にあり、耐熱性が低い課題がある。また、共沈法などの溶液法による製造は、操作が煩雑で、コスト的にも不利である。 On the other hand, the conventional three-way catalyst is manufactured by a so-called solution method in which the raw material is dissolved in a solvent, homogenized, and then subjected to processes such as gelation and precipitation formation, followed by drying and baking to obtain an oxide. It is common to obtain a high specific surface area powder to achieve high purification properties. For example, Patent Document 8 discloses a catalyst in which palladium is contained in a defective perovskite complex oxide having a specific surface area of 10 m 2 / g or more as a three-way catalyst for the purpose of improving catalytic activity and heat resistance. Further, there is disclosed a catalyst characterized in that 10 to 50% of the palladium is solid-dissolved in the defective perovskite composite oxide, and the remaining palladium is supported on the defective perovskite composite oxide in the PdO or Pd state. The defect perovskite complex oxide is produced by a kind of coprecipitation method of the solution method. According to the experience of the present inventors, the catalyst produced by such a solution method has a relatively excellent purification activity in the initial stage, but is easily sintered at a high temperature, and the specific surface area is reduced during use. There is a problem that the catalyst activity is lowered, and it tends to be deteriorated by solid-phase reaction with another coexisting oxide, resulting in low heat resistance. In addition, production by a solution method such as a coprecipitation method is complicated in operation and disadvantageous in terms of cost.

特開昭54−159391号公報JP 54-159391 A 特開平1−168343号公報JP-A-1-168343 特開2006−36558号公報JP 2006-36558 A 特開2003−175337号公報JP 2003-175337 A 特開2004−41866号公報JP 2004-41866 A 特開2004−41867号公報JP 2004-41867 A 特開2007−160149号公報JP 2007-160149 A 特開昭62−269747号公報Japanese Patent Laid-Open No. 62-269747

以上のように、燃焼排ガス中のCO、Nox、及びHCを浄化するための従来のペロブスカイト構造の複合酸化物を用いる三元触媒において、触媒性能を効果的に向上させ、耐熱性を得るには、ペロブスカイト型複合酸化物の主要成分として、比較的高価な希土類元素を多量に含むことが、事実上必須であった。また、希土類元素を該ペロブスカイト型複合酸化物の主要成分として含まない触媒においては、触媒の比表面積を高くしないことにより、触媒の耐熱性を高める技術が開発されているが、この技術においては低温での浄化性能に課題が残っていた。さらに、これらの触媒の製造においては、製品の耐熱性や、製造操作の容易性、コストなどに課題がある、溶液法を用いることが一般的であった。   As described above, in the three-way catalyst using the composite oxide having the conventional perovskite structure for purifying CO, Nox, and HC in the combustion exhaust gas, in order to effectively improve the catalyst performance and obtain heat resistance As a main component of the perovskite type complex oxide, it has been practically essential to contain a large amount of a relatively expensive rare earth element. In addition, a catalyst that does not contain a rare earth element as a main component of the perovskite complex oxide has been developed to increase the heat resistance of the catalyst by not increasing the specific surface area of the catalyst. There remains a problem with the purification performance in Japan. Furthermore, in the production of these catalysts, it is common to use a solution method that has problems in heat resistance of the product, ease of production operation, cost, and the like.

そこで、本発明は、上記従来技術の課題を解決するために、希土類元素の使用量を大幅に減少させ、耐熱性と浄化性能に優れた排ガス浄化用触媒、排ガス浄化用触媒の製造方法及び排ガス浄化触媒部材を提供することを目的とする。   Therefore, in order to solve the above-described problems of the prior art, the present invention greatly reduces the amount of rare earth elements used, and has excellent heat resistance and purification performance. Exhaust gas purification catalyst production method and exhaust gas purification catalyst An object is to provide a purification catalyst member.

発明者らは、ペロブスカイト型複合酸化物の耐熱性向上を検討した。その中で、希土類元素をペロブスカイト型複合酸化物に成分として含有させるのではなく、ペロブスカイト型複合酸化物とは別の第二相として希土類酸化物を存在させ、かつペロブスカイト型複合酸化物のAサイトをアルカリ土類金属元素のみで構成すると、より触媒の浄化特性が高くなり、耐熱性も確保でき、結果として希土類元素の使用量を低減できることを見出した。   The inventors examined improvement in heat resistance of the perovskite complex oxide. Among them, the rare earth element is not contained as a component in the perovskite complex oxide, but the rare earth oxide is present as a second phase different from the perovskite complex oxide, and the A site of the perovskite complex oxide is present. It has been found that if the catalyst is composed only of an alkaline earth metal element, the purification characteristics of the catalyst are further improved, heat resistance can be secured, and as a result, the amount of rare earth element used can be reduced.

また、第二相としてペロブスカイト型複合酸化物と共存しても、反応性が低く、触媒の耐熱性を向上できる酸化物として、希土類酸化物のY、La、CeO、および、遷移金属酸化物のNiOが有ることを見出した。この中でも、特にYが耐熱性向上に対し効果的であった。さらに耐熱性に対する第二相の添加効果を得るためには、ペロブスカイト型複合酸化物と、第二相の粒径もそれぞれ特定の範囲に制御することが重要であった。 Further, rare earth oxides Y 2 O 3 , La 2 O 3 , CeO 2 , and the like can be used as oxides that have low reactivity and can improve the heat resistance of the catalyst even when coexisting with the perovskite complex oxide as the second phase. And it discovered that there was NiO of a transition metal oxide. Among these, Y 2 O 3 was particularly effective for improving heat resistance. Furthermore, in order to obtain the effect of addition of the second phase with respect to heat resistance, it was important to control the perovskite-type composite oxide and the particle size of the second phase to a specific range, respectively.

一方、前記のように、Yなどを第二相として存在させた場合においても、ペロブスカイト型複合酸化物の組成によって、触媒の耐熱性が変化し、高い耐熱性が得られる場合と、耐熱性が低い場合がある事を見出した。特に、ペロブスカイト型複合酸化物のAサイトをBサイトに対して欠損させた場合(A/B<1)、あるいはAサイトの構成元素としてBaを多量に含む場合には、第二相添加の効果が得られにくく、耐熱性は大きく低下した。検討の結果、前記の耐熱性が低下する場合の原因は、第二相として添加した希土類酸化物が、ペロブスカイト型複合酸化物と反応して固溶し、耐熱性向上効果が低下するためであることが判明した。これらの知見をもとに、ペロブスカイト型複合酸化物の組成を特定の範囲とすることで、安定して高い耐熱性が得られ、希土類酸化物等の第二相の添加量を大幅に低減できることを見出した。 On the other hand, as described above, even when Y 2 O 3 or the like is present as the second phase, the heat resistance of the catalyst varies depending on the composition of the perovskite complex oxide, and high heat resistance is obtained. It was found that heat resistance may be low. In particular, when the A site of the perovskite complex oxide is deficient with respect to the B site (A / B <1), or when a large amount of Ba is included as a constituent element of the A site, the effect of the addition of the second phase Was difficult to obtain, and the heat resistance was greatly reduced. As a result of the study, the reason why the heat resistance is reduced is that the rare earth oxide added as the second phase reacts with the perovskite complex oxide to form a solid solution, and the heat resistance improvement effect is reduced. It has been found. Based on these findings, by setting the composition of the perovskite complex oxide within a specific range, stable and high heat resistance can be obtained, and the amount of second phase added such as rare earth oxide can be greatly reduced. I found.

また、ペロブスカイト型複合酸化物の成分としてTaやNbなどを添加すると、ペロブスカイト型複合酸化物の形成段階で、一部のペロブスカイト型複合酸化物が分相し、ペロブスカイト型複合酸化物の粒成長と比表面積低下に対するインヒビターとして働くことを見出した。また、それらは触媒の耐熱性のさらなる向上に効果的であり、結果として希土類酸化物等の第二相の添加量を更に低減できることも分かった。   Further, when Ta, Nb, or the like is added as a component of the perovskite complex oxide, a part of the perovskite complex oxide is phase-separated at the formation stage of the perovskite complex oxide, and the perovskite complex oxide is grown. It has been found that it acts as an inhibitor against specific surface area reduction. It was also found that they are effective in further improving the heat resistance of the catalyst, and as a result, the amount of the second phase such as rare earth oxide can be further reduced.

また、本触媒の製造において、通常用いられている溶液法を用いると、触媒の耐熱性を確保することは困難であった。これは、溶液法では原料の均一性が高くなりすぎて、第二相のYなどを適切な粒径で分散させる事が困難なためと考えられる。このため、本発明において、溶液法による製造はむしろ逆効果であり、低価格な酸化物の製造方法である、固相合成法と粉砕法の組み合わせによる方が、ペロブスカイト型複合酸化物と、添加した第二相の粒径を制御が容易であり、より高い特性が得られることを見出し、本発明に至った。 In addition, in the production of the present catalyst, it is difficult to ensure the heat resistance of the catalyst when a commonly used solution method is used. This is considered to be because the uniformity of the raw material becomes too high in the solution method and it is difficult to disperse the second phase Y 2 O 3 or the like with an appropriate particle size. Therefore, in the present invention, the production by the solution method is rather counterproductive, and the combination of the solid phase synthesis method and the pulverization method, which is a low-cost oxide production method, adds the perovskite type complex oxide and The inventors have found that the particle size of the second phase can be easily controlled and that higher characteristics can be obtained, and the present invention has been achieved.

すなわち、本発明は、以下を要旨とするものである。   That is, the gist of the present invention is as follows.

[1]ペロブスカイト型構造の相を有し組成が下記(式1)で表される平均粒径0.2μm以下である酸化物1と、Y、La、CeO、NiOからYを必ず含んで選ばれる少なくとも1種で平均粒径が0.1μm以下である酸化物2との混合物と、
A1a1{Fe(1−b1−c1)B1b1C1c1}O3−δ …(式1)
(ここでA1はBa、Sr、Caから選ばれる1種又は2種の元素、B1とC1は元素を配置しない場合もあるが、B1を配置する場合はCo、Cuから選ばれる1種又は2種の元素、C1を配置する場合はTi、Nb、TaからTaまたはNbを必ず含んで選ばれる1種又は2種以上の元素、1.0≦a1≦1.1、0≦b1≦0.25、0≦c1≦0.2、δは材料の履歴によって決まる値であって、0≦δ<3を満たす)酸化物1と酸化物2の混合物に担持された、Pd、PtおよびRhから選ばれる少なくとも1種の貴金属とを含み;酸化物2の平均粒径は、酸化物1の平均粒径より小さく、かつ酸化物2のY、La、Ce、Niの合計量が、酸化物1のA1に対して5mol%以上30mol%以下である、排ガス浄化用触媒。
[1] Oxide 1 having a phase of perovskite structure and having an average particle size of 0.2 μm or less represented by the following (formula 1), Y 2 O 3 , La 2 O 3 , CeO 2 , NiO A mixture of at least one selected from Y 2 O 3 and oxide 2 having an average particle size of 0.1 μm or less,
A1 a1 {Fe (1-b1-c1) B1 b1 C1 c1 } O 3-δ (Formula 1)
(Here, A1 is one or two elements selected from Ba, Sr, and Ca, and B1 and C1 may not be arranged. However, when B1 is arranged, one or two selected from Co and Cu are used. In the case of disposing the element C1, one or more elements selected from Ti, Nb, Ta to Ta or Nb, 1.0 ≦ a1 ≦ 1.1, 0 ≦ b1 ≦ 0. 25, 0 ≦ c1 ≦ 0.2, δ is a value determined by the history of the material and satisfies 0 ≦ δ <3) From Pd, Pt and Rh supported on the mixture of oxide 1 and oxide 2 The average particle size of the oxide 2 is smaller than the average particle size of the oxide 1 and the total amount of Y, La, Ce and Ni of the oxide 2 is the oxide 1 A catalyst for exhaust gas purification, which is 5 mol% or more and 30 mol% or less with respect to A1.

[2]前記酸化物1としてペロブスカイト型構造の相を有した平均粒径0.2μm以下で組成が下記(式2)で表される酸化物1’と、前記酸化物2として平均粒径0.1μm以下であるYとの混合物を含み、YのYの量が、酸化物1’のA2に対して5mol%以上25mol%以下である、前記[1]に記載の排ガス浄化用触媒。
A2a2{Fe(1−b2−c2)Cub2C2c2}O3−δ …(式2)
(ここでA2はSr、Caから選ばれる1種又は2種の元素、CuとC2は配置しない場合もあるが、C2に配置する元素がある場合はTi、Nb、TaからTaまたはNbを必ず含んで選ばれる1種又は2種以上の元素、1.0≦a2≦1.05、0≦b2≦0.2、0≦c2≦0.2、δは材料の履歴によって決まる値であって、0≦δ<3を満たす)
[2] An oxide 1 ′ having a perovskite structure phase as the oxide 1 and an average particle size of 0.2 μm or less and a composition represented by the following (formula 2), and an average particle size of 0 as the oxide 2 The mixture of Y 2 O 3 that is not more than 1 μm, and the amount of Y in Y 2 O 3 is 5 mol% or more and 25 mol% or less with respect to A2 of the oxide 1 ′. Exhaust gas purification catalyst.
A2 a2 {Fe (1-b2-c2) Cu b2 C2 c2 } O 3-δ (Formula 2)
(Here, A2 is one or two elements selected from Sr and Ca, and Cu and C2 may not be arranged, but if there is an element arranged in C2, be sure to change Ta or Nb from Ti, Nb, or Ta. One or more elements selected including, 1.0 ≦ a2 ≦ 1.05, 0 ≦ b2 ≦ 0.2, 0 ≦ c2 ≦ 0.2, δ is a value determined by the history of the material, 0 ≦ δ <3 is satisfied)

[3]前記酸化物1としてペロブスカイト型構造の相を有した平均粒径0.2μm以下である組成が下記(式3)で表される酸化物1''と、前記酸化物2として平均粒径0.1μm以下であるYとの混合物を含み、YのYの量が酸化物1''のA3に対して5mol%以上15mol%以下である、前記[1]又は[2]に記載の排ガス浄化用触媒。
A3a3{Fe(1−b3−c3)Cub3Tac3}O3−δ …(式3)
(ここでA3はSr、Caから選ばれる1種又は2種の元素、Cuを含有しない場合もある。1.0≦a3≦1.05、0≦b3≦0.2、0.1≦c3≦0.2、δは材料の履歴によって決まる値であって、0≦δ<3を満たす)
[3] The oxide 1 ″ having a perovskite structure phase as the oxide 1 and having an average particle size of 0.2 μm or less represented by the following (formula 3), and the oxide 2 as an average particle [1] or a mixture containing Y 2 O 3 having a diameter of 0.1 μm or less, wherein the amount of Y of Y 2 O 3 is 5 mol% or more and 15 mol% or less with respect to A3 of the oxide 1 ″. The exhaust gas-purifying catalyst according to [2].
A3 a3 {Fe (1-b3-c3) Cu b3 Ta c3 } O 3-δ (Formula 3)
(Here A3 may not contain Cu, one or two elements selected from Sr and Ca. 1.0 ≦ a3 ≦ 1.05, 0 ≦ b3 ≦ 0.2, 0.1 ≦ c3. ≦ 0.2, δ is a value determined by the history of the material and satisfies 0 ≦ δ <3)

[4]前記酸化物1としてペロブスカイト型構造の相を有した平均粒径0.2μm以下であり組成が下記(式4)で表される酸化物1'''と、前記酸化物2として平均粒径0.1μm以下であるYとの混合物を含み、YのYの量が酸化物1'''のSrに対して10mol%以上20mol%以下である、前記[1]〜[3]のいずれかに記載の排ガス浄化用触媒。
Sra4{Fe(1−b4)Cub4}O3−δ …(式4)
(Cuは含まない場合もあるが、ここで1.0≦a4≦1.05、0≦b4≦0.2、δは材料の履歴によって決まる値であって、0≦δ<3を満たす)
[4] The oxide 1 ′ ″ having a perovskite structure phase as the oxide 1 and having an average particle size of 0.2 μm or less and the composition represented by the following (formula 4), and the oxide 2 as an average The mixture includes a mixture with Y 2 O 3 having a particle size of 0.1 μm or less, and the amount of Y of Y 2 O 3 is 10 mol% or more and 20 mol% or less with respect to Sr of the oxide 1 ″ ′ [1 ] The exhaust gas-purifying catalyst according to any one of [3] to [3].
Sr a4 {Fe (1-b4) Cu b4 } O 3-δ (Formula 4)
(Cu may not be included, but here 1.0 ≦ a4 ≦ 1.05, 0 ≦ b4 ≦ 0.2, δ is a value determined by the history of the material, and satisfies 0 ≦ δ <3)

[5]前記排ガス浄化用触媒の、大気中で900℃5時間の熱処理を行った後の比表面積が少なくとも7m/gである、前記[1]〜[4]のいずれかに記載の排ガス浄化用触媒。 [5] The exhaust gas according to any one of [1] to [4], wherein the exhaust gas purification catalyst has a specific surface area of at least 7 m 2 / g after heat treatment at 900 ° C. for 5 hours in the atmosphere. Purification catalyst.

[6]前記[1]〜[5]のいずれかに記載の排ガス浄化用触媒を製造する方法であって、
酸化物1、酸化物1’、酸化物1''または酸化物1'''のアルカリ土類金属元素の炭酸塩および水酸化物から選ばれる1種以上の炭酸塩または水酸化物の粉末と、酸化物1、酸化物1’、酸化物1''または酸化物1'''のアルカリ土類元素以外の構成元素の酸化物の粉末と、酸化物2を構成する酸化物の、平均粒径0.5μm以下の粉末との混合物を、900℃以上1200℃以下から選ばれる複数の温度で焼成して酸化物1と酸化物2の焼成混合物を得た後、該焼成混合物を、セラミックスのボールを用いた粉砕により、比表面積が少なくとも20m/gになるまで微粉化する、排ガス浄化用触媒の製造方法。
[6] A method for producing the exhaust gas-purifying catalyst according to any one of [1] to [5],
One or more carbonate or hydroxide powders selected from carbonates and hydroxides of alkaline earth metal elements of oxide 1, oxide 1 ′, oxide 1 ″ or oxide 1 ′ ″ , Oxide 1, oxide 1 ′, oxide 1 ″ or oxide 1 ′ ″, oxide powders of constituent elements other than alkaline earth elements, and the average grain size of oxide constituting oxide 2 A mixture with a powder having a diameter of 0.5 μm or less is fired at a plurality of temperatures selected from 900 ° C. to 1200 ° C. to obtain a fired mixture of oxide 1 and oxide 2, and then the fired mixture is made of ceramics. A method for producing an exhaust gas-purifying catalyst, which is pulverized by grinding with a ball until the specific surface area becomes at least 20 m 2 / g.

[7]前記[1]〜[5]のいずれかに記載の排ガス浄化用触媒を製造する方法であって、酸化物1、酸化物1’、酸化物1''または酸化物1'''のアルカリ土類金属元素の炭酸塩および水酸化物から選ばれる1種以上の炭酸塩または水酸化物の粉末と、酸化物1、酸化物1’、酸化物1''または酸化物1'''のアルカリ土類元素以外の構成元素の酸化物の粉末との混合物を、900℃以上1200℃以下から選ばれる複数の温度で焼成してペロブスカイト型構造の相を得た後、酸化物2を構成する酸化物の、平均粒径0.5μm以下の粉末を添加混合し、該添加混合物を、セラミックスのボールを用いた粉砕により比表面積が少なくとも20m/gになるまで微粉化する、排ガス浄化用触媒の製造方法。 [7] A method for producing the exhaust gas-purifying catalyst according to any one of [1] to [5], wherein the oxide 1, the oxide 1 ′, the oxide 1 ″, or the oxide 1 ′ ″ At least one carbonate or hydroxide powder selected from carbonates and hydroxides of alkaline earth metal elements, and oxide 1, oxide 1 ′, oxide 1 ″ or oxide 1 ″ After firing a mixture of oxides of constituent elements other than the alkaline earth element of ′ at a temperature selected from 900 ° C. to 1200 ° C. to obtain a phase having a perovskite structure, oxide 2 is obtained. Exhaust gas purification by adding and mixing powders of constituent oxides having an average particle size of 0.5 μm or less, and pulverizing the added mixture by pulverization using ceramic balls until the specific surface area becomes at least 20 m 2 / g For producing a catalyst for use.

[8]前記微粉化された焼成混合物または前記微粉化された添加混合物に、Pd、Pt、Rhから選ばれる少なくとも1種の貴金属を担持させる、前記[6]または[7]に記載の排ガス浄化用触媒の製造方法。   [8] Exhaust gas purification according to [6] or [7], wherein at least one precious metal selected from Pd, Pt, and Rh is supported on the pulverized fired mixture or the pulverized additive mixture. For producing a catalyst for use.

[9]前記[1]〜[5]のいずれかに記載の排ガス浄化用触媒を基材に担持してなることを特徴とする、排ガス浄化触媒部材。   [9] An exhaust gas purification catalyst member comprising the exhaust gas purification catalyst according to any one of [1] to [5] supported on a base material.

本発明の排ガス浄化用触媒及び排ガス浄化触媒部材は、排ガス中のCO、Nox、及びHCの浄化性能に優れると共に、比較的高価な希土類元素の使用量を従来よりも低減しても、高い耐熱性、高温耐久性が得られる。さらに、本発明の排ガス浄化用触媒は、製造コストの低い固相合成法と粉砕法の組み合わせで容易に製造することができる。本発明の触媒は、耐熱性が高いため、希土類元素の使用量だけでなく、貴金属の使用量を低減でき、製造コストも安価であり、低コストで浄化触媒を提供可能である。これらの効果により、本発明の排ガス浄化用触媒及び排ガス浄化触媒部材は、自動車等の内燃機関の排ガスに含まれるCO、Nox、及びHCの浄化に好適に用いられる。   The exhaust gas purification catalyst and exhaust gas purification catalyst member of the present invention have excellent purification performance for CO, Nox, and HC in the exhaust gas, and also have high heat resistance even when the amount of relatively expensive rare earth elements used is reduced as compared with the prior art. And high temperature durability. Furthermore, the exhaust gas purifying catalyst of the present invention can be easily produced by a combination of a solid phase synthesis method and a pulverization method, which are low in production cost. Since the catalyst of the present invention has high heat resistance, not only the amount of rare earth element used but also the amount of noble metal used can be reduced, the production cost is low, and a purification catalyst can be provided at low cost. Due to these effects, the exhaust gas purifying catalyst and the exhaust gas purifying catalyst member of the present invention are suitably used for purifying CO, Nox, and HC contained in the exhaust gas of an internal combustion engine such as an automobile.

次に、本発明について詳細に説明する。   Next, the present invention will be described in detail.

本発明の触媒には、ペロブスカイト型複合酸化物と、該複合酸化物の耐熱性向上に有効なYなどの希土類酸化物を中心とする第二相とが、混合物として含まれている。そして、ペロブスカイト型複合酸化物の組成を特定の組成にするとともに、ペロブスカイト型複合酸化物の粒径と第二相の粒径とをそれぞれ制御する。これにより、希土類元素の使用量が少ないにも関わらず、高い耐熱性が得られる。この結果、長期間高温で触媒を使用した後においても、大きな比表面積を保持し続け、高い浄化性能が維持される。このため、当該触媒に担持する貴金属量を少量としても、長期間、高い浄化性能を発現する触媒を提供することが可能である。 The catalyst of the present invention contains a perovskite-type composite oxide and a second phase centered on a rare earth oxide such as Y 2 O 3 effective for improving the heat resistance of the composite oxide as a mixture. . Then, the composition of the perovskite complex oxide is set to a specific composition, and the particle size of the perovskite complex oxide and the particle size of the second phase are controlled. As a result, high heat resistance can be obtained despite the small amount of rare earth elements used. As a result, even after using the catalyst at a high temperature for a long period of time, a large specific surface area is maintained and high purification performance is maintained. For this reason, even if the amount of noble metal supported on the catalyst is small, it is possible to provide a catalyst that exhibits high purification performance for a long period of time.

本発明の排ガス浄化用触媒は、第一の構成要素として酸化物1を含む。酸化物1の組成は(式1)A1a1{Fe(1−b1−c1)B1b1C1c1}O3−δで表わされ、ペロブスカイト型構造の相を有している。酸化物1の平均粒径は0.2μm以下である。 The exhaust gas purifying catalyst of the present invention contains oxide 1 as a first constituent element. The composition of the oxide 1 is represented by (Formula 1) A1 a1 {Fe (1-b1-c1) B1 b1 C1 c1 } O 3-δ and has a phase of a perovskite structure. The average particle diameter of the oxide 1 is 0.2 μm or less.

(式1)において、A1はBa、Sr、Caから選ばれる1種又は2種の元素である。B1とC1は元素を配置しない場合もあるが、B1を配置する場合はCo、Cuから選ばれる1種又は2種の元素、C1を配置する場合はTi、Nb、TaからTaまたはNbを必ず含んで選ばれる1種又は2種以上の元素である。a1は1.0以上1.1以下、b1は0以上0.25以下、c1は0以上0.2以下、δは、0以上3未満であり、陽イオン(A1、Fe、B1、C1)の価数の和が陰イオン(O)の価数と等しくなるように定まる値である。δは、材料の履歴によって設定され、具体的には、排ガス浄化用触媒の製造工程のうち、合成後のペロブスカイト型複合酸化物が経る温度、該温度での保持時間、温度変化速度、および雰囲気ガスの種類などによって設定されうる。   In (Formula 1), A1 is one or two elements selected from Ba, Sr, and Ca. B1 and C1 may not arrange elements, but when B1 is arranged, one or two elements selected from Co and Cu, and when C1 is arranged, Ti, Nb, Ta to Ta or Nb must be used. It is 1 type or 2 or more types of elements chosen including. a1 is 1.0 or more and 1.1 or less, b1 is 0 or more and 0.25 or less, c1 is 0 or more and 0.2 or less, δ is 0 or more and less than 3, and a cation (A1, Fe, B1, C1) This is a value that is determined so that the sum of the valences of the two becomes equal to the valence of the anion (O). δ is set according to the history of the material. Specifically, in the manufacturing process of the exhaust gas purifying catalyst, the temperature at which the synthesized perovskite complex oxide passes, the holding time at the temperature, the temperature change rate, and the atmosphere It can be set according to the type of gas.

また、排ガス浄化用触媒は、第二の構成要素として酸化物2を含む。酸化物2は、Y、La、CeO、NiOから選ばれる少なくとも1種であるが、Yを必ず含む。酸化物2の平均粒径は0.1μm以下であり、かつ酸化物1の平均粒径よりも小さい。 Further, the exhaust gas purifying catalyst contains the oxide 2 as a second constituent element. The oxide 2 is at least one selected from Y 2 O 3 , La 2 O 3 , CeO 2 , and NiO, but necessarily contains Y 2 O 3 . The average particle diameter of the oxide 2 is 0.1 μm or less and smaller than the average particle diameter of the oxide 1.

酸化物1と酸化物2は、混合された状態で存在するが、酸化物2のY、La、Ce、Niの合計量が、酸化物1のA1に対して5mol%以上30mol%以下である。さらに、該混合物に対し、Pd、Pt、Rhから選ばれる少なくとも1種の貴金属が担持されている。また、当該排ガス浄化用触媒は、大気中で900℃5時間の熱処理を行った後でも、比表面積が少なくとも7m/gである耐熱性を有している事を特徴とする。 Although oxide 1 and oxide 2 exist in a mixed state, the total amount of Y, La, Ce, and Ni in oxide 2 is 5 mol% or more and 30 mol% or less with respect to A 1 of oxide 1. . Furthermore, at least one kind of noble metal selected from Pd, Pt, and Rh is supported on the mixture. Further, the exhaust gas-purifying catalyst has heat resistance having a specific surface area of at least 7 m 2 / g even after heat treatment at 900 ° C. for 5 hours in the atmosphere.

酸化物1において、A1はBa、Sr、Caから選ばれる1種又は2種の元素である。より高い浄化性能を得る観点からは、A1におけるSrの割合は、好ましくは50mol%以上、より好ましくは80mol%以上である。また、耐熱性の観点から、A1におけるBaの割合は、好ましくは50mol%より少なく、より好ましくは20mol%以下である。   In the oxide 1, A1 is one or two elements selected from Ba, Sr, and Ca. From the viewpoint of obtaining higher purification performance, the ratio of Sr in A1 is preferably 50 mol% or more, more preferably 80 mol% or more. From the viewpoint of heat resistance, the proportion of Ba in A1 is preferably less than 50 mol%, more preferably 20 mol% or less.

a1は、1.0以上1.1以下である。a1が1.0未満の場合、酸化物2として添加する希土類酸化物のペロブスカイト型複合酸化物に対する反応度が高まり、触媒の耐熱性が低下する。また、a1が1.1を超えた場合、ペロブスカイト型とは異なる構造の相の含有量が増加し、300℃以下の低温における浄化特性が低下しやすくなる。   a1 is 1.0 or more and 1.1 or less. When a1 is less than 1.0, the reactivity of the rare earth oxide added as oxide 2 with respect to the perovskite complex oxide increases, and the heat resistance of the catalyst decreases. Moreover, when a1 exceeds 1.1, the content of the phase having a structure different from that of the perovskite type increases, and the purification characteristics at a low temperature of 300 ° C. or lower tend to be lowered.

B1は無くてもよいが、B1にCo、Cuから選ばれる1種又は2種の元素を含有させると、より高い浄化性能を得ることができる。一方、該元素の含有量を多くし過ぎると、耐熱性が低下する。このためb1の範囲は0.25以下である。また、B1の元素は、耐熱性を高く保つ観点から、Cuであることがより好ましい。   B1 may be omitted, but higher purification performance can be obtained when B1 contains one or two elements selected from Co and Cu. On the other hand, when the content of the element is excessively increased, the heat resistance is lowered. For this reason, the range of b1 is 0.25 or less. The element B1 is more preferably Cu from the viewpoint of maintaining high heat resistance.

C1は無くてもよいが、C1にTi、Nb、TaからTaまたはNbを必ず含んで選ばれる1種又は2種以上の元素を含有させると、触媒の耐熱性をさらに高めることが可能である。一方、c1を0.2を超えて大きくすると、触媒特性が低下し好ましくない。C1の元素として耐熱性向上により好ましいのはNbまたはTaであり、より好ましくはTaである。C1としてTiを含んでもよいが、その含有量はC1として添加する元素の中で、30mol%以下であることが好ましい。   C1 may be omitted, but if C1 contains one or more elements selected from Ti, Nb, Ta to Ta or Nb, the heat resistance of the catalyst can be further improved. . On the other hand, if c1 is increased beyond 0.2, the catalyst characteristics are deteriorated, which is not preferable. Nb or Ta is preferable as an element of C1 for improving heat resistance, and Ta is more preferable. Ti may be contained as C1, but its content is preferably 30 mol% or less in the elements added as C1.

高い触媒特性を得るために、酸化物1の平均粒径は0.2μm以下であることが必要であり、より好ましくは0.15μm以下である。該平均粒径が0.2μmよりも大きい場合、低温での浄化特性が低下する。また、該平均粒径の下限値は特段設けないが、現実的には該平均粒径は0.05μm以上である。   In order to obtain high catalyst characteristics, the average particle size of the oxide 1 needs to be 0.2 μm or less, and more preferably 0.15 μm or less. When the average particle size is larger than 0.2 μm, the purification property at low temperature is deteriorated. Moreover, although the lower limit of the average particle diameter is not particularly provided, the average particle diameter is practically 0.05 μm or more.

酸化物2は、Y、La、CeO、NiOから選ばれる少なくとも1種であるが、Yを必ず含む。この中で最も高い耐熱性向上効果が得られるのはYである。このため、酸化物2の中でのYの量は、Y、La、Ce、Niの合計量に対してYが60mol%以上であることが好ましい。 The oxide 2 is at least one selected from Y 2 O 3 , La 2 O 3 , CeO 2 , and NiO, but necessarily contains Y 2 O 3 . Among these, Y 2 O 3 has the highest heat resistance improvement effect. For this reason, the amount of Y 2 O 3 in the oxide 2 is preferably 60 mol% or more with respect to the total amount of Y, La, Ce, and Ni.

また、耐熱性を高める観点から、酸化物2の平均粒径は0.1μm以下であり、かつ酸化物1の平均粒径よりも小さいことが必要である。該平均粒径が0.1μmよりも大きかったり、酸化物1の平均粒径よりも大きかったりする場合、触媒の耐熱性が低下する。酸化物2の平均粒径にも下限値は特段設けないが、現実的には該平均粒径は0.05μm以上である。   Further, from the viewpoint of improving heat resistance, the average particle diameter of the oxide 2 needs to be 0.1 μm or less and smaller than the average particle diameter of the oxide 1. When the average particle size is larger than 0.1 μm or larger than the average particle size of the oxide 1, the heat resistance of the catalyst is lowered. Although no particular lower limit is provided for the average particle diameter of the oxide 2, the average particle diameter is practically 0.05 μm or more.

酸化物2のY、La、Ce、Niの合計量が、酸化物1のA1に対して5mol%以上30mol%以下となるように、酸化物2の添加量は設定される。この範囲よりも酸化物2の添加量が少ないと、耐熱性が低下する。また、この範囲よりも添加量が多いと、コストが高くなると共に、浄化性能も低下する。   The amount of oxide 2 added is set so that the total amount of Y, La, Ce, and Ni in oxide 2 is 5 mol% or more and 30 mol% or less with respect to A1 of oxide 1. When the addition amount of the oxide 2 is less than this range, the heat resistance is lowered. Moreover, when there are more addition amounts than this range, cost will become high and purification performance will also fall.

本発明において、酸化物1と酸化物2の粒径は、元素分析機能を有する透過型電子顕微鏡や、走査型電子顕微鏡などで確認することができる。一方、第1の製造方法(後述)によって製造する場合には、酸化物1と酸化物2の、混合直前の粒度分布をそれぞれ直接、粒度分布計で測定可能である。また、本触媒の原料の粒度分布も同様に粒度分布径で測定可能である。該粒度分布計としては、レーザー回折・散乱方式の、粒度分布測定装置が好適である。尚、本発明において、平均粒径としては、試料の体積平均径を用いる。   In the present invention, the particle sizes of the oxide 1 and the oxide 2 can be confirmed with a transmission electron microscope having an elemental analysis function, a scanning electron microscope, or the like. On the other hand, when manufacturing by the 1st manufacturing method (after-mentioned), the particle size distribution just before mixing of the oxide 1 and the oxide 2 can each be directly measured with a particle size distribution meter. Similarly, the particle size distribution of the raw material of the catalyst can be measured by the particle size distribution diameter. As the particle size distribution meter, a laser diffraction / scattering type particle size distribution measuring device is suitable. In the present invention, the volume average diameter of the sample is used as the average particle diameter.

本発明の触媒は、少なくとも、前述の酸化物1と酸化物2の混合物に、Pt、Pd、及びRhから選ばれた1種又は2種以上の元素が担持されて、排ガス浄化触媒として優れた性能を発揮する。前記貴金属を担持しない場合には、排ガス浄化触媒としての性能が低い。したがって、本発明の触媒においては、少なくともPt、Pd、及びRhから選ばれた1種又は2種以上の元素を担持することが必須である。   The catalyst of the present invention is excellent as an exhaust gas purification catalyst because at least one element selected from Pt, Pd, and Rh is supported on at least the mixture of oxide 1 and oxide 2 described above. Demonstrate performance. When the noble metal is not supported, the performance as an exhaust gas purification catalyst is low. Therefore, in the catalyst of the present invention, it is essential to support at least one element selected from Pt, Pd, and Rh.

また、前記担持された貴金属元素は、触媒としての使用状態において金属ないし酸化物の微粒子として、酸化物1と酸化物2の混合物の表面に存在し、ペロブスカイト型複合酸化物の構成元素にはなっていない。換言すれば、本発明の触媒は、このような状態になることで高い触媒活性を有し、それゆえに貴金属量が低減されうる。   In addition, the supported noble metal element is present as a metal or oxide fine particle on the surface of the mixture of oxide 1 and oxide 2 when used as a catalyst, and becomes a constituent element of the perovskite complex oxide. Not. In other words, the catalyst of the present invention has a high catalytic activity in such a state, and therefore the amount of noble metal can be reduced.

本発明の触媒における貴金属の担持量は、望ましくは酸化物1と酸化物2の混合物に対して質量パーセントで0.1%以上2%以下の範囲である。この範囲を超えて貴金属を担持した場合、触媒のコストが高くなるとともに、触媒の使用時における貴金属の粗大化が進行しやすくなる。また、上記範囲よりも少量の貴金属の担持量である場合、触媒の浄化性能が不十分になる場合が生じ可能性がある。   The amount of noble metal supported in the catalyst of the present invention is desirably in the range of 0.1% or more and 2% or less by mass percent with respect to the mixture of oxide 1 and oxide 2. When the noble metal is supported beyond this range, the cost of the catalyst becomes high and the coarsening of the noble metal easily proceeds when the catalyst is used. In addition, when the amount of the noble metal supported is smaller than the above range, the catalyst purification performance may be insufficient.

本発明において、より高い耐熱性を得るためには、酸化物1を、組成が(式2)で表わされる酸化物1’として、B1をCuとし、酸化物2をYとすることが好適である。
A2a2{Fe(1−b2−c2)Cub2C2c2}O3−δ …(式2)
In the present invention, in order to obtain higher heat resistance, oxide 1 is composed of oxide 1 ′ whose composition is represented by (formula 2), B1 is Cu, and oxide 2 is Y 2 O 3. Is preferred.
A2 a2 {Fe (1-b2-c2) Cu b2 C2 c2 } O 3-δ (Formula 2)

(式2)において、A2はSr、Caから選ばれる1種又は2種の元素である。C2はTi、NbおよびTaから選ばれる1種又は2種以上の元素であるが、TaまたはNbを必ず含む。1.0≦a2≦1.05、0≦b2≦0.2、0≦c2≦0.2を満たし、δは材料の履歴によって決まる値である。耐熱性の一層の向上のために、b2の上限値は0.2に限定することが好ましい。またYの添加量は、Yの量が酸化物1’のA2に対して5mol%以上25mol%以下となる範囲である。 In (Formula 2), A2 is one or two elements selected from Sr and Ca. C2 is one or more elements selected from Ti, Nb, and Ta, but always contains Ta or Nb. 1.0 ≦ a2 ≦ 1.05, 0 ≦ b2 ≦ 0.2, 0 ≦ c2 ≦ 0.2 are satisfied, and δ is a value determined by the history of the material. In order to further improve the heat resistance, the upper limit value of b2 is preferably limited to 0.2. The amount of Y 2 O 3 added is in a range where the amount of Y is 5 mol% or more and 25 mol% or less with respect to A2 of the oxide 1 ′.

さらに高い耐熱性を得るためには、酸化物1を、組成が(式3)で表わされる酸化物1''として、C1をTaとして、Taを必ず含有させることが好適である。
A3a3{Fe(1−b3−c3)Cub3Tac3}O3−δ …(式3)
In order to obtain even higher heat resistance, it is preferable that the oxide 1 be an oxide 1 ″ whose composition is represented by (formula 3), C1 is Ta, and Ta is necessarily contained.
A3 a3 {Fe (1-b3-c3) Cu b3 Ta c3 } O 3-δ (Formula 3)

(式3)において、A3はSr、Caから選ばれる1種又は2種の元素である。1.0≦a3≦1.05、0≦b3≦0.2、0.1≦c3≦0.2を満たし、δは材料の履歴によって決まる値である。c3の下限値を0.1として、Taを必ず含んでなる。この場合、Yの添加量は、Yの量が酸化物1''のA3に対して5mol%以上15mol%以下となる範囲であり、より一層の希土類酸化物の添加量の低減が可能である。 In (Formula 3), A3 is one or two elements selected from Sr and Ca. 1.0 ≦ a3 ≦ 1.05, 0 ≦ b3 ≦ 0.2, 0.1 ≦ c3 ≦ 0.2 are satisfied, and δ is a value determined by the history of the material. The lower limit value of c3 is 0.1, and Ta is always included. In this case, the amount of Y 2 O 3 added is in the range in which the amount of Y is 5 mol% or more and 15 mol% or less with respect to A3 of the oxide 1 ″, and the addition amount of the rare earth oxide can be further reduced. Is possible.

一方、より高い触媒特性を得ることを重視する場合には、酸化物1を、組成が(式4)で表わされる酸化物1'''として、A1をSrとし、TaなどのC1を含まないことが好適である。
Sra4{Fe(1−b4)Cub4}O3−δ …(式4)
On the other hand, when importance is attached to obtaining higher catalyst characteristics, the oxide 1 is an oxide 1 ′ ″ whose composition is represented by (formula 4), A1 is Sr, and C1 such as Ta is not included. Is preferred.
Sr a4 {Fe (1-b4) Cu b4 } O 3-δ (Formula 4)

(式4)において、1.0≦a4≦1.05、0≦b4≦0.2を満たし、δは材料の履歴によって決まる値である。この場合、Yの添加量は、Yの量が酸化物1'''のSrに対して10mol%以上20mol%以下となる範囲である。Cuの添加量のb4は0以上0.2以下の範囲であるが、より高い触媒特性を得るためには、b4は0.1以上0.2以下の範囲が望ましい。 In (Expression 4), 1.0 ≦ a4 ≦ 1.05 and 0 ≦ b4 ≦ 0.2 are satisfied, and δ is a value determined by the history of the material. In this case, the amount of Y 2 O 3 added is in a range where the amount of Y is 10 mol% or more and 20 mol% or less with respect to Sr of the oxide 1 ′ ″. The amount b4 of Cu added is in the range of 0 to 0.2. However, in order to obtain higher catalyst characteristics, b4 is preferably in the range of 0.1 to 0.2.

触媒の耐熱性は、熱処理を受けた後の触媒の比表面積で評価することができる。触媒の比表面積は、窒素ガス吸着によるBET法により求めることが可能である。本触媒の有する高い耐熱性の目安として、大気中で900℃5時間の熱処理を行った後における触媒の比表面積は、7m/g以上である事が望ましい。より好ましくは、該比表面積の下限値は8m/gであり、更に好ましくは10m/gである。この範囲よりも熱処理後の比表面積が低くなってしまう場合、触媒の耐熱性は十分とは言えず、触媒の使用期間中に高い浄化性能を与え続けることが困難となる場合が生じる可能性がある。尚、前記熱処理後の比表面積の上限値は、現実的には熱処理前の比表面積以下の範囲であって、熱処理前の比表面積の70%の値であることが望ましい。 The heat resistance of the catalyst can be evaluated by the specific surface area of the catalyst after being subjected to heat treatment. The specific surface area of the catalyst can be determined by the BET method using nitrogen gas adsorption. As a measure of the high heat resistance of the catalyst, the specific surface area of the catalyst after heat treatment at 900 ° C. for 5 hours in air is preferably 7 m 2 / g or more. More preferably, the lower limit of the specific surface area is 8 m 2 / g, more preferably 10 m 2 / g. If the specific surface area after heat treatment is lower than this range, the heat resistance of the catalyst may not be sufficient, and it may be difficult to continue to provide high purification performance during the period of use of the catalyst. is there. The upper limit value of the specific surface area after the heat treatment is actually in the range of the specific surface area before the heat treatment, and preferably 70% of the specific surface area before the heat treatment.

本発明の効果を得るために、本発明の触媒の酸化物1と酸化物2の混合物を製造する方法は重要な要素である。通常、ペロブスカイト型複合酸化物の触媒を得るために用いられる製造方法は、アルコキシドなどの原料を用いる、いわゆる溶液法が一般的である。溶液法は、原料を均一に溶解した溶液から製造するため、比較的低温の焼成でペロブスカイト型構造を得ることが可能であり、低温焼成の効果として比表面積の高い触媒を製造しやすい特徴を有する。   In order to obtain the effects of the present invention, the method for producing a mixture of oxide 1 and oxide 2 of the catalyst of the present invention is an important factor. Usually, a so-called solution method using a raw material such as an alkoxide is generally used as a production method used for obtaining a catalyst of a perovskite complex oxide. Since the solution method is produced from a solution in which raw materials are uniformly dissolved, it is possible to obtain a perovskite structure by firing at a relatively low temperature, and as a result of low temperature firing, it is easy to produce a catalyst having a high specific surface area. .

一方、本発明においては、ペロブスカイト型複合酸化物である酸化物1と、耐熱性向上のため添加される酸化物2の粒径を、それぞれ制御することが重要な構成要素である。溶液法においては、このように混在する2つの相を、平均粒径をそれぞれ制御して製造することは困難である。   On the other hand, in the present invention, it is important to control the particle diameters of the oxide 1 which is a perovskite complex oxide and the oxide 2 added for improving heat resistance. In the solution method, it is difficult to produce the two phases mixed in this way by controlling the average particle size.

一方、本発明の触媒は、酸化物1、酸化物1’、酸化物1''または酸化物1'''のアルカリ土類金属元素の原料としてアルカリ土類金属炭酸塩およびアルカリ土類金属水酸化物から選ばれる1種以上の炭酸塩または水酸化物の粉末を用い;酸化物1、酸化物1’、酸化物1''、酸化物1'''のアルカリ土類元素以外の構成元素の原料および酸化物2の原料としてこれらの構成元素の酸化物の粉末を用いる。これらを混合して焼成し、セラミックスボールを用いた粉砕法によって微粉砕することで製造可能である。   On the other hand, the catalyst of the present invention comprises an alkaline earth metal carbonate and an alkaline earth metal water as a raw material of the alkaline earth metal element of oxide 1, oxide 1 ′, oxide 1 ″ or oxide 1 ′ ″. One or more carbonate or hydroxide powders selected from oxides are used; constituent elements other than alkaline earth elements of oxide 1, oxide 1 ′, oxide 1 ″ and oxide 1 ″ ′ As the raw material of the above and the raw material of the oxide 2, oxide powders of these constituent elements are used. These can be produced by mixing and firing, and finely pulverizing by a pulverization method using ceramic balls.

次に、本発明の触媒の第1の製造方法について説明する。
組成式(式1)におけるA1元素であるSr、Caの原料としてはアルカリ土類金属炭酸塩およびアルカリ土類金属水酸化物から選ばれる1種以上の炭酸塩または水酸化物、好ましくはBaCO、SrCO、CaCO、Ba(OH)・8HO、Sr(OH)・8HO、Sr(OH)、Ca(OH)から選ばれる炭酸塩または水酸化物が使用でき;Feの原料としてはFeが使用でき;B1元素であるCo、Cuの原料としてはCoO、Co、CuOなどが使用でき;C1元素であるTi、Nb、Taの原料としてはTiO、Nb、Taなどの酸化物が使用できる。
Next, the 1st manufacturing method of the catalyst of this invention is demonstrated.
The raw materials for Sr and Ca, which are A1 elements in the composition formula (formula 1), are one or more carbonates or hydroxides selected from alkaline earth metal carbonates and alkaline earth metal hydroxides, preferably BaCO 3. Carbonate or hydroxide selected from SrCO 3 , CaCO 3 , Ba (OH) 2 .8H 2 O, Sr (OH) 2 .8H 2 O, Sr (OH) 2 and Ca (OH) 2 can be used. Fe 2 O 3 can be used as a raw material for Fe; CoO, Co 3 O 4 , CuO, etc. can be used as a raw material for Co and Cu as B1 elements; as raw materials for Ti, Nb, and Ta as C1 elements; Can use oxides such as TiO 2 , Nb 2 O 5 and Ta 2 O 5 .

また、酸化物2の原料として、平均粒径0.5μm以下に調整したY、La、CeO、NiOなどの酸化物を使用できる。 Further, as the oxide 2 raw material, the average particle size 0.5 [mu] m Y 2 O 3 were adjusted to the following, La 2 O 3, CeO 2, NiO oxides such as can be used.

焼成過程において、酸化物1の原料は反応してペロブスカイト型構造の粒子を形成するが、当該粒子は数百μm以上へと大きく粒成長する。一方、酸化物2は焼成過程においても反応せず、焼成前の粒径から大きく変化しない。このため、焼成後の状態では、酸化物2の粒径は、酸化物1の粒径よりもかなり小さい。一方、焼成後の粉砕過程において、酸化物2の原料は、酸化物1よりも粉砕されにくい。粉砕によって酸化物2の粒径も小さくはなるものの、酸化物1の粒径との差は縮まる傾向にある。このため酸化物2の原料の平均粒径は0.5μm以下に調整することが望ましく、0.3μm以下にすることがより望ましく、更に望ましくは0.1μm以下である。   In the firing process, the raw material of the oxide 1 reacts to form particles having a perovskite structure, but the particles grow large to several hundred μm or more. On the other hand, the oxide 2 does not react even in the firing process and does not change greatly from the particle size before firing. For this reason, the particle size of the oxide 2 is considerably smaller than the particle size of the oxide 1 in the state after firing. On the other hand, the raw material of the oxide 2 is less pulverized than the oxide 1 in the pulverization process after firing. Although the particle size of the oxide 2 is reduced by pulverization, the difference from the particle size of the oxide 1 tends to be reduced. For this reason, the average particle diameter of the raw material of the oxide 2 is desirably adjusted to 0.5 μm or less, more desirably 0.3 μm or less, and further desirably 0.1 μm or less.

酸化物2は、焼成工程における温度(焼成温度)範囲では酸化物1と反応しない。そのため、酸化物2の平均粒径を、製品の触媒で必要とされる粒径に、原料段階であらかじめ調整しておくことが有効である。   The oxide 2 does not react with the oxide 1 in the temperature (firing temperature) range in the firing step. Therefore, it is effective to adjust the average particle size of the oxide 2 in advance at the raw material stage to the particle size required for the product catalyst.

酸化物1と酸化物2の原料を所要量秤量した後、水やエチルアルコール等を分散媒とし、ボールミル等のミルで湿式混合する。また、場合によっては分散媒を用いない乾式混合でもよい。得られたスラリーを乾燥、解砕し(乾式混合の場合には、通常、この工程は必要ない)、その後、アルミナ製等のセラミック容器に入れて、大気中で数時間焼成し、酸化物1と酸化物2の焼成混合物を得る。   After weighing the required amounts of the raw materials for oxide 1 and oxide 2, wet mixing is performed with a mill such as a ball mill using water or ethyl alcohol as a dispersion medium. In some cases, dry mixing without using a dispersion medium may be used. The obtained slurry is dried and crushed (in the case of dry mixing, this step is usually not necessary), and then put in a ceramic container made of alumina or the like and baked for several hours in the atmosphere. And a calcined mixture of oxide 2 is obtained.

焼成温度は900℃以上1200℃以下である。焼成は異なる温度で複数回行うことが望ましい。また、第1の焼成工程と第2の焼成工程との間に、乳鉢などによって粉を粉砕し、粗粒を除去しておくことが望ましい。複数回行う焼成のそれぞれの焼成温度は、順番に高い温度として行くことが望ましい。典型的には、1回目に900℃で焼成を行い、2回目には1100℃で焼成する。それにより、優れた特性の触媒を製造することが可能となる。焼成温度が1200℃を超えると、後工程の粉砕が困難になる。また、焼成温度が900℃を下回ると、ペロブスカイト型構造の形成が不十分で、必要な触媒特性が得られない問題が生じる。   The firing temperature is 900 ° C. or higher and 1200 ° C. or lower. It is desirable to perform the firing a plurality of times at different temperatures. Moreover, it is desirable to grind | pulverize a powder with a mortar etc. between the 1st baking process and the 2nd baking process, and to remove a coarse grain. It is desirable that the firing temperatures of the firings that are performed a plurality of times be sequentially increased. Typically, the first baking is performed at 900 ° C., and the second baking is performed at 1100 ° C. Thereby, it becomes possible to produce a catalyst having excellent characteristics. If the firing temperature exceeds 1200 ° C., pulverization in the subsequent process becomes difficult. On the other hand, if the calcination temperature is lower than 900 ° C., the formation of the perovskite structure is insufficient and the necessary catalyst characteristics cannot be obtained.

焼成後に得られた酸化物1と酸化物2の焼成混合物を粉砕することにより、酸化物1の平均粒径が0.2μm以下であり、酸化物2の平均粒径が0.1μm以下であり、かつ比表面積が少なくとも20m/gになるまで微粉化する。従来、このような微細で高比表面積の酸化物粉末を、粉砕法で製造することは困難であった。一方、本発明における前記焼成混合物は、粉砕に直径0.5mmから0.01mm程度のセラミックスボールを用いる、ビーズミルなどの媒体撹拌型粉砕装置を用いることで、極めて容易に前記微粉化が可能である。該比表面積は100m/g程度まで高めることは可能であるが、70m/g以下であることが好ましい。微粉化を進め過ぎた場合、ペロブスカイト相が粉砕過程において分解してしまう場合があり好ましくない。 By pulverizing the firing mixture of oxide 1 and oxide 2 obtained after firing, the average particle size of oxide 1 is 0.2 μm or less, and the average particle size of oxide 2 is 0.1 μm or less. And pulverize until the specific surface area is at least 20 m 2 / g. Conventionally, it has been difficult to produce such a fine oxide powder having a high specific surface area by a pulverization method. On the other hand, the baked mixture in the present invention can be pulverized very easily by using a medium stirring type pulverizer such as a bead mill using a ceramic ball having a diameter of about 0.5 mm to 0.01 mm for pulverization. . Although specific surface area is possible to increase up to about 100 m 2 / g, preferably not more than 70m 2 / g. If the pulverization is advanced too much, the perovskite phase may be decomposed during the pulverization process, which is not preferable.

粉砕に用いるセラミックスのボールとしては、ボールの摩耗による不純物混入が少ないとの観点から、ジルコニア製のボールを用いることが好ましい。セラミックスボールによる前記焼成混合物の粉砕は、前記焼成混合物の比表面積が少なくとも20m/gになるまで行うことが必要であり、望ましくは25m/g以上まで行う。粉砕後の前記焼成混合物の比表面積が上記範囲よりも低いと、得られた触媒を使用する過程において、比表面積が小さくなり、触媒特性が低くなる問題が生じやすくなる。 As a ceramic ball used for pulverization, it is preferable to use a ball made of zirconia from the viewpoint of less contamination of impurities due to wear of the ball. The pulverization of the fired mixture with the ceramic balls needs to be carried out until the specific surface area of the fired mixture becomes at least 20 m 2 / g, and desirably it is raised to 25 m 2 / g or more. If the specific surface area of the calcined mixture after pulverization is lower than the above range, the specific surface area becomes small in the process of using the obtained catalyst, and the problem that the catalyst characteristics become low tends to occur.

次に、本発明の触媒の第2の製造方法について説明する。本方法においては、まず酸化物1のみを製造する。該方法は前記方法と同様であり、原料混合、乾燥、解砕、大気中焼成し、ペロブスカイト型構造の酸化物を得る。この段階の酸化物1の粒子は、原料が反応することで、粒径数百μm以上へと大きく成長している。   Next, the 2nd manufacturing method of the catalyst of this invention is demonstrated. In this method, only the oxide 1 is first manufactured. This method is the same as the above method, and raw material mixing, drying, crushing, and firing in the atmosphere yield an oxide having a perovskite structure. The particles of oxide 1 at this stage are greatly grown to a particle size of several hundred μm or more due to the reaction of the raw materials.

得られた酸化物1に、事前に平均粒径0.5μm以下に調整したY、La、CeO、NiOなどの酸化物2の原料を添加混合する。さらに、下記に記載する粉砕方法によって、得られた添加混合物を、酸化物1の平均粒径が0.2μm以下になるまで粉砕する。 The raw material of oxide 2 such as Y 2 O 3 , La 2 O 3 , CeO 2 , and NiO that has been adjusted to an average particle size of 0.5 μm or less in advance is added to and mixed with the obtained oxide 1. Further, the obtained additive mixture is pulverized by the pulverization method described below until the average particle size of the oxide 1 becomes 0.2 μm or less.

酸化物1はペロブスカイト構造のため強度が低く、粉砕過程において、酸化物1は酸化物2のよりも粉砕されやすい。従って、粉砕によって、酸化物2の粒径も小さくはなるものの、酸化物1の方がより粉砕されて速やかに小さくなる。このため、粉砕開始の段階で添加する酸化物2の原料の粒径を、酸化物1の粒径よりも細かくしておいても、酸化物1と2の粒径との差は縮まる傾向にある。酸化物2の原料の平均粒径を0.5μm以下に調整しておくことにより、粉砕後の酸化物1と酸化物2の粒径を、本発明の範囲内とすることができる。一方、酸化物2の原料の平均粒径が前述の条件を外れて0.5μmよりも大きい場合、粉砕プロセスにおいて、酸化物1の粉砕が進んで酸化物2よりも小さくなってしまう場合があり、酸化物1と酸化物2の粒径を、本発明の範囲内にすることが困難となる。   Since the oxide 1 has a perovskite structure, its strength is low, and the oxide 1 is more easily pulverized than the oxide 2 in the pulverization process. Therefore, although the particle diameter of the oxide 2 is reduced by the pulverization, the oxide 1 is further pulverized and quickly becomes smaller. For this reason, even if the particle size of the raw material of oxide 2 added at the stage of pulverization is made smaller than the particle size of oxide 1, the difference between the particle sizes of oxides 1 and 2 tends to be reduced. is there. By adjusting the average particle diameter of the raw material of the oxide 2 to 0.5 μm or less, the particle diameters of the oxide 1 and the oxide 2 after pulverization can be within the range of the present invention. On the other hand, when the average particle diameter of the raw material of the oxide 2 is larger than 0.5 μm outside the above-mentioned conditions, the pulverization process of the oxide 1 may progress and become smaller than the oxide 2 in the pulverization process. It becomes difficult to make the particle diameters of the oxide 1 and the oxide 2 within the range of the present invention.

酸化物1と酸化物2の粒径を確実に本発明の範囲内とするためには、酸化物2の原料の平均粒径を0.3μm以下にすることが望ましく、更に望ましくは0.1μm以下である。   In order to ensure that the particle diameters of the oxide 1 and the oxide 2 are within the range of the present invention, the average particle diameter of the raw material of the oxide 2 is desirably 0.3 μm or less, and more desirably 0.1 μm. It is as follows.

該添加混合物を、前記方法と同様にセラミックスのボールを用いた粉砕により、比表面積が20m/g以上であり、かつ、酸化物1の平均粒径が0.2μm以下であり、かつ、酸化物2の平均粒径が0.1μm以下になるまで微粉化する。 The additive mixture is pulverized using ceramic balls in the same manner as described above, and the specific surface area is 20 m 2 / g or more, the average particle diameter of oxide 1 is 0.2 μm or less, and the oxidation is performed. The product 2 is pulverized until the average particle size of the product 2 becomes 0.1 μm or less.

粉砕された焼成混合物または粉砕された添加混合物(これらを「粉砕混合物」ともいう)に、Pt、Pd、Rhなどの貴金属を担持させて、本発明の粉末状の触媒を得ることができる。この粉砕混合物は、本発明の排ガス浄化用触媒における、酸化物1と酸化物2の混合物となる。   The powdered catalyst of the present invention can be obtained by supporting a noble metal such as Pt, Pd, Rh on the pulverized baked mixture or the pulverized additive mixture (also referred to as “pulverized mixture”). This pulverized mixture becomes a mixture of oxide 1 and oxide 2 in the exhaust gas purifying catalyst of the present invention.

該粉砕混合物へのPt、Pd、Rhの担持方法において、Pt、Pd、及びRhの原料としては、ジニトロジアンミン白金硝酸水溶液、硝酸パラジウム水溶液、又は硝酸ロジウム水溶液等が好適に使用できる。それらの所要量を秤量して混合溶液とし、さらに、その混合溶液の所定量を、所定量の酸化物1と酸化物2の粉砕混合物に含浸させ、ロータリーエバポレータ等を利用して乾燥する。その後、600℃程度の温度で大気中数時間熱処理する。また、貴金属塩をエタノールなどのアルコールに溶解し、アルコール溶媒を用いた含浸を行うことも可能である。   In the method of supporting Pt, Pd, and Rh on the pulverized mixture, dinitrodiammine platinum nitrate aqueous solution, palladium nitrate aqueous solution, rhodium nitrate aqueous solution, or the like can be suitably used as the raw material for Pt, Pd, and Rh. These required amounts are weighed to form a mixed solution, and a predetermined amount of the mixed solution is impregnated into a predetermined amount of the pulverized mixture of oxide 1 and oxide 2 and dried using a rotary evaporator or the like. Thereafter, heat treatment is performed in the atmosphere for several hours at a temperature of about 600 ° C. It is also possible to dissolve the noble metal salt in an alcohol such as ethanol and impregnate using an alcohol solvent.

次に、本発明の排ガス浄化触媒部材について説明する。   Next, the exhaust gas purification catalyst member of the present invention will be described.

本発明の排ガス浄化触媒部材は、前述した本発明の触媒を基材に担持して成るものである。基材に担持することにより、触媒の空間濃度を最適に制御すると共に、排ガスとの接触面において、触媒表面を有効に利用することができる。さらに、基材との結合により、触媒粒子の飛散防止が可能である。加えて、触媒反応の際の発熱に伴う過昇温、熱劣化や、吸熱に伴う温度低下、活性低下と言った影響を少なくすると言う効果が得られる。   The exhaust gas purification catalyst member of the present invention is formed by supporting the above-described catalyst of the present invention on a base material. By supporting the catalyst on the substrate, the spatial concentration of the catalyst can be optimally controlled, and the catalyst surface can be effectively used at the contact surface with the exhaust gas. Furthermore, it is possible to prevent the catalyst particles from being scattered by being bonded to the base material. In addition, it is possible to obtain an effect of reducing influences such as excessive temperature increase, heat deterioration due to heat generation in the catalytic reaction, temperature decrease due to heat absorption, and activity decrease.

本発明の排ガス浄化触媒部材に用いる基体としては、セラミックス又は金属の担体、又は、それらがハニカム状である担体が好適に利用できる。前記セラミックスとしては、例えばコージェライトが好適であるが、本発明はこれに限定されるものではない。また、前記金属としては、例えば耐酸化性に優れたフェライト系ステンレス鋼が好適であるが、本発明はこれに限定されるものではない。これらセラミックス又は金属の担体がハニカム状である場合、排ガスの通気抵抗がより小さくなり、また、本発明触媒が排ガスと接触する実効面積がより増加するため、排ガス浄化触媒部材としてより好適である。   As the substrate used in the exhaust gas purification catalyst member of the present invention, a ceramic or metal carrier, or a carrier in which they are in a honeycomb form can be suitably used. For example, cordierite is suitable as the ceramic, but the present invention is not limited to this. Moreover, as said metal, the ferritic stainless steel excellent in oxidation resistance is suitable, for example, However, This invention is not limited to this. When these ceramic or metal carriers are in the form of honeycomb, the ventilation resistance of the exhaust gas becomes smaller, and the effective area where the catalyst of the present invention comes into contact with the exhaust gas increases, which is more suitable as an exhaust gas purification catalyst member.

基材に担持される本発明の貴金属量は、基材(担体)の容積に対して0.01g/L〜5g/Lの範囲であることが好ましい。貴金属量が0.01g/L未満であると、十分な浄化性能が得られないことがある。一方、貴金属量が5g/Lを超えると、それ以上浄化性能が向上しなかったり、排ガスの通気抵抗が上昇したりすることがある。   The amount of the noble metal of the present invention supported on the substrate is preferably in the range of 0.01 g / L to 5 g / L with respect to the volume of the substrate (support). If the amount of noble metal is less than 0.01 g / L, sufficient purification performance may not be obtained. On the other hand, if the amount of noble metal exceeds 5 g / L, the purification performance may not be improved further or the ventilation resistance of the exhaust gas may increase.

本発明の排ガス浄化触媒部材を製造するためには、本発明の触媒の粒子を結合剤と共に担体に固定して利用する。まず、触媒及び結合剤等が分散するスラリーを調製し、その中にセラミックス又は金属の担体を浸漬する。次いで、担体表面の余剰スラリーを吹き飛ばす等の方法で取り除き、乾燥した後、500℃程度の温度で担体ごと大気中数時間熱処理する。尚、ハニカム状の担体の場合には、前記スラリーが担体内壁にのみ塗布されるよう、ハニカム状担体を装着する治具を工夫して、前記スラリーを吸い上げることも可能である。触媒付担体が粒状の場合には、排ガスが流通するカラムに充填して利用すればよい。また、触媒付担体がハニカム状の場合には、カラム内部に何らかの方法で固定又は静置して利用すればよい。例えば、触媒付ハニカムの外周をアルミナ短繊維の断熱性ウールで巻いたものをカラム内部に設置することにより、ハニカムをカラム内部に固定できると共に、排ガスの殆どすべてが触媒層を流通して浄化される。   In order to produce the exhaust gas purification catalyst member of the present invention, the particles of the catalyst of the present invention are used together with a binder fixed to a carrier. First, a slurry in which a catalyst, a binder and the like are dispersed is prepared, and a ceramic or metal carrier is immersed in the slurry. Next, excess slurry on the surface of the carrier is removed by a method such as blowing off, and after drying, the carrier is heat-treated at a temperature of about 500 ° C. for several hours in the atmosphere. In the case of a honeycomb-shaped carrier, the slurry can be sucked up by devising a jig for mounting the honeycomb-shaped carrier so that the slurry is applied only to the inner wall of the carrier. When the catalyst-supported carrier is granular, it may be used by packing it in a column through which exhaust gas flows. In addition, when the catalyst-supported carrier has a honeycomb shape, it may be used by fixing or standing in the column by some method. For example, by placing inside the column a honeycomb with catalyst that is wrapped with heat insulating wool of alumina short fibers, the honeycomb can be fixed inside the column, and almost all of the exhaust gas is circulated through the catalyst layer and purified. The

前記結合剤としては、耐熱性を有する酸化物又は水酸化物を用いることができる。該結合剤は、上述のように、触媒粒子等を結合させるものであり、加えて、本発明の触媒を基材に担持させる際に高い密着性を与える機能も併せて有すると共に、高温酸化条件下でも安定に存在するため、結合剤としての性能が劣化することが少ない。具体的には、アルミナ、活性アルミナ、ベーマイト、水酸化アルミニウム、シリカ、シリカ-アルミナ、ゼオライト等の酸化物、水酸化物が好適に利用される。とりわけ、活性アルミナは、入手が容易かつ安価であり、より好適である。   As the binder, a heat-resistant oxide or hydroxide can be used. As described above, the binder binds the catalyst particles and the like, and additionally has a function of giving high adhesion when the catalyst of the present invention is supported on the base material, as well as high temperature oxidation conditions. Since it exists stably even under, the performance as a binder is rarely deteriorated. Specifically, oxides and hydroxides such as alumina, activated alumina, boehmite, aluminum hydroxide, silica, silica-alumina, and zeolite are preferably used. In particular, activated alumina is more suitable because it is easily available and inexpensive.

以下、本発明の実施例について説明するが、本発明は、これら実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

本発明の実施例において、ペロブスカイト型複合酸化物の組成は、製造の際の仕込み量で算出しているが、これはと別の化学分析により、仕込んだ化合物中の金属元素の量と生成物中のそれが一致することを確認した。   In the examples of the present invention, the composition of the perovskite type complex oxide is calculated by the amount charged in the production, but this is different from the amount of the metal element in the charged compound and the product by chemical analysis. I confirmed that it matched.

本実施例において、第1の製造方法によって触媒を製造する場合、酸化物2の原料の粒度分布は、島津製作所製のSLAD-3000、日機装製のMT3300、UPA150などの粒度分布測定装置によって体積平均径の測定を行い、D50を求めた。一方、媒体撹拌型粉砕装置による粉砕工程後の触媒において、酸化物1と酸化物2の平均粒径は、日本電子製JEM-2100Fなどの透過型電子顕微鏡によって評価した。該電子顕微鏡の元素分布分析によって、酸化物1と酸化物2をそれぞれ100個以上選択し、電子顕微鏡写真をもとにラインインターセプト法によって該平均粒径を求めた。即ち、該写真上に複数の直線を描き、各粒子を横切る直線部分の長さの平均値を算出してこれを平均粒径とした。   In this example, when the catalyst is produced by the first production method, the particle size distribution of the raw material of the oxide 2 is obtained by volume average using a particle size distribution measuring device such as SLAD-3000 manufactured by Shimadzu Corporation, MT3300 manufactured by Nikkiso, or UPA150. The diameter was measured and D50 was determined. On the other hand, in the catalyst after the pulverization step by the medium stirring pulverizer, the average particle diameters of oxide 1 and oxide 2 were evaluated by a transmission electron microscope such as JEM-2100F manufactured by JEOL. 100 or more oxides 1 and 2 were selected by element distribution analysis of the electron microscope, and the average particle size was determined by a line intercept method based on an electron micrograph. That is, a plurality of straight lines were drawn on the photograph, and the average value of the lengths of the straight line portions crossing each particle was calculated and used as the average particle diameter.

また、第2の製造方法によって触媒を製造する場合、酸化物1と酸化物2の粉砕工程前の粒度分布は、上記と同様に粒度分布測定装置によって測定した。一方、媒体撹拌型粉砕装置による粉砕工程後の触媒において、酸化物1と酸化物2の粒度分布は、上記と同様の方法により、透過型電子顕微鏡によって評価した。   Moreover, when manufacturing a catalyst with the 2nd manufacturing method, the particle size distribution before the grinding | pulverization process of the oxide 1 and the oxide 2 was measured with the particle size distribution measuring apparatus similarly to the above. On the other hand, in the catalyst after the pulverization step by the medium stirring pulverizer, the particle size distribution of the oxide 1 and the oxide 2 was evaluated by a transmission electron microscope in the same manner as described above.

本実施例中の触媒の比表面積は、日本ベル社製Belsorbを用い、窒素ガス吸着によるBET法により求めた。比表面積の評価は、まず貴金属担持前の段階で行い、粉砕過程における到達比表面積を求めた。また引き続き、酸化物1と酸化物2の粉砕混合物に貴金属を担持して粉末状の触媒を作製し、該触媒をアルミナ製るつぼに入れ、大気雰囲気にて900℃5時間の熱処理を行った後、再度比表面積を測定した。該比表面積を、耐熱試験後の比表面積とした。貴金属担持前の粉砕混合物の比表面積と、貴金属担持後の粉砕混合物の比表面積(耐熱試験前の触媒の比表面積)とは、ほぼ同じと考えられることから、本実施例では貴金属担持後の粉砕混合物の比表面積(耐熱試験前の触媒の比表面積)は提示しなかった。   The specific surface area of the catalyst in this example was determined by the BET method by nitrogen gas adsorption using Belsorb manufactured by Nippon Bell Co., Ltd. The evaluation of the specific surface area was first performed at the stage before supporting the noble metal, and the ultimate specific surface area in the pulverization process was determined. Further, after a precious metal was supported on the pulverized mixture of oxide 1 and oxide 2 to prepare a powdered catalyst, the catalyst was placed in an alumina crucible and subjected to a heat treatment at 900 ° C. for 5 hours in an air atmosphere. The specific surface area was measured again. The specific surface area was defined as the specific surface area after the heat resistance test. The specific surface area of the pulverized mixture before supporting the noble metal and the specific surface area of the pulverized mixture after supporting the noble metal (specific surface area of the catalyst before the heat resistance test) are considered to be substantially the same. The specific surface area of the mixture (specific surface area of the catalyst before the heat resistance test) was not presented.

本実施例中の触媒特性の評価は、すべて触媒を金属ハニカム担体に担持した触媒部材を作製し、測定を行った。具体的には、すべて触媒をステンレス箔で作られた金属ハニカム担体にウォッシュコートによって担持して触媒部材を作製し測定を行った。本実施例及び比較例の浄化性能評価において用いた触媒量は、粉末触媒換算で5〜6gを用いた。触媒を担持した金属ハニカム担体の評価装置への設置においては、ハニカム外周をアルミナ短繊維の断熱性ウールで巻いたものをカラム内部に設置することにより、ハニカムをカラム内部に固定した。   In the evaluation of the catalyst characteristics in this example, a catalyst member having a catalyst supported on a metal honeycomb carrier was produced and measured. Specifically, all the catalysts were supported on a metal honeycomb carrier made of stainless steel foil by a wash coat, and a catalyst member was produced and measured. The amount of catalyst used in the purification performance evaluation of this example and comparative example was 5 to 6 g in terms of powder catalyst. In the installation of the catalyst-supported metal honeycomb carrier in the evaluation apparatus, the honeycomb was fixed inside the column by placing the honeycomb outer periphery wound with heat insulating wool of short alumina fibers inside the column.

次に、触媒性能の評価方法について述べる。ここで用いた評価装置は、ステンレス製配管で構成された流通型反応装置であり、入り側から表1の組成のモデルガスを導入し、これを排ガス浄化反応部に流通させて、出口側に排出するものである。モデルガスを外部ヒーターにて加熱して排ガス浄化反応部に送ることで、浄化反応部分が加熱されるものである。浄化特性評価においては、まず触媒を担持したメタル担体を、表1のストイキ条件の雰囲気中に450〜500℃で1時間保持した後、一旦、常温付近まで冷却した。続いて、該メタル担体を評価装置のカラム内にセットし、昇温しながら、表1に示したストイキ条件のガスを流し、流出側(触媒部分通過後)のガス組成を分析し、CO、HC、及びNOx濃度の変化率を求めることにより、各々の浄化特性を評価した。空間速度は10万hr−1とした。触媒特性は、CO、HC、NOxが、それぞれ浄化率50%となる温度(T50)を求めて評価した。 Next, a method for evaluating catalyst performance will be described. The evaluation apparatus used here is a flow type reaction apparatus composed of stainless steel pipes. The model gas having the composition shown in Table 1 is introduced from the inlet side, and is distributed to the exhaust gas purification reaction section. To be discharged. The purification reaction part is heated by heating the model gas with an external heater and sending it to the exhaust gas purification reaction part. In the purification property evaluation, first, the metal carrier carrying the catalyst was held at 450 to 500 ° C. for 1 hour in an atmosphere under the stoichiometric conditions shown in Table 1, and then cooled to around room temperature. Subsequently, the metal carrier is set in the column of the evaluation apparatus, and while raising the temperature, the gas having the stoichiometric conditions shown in Table 1 is flowed, and the gas composition on the outflow side (after passing through the catalyst portion) is analyzed, and CO, The respective purification characteristics were evaluated by determining the rate of change of the HC and NOx concentrations. The space velocity was 100,000 hr −1 . The catalyst characteristics were evaluated by determining the temperature (T50) at which CO, HC, and NOx each had a purification rate of 50%.

本実施例及び比較例の浄化性能評価において用いた触媒量は、粉末触媒換算で5〜6gを用いた。触媒を担持したメタルハニカムの評価装置への設置においては、ハニカム外周をアルミナ短繊維の断熱性ウールで巻いたものをカラム内部に設置することにより、ハニカムをカラム内部に固定した。   The amount of catalyst used in the purification performance evaluation of this example and comparative example was 5 to 6 g in terms of powder catalyst. In the installation of the catalyst-supported metal honeycomb in the evaluation apparatus, the honeycomb was fixed inside the column by placing the honeycomb outer periphery wound with heat insulating wool of alumina short fibers inside the column.

本実施例中の触媒の耐熱試験後のT50は、以下の方法により評価した。ハニカム状担体に触媒が担持された触媒部材を大気中で900℃、5時間保持した後、一旦、常温付近まで冷却した。これを表1のストイキ条件の雰囲気中に450〜500℃で1時間保持した後、再び常温付近まで冷却した。このように熱処理したものを前記の評価方法で評価し、T50を求めた。   T50 after the heat resistance test of the catalyst in this example was evaluated by the following method. The catalyst member having the catalyst supported on the honeycomb-shaped carrier was held in the atmosphere at 900 ° C. for 5 hours, and then cooled to near normal temperature. This was held at 450 to 500 ° C. for 1 hour in an atmosphere under the stoichiometric conditions shown in Table 1, and then cooled again to near normal temperature. What was heat-treated in this way was evaluated by the above evaluation method, and T50 was determined.

触媒の浄化特性については、耐熱試験後でのCO、HC、及びNOxのT50の平均値が255℃以下である場合を浄化特性優(◎)、255℃超260℃以下である場合を浄化特性良(○)、260℃超265℃以下である場合を浄化特性可(△)、265℃超であるか浄化率50%に到達しない場合を浄化特性不良(×)とした。また、T50の平均値の変化幅(触媒劣化によるT50上昇幅)が、10℃以下の場合を耐熱性優(◎)、10℃超25℃以下の場合を耐熱性良(○)、25℃超40℃以下の場合を耐熱性可(△)、40℃超であるか浄化率50%に到達しない場合を不良(×)とした。総合判定として、浄化特性と耐熱性が両方とも優である場合を◎、優と良である場合を○+、良と良である場合を○、良と可である場合を○−、可と可である場合を△、片方でも不良である場合を×と評価した。

Figure 2014061461
As for the purification characteristics of the catalyst, when the average value of T50 of CO, HC and NOx after the heat resistance test is 255 ° C. or less, the purification characteristics are excellent (◎), and when the average value is over 255 ° C. and 260 ° C. or less. The case where it was good (◯) and the temperature was higher than 260 ° C. and 265 ° C. or lower was acceptable (Δ), and the case where the temperature was higher than 265 ° C. or the purification rate did not reach 50% was regarded as a poor purification property (×). Further, when the change width of the average value of T50 (T50 increase width due to catalyst deterioration) is 10 ° C. or less, excellent heat resistance ((), and when it is more than 10 ° C. and 25 ° C. or less, good heat resistance (◯), 25 ° C. When the temperature was 40 ° C. or lower, heat resistance was acceptable (Δ). As a comprehensive judgment, ◎ when the purification property and heat resistance are both excellent, ○ + when it is good and good, ○ when it is good and good, ○ − when it is good and good, The case where it was possible was evaluated as △, and the case where even one was defective was evaluated as ×.
Figure 2014061461

(実施例1)
組成がSr1.02{Fe0.9Cu0.1}O3−δで表わされるペロブスカイト型結晶構造を有する酸化物1に対し、酸化物2として、Y中のYの量が、Srの20mol%となるように、Yが添加された混合物を得た。さらに、この混合物に、0.4mass%のPdを担持してなる触媒を製造し、さらにこれを用いて触媒部材を製造した。そして、これらの触媒性能を評価した。
Example 1
With respect to oxide 1 having a perovskite crystal structure whose composition is represented by Sr 1.02 {Fe 0.9 Cu 0.1 } O 3-δ , the amount of Y in Y 2 O 3 is as oxide 2 , Y 2 O 3 was added so as to be 20 mol% of Sr. Furthermore, the catalyst which carries 0.4 mass% Pd in this mixture was manufactured, and also the catalyst member was manufactured using this. And the catalyst performance was evaluated.

まず酸化物1と酸化物2との混合物を、以下の方法により製造した。   First, a mixture of oxide 1 and oxide 2 was produced by the following method.

Sr、Fe、Cu及びYの原料として、各々、粒状のSrCO、Fe、CuO、及びYを用いた。Yの平均粒径D50が0.1μmとなるように予備粉砕を行った。モル比で、Sr:Fe:Cu:Y=1.02:0.9:0.1:0.204となるように、前記原料を秤量して、エチルアルコール(分散媒)に加え、ボールミルにより粉砕しながら湿式混合することにより、スラリーを得た。前記スラリーから、ロータリーエバポレータ固形分を分離し、およそ120℃で1時間乾燥した。次に、得られた乾固物を解砕後、MgOセラミック製の角さや容器に入れ、電気炉にて大気中900℃で5時間焼成し、多孔質塊状の焼成物を得た。焼成物を解砕後、自動乳鉢により乾式粉砕し、再びMgOセラミック製の角さや容器に入れ、電気炉にて大気中1100℃で5時間焼成した。得られた焼成混合物の構成相を粉末X線回折法で評価したところ、ペロブスカイト型構造の単一相からなる酸化物1と、ICDDのPowder Diffraction Fileの41-1105とよく一致するY(酸化物2)の混合状態となっていた。 Granular SrCO 3 , Fe 2 O 3 , CuO, and Y 2 O 3 were used as raw materials for Sr, Fe, Cu, and Y, respectively. Pre-grinding was performed so that the average particle diameter D50 of Y 2 O 3 was 0.1 μm. The raw materials are weighed so that the molar ratio is Sr: Fe: Cu: Y = 1.02: 0.9: 0.1: 0.204, and added to ethyl alcohol (dispersion medium). A slurry was obtained by wet mixing while pulverizing. The rotary evaporator solids were separated from the slurry and dried at approximately 120 ° C. for 1 hour. Next, the obtained dried product was crushed, put into a corner or container made of MgO ceramic, and baked in an electric furnace at 900 ° C. for 5 hours in the air to obtain a porous massive fired product. After the fired product was crushed, it was dry-pulverized with an automatic mortar, placed again in a corner or container made of MgO ceramic, and fired in an electric furnace at 1100 ° C. for 5 hours in the atmosphere. When the constituent phase of the obtained baked mixture was evaluated by powder X-ray diffraction method, it was found that the oxide 1 composed of a single phase having a perovskite structure and Y 2 O 3 well matched with 41-1105 of the Powder Diffraction File of ICDD. (Oxide 2) was mixed.

該焼成混合物を、直径0.2mmのジルコニアビーズを用い、エタノールを溶媒とするビーズミルにて3時間粉砕した。粉砕された焼成混合物(粉砕混合物)の比表面積を測定したところ、30m/gであった。また、該粉砕混合物中の酸化物1と酸化物2の平均粒径を測定したところ、それぞれ0.07μmと、0.05μmであった。 The fired mixture was pulverized for 3 hours in a bead mill using ethanol as a solvent, using zirconia beads having a diameter of 0.2 mm. It was 30 m < 2 > / g when the specific surface area of the grind | pulverized baking mixture (crushed mixture) was measured. Moreover, when the average particle diameter of the oxide 1 and the oxide 2 in this grinding | pulverization mixture was measured, they were 0.07 micrometer and 0.05 micrometer, respectively.

次に、上記粉砕混合物に、以下のようにして0.4mass%のPdを担持させた。   Next, 0.4 mass% Pd was supported on the pulverized mixture as follows.

市販硝酸パラジウムの所定量を秤量し、これをエタノールで希釈して100mL程度の体積の希釈溶液とした。この希釈溶液と前記粉砕混合物100gをロータリーエバポレータに入れ、まず、常温、減圧下で回転攪拌しながら脱泡処理をした。常圧に戻して約50℃に加熱した後、減圧して乾燥した。常温まで冷却後、常圧に戻して固形物を取り出し、約120℃で5時間乾燥した。得られた乾燥物を、大気中600℃で5時間熱処理した後、解砕して粉末状とした。以上の操作により、Pd担持率0.4mass%の粉末状の触媒を得た。   A predetermined amount of commercially available palladium nitrate was weighed and diluted with ethanol to obtain a diluted solution having a volume of about 100 mL. The diluted solution and 100 g of the pulverized mixture were put in a rotary evaporator, and first, defoamed while rotating and stirring at normal temperature and under reduced pressure. After returning to normal pressure and heating to about 50 ° C., it was dried under reduced pressure. After cooling to room temperature, the pressure was returned to normal pressure, the solid was taken out, and dried at about 120 ° C. for 5 hours. The obtained dried product was heat treated at 600 ° C. in the atmosphere for 5 hours, and then crushed into powder. By the above operation, a powdery catalyst having a Pd loading of 0.4 mass% was obtained.

該触媒をアルミナ製るつぼに入れ、大気雰囲気にて900℃5時間の熱処理(耐熱試験)を行った後、再度比表面積を測定した所、11m/gであった。 The catalyst was placed in an alumina crucible, subjected to a heat treatment (heat resistance test) at 900 ° C. for 5 hours in an air atmosphere, and then the specific surface area was measured again, which was 11 m 2 / g.

次に、上記で得られた触媒をハニカム状の金属担体に担持させた。   Next, the catalyst obtained above was supported on a honeycomb-shaped metal carrier.

質量比で、前記Pd担持触媒10質量部、市販γ-アルミナ(活性アルミナ)5質量部、市販シリカゾル(商品名スノーテックスC)4質量部、純水7質量部、市販メルセルロース溶液(固形分2.5質量%)、及び消泡剤適量を攪拌しながら、良く混合してスラリーとした。   By mass ratio, 10 parts by mass of the Pd-supported catalyst, 5 parts by mass of commercially available γ-alumina (activated alumina), 4 parts by mass of commercially available silica sol (trade name Snowtex C), 7 parts by mass of pure water, a commercially available melcellulose solution (solid content) 2.5% by mass) and an appropriate amount of antifoaming agent were mixed well to obtain a slurry.

ハニカム状の金属担体として、所定形状直径が25mm、高さが60mm、ハニカム断面のセル空孔の大きさが縦1mm×横2mmの、円筒型のステンレス鋼製ハニカム状担体を用いた。このハニカム状担体を垂直に保持し、その上部端面に過剰量の前記スラリーをそれぞれ一様に盛り、ハニカム状担体下部端面から吸引してハニカム内壁に塗布すると共に、余剰スラリーを除去した。ハニカム状担体の外表面にスラリーが付着した場合には、乾燥する前に付着スラリーを拭き取った。吸引を継続しつつ、ハニカム状担体上部端面をエアーブローして、乾燥した。ハニカム状担体の上下を逆転し、前記ハニカム状担体内壁へのスラリー塗布、乾燥操作を再度行った。その後、大気中600℃で1時間熱処理することによって、本発明の触媒粉末の担持されたステンレス鋼製ハニカム状担体を得た。尚、ハニカム状担体に固定されたPd量は、0.63g/L−担体であった。   As the honeycomb-shaped metal carrier, a cylindrical stainless steel honeycomb carrier having a predetermined shape diameter of 25 mm, a height of 60 mm, and a cell pore size of 1 mm × 2 mm in the honeycomb cross section was used. The honeycomb-shaped carrier was held vertically, and an excessive amount of the slurry was uniformly deposited on the upper end surface of the honeycomb-shaped carrier, sucked from the lower end surface of the honeycomb-shaped carrier and applied to the inner wall of the honeycomb, and the excess slurry was removed. When the slurry adhered to the outer surface of the honeycomb-shaped carrier, the adhered slurry was wiped off before drying. While continuing the suction, the upper end surface of the honeycomb-shaped carrier was air blown and dried. The honeycomb carrier was turned upside down, and the slurry was applied to the inner wall of the honeycomb carrier and the drying operation was performed again. Thereafter, heat treatment was performed in the atmosphere at 600 ° C. for 1 hour to obtain a stainless steel honeycomb-shaped carrier carrying the catalyst powder of the present invention. The amount of Pd fixed on the honeycomb-shaped carrier was 0.63 g / L-carrier.

上記の触媒付ステンレス鋼製ハニカム状担体の排ガス浄化性能を測定したところ、CO、THC、およびNOxのT50は、それぞれ、210℃、229℃、および250℃であった。また、該ハニカム状担体に耐熱試験を行った後のCO、THC、およびNOxのT50はそれぞれ、240℃、257℃、および279℃であった。これら耐熱試験後のT50の平均値は255℃であり、浄化特性優(◎)、T50の耐熱試験による上昇幅は25℃であり、耐熱性良(○)と評価され、総合判定は○+であった。   When the exhaust gas purification performance of the above catalyst-supported stainless steel honeycomb-shaped carrier was measured, T50s of CO, THC, and NOx were 210 ° C., 229 ° C., and 250 ° C., respectively. The T50s of CO, THC, and NOx after the heat resistance test of the honeycomb-shaped carrier were 240 ° C., 257 ° C., and 279 ° C., respectively. The average value of T50 after these heat tests is 255 ° C., the purification characteristic is excellent (◎), the increase in the T50 heat test is 25 ° C., and the heat resistance is evaluated as good (◯). Met.

上記の触媒を構成する酸化物1の組成を表2に;酸化物2の条件、触媒の製造条件および物性を表3に;触媒性能の評価結果を表5に、それぞれ示した。   The composition of oxide 1 constituting the catalyst is shown in Table 2; the conditions of oxide 2, the production conditions and physical properties of the catalyst are shown in Table 3, and the evaluation results of the catalyst performance are shown in Table 5, respectively.

(実施例2)
組成がSr1.02{Fe0.8Cu0.2}O3−δで表わされるペロブスカイト型結晶構造を有する酸化物1に対し、酸化物2として、Y中のYの量がSrの10mol%となるように、Yが添加された混合物に、0.4mass%のPdを担持してなる触媒、及びこれを用いたハニカム状担体を、実施例1と同様の方法で製造した。
(Example 2)
With respect to the oxide 1 having a perovskite crystal structure whose composition is represented by Sr 1.02 {Fe 0.8 Cu 0.2 } O 3-δ , the amount of Y in Y 2 O 3 as the oxide 2 is A catalyst in which 0.4 mass% of Pd is supported on a mixture in which Y 2 O 3 is added so that the amount of Sr is 10 mol%, and a honeycomb-like carrier using the catalyst, are prepared in the same manner as in Example 1. Manufactured with.

焼成混合物の構成相を粉末X線回折法で評価したところ、ペロブスカイト型構造の単一相からなる酸化物1と、ICDDのPowder Diffraction Fileの41-1105とよく一致するY(酸化物2)の混合状態となっていた。ビーズミルにより粉砕された焼成混合物(粉砕混合物)の比表面積を測定したところ、28m/gであった。また、該粉砕混合物中の酸化物1と酸化物2の平均粒径を測定したところ、それぞれ0.08μmと、0.05μmであった。耐熱試験後における粉末状の触媒の比表面積は、10m/gであった。 The constituent phases of the fired mixture were evaluated by powder X-ray diffraction. As a result, the oxide 1 composed of a single phase having a perovskite structure and the Y 2 O 3 (oxide) well matched with 41-1105 of the ICDD's Powder Diffraction File 2). It was 28 m < 2 > / g when the specific surface area of the baking mixture (crushed mixture) grind | pulverized by the bead mill was measured. Moreover, when the average particle diameter of the oxide 1 and the oxide 2 in this grinding | pulverization mixture was measured, they were 0.08 micrometer and 0.05 micrometer, respectively. The specific surface area of the powdery catalyst after the heat test was 10 m 2 / g.

さらに、触媒性能を評価した後、該ハニカム状担体に耐熱試験を実施し、再度触媒性能を評価した。評価結果を表5に示す。浄化特性優(◎)、耐熱性良(○)、総合判定○+であった。   Furthermore, after evaluating the catalyst performance, the honeycomb-shaped carrier was subjected to a heat resistance test, and the catalyst performance was evaluated again. The evaluation results are shown in Table 5. The purification characteristics were excellent (◎), good heat resistance (○), and overall judgment ○ +.

(実施例3)
組成がSr1.0{Fe0.8Ta0.2}O3−δで表わされるペロブスカイト型結晶構造を有する酸化物1に対し、酸化物2として、Y中のYの量がSrの15mol%となるように、Yが添加された混合物に、0.4mass%のPdを担持してなる触媒、及びこれを用いて触媒部材を、上記と同様の方法で製造した。
(Example 3)
In contrast to oxide 1 having a perovskite crystal structure whose composition is represented by Sr 1.0 {Fe 0.8 Ta 0.2 } O 3-δ , the amount of Y in Y 2 O 3 as oxide 2 is A catalyst in which 0.4 mass% of Pd was supported on a mixture in which Y 2 O 3 was added so as to be 15 mol% of Sr, and a catalyst member was produced by the same method as described above. .

焼成混合物の構成相を粉末X線回折法で評価したところ、Sr{Fe0.5Ta0.5}Oとほぼ一致する第一の相と、実施例1の酸化物1とほぼ一致する第二の相で構成される、ペロブスカイト型構造の2種類の相からなる酸化物1と、ICDDのPowder Diffraction Fileの41-1105とよく一致するY(酸化物2)の混合状態となっていた。 When the constituent phases of the fired mixture were evaluated by powder X-ray diffractometry, the first phase almost identical to Sr {Fe 0.5 Ta 0.5 } O 3 and the oxide 1 of Example 1 were almost identical. Oxide 1 composed of two types of perovskite structure composed of the second phase, and a mixed state of Y 2 O 3 (oxide 2) that closely matches 41-1105 of the ICDD's Powder Diffraction File It was.

ビーズミルにより粉砕された焼成混合物(粉砕混合物)の比表面積を測定したところ、20m/gであった。また、該粉砕混合物中の酸化物1と酸化物2の平均粒径を測定したところ、それぞれ0.15μmと、0.08μmであった。耐熱試験後における粉末状の触媒の比表面積は、15m/gであった。 It was 20 m < 2 > / g when the specific surface area of the baking mixture (crushed mixture) grind | pulverized by the bead mill was measured. Moreover, when the average particle diameter of the oxide 1 and the oxide 2 in this grinding | pulverization mixture was measured, they were 0.15 micrometer and 0.08 micrometer, respectively. The specific surface area of the powdery catalyst after the heat test was 15 m 2 / g.

さらに、該触媒をハニカム状の金属担体に担持させ、触媒性能を評価した後、該ハニカム状担体に耐熱試験を実施し、再度触媒性能を評価した。評価結果を表5に示す。浄化特性優(◎)、耐熱性優(◎)、総合判定◎であった。   Furthermore, after the catalyst was supported on a honeycomb-shaped metal carrier and the catalyst performance was evaluated, a heat resistance test was performed on the honeycomb-shaped carrier, and the catalyst performance was evaluated again. The evaluation results are shown in Table 5. The purification characteristics were excellent (◎), excellent heat resistance (◎), and overall judgment ◎.

(実施例4)
組成がSr1.0{Fe0.8Cu0.1Ta0.1}O3−δで表わされるペロブスカイト型結晶構造を有する酸化物1に対し、酸化物2として、Y中のYの量がSrの15mol%となるように、Yが添加された混合物に、0.4mass%のPdを担持してなる触媒、及びこれを用いて触媒部材を、上記と同様の方法で製造した。
Example 4
To oxide 1 having a composition having a perovskite-type crystal structure represented by Sr 1.0 {Fe 0.8 Cu 0.1 Ta 0.1} O 3-δ, as the oxide 2, in Y 2 O 3 A catalyst in which 0.4 mass% of Pd is supported on a mixture in which Y 2 O 3 is added so that the amount of Y is 15 mol% of Sr, and a catalyst member using the same, are similar to the above. Produced by the method.

焼成混合物の構成相を粉末X線回折法で評価したところ、Sr{Fe0.5Ta0.5}Oとほぼ一致する第一の相と、実施例1の酸化物1とほぼ一致する第二の相で構成される、ペロブスカイト型構造の2種類の相からなる酸化物1と、ICDDのPowder Diffraction Fileの41-1105とよく一致するY(酸化物2)の混合状態となっていた。ビーズミルにより粉砕された焼成混合物(粉砕混合物)の比表面積を測定したところ、20m/gであった。また、該粉砕混合物中の酸化物1と酸化物2の平均粒径を測定したところ、それぞれ0.15μmと、0.08μmであった。耐熱試験後における粉末状の触媒の比表面積は、14m/gであった。 When the constituent phases of the fired mixture were evaluated by powder X-ray diffractometry, the first phase almost identical to Sr {Fe 0.5 Ta 0.5 } O 3 and the oxide 1 of Example 1 were almost identical. Oxide 1 composed of two types of perovskite structure composed of the second phase, and a mixed state of Y 2 O 3 (oxide 2) that closely matches 41-1105 of the ICDD's Powder Diffraction File It was. It was 20 m < 2 > / g when the specific surface area of the baking mixture (crushed mixture) grind | pulverized by the bead mill was measured. Moreover, when the average particle diameter of the oxide 1 and the oxide 2 in this grinding | pulverization mixture was measured, they were 0.15 micrometer and 0.08 micrometer, respectively. The specific surface area of the powdery catalyst after the heat test was 14 m 2 / g.

さらに、該触媒をハニカム状の金属担体に担持させ、触媒性能を評価した後、該ハニカム状担体に耐熱試験を実施し、再度触媒性能を評価した。評価結果を表5に示す。浄化特性優(◎)、耐熱性良(○)、総合判定○+であった。   Furthermore, after the catalyst was supported on a honeycomb-shaped metal carrier and the catalyst performance was evaluated, a heat resistance test was performed on the honeycomb-shaped carrier, and the catalyst performance was evaluated again. The evaluation results are shown in Table 5. The purification characteristics were excellent (◎), good heat resistance (○), and overall judgment ○ +.

(実施例5)
組成がSr1.05Fe1.03−δで表わされるペロブスカイト型結晶構造を有する酸化物1に対し、酸化物2として、Y中のYの量がSrの25mol%となるように、Yが添加された混合物に、0.4mass%のPtを担持してなる触媒、及びこれを用いて触媒部材を、上記と同様の方法で製造した。
(Example 5)
The amount of Y in Y 2 O 3 is 25 mol% of Sr as oxide 2 with respect to oxide 1 having a perovskite crystal structure represented by Sr 1.05 Fe 1.0 O 3-δ. as such, the mixture Y 2 O 3 is added, the catalyst is formed by carrying 0.4 mass% of Pt, and the catalyst member which was employed to prepare in the same manner as mentioned above.

焼成混合物の構成相を粉末X線回折法で評価したところ、ペロブスカイト型構造の単一相からなる酸化物1と、ICDDのPowder Diffraction Fileの41-1105とよく一致するY(酸化物2)の混合状態となっていた。ビーズミルにより粉砕された焼成混合物(粉砕混合物)の比表面積を測定したところ、25m/gであった。また、該粉砕混合物中の酸化物1と酸化物2の平均粒径を測定したところ、それぞれ0.10μmと、0.05μmであった。耐熱試験後における粉末状の触媒の比表面積は、12m/gであった。 The constituent phases of the fired mixture were evaluated by powder X-ray diffraction. As a result, the oxide 1 composed of a single phase having a perovskite structure and the Y 2 O 3 (oxide) well matched with 41-1105 of the ICDD's Powder Diffraction File 2). It was 25 m < 2 > / g when the specific surface area of the baking mixture (crushed mixture) grind | pulverized by the bead mill was measured. Further, when the average particle diameters of oxide 1 and oxide 2 in the pulverized mixture were measured, they were 0.10 μm and 0.05 μm, respectively. The specific surface area of the powdery catalyst after the heat test was 12 m 2 / g.

さらに該触媒をハニカム状の金属担体に担持させ、触媒性能を評価した後、該ハニカム状担体に耐熱試験を実施し、再度触媒性能を評価した。評価結果を表5に示す。浄化特性良(○)、耐熱性良(○)、総合判定○であった。   Further, after the catalyst was supported on a honeycomb-shaped metal carrier and the catalyst performance was evaluated, a heat resistance test was performed on the honeycomb-shaped carrier, and the catalyst performance was evaluated again. The evaluation results are shown in Table 5. The purification characteristics were good (◯), the heat resistance was good (◯), and the overall judgment was ○.

(実施例6)
組成が(Sr0.8Ca0.2)1.0{Fe0.8Cu0.2}O3−δで表わされるペロブスカイト型結晶構造を有する酸化物1に対し、酸化物2として、Y中のYの量がSrとCaの合計に対して20mol%となるように、Yが添加された混合物に、0.4mass%のRhを担持してなる触媒、及びこれを用いて触媒部材を、上記と同様の方法で製造した。ここで、Caの原料としてCaCO粉末を用いた。
(Example 6)
In contrast to oxide 1 having a perovskite crystal structure whose composition is represented by (Sr 0.8 Ca 0.2 ) 1.0 {Fe 0.8 Cu 0.2 } O 3-δ , as the amount of Y in the 2 O 3 is 20 mol% based on the total of Sr and Ca, the mixture Y 2 O 3 is added, the catalyst is formed by carrying 0.4 mass% of Rh, and this A catalyst member was produced in the same manner as described above. Here, CaCO 3 powder was used as a raw material for Ca.

焼成混合物の構成相を粉末X線回折法で評価したところ、ペロブスカイト型構造の単一相からなる酸化物1と、ICDDのPowder Diffraction Fileの41-1105とよく一致するY(酸化物2)の混合状態となっていた。ビーズミルにより粉砕された焼成混合物(粉砕混合物)の比表面積を測定したところ、25m/gであった。また、該粉砕混合物中の酸化物1と酸化物2の平均粒径を測定したところ、それぞれ0.10μmと、0.05μmであった。耐熱試験後における粉末状の触媒の比表面積は、13m/gであった。 The constituent phases of the fired mixture were evaluated by powder X-ray diffraction. As a result, the oxide 1 composed of a single phase having a perovskite structure and the Y 2 O 3 (oxide) well matched with 41-1105 of the ICDD's Powder Diffraction File 2). It was 25 m < 2 > / g when the specific surface area of the baking mixture (crushed mixture) grind | pulverized by the bead mill was measured. Further, when the average particle diameters of oxide 1 and oxide 2 in the pulverized mixture were measured, they were 0.10 μm and 0.05 μm, respectively. The specific surface area of the powdery catalyst after the heat test was 13 m 2 / g.

さらに、該触媒をハニカム状の金属担体に担持させ、触媒性能を評価した後、該ハニカム状担体に耐熱試験を実施し、再度触媒性能を評価した。評価結果を表5に示す。浄化特性優(◎)、耐熱性良(○)、総合判定○+であった。   Furthermore, after the catalyst was supported on a honeycomb-shaped metal carrier and the catalyst performance was evaluated, a heat resistance test was performed on the honeycomb-shaped carrier, and the catalyst performance was evaluated again. The evaluation results are shown in Table 5. The purification characteristics were excellent (◎), good heat resistance (○), and overall judgment ○ +.

(実施例7)
組成が(Sr0.8Ca0.21.0{Fe0.8Cu0.1Ta0.1}O3−δで表わされるペロブスカイト型結晶構造を有する酸化物1に対し、酸化物2として、Y中のYの量がSrとCaの合計に対して5mol%となるように、Yが添加された混合物に、0.4mass%のPdを担持してなる触媒、及びこれを用いて触媒部材を、上記と同様の方法で製造した。ここで、Taの原料としてTa粉末を用いた。
(Example 7)
In contrast to oxide 1 having a perovskite crystal structure whose composition is represented by (Sr 0.8 Ca 0.2 ) 1.0 {Fe 0.8 Cu 0.1 Ta 0.1 } O 3-δ as 2, so that the amount of Y in Y 2 O 3 is 5 mol% based on the total of Sr and Ca, the mixture Y 2 O 3 is added, formed by carrying 0.4 mass% of Pd A catalyst and a catalyst member using the catalyst were produced in the same manner as described above. Here, Ta 2 O 5 powder was used as a Ta raw material.

焼成混合物の構成相を粉末X線回折法で評価したところ、Sr{Fe0.5Ta0.5}O相からなる酸化物1と、ICDDのPowder Diffraction Fileの41-1105とよく一致するY(酸化物2)の混合状態となっていた。ビーズミルにより粉砕された焼成混合物(粉砕混合物)の比表面積を測定したところ、25m/gであった。また、該粉砕混合物中の酸化物1と酸化物2の平均粒径を測定したところ、それぞれ0.10μmと、0.05μmであった。耐熱試験後における粉末状の触媒の比表面積は8m/gであった。 When the constituent phases of the fired mixture were evaluated by powder X-ray diffractometry, the oxide 1 composed of the Sr {Fe 0.5 Ta 0.5 } O 3 phase was in good agreement with 41-1105 of the ICDD's Powder Diffraction File. It was in a mixed state of Y 2 O 3 (oxide 2). It was 25 m < 2 > / g when the specific surface area of the baking mixture (crushed mixture) grind | pulverized by the bead mill was measured. Further, when the average particle diameters of oxide 1 and oxide 2 in the pulverized mixture were measured, they were 0.10 μm and 0.05 μm, respectively. The specific surface area of the powdery catalyst after the heat test was 8 m 2 / g.

さらに、該触媒をハニカム状の金属担体に担持させ、触媒性能を評価した後、該ハニカム状担体に耐熱試験を実施し、再度触媒性能を評価した。評価結果を表5に示す。浄化特性優(◎)、耐熱性良(○)、総合判定○+であった。   Furthermore, after the catalyst was supported on a honeycomb-shaped metal carrier and the catalyst performance was evaluated, a heat resistance test was performed on the honeycomb-shaped carrier, and the catalyst performance was evaluated again. The evaluation results are shown in Table 5. The purification characteristics were excellent (◎), good heat resistance (○), and overall judgment ○ +.

(実施例8)
組成が(Sr0.5Ca0.51.1{Fe0.75(Cu0.5Co0.50.25}O3−δで表わされるペロブスカイト型結晶構造を有する酸化物1に対し、酸化物2としてYとLaがY:La=60:40なるモル比の混合物を、YとLaの合計量が、SrとCaの合計に対して30mol%となるように添加された混合物に、0.4mass%のPdを担持してなる触媒、及びこれを用いて触媒部材を、上記と同様の方法で製造した。ここでCoとLaの原料として、CoとLa粉末を用いた。また、YとLaの混合物は、平均粒径D50が0.1μmとなるように、予備粉砕を行った。
(Example 8)
Oxide 1 having a perovskite crystal structure whose composition is represented by (Sr 0.5 Ca 0.5 ) 1.1 {Fe 0.75 (Cu 0.5 Co 0.5 ) 0.25 } O 3-δ On the other hand, the oxide 2 is a mixture of Y 2 O 3 and La 2 O 3 in a molar ratio of Y: La = 60: 40, and the total amount of Y and La is 30 mol% with respect to the total of Sr and Ca. A catalyst obtained by supporting 0.4 mass% of Pd in the mixture thus added and a catalyst member using the catalyst were produced in the same manner as described above. Here, Co 3 O 4 and La 2 O 3 powders were used as raw materials for Co and La. Further, the mixture of Y 2 O 3 and La 2 O 3 was preliminarily pulverized so that the average particle diameter D50 was 0.1 μm.

焼成混合物の構成相を粉末X線回折法で評価したところ、ペロブスカイト型構造の単一相からなる酸化物1と、ICDDのPowder Diffraction Fileの41-1105とよく一致するY、および5-602とよく一致するLaからなる酸化物2の混合状態となっていた。ビーズミルにより粉砕された焼成混合物(粉砕混合物)の比表面積を測定したところ、25m/gであった。また、該粉砕混合物中の酸化物1と酸化物2の平均粒径を測定したところ、それぞれ0.10μmと、0.05μmであった。耐熱試験後における粉末状の触媒の比表面積は、10m/gであった。 The constituent phases of the fired mixture were evaluated by powder X-ray diffractometry. As a result, the oxide 1 composed of a single phase having a perovskite structure, Y 2 O 3 well matched with 41-1105 of the Powder Diffraction File of ICDD, and 5 It was in a mixed state of oxide 2 made of La 2 O 3 that was in good agreement with -602. It was 25 m < 2 > / g when the specific surface area of the baking mixture (crushed mixture) grind | pulverized by the bead mill was measured. Further, when the average particle diameters of oxide 1 and oxide 2 in the pulverized mixture were measured, they were 0.10 μm and 0.05 μm, respectively. The specific surface area of the powdery catalyst after the heat test was 10 m 2 / g.

さらに、該触媒をハニカム状の金属担体に担持させ、触媒性能を評価した後、該ハニカム状担体に耐熱試験を実施し、再度触媒性能を評価した。評価結果を表5に示す。浄化特性良(○)、耐熱性良(○)、総合判定○であった。   Furthermore, after the catalyst was supported on a honeycomb-shaped metal carrier and the catalyst performance was evaluated, a heat resistance test was performed on the honeycomb-shaped carrier, and the catalyst performance was evaluated again. The evaluation results are shown in Table 5. The purification characteristics were good (◯), the heat resistance was good (◯), and the overall judgment was ○.

(実施例9)
組成がCa1.0{Fe0.9Co0.1}O3−δで表わされるペロブスカイト型結晶構造を有する酸化物1に対し、酸化物2としてYとLaがY:La=60:40なるモル比の混合物を、YとLaの合計量が、Caに対して30mol%となるように添加された混合物に、2.0mass%のPdを担持してなる触媒、及びこれを用いて触媒部材を、上記と同様の方法で製造した。
Example 9
In contrast to oxide 1 having a perovskite crystal structure whose composition is represented by Ca 1.0 {Fe 0.9 Co 0.1 } O 3-δ , Y 2 O 3 and La 2 O 3 are Y as oxide 2 A catalyst in which 2.0 mass% of Pd is supported on a mixture in which a mixture having a molar ratio of La = 60: 40 is added so that the total amount of Y and La is 30 mol% with respect to Ca, And the catalyst member was manufactured by the method similar to the above using this.

焼成混合物の構成相を粉末X線回折法で評価したところ、ペロブスカイト型構造の単一相からなる酸化物1と、ICDDのPowder Diffraction Fileの41-1105とよく一致するY、および5-602とよく一致するLaからなる酸化物2の混合状態となっていた。ビーズミルにより粉砕された焼成混合物(粉砕混合物)の比表面積を測定したところ、25m/gであった。また、該粉砕混合物中の酸化物1と酸化物2の平均粒径を測定したところ、それぞれ0.10μmと、0.05μmであった。耐熱試験後における粉末状の触媒の比表面積は、11m/gであった。 The constituent phases of the fired mixture were evaluated by powder X-ray diffractometry. As a result, the oxide 1 composed of a single phase having a perovskite structure, Y 2 O 3 well matched with 41-1105 of the Powder Diffraction File of ICDD, and 5 It was in a mixed state of oxide 2 made of La 2 O 3 that was in good agreement with -602. It was 25 m < 2 > / g when the specific surface area of the baking mixture (crushed mixture) grind | pulverized by the bead mill was measured. Further, when the average particle diameters of oxide 1 and oxide 2 in the pulverized mixture were measured, they were 0.10 μm and 0.05 μm, respectively. The specific surface area of the powdery catalyst after the heat test was 11 m 2 / g.

さらに、該触媒をハニカム状の金属担体に担持させ、触媒性能を評価した後、該ハニカム状担体に耐熱試験を実施し、再度触媒性能を評価した。評価結果を表5に示す。浄化特性良(○)、耐熱性可(△)、総合判定○−であった。   Furthermore, after the catalyst was supported on a honeycomb-shaped metal carrier and the catalyst performance was evaluated, a heat resistance test was performed on the honeycomb-shaped carrier, and the catalyst performance was evaluated again. The evaluation results are shown in Table 5. The purification characteristics were good (◯), heat resistance was acceptable (Δ), and overall judgment was ○ −.

(実施例10)
組成が(Sr0.8Ba0.21.05Fe1.03−δで表わされるペロブスカイト型結晶構造を有する酸化物1に対し、酸化物2として、Y中のYの量がSrの5mol%となるように、Yが添加された混合物に、0.4mass%のPdを担持してなる触媒、及びこれを用いて触媒部材を、上記と同様の方法で製造した。
(Example 10)
For the oxide 1 having a perovskite type crystal structure represented by the composition (Sr 0.8 Ba 0.2 ) 1.05 Fe 1.0 O 3-δ , the oxide 2 contains Y in Y 2 O 3. A catalyst in which 0.4 mass% of Pd is supported on a mixture in which Y 2 O 3 is added so that the amount of Sr is 5 mol% of Sr, and a catalyst member using the same, by the same method as described above Manufactured with.

焼成混合物の構成相を粉末X線回折法で評価したところ、ペロブスカイト型構造の単一相からなる酸化物1と、ICDDのPowder Diffraction Fileの41-1105とよく一致するY(酸化物2)の混合状態となっていた。ビーズミルにより粉砕された焼成混合物(粉砕混合物)の比表面積を測定したところ、25m/gであった。また、該粉砕混合物中の酸化物1と酸化物2の平均粒径を測定したところ、それぞれ0.10μmと、0.05μmであった。耐熱試験後における粉末状の触媒の比表面積は、7m/gであった。 The constituent phases of the fired mixture were evaluated by powder X-ray diffraction. As a result, the oxide 1 composed of a single phase having a perovskite structure and the Y 2 O 3 (oxide) well matched with 41-1105 of the ICDD's Powder Diffraction File 2). It was 25 m < 2 > / g when the specific surface area of the baking mixture (crushed mixture) grind | pulverized by the bead mill was measured. Further, when the average particle diameters of oxide 1 and oxide 2 in the pulverized mixture were measured, they were 0.10 μm and 0.05 μm, respectively. The specific surface area of the powdery catalyst after the heat test was 7 m 2 / g.

さらに、該触媒をハニカム状の金属担体に担持させ、触媒性能を評価した後、該ハニカム状担体に耐熱試験を実施し、再度触媒性能を評価した。評価結果を表5に示す。浄化特性可(△)、耐熱性可(△)、総合判定△であった。   Furthermore, after the catalyst was supported on a honeycomb-shaped metal carrier and the catalyst performance was evaluated, a heat resistance test was performed on the honeycomb-shaped carrier, and the catalyst performance was evaluated again. The evaluation results are shown in Table 5. The purification characteristics were acceptable (Δ), the heat resistance was acceptable (Δ), and the overall judgment was Δ.

(実施例11)
組成がSr1.0{Fe0.8(Ta0.5Nb0.50.2}O3−δで表わされるペロブスカイト型結晶構造を有する酸化物1に対し、酸化物2としてYとNiOがY:Ni=60:40なるモル比の混合物を、YとLaの合計量が、Srに対して5mol%となるように添加された混合物に、0.4mass%のPdを担持してなる触媒、及びこれを用いて触媒部材を、上記と同様の方法で製造した。ここでNbとNiの原料として、Nb粉末とNiO粉末を用いた。また、YとNiOの混合物は、平均粒径D50が0.1μmとなるように、予備粉砕を行った。
(Example 11)
In contrast to oxide 1 having a perovskite crystal structure whose composition is represented by Sr 1.0 {Fe 0.8 (Ta 0.5 Nb 0.5 ) 0.2 } O 3-δ , Y 2 is used as oxide 2. 0.4 mass% Pd was added to a mixture in which O 3 and NiO were added at a molar ratio of Y: Ni = 60: 40 so that the total amount of Y and La was 5 mol% with respect to Sr. A supported catalyst and a catalyst member using the catalyst were produced in the same manner as described above. Here, Nb 2 O 5 powder and NiO powder were used as raw materials for Nb and Ni. The mixture of Y 2 O 3 and NiO was preliminarily pulverized so that the average particle diameter D50 was 0.1 μm.

焼成混合物の構成相を粉末X線回折法で評価したところ、Sr{Fe0.5Ta0.5}Oと類似の第一の相と、実施例1の酸化物1と類似の第二の相で構成される、ペロブスカイト型構造の2種類の相からなる酸化物1と、ICDDのPowder Diffraction Fileの41-1105とよく一致するY、および44-1159とよく一致するNiOからなる酸化物粒子2の混合状態となっていた。ビーズミルにより粉砕された焼成混合物(粉砕混合物)の比表面積を測定したところ、25m/gであった。また、該粉砕混合物中の酸化物1と酸化物2の平均粒径を測定したところ、それぞれ0.10μmと、0.05μmであった。耐熱試験後における粉末状の触媒の比表面積は、9m/gであった。 When the constituent phases of the fired mixture were evaluated by powder X-ray diffraction, a first phase similar to Sr {Fe 0.5 Ta 0.5 } O 3 and a second similar to oxide 1 of Example 1 were obtained. From the oxide 1 consisting of two phases of the perovskite structure, Y 2 O 3 well matched with 41-1105 of ICDD's Powder Diffraction File, and NiO well matched with 44-1159 It became the mixed state of the oxide particle 2 which becomes. It was 25 m < 2 > / g when the specific surface area of the baking mixture (crushed mixture) grind | pulverized by the bead mill was measured. Further, when the average particle diameters of oxide 1 and oxide 2 in the pulverized mixture were measured, they were 0.10 μm and 0.05 μm, respectively. The specific surface area of the powdery catalyst after the heat test was 9 m 2 / g.

さらに、該触媒をハニカム状の金属担体に担持させ、触媒性能を評価した後、該ハニカム状担体に耐熱試験を実施し、再度触媒性能を評価した。評価結果を表5に示す。浄化特性可(△)、耐熱性可(△)、総合判定△であった。   Furthermore, after the catalyst was supported on a honeycomb-shaped metal carrier and the catalyst performance was evaluated, a heat resistance test was performed on the honeycomb-shaped carrier, and the catalyst performance was evaluated again. The evaluation results are shown in Table 5. The purification characteristics were acceptable (Δ), the heat resistance was acceptable (Δ), and the overall judgment was Δ.

(実施例12)
組成がSr1.0{Fe0.9(Ta0.7Ti0.30.1}O3−δで表わされるペロブスカイト型結晶構造を有する酸化物1に対し、酸化物2としてYとCeOがY:Ce=60:40なるモル比の混合物を、YとCeの合計量が、Srに対して15mol%となるように添加された混合物に、0.4mass%のPdを担持してなる触媒、及びこれを用いて触媒部材を、上記と同様の方法で製造した。ここでTiとCeの原料として、アナターゼ型TiOとCeO粉末を用いた。また、YとCeOの混合物は、平均粒径D50が0.1μmとなるように、予備粉砕を行った。
(Example 12)
In contrast to oxide 1 having a perovskite crystal structure whose composition is represented by Sr 1.0 {Fe 0.9 (Ta 0.7 Ti 0.3 ) 0.1 } O 3-δ , Y 2 is used as oxide 2. A mixture having a molar ratio of O 3 and CeO 2 of Y: Ce = 60: 40 was added to a mixture in which the total amount of Y and Ce was 15 mol% with respect to Sr. And a catalyst member were produced by the same method as described above. Here, anatase TiO 2 and CeO 2 powder were used as raw materials for Ti and Ce. Further, the mixture of Y 2 O 3 and CeO 2 was preliminarily pulverized so that the average particle diameter D50 was 0.1 μm.

焼成混合物の構成相を粉末X線回折法で評価したところ、Sr{Fe0.5Ta0.5}Oと類似の第一の相と、実施例1の酸化物1と類似の第二の相で構成される、ペロブスカイト型構造の2種類の相からなる酸化物1と、ICDDのPowder Diffraction Fileの41-1105とよく一致するY、および34-394とよく一致するCeOからなる酸化物2の混合状態となっていた。ビーズミルにより粉砕された焼成混合物(粉砕混合物)の比表面積を測定したところ、25m/gであった。また、該粉砕混合物中の酸化物1と酸化物2の平均粒径を測定したところ、それぞれ0.10μmと、0.05μmであった。耐熱試験後における粉末状の触媒の比表面積は、8m/gであった。 When the constituent phases of the fired mixture were evaluated by powder X-ray diffraction, a first phase similar to Sr {Fe 0.5 Ta 0.5 } O 3 and a second similar to oxide 1 of Example 1 were obtained. Of the perovskite structure, Y 2 O 3 well matched with 41-1105 of ICDD's Powder Diffraction File, and CeO 2 well matched with 34-394 It was in the mixed state of the oxide 2 which consists of. It was 25 m < 2 > / g when the specific surface area of the baking mixture (crushed mixture) grind | pulverized by the bead mill was measured. Further, when the average particle diameters of oxide 1 and oxide 2 in the pulverized mixture were measured, they were 0.10 μm and 0.05 μm, respectively. The specific surface area of the powdery catalyst after the heat test was 8 m 2 / g.

さらに、該触媒をハニカム状の金属担体に担持させ、触媒性能を評価した後、該ハニカム状担体に耐熱試験を実施し、再度触媒性能を評価した。評価結果を表5に示す。浄化特性可(△)、耐熱性可(△)、総合判定△であった。   Furthermore, after the catalyst was supported on a honeycomb-shaped metal carrier and the catalyst performance was evaluated, a heat resistance test was performed on the honeycomb-shaped carrier, and the catalyst performance was evaluated again. The evaluation results are shown in Table 5. The purification characteristics were acceptable (Δ), the heat resistance was acceptable (Δ), and the overall judgment was Δ.

(実施例13)
組成がSr1.0{Fe0.9(Ta0.7Ti0.30.1}O3−δで表わされるペロブスカイト型結晶構造を有する酸化物1に対し、酸化物2としてYとCeOがY:Ce=60:40なるモル比の混合物を、YとCeの合計量が、Srに対して15mol%となるように添加された混合物に、0.2mass%のPdを担持してなる触媒、及びこれを用いて触媒部材を、上記と同様の方法で製造した。ここでYとCeOの混合物は、平均粒径D50が0.1μmとなるように、予備粉砕を行った。
(Example 13)
In contrast to oxide 1 having a perovskite crystal structure whose composition is represented by Sr 1.0 {Fe 0.9 (Ta 0.7 Ti 0.3 ) 0.1 } O 3-δ , Y 2 is used as oxide 2. A mixture having a molar ratio of O 3 and CeO 2 of Y: Ce = 60: 40 was added to a mixture in which the total amount of Y and Ce was 15 mol% with respect to Sr. And a catalyst member were produced by the same method as described above. Here, the mixture of Y 2 O 3 and CeO 2 was pre-ground so that the average particle diameter D50 was 0.1 μm.

焼成混合物の構成相を粉末X線回折法で評価したところ、Sr{Fe0.5Ta0.5}Oと類似の第一の相と、実施例1の酸化物1と類似の第二の相で構成される、ペロブスカイト型構造の2種類の相からなる酸化物1と、ICDDのPowder Diffraction Fileの41-1105とよく一致するY、および34-394とよく一致するCeOからなる酸化物2の混合状態となっていた。ビーズミルにより粉砕された焼成混合物(粉砕混合物)の比表面積を測定したところ、20m/gであった。また、該粉砕混合物中の酸化物1と酸化物2の平均粒径を測定したところ、それぞれ0.20μmと、0.08μmであった。耐熱試験後における粉末状の触媒の比表面積は、7m/gであった。 When the constituent phases of the fired mixture were evaluated by powder X-ray diffraction, a first phase similar to Sr {Fe 0.5 Ta 0.5 } O 3 and a second similar to oxide 1 of Example 1 were obtained. Of the perovskite structure, Y 2 O 3 well matched with 41-1105 of ICDD's Powder Diffraction File, and CeO 2 well matched with 34-394 It was in the mixed state of the oxide 2 which consists of. It was 20 m < 2 > / g when the specific surface area of the baking mixture (crushed mixture) grind | pulverized by the bead mill was measured. Moreover, when the average particle diameter of the oxide 1 and the oxide 2 in this grinding | pulverization mixture was measured, they were 0.20 micrometer and 0.08 micrometer, respectively. The specific surface area of the powdery catalyst after the heat test was 7 m 2 / g.

さらに、該触媒をハニカム状の金属担体に担持させ、触媒性能を評価した後、該ハニカム状担体に耐熱試験を実施し、再度触媒性能を評価した。評価結果を表5に示す。浄化特性可(△)、耐熱性良(○)、総合判定○−であった。   Furthermore, after the catalyst was supported on a honeycomb-shaped metal carrier and the catalyst performance was evaluated, a heat resistance test was performed on the honeycomb-shaped carrier, and the catalyst performance was evaluated again. The evaluation results are shown in Table 5. The purification characteristics were acceptable (Δ), heat resistance was good (◯), and overall judgment was ○ −.

(実施例14)
組成がSr1.0{Fe0.9(Ta0.7Ti0.30.1}O3−δで表わされるペロブスカイト型結晶構造を有する酸化物1に対し、酸化物2としてYとCeOがY:Ce=60:40なるモル比の混合物を、YとCeの合計量が、Srに対して15mol%となるように添加された混合物に、0.4mass%のPdを担持してなる触媒、及びこれを用いて触媒部材を、上記と同様の方法で製造した。ここでYとCeOの混合物は、平均粒径D50が0.3μmとなるように、予備粉砕を行った。
(Example 14)
In contrast to oxide 1 having a perovskite crystal structure whose composition is represented by Sr 1.0 {Fe 0.9 (Ta 0.7 Ti 0.3 ) 0.1 } O 3-δ , Y 2 is used as oxide 2. A mixture having a molar ratio of O 3 and CeO 2 of Y: Ce = 60: 40 was added to a mixture in which the total amount of Y and Ce was 15 mol% with respect to Sr. And a catalyst member were produced by the same method as described above. Here, the mixture of Y 2 O 3 and CeO 2 was preliminarily pulverized so that the average particle diameter D50 was 0.3 μm.

焼成混合物の構成相を粉末X線回折法で評価したところ、Sr{Fe0.5Ta0.5}Oと類似の第一の相と、実施例1の酸化物1と類似の第二の相で構成される、ペロブスカイト型構造の2種類の相からなる酸化物1と、ICDDのPowder Diffraction Fileの41-1105とよく一致するY、および34-394とよく一致するCeOからなる酸化物2の混合状態となっていた。ビーズミルにより粉砕された焼成混合物(粉砕混合物)の比表面積を測定したところ、20m/gであった。また、該粉砕混合物中の酸化物1と酸化物2の平均粒径を測定したところ、それぞれ0.12μmと、0.10μmであった。耐熱試験後における粉末状の触媒の比表面積は、7m/gであった。 When the constituent phases of the fired mixture were evaluated by powder X-ray diffraction, a first phase similar to Sr {Fe 0.5 Ta 0.5 } O 3 and a second similar to oxide 1 of Example 1 were obtained. Of the perovskite structure, Y 2 O 3 well matched with 41-1105 of ICDD's Powder Diffraction File, and CeO 2 well matched with 34-394 It was in the mixed state of the oxide 2 which consists of. It was 20 m < 2 > / g when the specific surface area of the baking mixture (crushed mixture) grind | pulverized by the bead mill was measured. Moreover, when the average particle diameter of the oxide 1 and the oxide 2 in this grinding | pulverization mixture was measured, they were 0.12 micrometer and 0.10 micrometer, respectively. The specific surface area of the powdery catalyst after the heat test was 7 m 2 / g.

さらに、該触媒をハニカム状の金属担体に担持させ、触媒性能を評価した後、該ハニカム状担体に耐熱試験を実施し、再度触媒性能を評価した。評価結果を表5に示す。浄化特性可(△)、耐熱性可(△)、総合判定△であった。   Furthermore, after the catalyst was supported on a honeycomb-shaped metal carrier and the catalyst performance was evaluated, a heat resistance test was performed on the honeycomb-shaped carrier, and the catalyst performance was evaluated again. The evaluation results are shown in Table 5. The purification characteristics were acceptable (Δ), the heat resistance was acceptable (Δ), and the overall judgment was Δ.

(実施例15)
組成がSr1.0Fe1.03−δで表わされるペロブスカイト型結晶構造を有する酸化物1に対し、酸化物2としてY、CeOおよびNiOがY:Ce:Ni=50:30:20なるモル比の混合物を、Y、CeおよびNiの合計量が、Srに対して15mol%となるように添加された混合物に、0.4mass%のPdを担持してなる触媒、及びこれを用いて触媒部材を、上記と同様の方法で製造した。ここでY、CeOおよびNiOの混合物は、平均粒径D50が0.1μmとなるように、予備粉砕を行った。
(Example 15)
In contrast to the oxide 1 having a perovskite crystal structure whose composition is represented by Sr 1.0 Fe 1.0 O 3-δ , Y 2 O 3 , CeO 2 and NiO as the oxide 2 are Y: Ce: Ni = 50. A catalyst in which 0.4 mass% of Pd is supported on a mixture in which a mixture having a molar ratio of 30:20 is added so that the total amount of Y, Ce, and Ni is 15 mol% with respect to Sr, And the catalyst member was manufactured by the method similar to the above using this. Here, the mixture of Y 2 O 3 , CeO 2 and NiO was preliminarily pulverized so that the average particle diameter D50 was 0.1 μm.

焼成混合物の構成相を粉末X線回折法で評価したところ、ペロブスカイト型構造の単一相からなる酸化物1と、ICDDのPowder Diffraction Fileの41-1105とよく一致するY、34-394とよく一致するCeO、および44-1159とよく一致するNiOからなる酸化物2の混合状態となっていた。ビーズミルにより粉砕された焼成混合物(粉砕混合物)の比表面積を測定したところ、25m/gであった。また、該粉砕混合物中の酸化物1と酸化物2の平均粒径を測定したところ、それぞれ0.10μmと、0.05μmであった。耐熱試験後における粉末状の触媒の比表面積は、9m/gであった。 The constituent phases of the fired mixture were evaluated by powder X-ray diffraction. As a result, the oxide 1 composed of a single phase having a perovskite structure and Y 2 O 3 , 34- It was in a mixed state of oxide 2 composed of CeO 2 well matched with 394 and NiO well matched with 44-1159. It was 25 m < 2 > / g when the specific surface area of the baking mixture (crushed mixture) grind | pulverized by the bead mill was measured. Further, when the average particle diameters of oxide 1 and oxide 2 in the pulverized mixture were measured, they were 0.10 μm and 0.05 μm, respectively. The specific surface area of the powdery catalyst after the heat test was 9 m 2 / g.

さらに、該触媒をハニカム状の金属担体に担持させ、触媒性能を評価した後、該ハニカム状担体に耐熱試験を実施し、再度触媒性能を評価した。評価結果を表5に示す。浄化特性可(△)、耐熱性可(△)、総合判定△であった。   Furthermore, after the catalyst was supported on a honeycomb-shaped metal carrier and the catalyst performance was evaluated, a heat resistance test was performed on the honeycomb-shaped carrier, and the catalyst performance was evaluated again. The evaluation results are shown in Table 5. The purification characteristics were acceptable (Δ), the heat resistance was acceptable (Δ), and the overall judgment was Δ.

(実施例16)
組成がSr1.0Fe1.03−δで表わされるペロブスカイト型結晶構造を有する酸化物1に対し、酸化物2としてY、およびLaがY:La=60:40なるモル比の混合物を、YとLaの合計量が、Srに対して15mol%となるように添加された混合物に、0.4mass%のPdを担持してなる触媒、及びこれを用いて触媒部材を、上記と同様の方法で製造した。ここでYとLaの混合物は、平均粒径D50が0.1μmとなるように、予備粉砕を行った。
(Example 16)
In contrast to the oxide 1 having a perovskite crystal structure whose composition is represented by Sr 1.0 Fe 1.0 O 3-δ , Y 2 O 3 and La 2 O 3 as the oxide 2 are Y: La = 60: A catalyst in which 0.4 mass% of Pd is supported on a mixture in which a mixture having a molar ratio of 40 is added so that the total amount of Y and La is 15 mol% with respect to Sr, and A catalyst member was produced in the same manner as described above. Here, the mixture of Y 2 O 3 and La 2 O 3 was preliminarily pulverized so that the average particle diameter D50 was 0.1 μm.

焼成混合物の構成相を粉末X線回折法で評価したところ、ペロブスカイト型構造の単一相からなる酸化物1と、ICDDのPowder Diffraction Fileの41-1105とよく一致するY、および5-602とよく一致するLaからなる酸化物2の混合状態となっていた。ビーズミルにより粉砕された焼成混合物(粉砕混合物)の比表面積を測定したところ、25m/gであった。また、該粉砕混合物中の酸化物1と酸化物2の平均粒径を測定したところ、それぞれ0.10μmと、0.05μmであった。耐熱試験後における粉末状の触媒の比表面積は、10m/gであった。 The constituent phases of the fired mixture were evaluated by powder X-ray diffractometry. As a result, the oxide 1 composed of a single phase having a perovskite structure, Y 2 O 3 well matched with 41-1105 of the Powder Diffraction File of ICDD, and 5 It was in a mixed state of oxide 2 made of La 2 O 3 that was in good agreement with -602. It was 25 m < 2 > / g when the specific surface area of the baking mixture (crushed mixture) grind | pulverized by the bead mill was measured. Further, when the average particle diameters of oxide 1 and oxide 2 in the pulverized mixture were measured, they were 0.10 μm and 0.05 μm, respectively. The specific surface area of the powdery catalyst after the heat test was 10 m 2 / g.

さらに、該触媒をハニカム状の金属担体に担持させ、触媒性能を評価した後、該ハニカム状担体に耐熱試験を実施し、再度触媒性能を評価した。評価結果を表5に示す。浄化特性可(△)、耐熱性可(△)、総合判定△であった。   Furthermore, after the catalyst was supported on a honeycomb-shaped metal carrier and the catalyst performance was evaluated, a heat resistance test was performed on the honeycomb-shaped carrier, and the catalyst performance was evaluated again. The evaluation results are shown in Table 5. The purification characteristics were acceptable (Δ), the heat resistance was acceptable (Δ), and the overall judgment was Δ.

(比較例1)
組成がBa1.0{Fe0.75Co0.25}O3−δで表わされるペロブスカイト型結晶構造を有する酸化物1のみで構成される複合酸化物に対し、0.4mass%のPdを担持してなる触媒、及びこれを用いて触媒部材を、上記と同様の方法で製造した。
(Comparative Example 1)
With respect to the composite oxide composed only of oxide 1 having a perovskite crystal structure whose composition is represented by Ba 1.0 {Fe 0.75 Co 0.25 } O 3-δ , 0.4 mass% of Pd A supported catalyst and a catalyst member using the catalyst were produced in the same manner as described above.

複合酸化物粒子の構成相を粉末X線回折法で評価したところ、ペロブスカイト型構造の単一相となっていた。ビーズミルによる粉砕粉末の比表面積を測定したところ、25m/gであった。また、該複合酸化物の平均粒径を測定したところ、0.10μmであった。一方、耐熱試験後における粉末状の触媒の比表面積は、2m/gと大きく低下していた。 When the constituent phases of the composite oxide particles were evaluated by a powder X-ray diffraction method, it was a single phase having a perovskite structure. It was 25 m < 2 > / g when the specific surface area of the ground powder by a bead mill was measured. The average particle size of the composite oxide was measured and found to be 0.10 μm. On the other hand, the specific surface area of the powdery catalyst after the heat test was greatly reduced to 2 m 2 / g.

さらに、該触媒をハニカム状の金属担体に担持させ、触媒性能を評価した後、該ハニカム状担体に耐熱試験を実施し、再度触媒性能を評価した。評価結果を表6に示す。浄化特性不良(×)、耐熱性不良(×)、総合判定×であった。本触媒の浄化性能は耐熱試験後に大きく劣化しており、本発明の触媒に対して劣っている。   Furthermore, after the catalyst was supported on a honeycomb-shaped metal carrier and the catalyst performance was evaluated, a heat resistance test was performed on the honeycomb-shaped carrier, and the catalyst performance was evaluated again. The evaluation results are shown in Table 6. The purification characteristics were poor (x), the heat resistance was poor (x), and the comprehensive judgment was x. The purification performance of this catalyst is greatly deteriorated after the heat resistance test and is inferior to the catalyst of the present invention.

(比較例2)
組成がSr0.8{Fe0.65Co0.35}O3−δで表わされるペロブスカイト型結晶構造を有する酸化物1に対し、酸化物2としてY、およびLaがY:La=60:40なるモル比の混合物を、YとLaの合計量が、Srに対して5mol%となるように添加された混合物に、0.4mass%のPdを担持してなる触媒、及びこれを用いて触媒部材を、上記と同様の方法で製造した。ここでYとLaの混合物は、平均粒径D50が0.1μmとなるように、予備粉砕を行った。
(Comparative Example 2)
In contrast to the oxide 1 having a perovskite crystal structure whose composition is represented by Sr 0.8 {Fe 0.65 Co 0.35 } O 3-δ , Y 2 O 3 and La 2 O 3 are used as the oxide 2. Catalyst in which 0.4 mass% of Pd is supported on a mixture in which a mixture having a molar ratio of Y: La = 60: 40 is added so that the total amount of Y and La is 5 mol% with respect to Sr. And the catalyst member was manufactured by the method similar to the above using this. Here, the mixture of Y 2 O 3 and La 2 O 3 was preliminarily pulverized so that the average particle diameter D50 was 0.1 μm.

焼成混合物の構成相を粉末X線回折法で評価したところ、ペロブスカイト型構造の単一相からなる酸化物1と、ICDDのPowder Diffraction Fileの41-1105とよく一致するY、および5-602とよく一致するLaからなる酸化物2の混合状態となっていた。ビーズミルにより粉砕された焼成混合物(粉砕混合物)の比表面積を測定したところ、25m/gであった。また、該粉砕混合物中の酸化物1と酸化物2の平均粒径を測定したところ、それぞれ0.10μmと、0.05μmであった。一方、耐熱試験後における粉末状の触媒の比表面積は、4m/gと大きく低下していた。 The constituent phases of the fired mixture were evaluated by powder X-ray diffractometry. As a result, the oxide 1 composed of a single phase having a perovskite structure, Y 2 O 3 well matched with 41-1105 of the Powder Diffraction File of ICDD, and 5 It was in a mixed state of oxide 2 made of La 2 O 3 that was in good agreement with -602. It was 25 m < 2 > / g when the specific surface area of the baking mixture (crushed mixture) grind | pulverized by the bead mill was measured. Further, when the average particle diameters of oxide 1 and oxide 2 in the pulverized mixture were measured, they were 0.10 μm and 0.05 μm, respectively. On the other hand, the specific surface area of the powdered catalyst after the heat test was greatly reduced to 4 m 2 / g.

さらに、該触媒をハニカム状の金属担体に担持させ、触媒性能を評価した後、該ハニカム状担体に耐熱試験を実施し、再度触媒性能を評価した。評価結果を表6に示す。浄化特性不良(×)、耐熱性不良(×)、総合判定×であった。触媒の浄化性能は耐熱試験後に大きく劣化しており、本発明の触媒に対して劣っている。   Furthermore, after the catalyst was supported on a honeycomb-shaped metal carrier and the catalyst performance was evaluated, a heat resistance test was performed on the honeycomb-shaped carrier, and the catalyst performance was evaluated again. The evaluation results are shown in Table 6. The purification characteristics were poor (x), the heat resistance was poor (x), and the comprehensive judgment was x. The purification performance of the catalyst is greatly deteriorated after the heat resistance test and is inferior to the catalyst of the present invention.

(比較例3)
組成が{Sr0.5La0.51.2{Fe0.7Ta0.3}O3−δで表わされるペロブスカイト型結晶構造を有する酸化物1に対し、酸化物2としてY、およびLaがY:La=60:40なるモル比の混合物を、YとLaの合計量が、Srに対して30mol%となるように添加された混合物に、0.1mass%のPdを担持してなる触媒、及びこれを用いて触媒部材を、上記と同様の方法で製造した。ここでYとLaの混合物は、平均粒径D50が0.1μmとなるように、予備粉砕を行った。
(Comparative Example 3)
In contrast to oxide 1 having a perovskite crystal structure whose composition is represented by {Sr 0.5 La 0.5 } 1.2 {Fe 0.7 Ta 0.3 } O 3-δ , Y 2 is used as oxide 2. 0.1 mass is added to a mixture in which O 3 and La 2 O 3 are added at a molar ratio of Y: La = 60: 40 so that the total amount of Y and La is 30 mol% with respect to Sr. A catalyst comprising 1% Pd and a catalyst member using the same were produced in the same manner as described above. Here, the mixture of Y 2 O 3 and La 2 O 3 was preliminarily pulverized so that the average particle diameter D50 was 0.1 μm.

焼成混合物の構成相を粉末X線回折法で評価したところ、Sr{Fe0.5Ta0.5}Oと類似の第一の相と、実施例1の酸化物1と類似の第二の相で構成される、ペロブスカイト型構造の2種類の相からなる酸化物1と、ICDDのPowder Diffraction Fileの41-1105とよく一致するY、および5-602とよく一致するLaからなる酸化物2の混合状態となっていた。ビーズミルにより粉砕された焼成混合物(粉砕混合物)の比表面積を測定したところ、25m/gであった。また、該粉砕混合物中の酸化物1と酸化物2の平均粒径を測定したところ、それぞれ0.10μmと、0.05μmであった。 When the constituent phases of the fired mixture were evaluated by powder X-ray diffraction, a first phase similar to Sr {Fe 0.5 Ta 0.5 } O 3 and a second similar to oxide 1 of Example 1 were obtained. The oxide 1 composed of two types of phases having a perovskite structure, Y 2 O 3 well matched with 41-1105 of ICDD's Powder Diffraction File, and La 2 well matched with 5-602 It was a mixed state of oxide 2 made of O 3 . It was 25 m < 2 > / g when the specific surface area of the baking mixture (crushed mixture) grind | pulverized by the bead mill was measured. Further, when the average particle diameters of oxide 1 and oxide 2 in the pulverized mixture were measured, they were 0.10 μm and 0.05 μm, respectively.

さらに、該触媒をハニカム状の金属担体に担持させ、触媒性能を評価した所、浄化特性が低かった。評価結果を表6に示す。浄化特性不良(×)、耐熱性不良(×)、総合判定×であった。本触媒の浄化性能は初期特性において既に大変低く、本発明の触媒に対して劣っている。   Furthermore, when the catalyst was supported on a honeycomb-shaped metal carrier and the catalyst performance was evaluated, the purification characteristics were low. The evaluation results are shown in Table 6. The purification characteristics were poor (x), the heat resistance was poor (x), and the comprehensive judgment was x. The purification performance of the catalyst is already very low in initial characteristics and inferior to the catalyst of the present invention.

(比較例4)
組成がSr1.0Fe1.03−δで表わされるペロブスカイト型結晶構造を有する酸化物1に対し、酸化物2としてY、およびLaがY:La=60:40なるモル比の混合物を、YとLaの合計量が、Srに対して40mol%となるように添加された混合物に、0.4mass%のPdを担持してなる触媒、及びこれを用いて触媒部材を、上記と同様の方法で製造した。ここでYとLaの混合物は、平均粒径D50が0.1μmとなるように、予備粉砕を行った。
(Comparative Example 4)
In contrast to the oxide 1 having a perovskite crystal structure whose composition is represented by Sr 1.0 Fe 1.0 O 3-δ , Y 2 O 3 and La 2 O 3 as the oxide 2 are Y: La = 60: A catalyst in which 0.4 mass% of Pd is supported on a mixture in which a mixture having a molar ratio of 40 is added so that the total amount of Y and La is 40 mol% with respect to Sr, and A catalyst member was produced in the same manner as described above. Here, the mixture of Y 2 O 3 and La 2 O 3 was preliminarily pulverized so that the average particle diameter D50 was 0.1 μm.

焼成混合物の構成相を粉末X線回折法で評価したところ、ペロブスカイト型構造の単一相からなる酸化物1と、ICDDのPowder Diffraction Fileの41-1105とよく一致するY、および5-602とよく一致するLaからなる酸化物2の混合状態となっていた。ビーズミルにより粉砕された焼成混合物(粉砕混合物)の比表面積を測定したところ、25m/gであった。また、該粉砕混合物中の酸化物1と酸化物2の平均粒径を測定したところ、それぞれ0.10μmと、0.05μmであった。 The constituent phases of the fired mixture were evaluated by powder X-ray diffractometry. As a result, the oxide 1 composed of a single phase having a perovskite structure, Y 2 O 3 well matched with 41-1105 of the Powder Diffraction File of ICDD, and 5 It was in a mixed state of oxide 2 made of La 2 O 3 that was in good agreement with -602. It was 25 m < 2 > / g when the specific surface area of the baking mixture (crushed mixture) grind | pulverized by the bead mill was measured. Further, when the average particle diameters of oxide 1 and oxide 2 in the pulverized mixture were measured, they were 0.10 μm and 0.05 μm, respectively.

さらに、該触媒をハニカム状の金属担体に担持させ、触媒性能を評価した所、浄化特性が低かった。評価結果を表6に示す。浄化特性不良(×)、耐熱性不良(×)、総合判定×であった。本触媒の浄化性能は初期特性において既に大変低く、本発明の触媒に対して劣っている。   Furthermore, when the catalyst was supported on a honeycomb-shaped metal carrier and the catalyst performance was evaluated, the purification characteristics were low. The evaluation results are shown in Table 6. The purification characteristics were poor (x), the heat resistance was poor (x), and the comprehensive judgment was x. The purification performance of the catalyst is already very low in initial characteristics and inferior to the catalyst of the present invention.

(比較例5)
組成がSr1.0Fe1.03−δで表わされるペロブスカイト型結晶構造を有する酸化物1に対し、酸化物2としてY、およびLaがY:La=60:40なるモル比の混合物を、YとLaの合計量が、Srに対して2mol%となるように添加された混合物に、0.4mass%のPdを担持してなる触媒、及びこれを用いて触媒部材を、上記と同様の方法で製造した。ここでYとLaの混合物は、平均粒径D50が0.5μmとなるように、予備粉砕を行った。
(Comparative Example 5)
In contrast to the oxide 1 having a perovskite crystal structure whose composition is represented by Sr 1.0 Fe 1.0 O 3-δ , Y 2 O 3 and La 2 O 3 as the oxide 2 are Y: La = 60: A catalyst in which 0.4 mass% of Pd is supported on a mixture in which a mixture having a molar ratio of 40 is added so that the total amount of Y and La is 2 mol% with respect to Sr, and A catalyst member was produced in the same manner as described above. Here, the mixture of Y 2 O 3 and La 2 O 3 was preliminarily pulverized so that the average particle diameter D50 was 0.5 μm.

焼成混合物の構成相を粉末X線回折法で評価したところ、ペロブスカイト型構造の単一相からなる酸化物1と、ICDDのPowder Diffraction Fileの41-1105とよく一致するY、および5-602とよく一致するLaからなる酸化物2の混合状態となっていた。ビーズミルによる粉砕を通常よりも短時間で終了し、粉砕された焼成混合物(粉砕混合物)の比表面積を測定したところ、15m/gと、請求項6よりも低い値であった。また、該粉砕混合物中の酸化物1と酸化物2の平均粒径を測定したところ、それぞれ0.25μmと、0.3μmで、本発明の範囲外であった。一方、耐熱試験後における粉末状の触媒の比表面積は、2m/gと大きく低下していた。 The constituent phases of the fired mixture were evaluated by powder X-ray diffractometry. As a result, the oxide 1 composed of a single phase having a perovskite structure, Y 2 O 3 well matched with 41-1105 of the Powder Diffraction File of ICDD, and 5 It was in a mixed state of oxide 2 made of La 2 O 3 that was in good agreement with -602. When the specific surface area of the pulverized baked mixture (pulverized mixture) was measured after pulverization with a bead mill was completed in a shorter time than usual, it was 15 m 2 / g, which was a value lower than that of Claim 6. Further, when the average particle diameters of oxide 1 and oxide 2 in the pulverized mixture were measured, they were 0.25 μm and 0.3 μm, respectively, which were outside the scope of the present invention. On the other hand, the specific surface area of the powdery catalyst after the heat test was greatly reduced to 2 m 2 / g.

さらに、該触媒をハニカム状の金属担体に担持させ、触媒性能を評価した後、該ハニカム状担体に耐熱試験を実施し、再度触媒性能を評価した評価結果を表6に示す。浄化特性不良(×)、耐熱性不良(×)、総合判定×であった。本触媒の浄化性能は耐熱試験後に大きく劣化しており、本発明の触媒に対して劣っている。   Further, after the catalyst is supported on a honeycomb-shaped metal carrier and the catalyst performance is evaluated, the heat resistance test is performed on the honeycomb-shaped carrier, and the evaluation result of evaluating the catalyst performance again is shown in Table 6. The purification characteristics were poor (x), the heat resistance was poor (x), and the comprehensive judgment was x. The purification performance of this catalyst is greatly deteriorated after the heat resistance test and is inferior to the catalyst of the present invention.

(比較例6)
組成がSr1.0Fe1.03−δで表わされるペロブスカイト型結晶構造を有する酸化物1に対し、酸化物2としてY、およびLaがY:La=60:40なるモル比の混合物を、YとLaの合計量が、Srに対して4mol%となるように添加された混合物を、上記と同様の方法で製造した。ここでYとLaの混合物は、平均粒径D50が0.1μmとなるように、予備粉砕を行った。また、本触媒の製造においては、一度目の焼成を電気炉にて大気中900℃、5時間行い、焼成物を解砕後、自動乳鉢により乾式粉砕し、二度目の焼成は電気炉にて大気中1400℃と、請求項6の範囲よりも高温において、5時間行った。
(Comparative Example 6)
In contrast to the oxide 1 having a perovskite crystal structure whose composition is represented by Sr 1.0 Fe 1.0 O 3-δ , Y 2 O 3 and La 2 O 3 as the oxide 2 are Y: La = 60: A mixture having a molar ratio of 40 added so that the total amount of Y and La was 4 mol% with respect to Sr was produced in the same manner as described above. Here, the mixture of Y 2 O 3 and La 2 O 3 was preliminarily pulverized so that the average particle diameter D50 was 0.1 μm. In the production of this catalyst, the first firing is performed in an electric furnace at 900 ° C. for 5 hours in the atmosphere, the fired product is crushed and then dry pulverized in an automatic mortar, and the second firing is performed in an electric furnace. It was carried out for 5 hours at 1400 ° C. in the atmosphere and at a temperature higher than the range of claim 6.

焼成混合物の構成相を粉末X線回折法で評価したところ、ペロブスカイト型構造の単一相からなる酸化物1と、ICDDのPowder Diffraction Fileの41-1105とよく一致するY、および5-602とよく一致するLaからなる酸化物2の混合状態となっていた。引き続き該焼成混合物をビーズミルによって粉砕したが、粉砕された焼成混合物(粉砕混合物)の比表面積は20m/gに到達せず、本発明の触媒を製造することができなかった。 The constituent phases of the fired mixture were evaluated by powder X-ray diffractometry. As a result, the oxide 1 composed of a single phase having a perovskite structure, Y 2 O 3 well matched with 41-1105 of the Powder Diffraction File of ICDD, and 5 It was in a mixed state of oxide 2 made of La 2 O 3 that was in good agreement with -602. Subsequently, the calcined mixture was pulverized by a bead mill, but the specific surface area of the pulverized calcined mixture (pulverized mixture) did not reach 20 m 2 / g, and the catalyst of the present invention could not be produced.

本触媒の評価結果を表6に示す。浄化特性不良(×)、耐熱性不良(×)、総合判定×であった。   The evaluation results of this catalyst are shown in Table 6. The purification characteristics were poor (x), the heat resistance was poor (x), and the comprehensive judgment was x.

(比較例7)
組成がSr1.0Fe1.03−δで表わされるペロブスカイト型結晶構造を有する酸化物1に対し、酸化物2としてY、およびLaがY:La=60:40なるモル比の混合物を、YとLaの合計量が、Srに対して40mol%となるように添加された混合物に、0.4mass%のPdを担持してなる触媒、及びこれを用いて触媒部材を、上記と同様の方法で製造した。ここでYとLaの混合物は、平均粒径D50が0.1μmとなるように、予備粉砕を行った。また本触媒の製造においては、焼成を電気炉にて大気中800℃と、請求項6の範囲よりも低温において、5時間の1回のみ行った。
(Comparative Example 7)
In contrast to the oxide 1 having a perovskite crystal structure whose composition is represented by Sr 1.0 Fe 1.0 O 3-δ , Y 2 O 3 and La 2 O 3 as the oxide 2 are Y: La = 60: A catalyst in which 0.4 mass% of Pd is supported on a mixture in which a mixture having a molar ratio of 40 is added so that the total amount of Y and La is 40 mol% with respect to Sr, and A catalyst member was produced in the same manner as described above. Here, the mixture of Y 2 O 3 and La 2 O 3 was preliminarily pulverized so that the average particle diameter D50 was 0.1 μm. Further, in the production of the present catalyst, the firing was performed only once in 5 hours in the electric furnace at 800 ° C. in the atmosphere at a temperature lower than the range of claim 6.

焼成混合物の構成相を粉末X線回折によって分析した所、酸化物1の原料がほとんど未反応のまま残存しており、ペロブスカイト型構造の相が出来ていないことが分かった。ビーズミルにより粉砕された焼成混合物(粉砕混合物)の比表面積を測定したところ、25m/gであった。該粉砕混合物中の平均粒径を測定したところ、酸化物1については、ペロブスカイト型構造が形成されていないため、評価できなかった。一方、酸化物2の平均粒径0.05μmであった。 When the constituent phase of the fired mixture was analyzed by powder X-ray diffraction, it was found that the raw material of oxide 1 remained almost unreacted and a phase having a perovskite structure was not formed. It was 25 m < 2 > / g when the specific surface area of the baking mixture (crushed mixture) grind | pulverized by the bead mill was measured. When the average particle size in the pulverized mixture was measured, the oxide 1 could not be evaluated because no perovskite structure was formed. On the other hand, the average particle size of the oxide 2 was 0.05 μm.

さらに、該触媒をハニカム状の金属担体に担持させ、触媒性能を評価した所、浄化特性が低かった。評価結果を表6に示す。浄化特性不良(×)、耐熱性不良(×)、総合判定×であった。本触媒の浄化性能は初期特性において既に大変低く、本発明の触媒に対して劣っている。   Furthermore, when the catalyst was supported on a honeycomb-shaped metal carrier and the catalyst performance was evaluated, the purification characteristics were low. The evaluation results are shown in Table 6. The purification characteristics were poor (x), the heat resistance was poor (x), and the comprehensive judgment was x. The purification performance of the catalyst is already very low in initial characteristics and inferior to the catalyst of the present invention.

(実施例17)
組成がSr1.0Fe1.03−δで表わされるペロブスカイト型結晶構造を有する酸化物1に対し、酸化物2としてY、およびLaがY:La=60:40なるモル比の混合物を、YとLaの合計量が、Srに対して15mol%となるように添加された混合物に、0.4mass%のPdを担持してなる触媒、及びこれを用いて触媒部材を製造し、さらに触媒性能を評価した。
(Example 17)
In contrast to the oxide 1 having a perovskite crystal structure whose composition is represented by Sr 1.0 Fe 1.0 O 3-δ , Y 2 O 3 and La 2 O 3 as the oxide 2 are Y: La = 60: A catalyst in which 0.4 mass% of Pd is supported on a mixture in which a mixture having a molar ratio of 40 is added so that the total amount of Y and La is 15 mol% with respect to Sr, and Catalyst members were manufactured and the catalyst performance was evaluated.

まず、酸化物1を、以下の方法により製造した。   First, oxide 1 was produced by the following method.

SrとFeの原料として、各々、粒状のSrCOとFeを用いた。モル比で、Sr:Fe=1.0:1.0となるように、前記原料を秤量して、エチルアルコール(分散媒)に加え、ボールミルにより粉砕しながら湿式混合することにより、スラリーを得た。前記スラリーから、ロータリーエバポレータ固形分を分離し、およそ120℃で1時間乾燥した。次に、得られた乾固物を解砕後、MgOセラミック製の角さや容器に入れ、電気炉にて大気中900℃で5時間焼成し、多孔質塊状の焼成物を得た。焼成物を解砕後、自動乳鉢により乾式粉砕し、再びMgOセラミック製の角さや容器に入れ、電気炉にて大気中1100℃で5時間焼成した。構成相を粉末X線回折法で評価したところ、ペロブスカイト型構造の酸化物1の単一相となっていた。該粉末を予備粉砕し、平均粒径0.2μmに調整した。 Granular SrCO 3 and Fe 2 O 3 were used as raw materials for Sr and Fe, respectively. The raw materials are weighed so that the molar ratio is Sr: Fe = 1.0: 1.0, added to ethyl alcohol (dispersion medium), and wet-mixed while pulverizing with a ball mill to obtain a slurry. It was. The rotary evaporator solids were separated from the slurry and dried at approximately 120 ° C. for 1 hour. Next, the obtained dried product was crushed, put into a corner or container made of MgO ceramic, and baked in an electric furnace at 900 ° C. for 5 hours in the air to obtain a porous massive fired product. After the fired product was crushed, it was dry-pulverized with an automatic mortar, placed again in a corner or container made of MgO ceramic, and fired in an electric furnace at 1100 ° C. for 5 hours in the atmosphere. When the constituent phase was evaluated by a powder X-ray diffraction method, it was a single phase of oxide 1 having a perovskite structure. The powder was pre-ground and adjusted to an average particle size of 0.2 μm.

また、酸化物2としてY、およびLaがY:La=60:40なるモル比の粉状の混合物を、平均粒径D50が0.1μmとなるように、予備粉砕を行った。 Further, Y 2 O 3 as oxide 2 and a powdery mixture of La 2 O 3 in a molar ratio of Y: La = 60: 40 are preliminarily pulverized so that the average particle diameter D50 is 0.1 μm. went.

該酸化物1と、該酸化物2を、該酸化物2のYとLaの合計量が、該酸化物1のSrに対して15mol%となるように秤量、混合して、上記と同じ方法で、該添加混合物を、エタノールを溶媒とするビーズミルにて3時間粉砕した。得られた粉砕混合物の比表面積を測定したところ、25m/gであった。また該粉砕混合物中の酸化物1と酸化物2の平均粒径を測定したところ、それぞれ0.1μmと、0.05μmであった。次に、上記粉砕混合物に、前記と同様の方法で0.4mass%のPdを担持させた。さらに、前記と同様の方法で耐熱試験を行った所、耐熱試験後における粉末状の触媒の比表面積は、13m/gであった。 The oxide 1 and the oxide 2 are weighed and mixed so that the total amount of Y and La of the oxide 2 is 15 mol% with respect to Sr of the oxide 1, and the same method as above. Then, the added mixture was pulverized in a bead mill using ethanol as a solvent for 3 hours. It was 25 m < 2 > / g when the specific surface area of the obtained ground mixture was measured. The average particle diameters of oxide 1 and oxide 2 in the pulverized mixture were measured and found to be 0.1 μm and 0.05 μm, respectively. Next, 0.4 mass% Pd was supported on the pulverized mixture by the same method as described above. Furthermore, when the heat resistance test was performed in the same manner as described above, the specific surface area of the powdered catalyst after the heat resistance test was 13 m 2 / g.

さらに、該触媒をハニカム状の金属担体に担持させ、触媒性能を評価した後、該ハニカム状担体に耐熱試験を実施し、再度触媒性能を評価した。評価結果を表6に示す。浄化特性可(△)、耐熱性可(△)、総合判定△であった。   Furthermore, after the catalyst was supported on a honeycomb-shaped metal carrier and the catalyst performance was evaluated, a heat resistance test was performed on the honeycomb-shaped carrier, and the catalyst performance was evaluated again. The evaluation results are shown in Table 6. The purification characteristics were acceptable (Δ), the heat resistance was acceptable (Δ), and the overall judgment was Δ.

(実施例18)
組成がSr1.0Fe1.03−δで表わされるペロブスカイト型結晶構造を有する酸化物1に対し、酸化物2としてY、およびLaがY:La=60:40なるモル比の混合物を、YとLaの合計量が、Srに対して15mol%となるように添加された混合物に、0.4mass%のPdを担持してなる触媒、及びこれを用いて触媒部材を、前記と同様の方法で製造し、さらに触媒性能を評価した。
(Example 18)
In contrast to the oxide 1 having a perovskite crystal structure whose composition is represented by Sr 1.0 Fe 1.0 O 3-δ , Y 2 O 3 and La 2 O 3 as the oxide 2 are Y: La = 60: A catalyst in which 0.4 mass% of Pd is supported on a mixture in which a mixture having a molar ratio of 40 is added so that the total amount of Y and La is 15 mol% with respect to Sr, and A catalyst member was produced in the same manner as described above, and the catalyst performance was evaluated.

本触媒においては、酸化物1と酸化物2のビーズミル粉砕前の平均粒径を、それぞれ1.0μmと0.5μmにそれぞれ調整した。得られた粉砕混合物の比表面積を測定したところ、20m/gであった。また、該粉砕混合物中の酸化物1と酸化物2の平均粒径を測定したところ、それぞれ0.2μmと、0.1μmであった。また、耐熱試験後における粉末状の触媒の比表面積は、10m/gであった。 In this catalyst, the average particle diameters of oxide 1 and oxide 2 before grinding with bead mill were adjusted to 1.0 μm and 0.5 μm, respectively. It was 20 m < 2 > / g when the specific surface area of the obtained ground mixture was measured. Moreover, when the average particle diameter of the oxide 1 and the oxide 2 in this grinding | pulverization mixture was measured, they were 0.2 micrometer and 0.1 micrometer, respectively. Moreover, the specific surface area of the powdery catalyst after the heat test was 10 m 2 / g.

さらに、該触媒をハニカム状の金属担体に担持させ、触媒性能を評価した後、該ハニカム状担体に耐熱試験を実施し、再度触媒性能を評価した。評価結果を表6に示す。浄化特性可(△)、耐熱性可(△)、総合判定△であった。   Furthermore, after the catalyst was supported on a honeycomb-shaped metal carrier and the catalyst performance was evaluated, a heat resistance test was performed on the honeycomb-shaped carrier, and the catalyst performance was evaluated again. The evaluation results are shown in Table 6. The purification characteristics were acceptable (Δ), the heat resistance was acceptable (Δ), and the overall judgment was Δ.

(比較例8)
組成がSr1.0Fe0.65Co0.353−δで表わされるペロブスカイト型結晶構造を有する酸化物1に対し、酸化物2としてY、およびLaがY:La=60:40なるモル比の混合物を、YとLaの合計量が、Srに対して15mol%となるように添加された混合物に、0.4mass%のPdを担持してなる触媒、及びこれを用いて触媒部材を、前記と同様の方法で製造し、さらに触媒性能を評価した。
(Comparative Example 8)
With respect to the oxide 1 having a perovskite type crystal structure whose composition is represented by Sr 1.0 Fe 0.65 Co 0.35 O 3-δ , Y 2 O 3 and La 2 O 3 as the oxide 2 are Y: A catalyst in which 0.4 mass% of Pd is supported on a mixture in which a mixture having a molar ratio of La = 60: 40 is added so that the total amount of Y and La is 15 mol% with respect to Sr; and Using this, a catalyst member was produced in the same manner as described above, and the catalyst performance was further evaluated.

本触媒においては、酸化物1と酸化物2のビーズミル粉砕前の平均粒径を、それぞれ0.2μmと1.0μmにそれぞれ調整した。ここで、酸化物2の粒径は、請求項7の範囲外である。引き続き、ビーズミルによる粉砕混合物の比表面積が30m/gになるまで粉砕を行った。該粉砕混合物中の酸化物1と酸化物2の平均粒径を測定したところ、それぞれ0.05μmと、0.1μmであり、酸化物1の平均粒径が酸化物2よりも小さくなっており、請求項1の本発明の範囲外であった。該触媒の耐熱試験後における比表面積は、3m/gと大きく低下していた。評価結果を表4に示す。浄化特性不良(×)、耐熱性不良(×)、総合判定×であった。 In the present catalyst, the average particle diameters of oxide 1 and oxide 2 before bead milling were adjusted to 0.2 μm and 1.0 μm, respectively. Here, the particle size of the oxide 2 is outside the range of claim 7. Then, it grind | pulverized until the specific surface area of the grind | pulverized mixture by a bead mill became 30 m < 2 > / g. When the average particle diameters of oxide 1 and oxide 2 in the pulverized mixture were measured, they were 0.05 μm and 0.1 μm, respectively, and the average particle diameter of oxide 1 was smaller than that of oxide 2 This is outside the scope of the present invention of claim 1. The specific surface area of the catalyst after the heat test was greatly reduced to 3 m 2 / g. The evaluation results are shown in Table 4. The purification characteristics were poor (x), the heat resistance was poor (x), and the comprehensive judgment was x.

上記、実施例及び比較例の結果から、本発明の実施例は、CO、HC、NOxの各ガスの分解にすべて優れており、耐熱性の評価でもいずれも耐熱性が優良であった。   From the results of the above Examples and Comparative Examples, the Examples of the present invention were all excellent in the decomposition of CO, HC and NOx gases, and all of them were excellent in heat resistance in the evaluation of heat resistance.

これに対して、比較例1と2は、本発明の要件である請求項1の規定する組成範囲を満たさない複合酸化物であり、触媒の浄化特性と耐熱性が不十分である。また、比較例3と4はいずれも、請求項1の規定する組成範囲を満たさない複合酸化物であり、浄化特性と耐熱性が不十分である。一方、比較例5は、請求項1の規定する組成範囲を満たさない複合酸化物であると共に、熱処理後の比表面積が、請求項6の範囲外であり、浄化特性と耐熱性が不十分である。比較例6は、請求項1の組成範囲を満たさないと共に、請求項6の範囲よりも高温で焼成を行っているため、触媒の合成が困難である。比較例7は、請求項1の組成範囲を満たさないと共に、請求項6の範囲よりも低温で焼成を行っているため、ペロブスカイト相の形成反応が十分に進行しておらず、浄化特性と耐熱性が不十分である。また、比較例8は、請求項1の組成範囲を満たさないと共に、酸化物2の原料の粒径が、請求項7の範囲外であり、浄化特性と耐熱性が不十分である。   On the other hand, Comparative Examples 1 and 2 are complex oxides that do not satisfy the composition range defined in claim 1, which is a requirement of the present invention, and the purification characteristics and heat resistance of the catalyst are insufficient. Further, both Comparative Examples 3 and 4 are complex oxides that do not satisfy the composition range defined in claim 1 and have insufficient purification characteristics and heat resistance. On the other hand, Comparative Example 5 is a composite oxide that does not satisfy the composition range defined in claim 1, and the specific surface area after the heat treatment is outside the range of claim 6, and the purification characteristics and heat resistance are insufficient. is there. In Comparative Example 6, the composition range of Claim 1 is not satisfied, and the firing is performed at a higher temperature than the range of Claim 6, so that it is difficult to synthesize the catalyst. Since Comparative Example 7 does not satisfy the composition range of claim 1 and is fired at a temperature lower than that of claim 6, the perovskite phase formation reaction does not proceed sufficiently, and purification characteristics and heat resistance Insufficient sex. In Comparative Example 8, the composition range of Claim 1 is not satisfied, and the particle size of the raw material of oxide 2 is outside the range of Claim 7, and the purification characteristics and heat resistance are insufficient.

酸化物1の組成を表2に示し;酸化物2の条件、触媒の条件および物性を表3および4に示し;触媒性能評価結果を表5および6に示す。実施例1〜16および比較例1〜7は、第1の製造方法によって製造した触媒である。実施例17〜18および比較例8は、第2の製造方法によって製造した触媒である。

Figure 2014061461
Figure 2014061461
Figure 2014061461
Figure 2014061461
Figure 2014061461
The composition of oxide 1 is shown in Table 2; the conditions of oxide 2, the catalyst conditions and physical properties are shown in Tables 3 and 4; and the results of catalyst performance evaluation are shown in Tables 5 and 6. Examples 1 to 16 and Comparative Examples 1 to 7 are catalysts manufactured by the first manufacturing method. Examples 17 to 18 and Comparative Example 8 are catalysts produced by the second production method.
Figure 2014061461
Figure 2014061461
Figure 2014061461
Figure 2014061461
Figure 2014061461

Claims (9)

ペロブスカイト型構造の相を有し組成が下記(式1)で表される平均粒径0.2μm以下である酸化物1と、Y、La、CeO、NiOからYを必ず含んで選ばれる少なくとも1種で平均粒径が0.1μm以下である酸化物2との混合物と、
A1a1{Fe(1−b1−c1)B1b1C1c1}O3−δ …(式1)
(ここでA1はBa、Sr、Caから選ばれる1種又は2種の元素、
B1とC1は元素を配置しない場合もあるが、
B1を配置する場合はCo、Cuから選ばれる1種又は2種の元素、
C1を配置する場合はTi、Nb、TaからTaまたはNbを必ず含んで選ばれる1種又は2種以上の元素、
1.0≦a1≦1.1、0≦b1≦0.25、0≦c1≦0.2、
δは材料の履歴によって決まる値であって、0≦δ<3を満たす)
酸化物1と酸化物2の混合物に担持された、Pd、PtおよびRhから選ばれる少なくとも1種の貴金属とを含み、
酸化物2の平均粒径は、酸化物1の平均粒径より小さく、
酸化物2のY、La、Ce、Niの合計量が、酸化物1のA1に対して5mol%以上30mol%以下である、排ガス浄化用触媒。
From the oxide 1 having a phase of perovskite structure and having an average particle size of 0.2 μm or less represented by the following (formula 1), Y 2 O 3 , La 2 O 3 , CeO 2 , NiO to Y 2 A mixture of at least one selected from O 3 and an oxide 2 having an average particle size of 0.1 μm or less;
A1 a1 {Fe (1-b1-c1) B1 b1 C1 c1 } O 3-δ (Formula 1)
(Where A1 is one or two elements selected from Ba, Sr and Ca,
B1 and C1 may not arrange elements,
In the case of arranging B1, one or two elements selected from Co and Cu,
In the case where C1 is arranged, one or more elements selected from Ti, Nb, Ta and including Ta or Nb,
1.0 ≦ a1 ≦ 1.1, 0 ≦ b1 ≦ 0.25, 0 ≦ c1 ≦ 0.2,
δ is a value determined by the history of the material and satisfies 0 ≦ δ <3)
Comprising at least one noble metal selected from Pd, Pt and Rh supported on a mixture of oxide 1 and oxide 2;
The average particle size of the oxide 2 is smaller than the average particle size of the oxide 1,
The exhaust gas purifying catalyst, wherein the total amount of Y, La, Ce, and Ni in the oxide 2 is 5 mol% or more and 30 mol% or less with respect to A1 of the oxide 1.
前記酸化物1としてペロブスカイト型構造の相を有した平均粒径0.2μm以下で組成が下記(式2)で表される酸化物1’と、前記酸化物2として平均粒径0.1μm以下であるYとの混合物を含み、
のYの量が、酸化物1’のA2に対して5mol%以上25mol%以下である、請求項1に記載の排ガス浄化用触媒。
A2a2{Fe(1−b2−c2)Cub2C2c2}O3−δ …(式2)
(ここでA2はSr、Caから選ばれる1種又は2種の元素、
CuとC2は配置しない場合もあるが、
C2に配置する元素がある場合はTi、Nb、TaからTaまたはNbを必ず含んで選ばれる1種又は2種以上の元素、
1.0≦a2≦1.05、0≦b2≦0.2、0≦c2≦0.2、
δは材料の履歴によって決まる値であって、0≦δ<3を満たす)
The oxide 1 having a perovskite structure phase as the oxide 1 and having an average particle size of 0.2 μm or less and the composition represented by the following (formula 2), and the oxide 2 having an average particle size of 0.1 μm or less A mixture with Y 2 O 3 being
The exhaust gas-purifying catalyst according to claim 1, wherein the amount of Y in Y 2 O 3 is 5 mol% or more and 25 mol% or less with respect to A2 of the oxide 1 '.
A2 a2 {Fe (1-b2-c2) Cu b2 C2 c2 } O 3-δ (Formula 2)
(Where A2 is one or two elements selected from Sr and Ca,
Cu and C2 may not be arranged,
When there is an element to be arranged in C2, one or more elements selected from Ti, Nb, Ta to Ta or Nb are necessarily included,
1.0 ≦ a2 ≦ 1.05, 0 ≦ b2 ≦ 0.2, 0 ≦ c2 ≦ 0.2,
δ is a value determined by the history of the material and satisfies 0 ≦ δ <3)
前記酸化物1としてペロブスカイト型構造の相を有した平均粒径0.2μm以下である組成が下記(式3)で表される酸化物1''と、前記酸化物2として平均粒径0.1μm以下であるYとの混合物を含み、
のYの量が酸化物1''のA3に対して5mol%以上15mol%以下である、請求項1又は2に記載の排ガス浄化用触媒。
A3a3{Fe(1−b3−c3)Cub3Tac3}O3−δ …(式3)
(ここでA3はSr、Caから選ばれる1種又は2種の元素、
Cuを含有しない場合もある。
1.0≦a3≦1.05、0≦b3≦0.2、0.1≦c3≦0.2、
δは材料の履歴によって決まる値であって、0≦δ<3を満たす)
The oxide 1 ″ having a perovskite structure phase as the oxide 1 and an average particle size of 0.2 μm or less is represented by the following (formula 3), and the oxide 2 has an average particle size of 0. Including a mixture with Y 2 O 3 which is 1 μm or less,
The exhaust gas-purifying catalyst according to claim 1 or 2, wherein the amount of Y in Y 2 O 3 is 5 mol% or more and 15 mol% or less with respect to A3 of oxide 1 ''.
A3 a3 {Fe (1-b3-c3) Cu b3 Ta c3 } O 3-δ (Formula 3)
(Where A3 is one or two elements selected from Sr and Ca,
In some cases, Cu is not contained.
1.0 ≦ a3 ≦ 1.05, 0 ≦ b3 ≦ 0.2, 0.1 ≦ c3 ≦ 0.2,
δ is a value determined by the history of the material and satisfies 0 ≦ δ <3)
前記酸化物1としてペロブスカイト型構造の相を有した平均粒径0.2μm以下であり組成が下記(式4)で表される酸化物1'''と、前記酸化物2として平均粒径0.1μm以下であるYとの混合物を含み、
のYの量が酸化物1'''のSrに対して10mol%以上20mol%以下である、請求項1〜3のいずれか1項に記載の排ガス浄化用触媒。
Sra4{Fe(1−b4)Cub4}O3−δ …(式4)
(Cuは含まない場合もあるが、
ここで1.0≦a4≦1.05、0≦b4≦0.2、
δは材料の履歴によって決まる値であって、0≦δ<3を満たす)
The oxide 1 having a perovskite structure phase as the oxide 1 and having an average particle size of 0.2 μm or less and the composition represented by the following (formula 4), and the oxide 2 having an average particle size of 0 A mixture with Y 2 O 3 that is 1 μm or less,
The exhaust gas-purifying catalyst according to any one of claims 1 to 3 , wherein the amount of Y in Y 2 O 3 is 10 mol% or more and 20 mol% or less with respect to Sr of the oxide 1 '''.
Sr a4 {Fe (1-b4) Cu b4 } O 3-δ (Formula 4)
(Cu may not be included,
Where 1.0 ≦ a4 ≦ 1.05, 0 ≦ b4 ≦ 0.2,
δ is a value determined by the history of the material and satisfies 0 ≦ δ <3)
前記排ガス浄化用触媒の、大気中で900℃5時間の熱処理を行った後の比表面積が少なくとも7m/gである、請求項1〜4のいずれか1項に記載の排ガス浄化用触媒。 The exhaust gas purifying catalyst according to any one of claims 1 to 4, wherein the exhaust gas purifying catalyst has a specific surface area of at least 7 m 2 / g after heat treatment at 900 ° C for 5 hours in the atmosphere. 請求項1〜5のいずれか1項に記載の排ガス浄化用触媒を製造する方法であって、
酸化物1、酸化物1’、酸化物1''または酸化物1'''のアルカリ土類金属元素の炭酸塩および水酸化物から選ばれる1種以上の炭酸塩または水酸化物の粉末と、酸化物1、酸化物1’、酸化物1''または酸化物1'''のアルカリ土類元素以外の構成元素の酸化物の粉末と、酸化物2を構成する酸化物の、平均粒径0.5μm以下の粉末との混合物を、900℃以上1200℃以下から選ばれる複数の温度で焼成して酸化物1と酸化物2の焼成混合物を得た後、
該焼成混合物を、セラミックスのボールを用いた粉砕により、比表面積が少なくとも20m/gになるまで微粉化する、排ガス浄化用触媒の製造方法。
A method for producing the exhaust gas-purifying catalyst according to any one of claims 1 to 5,
One or more carbonate or hydroxide powders selected from carbonates and hydroxides of alkaline earth metal elements of oxide 1, oxide 1 ′, oxide 1 ″ or oxide 1 ′ ″ , Oxide 1, oxide 1 ′, oxide 1 ″ or oxide 1 ′ ″, oxide powders of constituent elements other than alkaline earth elements, and the average grain size of oxide constituting oxide 2 After firing a mixture with a powder having a diameter of 0.5 μm or less at a plurality of temperatures selected from 900 ° C. or more and 1200 ° C. or less to obtain a firing mixture of oxide 1 and oxide 2,
A method for producing an exhaust gas purifying catalyst, wherein the fired mixture is pulverized by pulverization using ceramic balls until the specific surface area becomes at least 20 m 2 / g.
請求項1〜5のいずれか1項に記載の排ガス浄化用触媒を製造する方法であって、
酸化物1、酸化物1’、酸化物1''または酸化物1'''のアルカリ土類金属元素の炭酸塩および水酸化物から選ばれる1種以上の炭酸塩または水酸化物の粉末と、酸化物1、酸化物1’、酸化物1''または酸化物1'''のアルカリ土類元素以外の構成元素の酸化物の粉末との混合物を、900℃以上1200℃以下から選ばれる複数の温度で焼成してペロブスカイト型構造の相を得た後、
酸化物2を構成する酸化物の、平均粒径0.5μm以下の粉末を添加混合し、
該添加混合物を、セラミックスのボールを用いた粉砕により比表面積が少なくとも20m/gになるまで微粉化する、排ガス浄化用触媒の製造方法。
A method for producing the exhaust gas-purifying catalyst according to any one of claims 1 to 5,
One or more carbonate or hydroxide powders selected from carbonates and hydroxides of alkaline earth metal elements of oxide 1, oxide 1 ′, oxide 1 ″ or oxide 1 ′ ″ , Oxide 1, oxide 1 ′, oxide 1 ″ or oxide 1 ′ ″ and a mixture of oxides of constituent elements other than alkaline earth elements are selected from 900 ° C. to 1200 ° C. After obtaining a phase of perovskite structure by firing at multiple temperatures,
Add and mix the powder of the oxide constituting the oxide 2 with an average particle size of 0.5 μm or less,
A method for producing an exhaust gas purification catalyst, wherein the additive mixture is pulverized by pulverization using ceramic balls until the specific surface area becomes at least 20 m 2 / g.
前記微粉化された焼成混合物または前記微粉化された添加混合物に、Pd、Pt、Rhから選ばれる少なくとも1種の貴金属を担持させる、請求項6または7に記載の排ガス浄化用触媒の製造方法。   8. The method for producing an exhaust gas purifying catalyst according to claim 6, wherein at least one precious metal selected from Pd, Pt, and Rh is supported on the pulverized fired mixture or the pulverized additive mixture. 9. 請求項1〜5のいずれか1項に記載の排ガス浄化用触媒を基材に担持してなることを特徴とする、排ガス浄化触媒部材。
An exhaust gas purification catalyst member comprising the base material carrying the exhaust gas purification catalyst according to any one of claims 1 to 5.
JP2012206532A 2012-09-20 2012-09-20 Exhaust gas cleaning catalyst, method for manufacturing an exhaust gas cleaning catalyst, and exhaust gas cleaning catalyst component Pending JP2014061461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012206532A JP2014061461A (en) 2012-09-20 2012-09-20 Exhaust gas cleaning catalyst, method for manufacturing an exhaust gas cleaning catalyst, and exhaust gas cleaning catalyst component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012206532A JP2014061461A (en) 2012-09-20 2012-09-20 Exhaust gas cleaning catalyst, method for manufacturing an exhaust gas cleaning catalyst, and exhaust gas cleaning catalyst component

Publications (1)

Publication Number Publication Date
JP2014061461A true JP2014061461A (en) 2014-04-10

Family

ID=50617232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012206532A Pending JP2014061461A (en) 2012-09-20 2012-09-20 Exhaust gas cleaning catalyst, method for manufacturing an exhaust gas cleaning catalyst, and exhaust gas cleaning catalyst component

Country Status (1)

Country Link
JP (1) JP2014061461A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018205282A (en) * 2017-06-09 2018-12-27 株式会社 システムスクエア Inspection device, inspection method, and program
JP2020536723A (en) * 2017-10-12 2020-12-17 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company TWC catalyst for gasoline exhaust gas applications with improved thermal durability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018205282A (en) * 2017-06-09 2018-12-27 株式会社 システムスクエア Inspection device, inspection method, and program
JP2020536723A (en) * 2017-10-12 2020-12-17 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company TWC catalyst for gasoline exhaust gas applications with improved thermal durability
JP7319971B2 (en) 2017-10-12 2023-08-02 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー TWC catalyst for gasoline exhaust gas applications with improved thermal endurance

Similar Documents

Publication Publication Date Title
JP4969843B2 (en) Exhaust gas purification catalyst and exhaust gas purification catalyst member
EP2861533B1 (en) Composites of mixed metal oxides for oxygen storage
US6335305B1 (en) Catalyst for purifying exhaust gas
EP2050497B1 (en) Exhaust gas purifying catalyst and method of preparation
JP4950365B2 (en) Mixed phase ceramic oxide ternary alloy catalyst formulation and method for producing the catalyst
JP2016528025A (en) Integrated support for emission control catalyst
EP2921226B1 (en) Catalyst carrier for exhaust gas and exhaust gas-cleaning catalyst
US20190126248A1 (en) Exhaust gas purifying catalyst
US9993805B2 (en) Catalyst composition for purifying exhaust gas and exhaust gas purifying catalyst
JP3265534B2 (en) Exhaust gas purification catalyst
JPWO2008091004A1 (en) Exhaust gas purification catalyst and exhaust gas purification honeycomb catalyst structure
WO2016158656A1 (en) Exhaust purification catalyst
JP2014223587A (en) Exhaust gas purification catalyst carrier, manufacturing method of exhaust gas purification catalyst carrier, exhaust gas purification catalyst, and manufacturing method of exhaust gas purification catalyst
JP2007098200A (en) Exhaust gas purification catalyst and manufacturing method of the same
US20160318005A1 (en) Exhaust gas purifying catalyst
JP2014061461A (en) Exhaust gas cleaning catalyst, method for manufacturing an exhaust gas cleaning catalyst, and exhaust gas cleaning catalyst component
CN111278555B (en) Composition for exhaust gas purification
JP6863799B2 (en) Exhaust gas purification catalyst
JP2009142789A (en) Catalytic carrier for cleaning exhaust gas, its manufacturing method, catalyst for cleaning exhaust gas and honeycomb catalyst structure for cleaning exhaust gas
JP2013244479A (en) Exhaust gas purifying catalyst, method for producing the same, and exhaust gas purifying catalyst member
JPWO2015087781A1 (en) Exhaust gas purification catalyst
JP2013184143A (en) Exhaust gas purification catalyst carrier and method of producing the same, and exhaust gas purification catalyst
JP6889012B2 (en) Diesel oxidation catalyst for light oil combustion and exhaust gas purification device for diesel engine using this
JP5761797B2 (en) Mixed catalyst, catalyst-supporting structure provided with the same, and method for producing the same
JP6985913B2 (en) Exhaust gas purification catalyst, its manufacturing method, and integrated structure exhaust gas purification catalyst